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Abstract
This paper considers the problem of a three-axis flexible satellite attitude stabilisation subject to the vibration of
flexible appendages and external environmental disturbances, which affect the rigid body motion. To solve this
problem, a disturbance observer is proposed to estimate and thereby reject the flexible appendage vibration. Based
on the H∞ and Linear Matrix Inequality (LMI) approach, a controller for spacecraft with flexible appendages is
proposed to ensure robustness as well as attitude stability with high precision. Stability analysis of the overall
closed-loop system is provided via the Lyapunov method. The simulation results of three-axis flexible spacecraft
demonstrate the robustness and effectiveness of the proposed method.

Nomenclature
ACS Attitude control system
DOBPH∞C Disturbance observer with H∞ control system
LMI Linear matrix inequality
GEO Geostationary orbit
SMC Sliding mode control
PID Proportional integral derivative

1.0 Introduction
In recent years, the attitude control problem of flexible structures in space has received much attention,
especially the design of flexible geostationary (GEO) satellites, which carry a rigid hub and flexible
components, such as solar panels and antennas. However, these flexible structural elements may affect
the attitude control performance and the pointing accuracy requirements during the orbital motion. To
solve this problem, various control schemes have been proposed for attitude control problems to suppress
the unwanted vibration torques of the flexible appendages and improve attitude control accuracy.

Different approaches were developed to deal with the problem of attitude control and suppress
flexible vibration. Among them, the classical and robust optimal PID control [1,2], adaptive control
[3,4], variable structure control [5,6]. One of the most applied methods in the attitude control system
(ACS) for flexible spacecraft is sliding mode control (SMC) since it has a high degree of robustness
and anti-disturbance capacity [7–9]. However, this approach often leads to chattering due to its dis-
continuous switching control. In Refs (10 and 11) a robust H∞ controller design and LMI/µ-analysis
techniques have been proposed to design of flexible satellite attitude control laws. This problem is
stated in the context of linear matrix inequality that provides a good disturbance rejection performance,
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Figure 1. Spacecraft with flexible appendages.

but its usefulness for attitude stabilisation was limited. A performance comparison between a structured
H∞ controller with the traditional H∞ for large flexible spacecraft have been investigated in Ref. (12).

Some promising approaches to robust controllers have been realised to handle satellites’ tracking
problems [13–15]. To tackle the issue of the unknown control input saturation and external disturbances,
a backstepping attitude controller using an inverse tangent-based tracking function has been developed
for the attitude manoeuver problem [16]. For this purpose, developing of attitude control techniques
based on the observer of unknown inputs would be a good choice to alleviate the constraint faced by
traditional feedforward control [17,18]. A multi-objective nonlinear unknown input observer (NUIO) is
investigated to achieve robust actuator fault isolation using a synthesis of H∞ methods. Nevertheless,
these researches did not consider the vibrations generated by flexible dynamics.

To overcome the limitations of traditional feed-forward control and improve the performance of
attitude control, an effective vibration suppression based on a disturbance observer strategy has been
investigated [19–22], which can estimate disturbances, compensate them effectively by feed-forwards,
and provide robust attitude stabilisation.

Consequently, good rejection of vibrations has been made by these scholars. On the other hand, the
control theories mentioned above can only be used to stabilise single or dual-axis attitude control.

The aim of this paper is to consider structural vibrations for the three-axis attitude dynamics of a
flexible satellite. In contrast to previous work [23–25], a new combined disturbance observer with an H∞
control system (DOBPH∞C) is provided: an observer has been developed to estimate the disturbance
and then compensate by the controller where H∞ is applied to increase system performance (robust
stability and vibration suppression) in the presence of flexible appendages. The equations of motion for
the three-axis attitude dynamics of a flexible spacecraft are derived. The proposed controller for attitude
stabilisation is developed in the form of an LMI, and the stability of the whole system is validated by
the Lyapunov method. A numerical simulation analysis is carried out to illustrate the efficiency and
performance of the composed controller.

2.0 Model formulation
In this paper, the dynamic model of the three-axis attitude manoeuver for a spacecraft with flexible
appendages under the excitation of external forces is shown in Fig. 1.

The attitude dynamics equation of a rigid main body coupled with flexible appendages and other
external forces can be described as follows [26–28]:

Jω̇+ δT η̈= u + d (1)

η̈+ 2ξ�η̇+�2η+ δω̇= 0 (2)
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Figure 2. Block diagram of attitude control system.

where J represents the inertia matrix of the spacecraft, ω represents the spacecraft angular velocity
in the body fixed frame, δ represents the coupling coefficient matrix, η= [

η1 · · · ηN

]Trepresents the
N-dimensional flexible modal coordinate, ξand � represent the model ratio and the model frequency
matrix, respectively, u represents the control torque and d represents the external bounded disturbances
torque vector.

By combining (1) with (2), the model of flexible spacecraft will be

(I − δδT)ω̇(t) = δ(2ξ�η̇+�2η) + u(t) + d(t) (3)

Denote ω= [
ϕ̇, θ̇ , ψ̇

]T , x1 = ϕ, x2 = θ , x3 =ψ , x4 = ϕ̇, x5 = θ̇ , x6 = ψ̇ , x = (x1, x2, x3, x4, x5, x6)
T , u =

(ux, uy, uz)T and d = (
dx, dy, dz

)T , then (1) and (2) can be transformed into the following form

ẋ(t) = Ax(t) + B(u + d + dflex) (4)

where

A =
[

0 I
0 0

]
B =

[
0(

J − δδT
)−1

]
(5)

dflex = δ
(
2ξ�η̇+�2η

)
is considered as the internal disturbance torques caused by the flexible

appendage.

3.0 Composite control design
In this section, the composite control system scheme with disturbances is performed and applied to
estimate feedforward compensation for the disturbances observer through flexible vibration design. The
block diagram of the attitude control system is described in Fig. 2. where d̂flex is the estimation of the
disturbance dflex, from Fig. 2 it can be seen that the proposed controller is composed of two parts, the
inner loop consists of the disturbance observer and feedforward composition, while the outside loop
is the H∞ controller. Thus, the suggested controller can effectively control the flexible satellite. The
vibration generated by the flexible appendages is observed and compensated, and the H∞ controller
has applied to guarantee robust stability against disturbances.

It can be derived from (1) and (2):

η̈(t) = −ϒ−1
[
δ(2ξ�η̇(t) +�2η(t)) + δTJ−1(u(t) + d(t))

]
(6)

where

ϒ = I − δTJ−1δ (7)

https://doi.org/10.1017/aer.2023.3 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2023.3


The Aeronautical Journal 1311

According to Ref. (29) the disturbance dflexcan be formulated by the following system:{
dflex(t) = Vw(t)
ẇ(t) = Ww(t) + Hd(t)

(8)

where

w(t) = [η(t), η̇(t)]T , V = δ
[
�2, 2ξ�

]
, W =

[
0 I

−ϒ−1�2 −ϒ−12ξ�

]
and H =

[
0

ϒ−1δJ−1

]
There by the disturbance observer is constructed as:⎧⎪⎪⎨

⎪⎪⎩
d̂flex(t) = Vŵ(t)

ŵ(t) = v(t) − Lx(t)

v̇(t) = (W + LBV)(v(t) − Lx(t)) + LAx(t) + LBu(t)

(9)

where ŵ(t) is the estimation of w(t), v(t) is the auxiliary vector as the state of the observer, L is the
desired observer gain.

The estimation error is denoted as:
e(t) = w(t) − ŵ(t) (10)

Based on (4), (8), (9) and (10) it is shown that the error dynamics satisfies:
ė(t) = (W + LBV)e(t) + (H + LB)d(t) (11)

The purpose of rejecting disturbances can be reached by designing the observer gain such that (11)
fulfils the requirement of stability and robustness performance. Thus, the structure of the proposed
controller is formulated as:

u(t) = −d̂flex(t) + Kx(t) (12)
Combining (4) with (12), the closed-loop system is described as:

ẋ(t) = (A + BK)x(t) + BVe(t) + Bd(t) (13)
Thus, the composite system combined (10) with (13) yields:[

ẋ(t)

ė(t)

]
=

[
A + BK BV

0 W + LBV

] [
x(t)

e(t)

]
+

[
B

LB + H

]
d(t) (14)

The output of the whole system is:
z(t) = C1x(t) + C2e(t) + D1d(t) (15)

The system concerned can be defined as:{
x̄(t) = Āx̄(t) + B̄d(t)

z(t) = Cx̄ + D1d(t)
(16)

where

x̄(t) =
[

ẋ(t)

ė(t)

]
; Ā =

[
A + BK BV

0 W + LBV

]
; B̄ =

[
B

LB + H

]

and C̄ = [
C1C2

]
is the weighting matrice to adjust the system performance.

With the above-mentioned equations, it can be shown that the composite system consists of two
subsystems; one of which represents the error dynamical system for the estimation of the disturbance,
the other results from the original system by applying the disturbance rejection strategies in control
input.

The problem considered in this task is stated as follows: design an observer to estimate the
disturbance, and compute a H∞ controller such as (16) is stable and satisfies‖z (t)‖2 ≤ γ ‖d (t)‖2.
where γ is a given positive constant.
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Indeed H∞is applied to increase system performance in the presence of both flexible appendages and
external disturbances. This approach uses a linear matrix inequality (LMI) to address the control prob-
lem. LMI is a helpful tool that is directly used to find feasible and optimal solutions. The H∞controller
is an effective tool for robust stability.

3.1 Stability analysis
To ensure the robust stability of the system, the composite controller (14) is used to enhance the per-
formance and the robustness of the whole system. For the purpose of search convenience, the following
lemma is introduced:

Lemma 3.1.1 Let the state space of a generalised system is described as:
ẋ(t) = Gx(t) + H1d(t) + H2u(t)
y(t) = C1x(t) + D1d(t) + D2u(t)

(17)

where u(t) ∈ Rm the state variables of the system be measurable, the system’s state feedback controller
can then be designed as:

u(t) = Kx(t) (18)

ẋ(t) = (G1 + H2K)x(t) + H1d(t)
y(t) = (C1 + D2K)x(t) + D1d(t)

(19)

Suppose that G = G1 + H2K, H = H2C = C1 + D2K and D = D2.

Since H = [
H1H2

]T =
[

0
ϒ−1δJ−1

]
and d(t)represents the external forces acting on the system, which

can be much smaller compared to the vibration torques caused by the flexible appendages dflex. As result,
it can yield the following system. {

ẋ(t) = G1x(t) + H2u(t)

y(t) = C1x(t) + D2u(t)
(20)

For given parameters γ > 0, if there exist, P> 0 satisfying:⎡
⎢⎣

GTP + PG PH CT

∗ −γ 2I DT

∗ ∗ −I

⎤
⎥⎦< 0 (21)

Then system (20) is asymptotically stable.
Hereafter, ∗ denotes the symmetric item in a symmetric matrix.
Proof.
Consider the Lyapunov function as follows

V(t) = xT(t)Px(t) +
t∫

0

(
yT(r)y(r) − γ 2uT(r)u(r)

)
dr> 0 (22)

where a P = PT > 0 and γ > 0 is the squared H∞ norm of the transfer function matrix of the system,
evaluating the derivative of V(t) with respect to t along a system trajectory can yields

V̇(t) = ẋT(t)Px(t) + xT(t)Pẋ(t) + yT(t)y(t) − γ 2uT(t)u(t)< 0 (23)
Thus, substituting system (20) into (6) gives

V̇(t) = (Gx(t) + Hd(t))TPx(t)

+ xT(t)P (Gx(t) + Hu(t))− γ duT(t)u(t)

+ (Cx(t) + Du(t))T
(Cx(t) + Du(t)) (24)
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with the notation below

x̃(t) = [
xT(t)uT(t)

]
(25)

it is obtained

V̇(t) = x̃T(t)P̃x̃(t)< 0 (26)

where

P̃ =
[

GTP + PG PH

∗ −γ 2I

]
+

[
CTC CTD

∗ DTD

]
< 0 (27)

Since [
CTC CTD

∗ DTD

]
=

[
CT

DT

] [
CD

]
� 0 (28)

With Schur complement property yields⎡
⎢⎣

0 0 CT

∗ 0 DT

∗ ∗ −I

⎤
⎥⎦� 0 (29)

Using (29) the LMI condition (27) can be written compactly as (21). This concludes the proof.
Based on Lemma 3.1.1, the following theorem can be introduced.

Theorem 3.1.2 For given parameters γ > 0, if there exist a positive definite matrix X> 0, P2 > 0 and
matrix R1, R2 satisfying the following LMI:⎡

⎢⎢⎢⎢⎣
M1 BV B XCT

1

∗ M2 R2B + P2H CT
2

∗ ∗ −γ 2I DT
1

∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎦< 0 (30)

Where

M1 = (AX + BR1) + (AX + BR1)T

M2 = (P2W + R2BV) + (P2W + R2BV)T (31)

Then the composite system (14) under the proposed control law (12) with gain K = R1X−1 associated
to the observer (9) with gain L = P−1

2 R2 is asymptotically stable and satisfies ‖z‖2 < γ ‖d(t)‖2.

3.2 Proof
For the system (16), we define the matrix P as follows [30]:

P =
[

p1 0

0 p2

]
=

[
Q−1

1 0

0 P2

]
> 0 (32)

Applying Lemma 3.1.1 to (16), it can be verified that⎡
⎢⎣

ĀTP + PĀ PB̄ C̄

∗ −γ 2I DT
1

∗ ∗ −I

⎤
⎥⎦< 0 (33)

https://doi.org/10.1017/aer.2023.3 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2023.3


1314 Eddine et al.

Table 1. Satellite simulation parameters

Parameters Value
Inertia [kgm2] Diag [973.4, 354.8, 808.5]
Initial Attitude [rad] [000]
Initial Attitude Rate [rad/s] [0.001100.0239]
Desired Attitude [rad] [000]
External Torque [N.m] dx = 5 × 10−2 (sin (pi/2)t)

dy = 5 × 10−2 (sin (pi/2)t)
dz = 5 × 10−2 (sin (pi/2)t)

Then ⎡
⎢⎢⎣
�1 P1BV P1B CT

1

∗ �2 P2 (LB + H) CT
2

∗ ∗ −γ 2I DT
1

∗ ∗ ∗ −I

⎤
⎥⎥⎦< 0 (34)

where

�1 = P1(A + BK) + [P1 (A + BK)]T

�2 = P2(W + LBV) + [P2 (W + LBV)]T (35)

Pre-multiplied and post-multiplied simultaneously the LMI (34) by diag (Q1, I, I, I) , thus (30) can be
obtained.

The next step, by defining X = Q1, R1 = KQ1 = KX and R2 = P2L, Consequently, by selecting the
control gain as K = R1Q−1

1 and the observer gain as L = P−1
2 R2 it can be deduced that the composite

system (14) is asymptotically stable.

4.0 Simulation results
To validate the effectiveness of the designed controller, numerical simulations are performed in
Matlab/Simulink environment with M.file. The proposed control scheme has been introduced to the
satellite with flexible appendage while the three-axis attitude stabilisations are performed by LMI theory.

The satellite must constantly remain above a particular location on the Earth, such as a communica-
tions satellite, with an altitude of 36,000 km, whereas the orbital velocity is equivalent to the angular
velocity of a normal day which is ω0 = 7.2921e − 5 rad/s. The parameters of the flexible satellite are as
stated below in [31].

The coupling matrix is defined as

δ =
⎛
⎜⎝

1 0.1 0.1

0.5 0.1 0.01

−1 0.3 0.01

⎞
⎟⎠ kg1/2m

The three elastic modes are considered as �= diag {0.602π , 1.088π , 1.846π} rad/s, with damping
coefficients ξ1 = ξ2 = ξ3 = 0.01 and the modal coordinate is defined as η= [

η1η2η3

]T .
The satellite simulation parameters are listed in Table 1.
Based on LMI (27), it can be solved that the controller gain

K =
⎡
⎢⎣

−351.774 −247.970 −266.156 −665.222 −154.525 −213.185

−264.647 −303.950 −261.952 −207.086 −377.452 −196.160

−277.007 −255.676 −351.767 −231.053 −158.654 −612.140

⎤
⎥⎦

https://doi.org/10.1017/aer.2023.3 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2023.3


The Aeronautical Journal 1315

Figure 3. Time responses of attitude angle.

and the observer gain

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 −15.065 −21.671 18.295

0 0 0 −2.718 −6.941 −10.044

0 0 0 −2.507 −0.648 −0.286

0 0 0 −0.415 1.286 1.323

0 0 0 −2.553 −2.526 −3.669

0 0 0 0.255 −1.511 0.609

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Simulation results are given as follows. The time histories of spacecraft attitude angles are shown
in Fig. 3. It can be seen that the attitude stabilisation with external disturbances is successfully accom-
plished in 35s, a stability accuracy of 1 ×10−3 (deg) and 1 × 10−2 (deg) is achieved during the time
period from 50 to 80s. these results show the attitude is stabilised with high pointing accuracy com-
pared with the classical method (state feedback controller) in the presence of external disturbance and
flexible appendages.

The angular velocities of flexible spacecraft in the presence of external disturbances are given in
Fig. 4. It can be observed that the angular velocities converge in 30s, and they converge more smoothly
for the proposed method during steady-state operations compared with SFC method.

Figure 5 shows the time responses of disturbances, and estimations errors, respectively. From this,
we can see that the effects of the vibrations caused by a flexible appendage and radiation torques can
be reduced during attitude manoeuver. The disturbance observer is successfully employed as a tool for
estimating the total disturbances in the system and preserve stability and control performance.

The time response of control input torque to stabilise the flexible spacecraft is presented in Fig. 6. It
is apparent that the control torque eq. (12) is a little important in the beginning 5s and fastly reduced to
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Figure 4. Time responses of attitude angle.

Figure 5. Time responses of disturbances along the 3-axes.
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(a) (b)

Figure 6. Time responses of control torque.

(a) (b)

(c) (d)

Figure 7. Histogram of Attitude angles control errors using DOBPH∞C controller (a) roll axis, (b)
pitch axis and (c) yaw axis and (d) global RMSE for three axes.

the lowest. This means that the attitude stabilisation with high-precision can be accomplished by using
the proposed control scheme for the flexible spacecraft.

4.2. Monte Carlo simulation
To evaluate the performance of the planned controller, a series of Monte Carlo simulations have been
carried out in Figs 7 and 8. The tests consist of 10,000 simulation runs. For each Monte-Carlo run,
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(a) (b)

(c) (d)

Figure 8. Histogram of Attitude angles velocity control errors using DOBPH∞C controller (a) roll
axis, (b) pitch axis and (c) yaw axis and (d) global RMSE for three axes.

Euler angles and angle rates were picked randomly; the starting attitude came from a uniform population
between ±10◦. The attitude rates came from a uniform population between ±1◦/s with a sampling of
1 and 0.1, respectively. The aim is to analyse how the accuracy performance of the method used on
a flexible satellite during attitude control. In fact, for each Monte-Carlo run, the Euler angles control
errors and angle rates control errors converge; moreover, the global magnitude error does not exceed
0.018(deg), for every simulation in attitude angle errors and 7.10−3(deg/s) in attitude velocity errors, the
Monte Carlo test confirms the performance of the proposed controller that made robust against various
disturbances.

5.0 Conclusions
This paper proposed a control method to solve the problem of high-precision attitude control for three-
axis stabilised flexible spacecraft. The presented composite controller scheme is adopted to reduce the
total perturbation, including flexible coupling terms and external disturbances and adjust the space-
craft’s attitude. The stability and convergence of the closed-loop system are proved using the Lyapunov
theory, and the linear matrix inequality technique is used to design the disturbance attitude observer and
controller gains. The numerical simulations verify that the proposed method in this paper can achieve
higher performance compared to a state feedback controller. Our future work will focus on practical
hardware experiments.
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