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1. Introduction and the main result

Throughout this paper A will denote a C∗-algebra, A+ will denote the positive and Ah

will denote the self-adjoint part of A. An elementary operator on A is a map of the form

ψ(x) =
m∑

i=1

aixbi, x ∈ A, (1.1)

where ai and bi are fixed elements of the multiplier algebra M(A) of A. The smallest
m for which ψ can be expressed in the form (1.1) is called the length of ψ. The set of
all elementary operators on A is denoted by E(A) and its norm closure (in the set of all
bounded operators on A) by E(A). By Ic(A) we will denote the set of all closed two-sided
ideals in A and by IB(A) (respectively, ICB(A)) the set of all bounded (respectively, all
completely bounded [21]) maps that preserve all ideals in Ic(A). By an ideal we shall
always mean a closed two-sided ideal. Clearly,

E(A) ⊆ ICB(A) ⊆ IB(A).

In this note we characterize C∗-algebras for which the equalities ICB(A) = E(A) or
IB(A) = E(A) hold.

Theorem 1.1. For a separable C∗-algebra A the inclusion ICB(A) ⊆ E(A) holds if
and only if A is a finite direct sum of homogeneous C∗-algebras of finite type; in this
case IB(A) = E(A) = ICB(A).
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We recall that a C∗-algebra A is called n-homogeneous if all its irreducible represen-
tations are of the same finite dimension n. (By the dimension of a representation π we
mean the dimension of the Hilbert space of π.) Then, by [11,26], A is isomorphic to the
C∗-algebra Γ0(E) of all continuous sections vanishing at ∞ of a locally trivial C∗-bundle
E with fibres isomorphic to Mn(C). (E is just a usual vector bundle such that the local
trivializations, restricted to fibres, are isomorphisms of C∗-algebras.) If the base space ∆
of this bundle admits a finite open covering (∆i) such that E|∆i is trivial for each i (as
a C∗-bundle), then E is said to be of finite type [14] and we shall say that in this case
A is of finite type.

We note that a weaker form of approximation is always possible: namely, for every C∗-
algebra A the set E(A) is dense in ICB(A) (and in IB(A)) in the point norm-topology
(see [18, 2.3] and [5, 5.3.4]). However, there is in general no control on the norms in this
approximation: not every complete contraction φ ∈ ICB(A) can be approximated by a net
of complete contractions in E(A). If A is a von Neumann algebra, then each φ ∈ CB(A)
preserving all weak∗ closed ideals can be approximated by complete contractions in E(A)
in the point-weak∗ topology if and only if A is injective [8] (at least if the predual
of A is separable). For a general C∗-algebra A, the question of when every complete
contraction φ ∈ ICB(A) can be approximated pointwise by complete contractions in E(A)
is connected to the theory of tensor products of C∗-algebras and the complete answer
is still not clear to the author. Concerning elementary operators, we mention that in
recent years interest has shifted from spectral and structural theory [9,13] to questions
related to the natural map µ from the central Haagerup tensor product M(A)

h
⊗Z M(A)

into CB(A) (see [4,5,8,19,24] and references therein). In particular, the problem of when
µ is isometric has been much studied by several authors for special cases of C∗-algebras
(see [5, Chapter 5]) and was finally solved for general C∗-algebras in [6,25]. Clearly, the
range of µ is contained in E(A) and Theorem 1.1 characterizes C∗-algebras in which the
range of µ is as large as possible.

In one direction the proof of Theorem 1.1 is easy. Namely, if A = Γ0(E) with E of
finite type, the usual (finite) partition of unity argument reduces the proof to the case
when E ∼= ∆ × Mn(C) is trivial, so that A ∼= C0(∆, Mn(C)) (continuous matrix-valued
functions vanishing at ∞). In this special case a bounded linear map φ, which preserves
all ideals of the form Jt = {f ∈ A : f(t) = 0}, t ∈ ∆, decomposes into a bounded
continuous collection of maps on fibres A/Jt

∼= Mn(C); in other words, φ is in the set
BZ0(A) = BZ0(Mn(Z0)) of bimodule maps over the centre Z0 = C0(∆) of A. With eij

the standard matrix units in Mn(C) and ηkl : Mn(Z0) → Z0 the maps ηkl([zij ]) = zkl,
we have that

φjl
ki : Z0 → Z0, φjl

ki(z) := ηkl(φ(zeij)), z ∈ Z0,

are bimodule maps over Z0 (thus, double centralizers since Z0 is commutative), and hence
given by multiplications with certain elements cjl

ki of the multiplier algebra Z = Cb(∆)
of Z0. Then for [zij ] =

∑n
i,j=1 zijeij we have that

φ([zij ]) =
n∑

i,j=1

φ(zijeij) =
n∑

i,j,k,l=1

cjl
kizijekl =

n∑
k,l,r,s=1

crl
kseks

( n∑
i,j=1

zijeij

)
erl,
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so that φ is an elementary operator with coefficients in Mn(Z), the multiplier C∗-algebra
of A = Mn(Z0).

In certain special cases (say, if A is prime) one can use the Akemann–Pedersen charac-
terization of C∗-algebras having only inner derivations [2] together with some additional
work to give a relatively short proof of a part of Theorem 1.1. But in general the proof
of Theorem 1.1 requires construction of new classes of maps preserving ideals, which
cannot be uniformly approximated by elementary operators. It is perhaps not very sur-
prising that such maps exist if the dimensions of irreducible representations of A are not
bounded. They can be taken to be of the form x �→

∑∞
k=1 ekxfk, where the sum is norm

convergent for all x ∈ A, but not uniformly convergent. It will be shown in § 2 that an
appropriate choice of the coefficients ek and fk is possible so that such a map cannot be
approximated uniformly by elementary operators.

But even if A is subhomogeneous we do not always have the inclusion ICB(A) ⊆ E(A).
Consider, for example, the C∗-subalgebra A0 of C([0, 1], M2(C)) consisting of all x such
that x(0) is a diagonal matrix with 0 on the (2, 2) position (or, alternatively, a general
diagonal matrix) and the map x �→ φ(x) = e12xe12, where e12 has 1 on the position (1, 2)
and 0 elsewhere. It can be shown that φ preserves ideals but φ /∈ E(A0) (the details are
just a special case of those in the proof of Lemma 4.1; see the paragraphs containing (4.4)–
(4.8)). Such examples suggest the way to a part of the proof of Theorem 1.1. Namely,
for an n-subhomogeneous C∗-algebra A which is not a direct sum of homogeneous C∗-
algebras, it will be shown in § 4 that the multiplier algebra M(J) of the n-homogeneous
ideal J of A contains an element b such that the two-sided multiplication φ : x �→ bxb

maps A into A and φ ∈ ICB(A) \ E(A) (provided that J is essential in A, the general
case will be reduced to this situation). As a preparation for this, we shall show in § 3 that,
if J is not unital, M(J) is the C∗-algebra of continuous sections of a (not necessarily
locally trivial) C∗-bundle over the Stone–Čech compactification β(U) of the spectrum U

of J and the n-homogeneous ideal of M(J) properly contains J (Lemma 3.4). This will
enable us to show in § 4 (as the first step towards the proof of Theorem 1.1 in the case of
subhomogeneous C∗-algebras) that there exists a point in β(U) at which A (A ⊆ M(J))
looks in a certain respect essentially like A0 of the example mentioned above.

On the other hand, the explanation that the homogeneous summands in Theorem 1.1
must be of finite type is simple and can be given immediately.

Proof that A must be of finite type. Assume that a locally trivial C∗-bundle
E over a locally compact space ∆ with fibres Mn(C) is not of finite type. Then E is
not of finite type as a vector bundle by [23, 2.9] and it follows that for any finite set
{a1, . . . , am} of bounded continuous sections of E there exists a point t0 ∈ ∆ such that

dim span{a1(t0), . . . , am(t0)} < n2.

Indeed, if this were not the case, then the map

f : ∆ × C
m → E, f(t; λ1, . . . , λm) =

m∑
j=1

λjaj(t)
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would be a surjective morphism of vector bundles and E would be isomorphic to the
subbundle (ker f)⊥ of ∆ × C

m, and hence of finite type by [14, 3.5.8]. It follows that for
each elementary operator ψ on A = Γ0(E) there is a point t0 ∈ ∆ such that the induced
elementary operator ψt0 on A/Jt0

∼= Mn(C) has length at most n2 − 1. On the other
hand, the (normalized) central trace τ on A (defined by τ(x)(t) = (1/n) trx(t), t ∈ ∆)
preserves all (primitive ideals Jt hence all) ideals of A; hence, τ ∈ ICB(A). But, denoting
by ei,j , i, j = 1, . . . , n, the usual matrix units in Mn(C), we have that

τ(x)(t0) = (1/n)
n∑

i,j=1

ei,jx(t)ej,i,

so that τt0 on Mn(C) has length n2. Therefore, τt0 has a positive distance d to the closed
set of all elementary operators of length less than or equal to n2 − 1 on Mn(C). This
implies that the distance of τ to E(A) is at least d, so τ /∈ E(A). �

Throughout this paper we shall denote by Â the spectrum of A (equal to the set of all
equivalence classes of irreducible representations) and by Ǎ the primitive spectrum of A

(equal to the set of all primitive ideals) equipped with the Jacobson topology. The norm
and the weak∗ closure of a set S will be denoted by ¯̄S and S̄, respectively.

2. A reduction to subhomogeneous C∗-algebras

Lemma 2.1. Let A be an irreducible C∗-subalgebra in B(H), let x1, . . . , xn be arbi-
trary elements of A, let g ∈ A+ \ {0}, let B = gAg be the hereditary C∗-subalgebra
generated by g and let ε > 0. If rank g > n, then there exist e, f ∈ B+ such that
‖e‖ = 1 = ‖f‖ and

‖exjf‖ < ε, j = 1, . . . , n.

Proof. Choose a unit vector η ∈ K := [BH]. Note that b = (b|K) ⊕ (0|K⊥) for each
b ∈ B (since BK⊥ ⊆ K∩K⊥ = 0), that B|K is irreducible [20, 5.5.2] and that dimK > n

since rank g > n. Hence, by the Kadison transitivity theorem there exists e ∈ B with
‖e‖ = 1 such that e annihilates the projections of all vectors xjη to K. Thus, (since
eK⊥ = 0),

exjη = 0, j = 1, . . . , n.

Moreover, replacing e by e∗e, we may assume that e ∈ B+. By the algebraic irreducibility
[20, 5.2.3] there exists b ∈ B+ with ‖b‖ = 1 and bη = η. Then the vector state ωη(x) :=
〈xη, η〉 annihilates the element

x0 :=
n∑

j=1

bx∗
je

2xjb

of B. Since ωη is a pure state on B (by irreducibility of B on K), by [1] there exists a
positive element h in the unitization of B such that ‖h‖ = 1,

‖hx0h‖ < ε2 and ωη(h) = 1.
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This implies that ‖exjbh‖ < ε for all j = 1, . . . , n, and (since ‖h‖ = 1 and 〈hη, η〉 = 1)
hη = η. Set f := |hb| = |(bh)∗|. Then f ∈ B+, ‖f‖ = 1 (since hbη = η) and (using the
polar decomposition (bh)∗ = uf of (bh)∗) we deduce that ‖exjf‖ = ‖exjbh‖ < ε for all
j = 1, . . . , n. �

Lemma 2.2. If A is separable and has an infinite-dimensional irreducible represen-
tation π : A → B(H), then there exist two bounded sequences (ei) and (fi) in A+ such
that ‖π(ei)‖ = 1 = ‖π(fi)‖, eiej = 0 = fifj if i 
= j and the sum

φ(x) =
∞∑

n=1

enxfn (2.1)

is norm convergent for each x ∈ A.

Proof. Since π(A) is irreducible and H infinite dimensional, π(A) must be infinite
dimensional and the same for any of its maximal abelian self-adjoint subalgebras [15,
4.6.12]. Thus, by functional calculus we may find a sequence (ġi) in π(A)+ with ‖ġi‖ = 1,
ġiġj = 0 if i 
= j and rank ġi > i. Set P = ker π and identify A/P with π(A). Let (xj) be
a bounded sequence with dense span in A. By Lemma 2.1 for each n there exist elements
ėn and ḟn in (ġnπ(A)ġn)+ such that ‖ėn‖ = 1 = ‖ḟn‖ and

‖ėnπ(xj)ḟn‖ <
1
2n

, j = 1, . . . , n. (2.2)

Since the ġn are orthogonal (that is, ġiġj = 0 if i 
= j), the same holds for ėn and for ḟn.
By [15, 4.6.20] we may lift (ėn) (and similarly (ḟn)) from π(A) to orthogonal sequences
(ẽn) (and (f̃n)) of norm 1 elements in A+. Recall that, with (uk) an approximate unit
in P , we have ‖π(x)‖ = lim ‖(1 − uk)x(1 − uk)‖ for all x ∈ A; hence, from (2.2) for each
n there exists un ∈ P , 0 � un � 1, such that

‖(1 − un)ẽnxj f̃n(1 − un)‖ <
1
2n

, j = 1, . . . , n. (2.3)

Set en = ẽn(1 − un)ẽn and fn = f̃n(1 − un)f̃n. Then eiej = 0 = fifj if i 
= j, ‖en‖ =
1 = ‖fn‖ (since ‖π(en)‖ = 1, ‖π(fn)‖ = 1 and ‖en‖, ‖fn‖ � 1), and (2.3) implies that

‖enxjfn‖ <
1
2n

, j = 1, . . . , n. (2.4)

Since ‖
∑∞

n=1 e2
n‖ = maxn ‖e2

n‖ = 1 (by orthogonality) and ‖
∑∞

n=1 f2
n‖ = 1, it follows

that (2.1) defines a (complete) contraction φ from A into the von Neumann envelope Ā

of A. We have

φ(xj) =
j−1∑
n=1

enxjfn +
∞∑

n=j

enxjfn,

where the sum on the right side is norm convergent by (2.4). Since the sequence (xj) has
dense span in A it follows that the sum (2.1) is convergent for each x ∈ A. �

https://doi.org/10.1017/S0013091507001290 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091507001290


736 B. Magajna

If pi ∈ B(H), i = 1, . . . , n, are non-zero orthogonal projections and φ ∈ E(B(H)) is
defined by φ(x) =

∑n
i=1 pixpi, the distance of φ to the set En−1 of elementary operators

of length at most n − 1 turns out to be (not 1, but) at most 1/n. (For a proof, let
ψ ∈ E(B(H)) be defined by

ψ(x) =
n∑

i,j=1

(
δi,j − 1

n

)
pixpj

and note that φ(x)−ψ(x) = pxp/n, where p =
∑n

i=1 pi, so that ‖φ−ψ‖ = 1/n. To show
that the length of ψ is at most n − 1, observe that the n × n matrix [δi,j − 1/n] is (a
projection) of rank n − 1; therefore, there exist αi,j , βi,j ∈ C such that

δi,j − 1
n

=
n−1∑
k=1

αk,iβk,j for all i, j.

Now, with ak :=
∑n

i=1 αk,ipi and bk :=
∑n

i=1 βk,ipi we have that

ψ(x) =
n∑

i,j=1

n−1∑
k=1

αk,iβk,jpixpj =
n−1∑
k=1

akxbk

for all x ∈ B(H).) However, we shall only need an asymptotic estimate stated in the
following lemma.

Lemma 2.3. For each m ∈ N there exists n(m) ∈ N such that for every θ ∈ E(B(H))
of the form

θ(x) =
n∑

i=1

eixfi, x ∈ B(H),

where n � n(m) and ei, fi ∈ B(H)+ are norm-1 elements satisfying eiej = 0 = fifj if
i 
= j, the distance d(θ, Em) of θ to the set Em of all elementary operators of length at
most m is at least 1

5 .

Proof. Denote by B(H)� the dual of B(H) and note that the map

κ : E(B(H)) → B(B(H)�, B(H)), κ

( n∑
i=1

ai ⊗ bi

)
(ρ) =

n∑
i=1

ρ(ai)bi(ρ ∈ B(H)�)

is contractive, where the elements ψ =
∑

ai ⊗ bi ∈ E(B(H)) have the usual operator
norm ‖ψ‖ = sup{‖

∑
aixbi‖ : x ∈ B(H), ‖x‖ � 1}. This follows from

‖κ(ψ)‖ = sup
{∣∣∣∑ ρ(ai)ω(bi)

∣∣∣ : ω, ρ ∈ B(H)�, ‖ω‖ � 1, ‖ρ‖ � 1
}

,

by noting first that the supremum does not change if we restrict ω and ρ to be of rank 1
(since the unit ball of B(H)� is the weak∗ closure of the convex hull of rank-1 functionals
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of the form x �→ 〈xξ, η〉, where ξ, η ∈ H have norm at most 1) and then noting that the
supremum is equal to

sup
{∥∥∥∑

aixbi

∥∥∥ : x ∈ B(H), ‖x‖ � 1, rankx � 1
}

,

and hence dominated by ‖ψ‖.
Let θ be as in the lemma (but with n arbitrary). Given ψ ∈ Em of the form

ψ(x) =
m∑

j=1

ajxbj ,

let U be the closed unit ball of V := span{b1, . . . , bm}. By the orthogonality of the ei we
may choose ρi in the unit ball of B(H)� so that ρi(ej) = δi,j ; hence,

ε := ‖θ − ψ‖ � ‖κ(θ) − κ(ψ)‖ �
∥∥∥∥fi −

m∑
j=1

ρi(aj)bj

∥∥∥∥.

This shows that the distance of fi to V is at most ε and, since ‖fi‖ = 1, it follows that
dist(fi, U) � 2ε. Thus, we may choose hi ∈ U with ‖fi − hi‖ � 2ε, from which we have
(since ‖fi − fj‖ = 1 if i 
= j)

‖hi − hj‖ � ‖fi − fj‖ − ‖fi − hi‖ − ‖fj − hj‖ � 1 − 4ε.

Suppose that ε < 1
5 , so that ‖hi − hj‖ > 1

5 for all i 
= j. If we equip V with a suitable
Euclidean norm ‖ · ‖2 (by proclaiming an Auerbach basis of V to be orthonormal), then
‖ξ‖/

√
m � ‖ξ‖2 � ‖ξ‖

√
m for all ξ ∈ V . Thus, ‖hi − hj‖2 > 1/(5

√
m) if i 
= j, while all

the vectors hi, i = 1, . . . , n, are contained in the same at most m-dimensional Euclidean
ball of radius

√
m. This is clearly impossible if n is large enough. �

Lemma 2.4. Suppose that A is separable. If ICB(A) ⊆ E(A), then A is subhomoge-
neous, that is, sup[π]∈Â dim π < ∞.

Proof. First we will show that all irreducible representations of A must be finite
dimensional. Suppose to the contrary that π : A → B(H) is an infinite-dimensional
irreducible representation and consider the map φ defined in Lemma 2.2. Clearly,
φ ∈ ICB(A). Denote by φ̇ the map on Ȧ := A/ ker π induced by φ. From the norm con-
vergent series (2.1) we have that φ̇(x) =

∑∞
n=1 π(en)xπ(fn), x ∈ π(A), and by the same

formula φ̇ can be extended uniquely to a weak∗ continuous (complete) contraction φ̄ on
B(H) (the weak∗ closure of π(A)). If φ ∈ E(A), then

φ̇ ∈ E(Ȧ)

and (since the norm of any weak∗ continuous operator on π(A) agrees with the norm of
its weak∗ continuous extension to π(A), a consequence of the Kaplansky density theorem)

φ̄ ∈ E(B(H)).
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Thus, there exists ψ ∈ E(B(H)), say ψ(x) =
∑m

j=1 ajxbj , such that

‖φ̄ − ψ‖ < 1
5 . (2.5)

Now, for each N ∈ N denote by PN and QN the projections onto
∑N

n=1 π(en)H and∑N
n=1 π(fn)H, respectively. From orthogonality of each of the sequences (en) and (fn),

the operator PN φ̄QN has the form PN φ̄QN (x) =
∑N

n=1 π(en)xπ(fn). But (2.5) implies
that ‖PN φ̄QN − PNψQN‖ < 1

5 for all N and, since PNψQN is an elementary operator
of length at most m, this contradicts Lemma 2.3.

Thus, for each irreducible representation π the C∗-algebra π(A) is isomorphic to Mr(C)
for some r ∈ N, we may identify Â with Ǎ and each primitive ideal P of A is maximal.
A point P ∈ Ǎ is called Hausdorff (or separated) if for each Q ∈ Ǎ, Q 
= P , there exist
disjoint open neighbourhoods of P and Q in Ǎ. (Note that in our situation singletons are
automatically closed sets since primitive ideals are maximal.) By [10, 3.9.4] the set S of
Hausdorff points is dense in Ǎ. If S is finite, then S = Ǎ, A is finite dimensional and the
proof is finished in this case. So we may assume that S is infinite. Since for each g ∈ A+

the trace function [π] �→ trπ(g) is lower semicontinuous on Â [22], the same holds for
the rank function (for rankπ(g) = supn tr n

√
π(g) if ‖g‖ � 1). Thus, if we assume that

sup[π]∈Â dim π = ∞, then there exists a sequence (σk) in S with dimσk tending to ∞ as
k → ∞. Suppose first that there exists a limit point σ of (σk) in Â. Since σ1 is a Hausdorff
point, there exist disjoint open neighbourhoods U1 of σ1 and V1 of σ. Put [π1] = σ1 and
choose any [π2] ∈ V1 ∩ (σk) such that dimπ2 > 2 · 3. Since [π2] is a Hausdorff point,
there exist disjoint open neighbourhoods U2 ⊆ V1 of [π2] and V2 ⊆ V1 of σ. Continuing
in this way, we find a sequence ([πk]) ⊆ Â such that dimπk > k(k + 1), and open
neighbourhoods Uk of [πk] and Vk of σ such that Uk ∩ Vk = ∅ and Uk+1, Vk+1 ⊆ Vk. In
particular, Un ∩

⋃
k �=n Uk = ∅; hence, [πk] /∈ Un if k 
= n, which implies that the kernel

Pn of πn is not contained in the closure of the set {Pk : k 
= n}. If the sequence (σk) has
no limit points, then we simply let ([πk]) be a subsequence with dim πk > k(k + 1) and
then again Pn = ker πn is not in the closure of {Pk : k 
= n}.

Setting Rn =
⋂

k �=n Pk, this means that Pn does not contain Rn; hence, Pn + Rn = A

since Pn is maximal. Since πn(A) is of the form Mr(C) for some r > n(n+1), there exist
mutually orthogonal projections πn(gni), i = 1, . . . , n, in πn(A) such that rankπ(gni) > n

and
∑n

i=1 πn(gni) = 1. These may be lifted to mutually orthogonal positive contractions
gni in A [15, 4.6.20]. Moreover, since Rn+ + Pn+ = A+ and Pn = ker πn, we may see
that gni ∈ Rn. Set g̃n =

∑n
i=1 gni and define recursively g1 = g̃1, gn = (1 − g1 − · · · −

gn−1)g̃n(1 − g1 − · · · − gn−1). Then
∑m

n=1 gn � 1 for all m (by an induction, using the
fact that h2 � h if 0 � h � 1); hence,

∑∞
n=1 gn � 1 (in the von Neumann envelope of A)

and πn(gn) = 1 since πn(g̃n) = 1 and gm ∈ Rm ⊆ Pn = ker πn if m 
= n.
Let (xj) be a sequence with a dense span in A and let ‖xk‖ � 1. By Lemma 2.1 there

exist positive norm 1 elements ėni and ḟni in πn(gniAgni) such that

‖ėniπn(xj)ḟni‖ <
1

n2n
, i, j = 1, . . . , n. (2.6)

Note that
∑n

i=1 ėni � 1 (and similarly for ḟni) by mutual orthogonality of the projections
πn(gni) for a fixed n. For each n we may lift ėn1 to a positive element en1 in A such
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that en1 � gn since ėn1 � πn(gn) = 1 (see [15, 4.6.21]). Assuming inductively that for
some i < n we already have elements enj , j = 1, . . . , i, in A+ such that πn(enj) = ėnj

and en1 + · · · + eni � gn, then by [15, 4.6.21] we may find en,i+1 in A+ such that
πn(en,i+1) = ėn,i+1 and en,i+1 � gn − (en1 + · · ·+en,i) since ėn,i+1 � 1− ėni −· · ·− ėni =
πn(gn − en1 −· · ·−eni). Thus, we may find en,i so that

∑n
i=1 eni � gn and it follows that

∞∑
n=1

n∑
i=1

eni � 1. (2.7)

Similarly, there exist elements fni ∈ A+ such that πn(fni) = ḟni and

∞∑
n=1

n∑
i=1

fni � 1.

Given u ∈ Pn with 0 � u � 1, we may replace the elements eni (i = 1, . . . , n, n fixed)
by |(1 − u)eni|2 without violating (2.7) (since eni(1 − u)2eni � e2

ni � eni). Choosing u

from an (increasing) approximate unit of Pn, we have from (2.6) that

inf
u

‖eni(1 − u)2enixjfni‖ � lim
u

‖(1 − u)enixjfni‖

= ‖ėniπn(xj)ḟni‖

<
1

n2n
, i, j = 1, . . . , n.

Thus, we may assume that eni and fni have been chosen so that (note that e2 � e if
0 � e � 1)

∞∑
n=1

n∑
i=1

e2
ni � 1,

∞∑
n=1

n∑
i=1

f2
ni � 1, (2.8)

πn(eni)πn(enj) = 0 = πn(fni)πn(fnj) if i 
= j, ‖πn(eni)‖ = 1 = ‖πn(fni)‖ (2.9)

and

‖enixjfni‖ <
1

n2n
, i, j = 1, . . . , n. (2.10)

By (2.8) we may define a (complete) contraction φ : A → Ā by

φ(x) =
∞∑

n=1

n∑
i=1

enixfni, x ∈ A. (2.11)

Since the sequence (xj) has dense span in A, (2.10) implies that the series (2.11) is norm
convergent for each x ∈ A and, consequently, φ ∈ ICB(A).

If ‖φ − ψ‖ < 1
5 for some ψ ∈ E(A) of length (say) m, then also

‖φn − ψn‖ < 1
5 , (2.12)
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where φn and ψn are the maps on An := πn(A) ∼= A/Pn
∼= Mr(n)(C) induced by φ and

ψ (respectively). Since πn(emi) = 0 if m 
= n (for emi � gm),

φn(ẋ) =
n∑

i=1

ėniẋḟni for all ẋ ∈ A/Pn.

Since the length of ψn is at most m for each n, by Lemma 2.3 the inequality (2.12) cannot
hold for all n; hence, ‖φ − ψ‖ � 1

5 and

φ /∈ E(A).

�

3. The multiplier algebra of a homogeneous C∗-algebra

Recall that a C∗-algebra A is called n-subhomogeneous (n ∈ N) if n is the maximal
dimension of irreducible representations of A. Then the intersection of the kernels of all
irreducible representations of dimension at most n − 1 is an ideal J of A such that all
irreducible representations of J are n dimensional. J is called the n-homogeneous ideal
of A; it is the largest ideal of A which is n-homogeneous as a C∗-algebra.

For an ideal J in A we shall denote by J⊥ the annihilator of J in A. Note that the left
annihilator is equal to the right annihilator, that is, aJ = 0 if and only if Ja = 0, a ∈ A.

Lemma 3.1. Suppose that A is n-subhomogeneous, J is the n-homogeneous ideal of
A, B = A/J⊥, K is the n-homogeneous ideal of B and q : A → B is the quotient map.
Then q(J) = K and K is an essential ideal in B.

Proof. Since J ∩ J⊥ = 0, q|J is injective, so q(J) is isomorphic to J and hence n-
homogeneous. Since q(J) is an ideal in B, it follows that q(J) ⊆ K. Thus, J ⊆ q−1(K)
and then J + J⊥ ⊆ q−1(K). If J + J⊥ 
= q−1(K), then there exists an irreducible
representation π of A such that π(J + J⊥) = 0 and π(q−1(K)) 
= 0. Since the set
S := {[σ] ∈ Â : dimσ � n− 1} is closed in Â [22, 4.4.10] and J is just the intersection of
kernels of representations (the equivalence classes of which are) in S, (the class of) every
irreducible representation that annihilates J must be in S. Thus, [π] is in S, so dim π < n.
Furthermore, π(J⊥) = 0 implies that π descends to an irreducible representation σ of
B (so that π = σq) and σ(K) 
= 0, since π(q−1(K)) 
= 0. But dimσ = dimπ < n,
which contradicts the definition of K as the intersection of kernels of all irreducible
representations of B of dimension less than n.

The ideal q(J) in B = A/J⊥ is essential, since aJ ⊆ J⊥, a ∈ A, means that in fact
aJ ⊆ J ∩ J⊥ = 0; hence, a ∈ J⊥. �

If Z is the centre of a unital C∗-algebra A (or more generally, a C∗-subalgebra of
the centre of the multiplier algebra of a not necessarily unital A such that ZA is dense
in A), ∆ is the maximal ideal space of Z and for each t ∈ ∆ we denote by A(t) the
quotient algebra A(t) = A/(At), then for every x ∈ A the function t �→ ‖x(t)‖ is upper
semicontinuous (see [27, C.10] and [17]) on ∆ (and vanishes at ∞). If these functions are
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continuous, then the set E = {(t, x(t)) : t ∈ ∆, x ∈ A} can be equipped with a topology
such that E becomes a C∗-bundle with fibres A(t) in the sense of [27, Appendix C]
or [12] and A is (isomorphic to) the C∗-algebra Γ0(E) of all continuous sections of E

vanishing at ∞. Since we do not need this topology here, we only recall that a section of
E is a map s : ∆ → E such that s(t) ∈ A(t) for all t ∈ ∆.

The following lemma can be deduced as a special case from a more general result in [3],
but we shall sketch a short direct proof. For a C∗-bundle E let Γb(E) be the C∗-algebra
of all continuous bounded sections of E and let Γ0(E) be the ideal in Γb(E) consisting
of all sections vanishing at ∞.

Lemma 3.2. If the fibres of a C∗-bundle E over a locally compact space ∆ are finite
dimensional, then M := Γb(E) is just the multiplier algebra of J := Γ0(E).

Proof. For each point e ∈ E there is a section in J passing through e and it fol-
lows that J is an essential ideal in M . It suffices to prove that for each C∗-algebra
A, which contains J as an essential ideal, the inclusion J → A can be extended to a
∗-homomorphism L : A → M . For each t ∈ ∆ and a ∈ A define a map Lt,a on the fibre
Et of E by

Lt,a(s(t)) = (as)(t), s ∈ J.

Here we have used the fact that each element of Et is of the form s(t) for some s ∈ J ,
but since s is not unique, we need to check that s(t) = 0 implies (as)(t) = 0. This follows
from

(as)(t)∗(as)(t) = ((as)∗(as))(t) � ‖a‖2(s∗s)(t) = ‖a‖2s(t)∗s(t),

which shows also that ‖Lt,a‖ � ‖a‖. Clearly, Lt,a is linear and, to check that Lt,a is a
left multiplication by an element of Et, it suffices to verify that Lt,a commutes with all
right multiplications Rz(t), z ∈ J . For each s ∈ J we indeed have

Lt,a(s(t)z(t)) = Lt,a((sz)(t)) = (asz)(t) = (as)(t)z(t) = Lt,a(s(t))z(t).

Thus, the function L(a) which sends t ∈ ∆ to Lt,a is a bounded section of E. To show
that it is continuous, choose an approximate unit (ek) in J and observe that L(a) is the
uniform limit on compact subsets of ∆ of continuous sections L(a)ek = aek ∈ J . Indeed,
for each t ∈ ∆ and s ∈ J we have

‖(L(a)(t) − (L(a)ek)(t))s(t)‖ = ‖(a(1 − ek)s)(t)‖ k−→ 0,

which implies, since Et is finite dimensional (with all elements of the form s(t)), that
‖(L(a)(1 − ek))(t)‖ k−→ 0. To show that the convergence is uniform on compact sets, note
that

‖(L(a)(1 − ek))(t)‖2 = ‖(L(a)(1 − ek)2L(a)∗)(t)‖ � ‖(L(a)(1 − ek)L(a)∗)(t)‖

and that the net of functions t �→ ‖(L(a)(1 − ek)L(a)∗)(t)‖ is decreasing (since the
approximate unit (ek) is increasing), so Dini’s theorem applies. This shows that L(a) ∈ M

and it can be verified that the map a → L(a) is a contractive homomorphism from A

to M . �
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If J is an n-homogeneous C∗-algebra, then J is (isomorphic to) Γ0(E) for some locally
trivial C∗-bundle E over U := Ĵ by [11,26]. The multiplier algebra M(J) = Γb(E) is
n-subhomogeneous by [7, IV.1.4.6], but in general not n-homogeneous as we shall now
explain.

If E is of finite type (that is, if U admits a finite covering by open subsets Ui with E|Ui

trivial), then E can be extended to a locally trivial C∗-bundle F over the Stone–Čech
compactification β(U) [23, 2.9] and it follows (since such a bundle is a direct summand of
a trivial bundle and bounded continuous functions on U have unique continuous exten-
sions to β(U)) that M(J) = Γb(E) is isomorphic to the C∗-algebra Γ (F ) of all continuous
sections of F ; hence, M(J) is n-homogeneous in this case.

Conversely, if M := M(J) is n-homogeneous, then by [11] M = Γ (F ) for a locally
trivial C∗-bundle F over the compact Hausdorff space M̂ ∼ ẐM , where ZM is the centre
of M , and (by the Dauns–Hofmann theorem) ẐM can be identified with β(Ĵ) ∼= β(ẐJ).
Since J is an ideal in M = Γ (F ), it follows that J is of the form J = {s ∈ Γ (F ) : s|Λ = 0}
for a closed set Λ ⊆ β(ẐJ) and, considering the characters of the centre, Λ must be
β(ẐJ) \ ẐJ . We conclude that J = Γ0(F |ẐJ), and the C∗-bundle F |ẐJ has an extension
to a locally trivial C∗-bundle F over a compact space, hence is of finite type by [23, 2.9].
Thus, we can state the following remark.

Remark 3.3. The multiplier algebra of an n-homogeneous C∗-algebra J , n ∈ N, is
n-homogeneous if and only if J is of finite type.

We shall need the fact that for a non-unital n-homogeneous C∗-algebra J the n-
homogeneous ideal of M(J) is strictly larger than J .

Lemma 3.4. Let E be a locally trivial C∗-bundle with fibres Mn(C), n ∈ N, over
a non-compact, locally compact space U , J := Γ0(E), M the multiplier C∗-algebra
of J and K the n-homogeneous ideal of M . Regard each point t ∈ β(U) (the Stone–
Čech compactification of U) as a maximal ideal of the centre ZM of M . Then M is
the C∗-algebra of continuous sections of a (not necessarily locally trivial) C∗-bundle E0,
with fibres M(t) := M/(Mt), over β(U), extending E, such that F := E0|K̂ is locally
trivial. Moreover, at least if U is metrizable, K̂ properly contains U (that is, K properly
contains J).

Proof. For each x ∈ M denote by x(t) the coset of x in M(t). The function x̌(t) :=
‖x(t)‖ is upper semicontinuous on ŽM = β(U) [27, C10]. Moreover, x̌ must be lower
semicontinuous on U as the supremum sup{(xy)̌ : y ∈ J, ‖y‖ � 1} of continuous functions
(note that xy ∈ J = Γ0(E) if y ∈ J). To show that x̌ is continuous on all β(U), we may
assume that x � 0 (otherwise just replace x by |x|). It suffices now to prove that x̌

coincides with the unique continuous extension x̃ of the bounded continuous function
x̌|U . In other words, we have to show, for each t′ ∈ β(U) \ U and each net (tν) ⊆ U

converging to t′, the equality
x̌(t′) = lim x̌(tν).

The inequality x̃(t′) � x̌(t′) follows from the continuity of x̃ and the upper semicontinuity
of x̌ since the two functions coincide on the dense set U . Suppose that x̃(t′) < x̌(t′). Then,
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by continuity of x̃, for a small ε > 0 we have the inequality x̃(t) � x̌(t′)− ε for all t in an
open neighbourhood V of t′ in β(U). Choose a continuous function f : [0,∞) → [0, 1] such
that f([0, x̌(t′) − ε]) = 0 and f(x̌(t′)) = 1. Note that for t ∈ U ∩ V the spectrum of x(t)
is contained in [0, x̌(t′) − ε]; hence, f(x)(t) = f(x(t)) = 0 and therefore by continuity
f̃(x)(t) = 0 for all t ∈ V . Furthermore, (f(x))̌(t′) = ‖f(x)(t′)‖ = ‖f(x(t′))‖ = 1, since
x̌(t′) is in the spectrum of x(t) and f(x̌(t′)) = 1. Thus, replacing x by f(x), we have that
x̃(t) = 0 if t ∈ V and x̌(t′) = 1. Choosing a continuous function χ on β(U) with values
in [0, 1], supported in V and with χ(t′) = 1, and replacing x by χx (where χ is regarded
as an element of ZM by the Dauns–Hofmann theorem), we find an element x ∈ M such
that x̃(t) = 0 for all t ∈ β(U) (hence x = 0) and x̌(t′) = 1, which is a contradiction. The
continuity of x̌ proved above means that M is the C∗-algebra of continuous sections of
a C∗-bundle E0 over β(U) with fibres M(t) [27, Appendix C].

In general the map ζ : M̂ → ŽM = β(U), ζ([π]) = ker(π|ZM ), is continuous, but
since the functions x̌ (x ∈ M) are continuous this map is also open [27, C.10]. Since
J and K (J ⊆ K) are essential ideals in M , one can verify the inclusion of the centres
ZJ ⊆ ZK ⊆ ZM as ideals in ZM . Furthermore, ζ(K̂) = ŽK . (More precisely, denoting
for each [π] ∈ K̂ by π̃ the unique extension of π to the irreducible representation of M ,
π̃|ZK = π|ZK .) Since K is n-homogeneous, we may identify K̂ with ŽK , that is, ζ maps
K̂ onto ŽK ⊆ β(U) homeomorphically, and we may regard K̂ as an open subset in β(U).
Since K is n-homogeneous, for each t ∈ ŽK there is (up to a unitary equivalence) a unique
irreducible representation πt of K such that ker(π|ZK) = t ∩ ZK . Then the extension
π̃t of πt to M is the unique irreducible representation σ of M with ker(σ|ZM ) = t.
(Namely, ker(σ|ZM ) = t implies that ker(σ|ZK) = t ∩ ZK ; hence, σ|K must coincide,
up to a unitary equivalence, with πt, since irreducible representations of a homogeneous
C∗-algebra K are determined by their restrictions to the centre. This implies that σ = π̃t,
since extensions of non-degenerate representations from ideals are unique.) Since each Mt

is an intersection of primitive ideals, it follows that Mt must be a primitive ideal in M

(for by the above there is only one primitive ideal containing t) and M/(Mt) ∼= Mn(C)
for all t ∈ ŽK . Furthermore, if t ∈ β(U) \ ŽK , then Mt must be the intersection of
kernels of certain irreducible representations π with [π] ∈ M̂ \ K̂ only. It follows that for
a section x ∈ M we have that x(t) = 0 for all t ∈ β(U) \ ŽK if and only if π(x) = 0 for
all [π] ∈ M̂ \ K̂. This means that the ideal Γ0(E0|K̂) in Γ (E0) = M must be K. Since K

is n-homogeneous, it follows (using [11]) that F := E0|K̂ must be locally trivial. Finally,
since K contains J as an ideal, J = {s ∈ K : s|(K̂ \ U) = 0} = Γ0(F |U) [12, II.14.8];
hence F |U ∼= E.

To show that K̂ properly contains U , choose a sequence (tk) in U with no limit points in
U (recall that U is assumed metrizable) and sections sij ∈ M = Γb(E) such that sij(tk)
(i, j = 1, . . . , n) are the matrix units in the fibres Etk

∼= Mn(C). For each section s ∈ M

we expand s(tk) =
∑n

i,j=1 αij(tk)sij(tk), αij(tk) ∈ C, extend each (bounded) sequence
(αij(tk))k to a continuous function αij on β(U), choose a limit point t0 ∈ β(U) \ U of
(tk) and set

πt0(s) :=
n∑

i,j=1

αi,j(t0)eij = [αij(t0)] ∈ Mn(C),
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where eij are the standard matrix units in Mn(C). This defines a representation πt0 of
M into Mn(C) (πt0(s) is a kind of a limit point of (s(tk))), which is surjective (hence
irreducible) since πt0(sij) = eij . If [πt0 ] was not in K̂, then πt0(K) = 0, which would
imply (by the definition of K) that kerπt0 is in the closure of the set of kernels of all
irreducible representations of M of dimension less than n. But this is impossible since
the set is closed. �

4. A reduction to locally homogeneous C∗-algebras

Lemma 4.1. If a separable n-subhomogeneous C∗-algebra A is not a direct sum of
homogeneous C∗-algebras, then ICB(A) 
⊆ E(A).

Since the proof of the lemma occupies the entire section, it will be divided into several
steps. Let J be the n-homogeneous ideal of A, let U be the primitive spectrum of the
centre ZJ of J , let E be the locally trivial C∗-bundle over U such that J = Γ0(E)
and let M = M(J) = Γb(E) be the multiplier C∗-algebra of J . If J is unital, then A

is isomorphic to J ⊕ (A/J), where A/J is m-subhomogeneous for some m < n, and
the proof reduces to a smaller degree of subhomogeneity. So by an induction we may
assume that J is not unital; hence, U is not compact. We shall show that in this case
ICB(A) 
⊆ E(A). By Lemma 3.4 the n-homogeneous ideal K of M properly contains J

and the corresponding locally trivial C∗-bundle F over the open subset K̂ of β(U) (so
that K = Γ0(F )) extends E, while M = Γ (E0) for a (not necessarily locally trivial)
C∗-bundle E0 over β(U) extending F . We denote by ZK and ZM the centres of K and
M , identify K̂ and Ĵ with ŽK and ŽJ , respectively, and regard them as open subsets of
ŽM = β(U). Choose t0 ∈ K̂ \ Ĵ and an open neighbourhood V of t0 in β(U) such that
V̄ ⊆ K̂ and F |V̄ is trivial. Using a fixed isomorphism E0|V̄ = F |V̄ ∼= V̄ × Mn(C), we
shall identify the two bundles over V .

Step 1 (suppose that the ideal J in A is essential). We may thus regard A as a
C∗-subalgebra of M . Since all n-dimensional irreducible representations of A are (up to
a unitary equivalence) evaluations at points of U , for each t ∈ V̄ \ U the evaluation πt

of sections of E0 at t must be reducible as a representation of A. Let m be the maximal
dimension of irreducible subrepresentations of πt|A as t ranges over V̄ \U and let t1 ∈ V̄ \U

be a point where this maximum is attained. Then (up to a unitary equivalence) πt1 |A
has the form

πt1(a) =

[
σ

(k)
t1 (a) 0

0 ρt1(a)

]
, a ∈ A, (4.1)

where σt1 : A → Mm(C) is an irreducible representation, k ∈ N and ρt1 : A → Mn−km

is a representation disjoint from σt1 . Denote by eij , i, j = 1, . . . , m, the standard matrix
units in Mm(C). By [10, 4.2.5] there exist aij ∈ A such that πt1(aij) = e

(k)
ij ⊕ 0 (relative

to the decomposition (4.1)). By continuity, if t is close to t1, πt(aij) will be approximate
matrix units in Mm(C) and well-known arguments (using functional calculus and polar
decomposition, as in [16, § 12.1]) show that there exist bij ∈ A such that πt(bij), i, j =
1, . . . , m, are m × m matrix units in Mn(C); in other words, πt(A) contains a copy of
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Mm(C) for all t in a neighbourhood W ⊆ W̄ ⊆ V of t1. It follows now by maximality of
m that (up to a conjugation with a unitary u ∈ C(W, Mn(C))) πt|A has the form

a(t) := πt(a) =

[
σt(a) 0

0 θt(a)

]
, a ∈ A, t ∈ W \ U, (4.2)

where σt : A → Mm(C) is an irreducible representation and θ : A → Mn−m(C) is a
(possibly degenerate) representation.

Choose a continuous function χ on β(U) \ U , supported in W \ U , with values in [0, 1]
and χ(t1) = 1. Let v ∈ Mm,n−m(C) be any matrix with ‖v‖ = 1. Since

M = Γ (E0) and J = Γ0(E) = {s ∈ Γ (E0) : s|(β(U) \ U) = 0},

M/J = Γ (E0|(β(U) \ U)) (using the Tietze extension theorem for sections of Banach
bundles [12, II.14.8]). Define a section s ∈ M/J on β(U) \ U by

s(t) =

⎧⎪⎪⎨⎪⎪⎩
[
0 χ(t)v

0 0

]
if t ∈ W \ U,

0 if t ∈ (β(U) \ U) \ W

(4.3)

and let b ∈ M be any lift of s (that is, a continuous extension of s to a section of E0).
Finally, let φ : A → M be the two-sided multiplication x �→ bxb.

Step 2 (proof that φ(A) ⊆ A and that φ preserves ideals). Given a ∈ A,
the value φ(a)(t) of φ(a) ∈ M at each t ∈ β(U) \ U is 0. Indeed, b(t) = s(t) = 0
if t ∈ (β(U) \ U) \ W , while for t ∈ W \ U we have that φ(a)(t) = b(t)a(t)b(t) =
s(t)πt(a)s(t) = 0, as can be verified by performing the matrix multiplication with πt(a)
and s(t) of the form (4.2) and (4.3). This implies that φ(a) ∈ J ; in particular, φ maps A

into A. To show that φ preserves all ideals in Ic(A), let (ek) be an approximate unit in
the n-homogeneous ideal J . Note that (since φ(a) ∈ J)

φ(a) = lim ekφ(a)ek = lim(ekb)a(bek),

where the two-sided multiplications a �→ (ekb)a(bek) preserve the ideals, since ekb and
bek are in J ⊆ A. Thus, φ is a pointwise limit of maps preserving ideals, so φ must
preserve (closed) ideals.

Step 3 (proof that φ /∈ E(A)). First we shall ‘localize’ the proof to W (to work
with matrix-valued functions instead of bundles), then we shall show by an explicit
computation that φ /∈ E(A).

Let JW = {a ∈ M : a(t) = 0 ∀t ∈ W̄} and let φW be the map on AW := A/(JW ∩ A)
induced by φ. Note that AW is (naturally isomorphic to) a C∗-subalgebra of M/JW =
Γ (E0|W̄ ) = Γ0(F |W̄ ) = C(W̄ , Mn(C)), and φW is just the two-sided multiplication

φW (x) = dxd, x ∈ AW ⊆ C(W̄ , Mn(C)),
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where d is the coset of b in M/JW . As an element of C(W̄ , Mn(C)), decomposing Mn(C)
into blocks according to (4.2), d can be represented by a block matrix of continuous
functions

d =

[
d11 d12

d21 d22

]
,

where (by the definitions of b and s) d11(t1) = 0, d21(t1) = 0, d22(t1) = 0 and d12(t1) = v.
It follows now from φW (x) = dxd that

φW (x)(t1) =

[
0 vx21(t1)v
0 0

]
for all x =

[
x11 x12

x21 x22

]
in AW ⊆ C(W̄ , Mn(C)).

Given ε > 0, by continuity of functions dij (that is, since ‖d(t) − d(t1)‖ is small if t ∈ W

is close to t1) there exists a neighbourhood W1 ⊆ W of t1 such that we have, uniformly
for all x = [xij ] ∈ AW with ‖x‖ � 1, the estimate∥∥∥∥∥φW (x)(t) −

[
0 vx21(t)v
0 0

]∥∥∥∥∥ < ε for all t ∈ W1. (4.4)

The evaluation πt1 maps A into block-diagonal matrices according to (4.2), but we shall
need the same for M(A) (πt1 can be degenerate). Since J is essential in A, and hence also
in M(A), we have that M(A) ⊆ M(J) = M ; hence, each f ∈ M(A) can be represented
over W by a 2 × 2 block matrix f |W = [fij ] in accordance with the decomposition (4.2).
Let p ∈ Mn(C) be the projection onto [σ(k)

t1 (A)Cn] (where σt1 is as in (4.1)). Then
p ∈ πt1(A) since ρt1 and σ

(k)
t1 are disjoint. With respect to the decomposition (4.2), p

has the form p = 1 ⊕ q, where 1 is the m × m identity matrix and q is a projection.
Since f(t1)p ∈ πt1(A) and pf(t1) ∈ πt1(A) and matrices in πt1(A) are block diagonal, a
matrix multiplication shows that f21(t1) = 0 and f12(t1) = 0. Thus, πt1(M(A)) consists
of block-diagonal matrices only.

Suppose that there exists ψ ∈ E(A) with ‖ψ − φ‖ < ε; hence,

‖ψW − φW ‖ < ε, (4.5)

where ψW is the map induced on AW by ψ. Then ψ is of the form

ψ(x) =
�∑

k=1

akxbk, x ∈ A,

where ak, bk ∈ M(A) ⊆ M . By the previous paragraph, ak(t1) = ak
11(t1) ⊕ ak

22(t1) and
bk(t1) = bk

11(t1) ⊕ bk
22(t1) are block diagonal. Now, for matrices of the form

x =

[
0 0

x21 0

]
(4.6)
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we have that
∑�

k=1 ak(t1)xbk(t1) is of the form⎡⎢⎢⎣
0 0

�∑
k=1

ak
22(t1)x21b

k
11(t1) 0

⎤⎥⎥⎦ ;

hence, by continuity of the coefficients ak and bk (on W ) there exists a neighbourhood
W2 ⊆ W of t1 such that∥∥∥∥∥∥∥∥ψW (x)(t) −

⎡⎢⎢⎣
0 0

�∑
k=1

ak
22(t)x21(t)bk

11(t) 0

⎤⎥⎥⎦
∥∥∥∥∥∥∥∥ < ε for all t ∈ W2 (4.7)

uniformly for all x ∈ AW of the form (4.6) with ‖x‖ � 1. From (4.4), (4.5) and (4.7) we
conclude that ∥∥∥∥∥∥∥∥

⎡⎢⎢⎣
0 vx21(t)v

−
�∑

k=1

ak
22(t)x21(t)bk

11(t) 0

⎤⎥⎥⎦
∥∥∥∥∥∥∥∥ < 3ε (4.8)

for all t ∈ W1 ∩ W2 and x ∈ AW of the form (4.6) with ‖x‖ � 1. But, for each t ∈ W1 ∩
W2 ∩ U , we have that AW (t) = πt(A) = Mn(C) (since we already have J(t) = Mn(C));
hence, we may choose x ∈ AW of the form (4.6) so that ‖x21(t)‖ = 1 and ‖vx21(t)v‖ = 1
(for a fixed t), which contradicts (4.8) if ε < 1

3 . Thus,

φ /∈ E(A).

This proves the lemma in the case where J is essential in A.

Step 4 (a reduction to the case when J is essential). Let B = A/J⊥, let
q : A → B be the quotient map and let K = q(J). By Lemma 3.1 K is the n-homogeneous
ideal of B and is an essential ideal in B. By what we have proved above, there exists
b ∈ M(K) such that the two-sided multiplication φ(x) = bxb maps B into K and
φ ∈ ICB(B) \ E(B). Define φ0 : A → A as the composition

φ0 = (q|J)−1φq.

Then φ0(A) ⊆ J . To show that φ0 preserves ideals of A, let (ek) be an approximate unit
in J and choose a ∈ M(J) so that q̃(a) = b, where q̃ is the extension to M(J) → M(K)
of the isomorphism q|J : J → K. Then, for x ∈ A,

φ0(x) = lim ekφ0(x)ek

= lim ek(q|J)−1(bq(x)b)ek

= lim(q|J)−1(q(ek)bq(x)bq(ek))

= lim(q|J)−1q(ekaxaek)

= lim(eka)x(aek);
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hence, φ0(x) is in (the closed two-sided) ideal generated by x since eka ∈ J ⊆ A. To
show that

φ0 /∈ E(A),

assume the contrary: for each ε > 0 there exists ψ ∈ E(A) with ‖φ0 − ψ‖ � ε. Denote by
ψ̇ the elementary operator on B induced by ψ, so that ψ̇q = qψ. Then for each x in the
unit ball of A we have that ‖φ0(x) − ψ(x)‖ � ε, which implies that ‖φq(x) − ψ̇q(x)‖ =
‖q(φ0(x) − ψ(x))‖ � ε. Since q maps the closed unit ball of A onto that of B, it follows
that ‖φ − ψ̇‖ � ε. But this would imply that φ ∈ E(B): a contradiction. This completes
the proof of Lemma 4.1.

Finally, Theorem 1.1 follows from Lemmas 2.4 and 4.1 from the part already proved
in § 1.

The author does not know if Theorem 1.1 also holds for non-separable C∗-algebras.
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