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CURVATURE BOUNDS FOR THE SPECTRUM
OF CLOSED EINSTEIN SPACES

UDO SIMON

The following is our main result.

(A) THEOREM. Let (M, g) be a closed conmected Einstein space, n = dim
M = 2 (with constant scalar curvature R). Let ko be the lower bound of the sec-
tional curvature. Then either (M, g) 1s isometrically diffeomorphic to a sphere and
the first nonzero eigenvalue N\, of the Laplacian fulfils

M= nR = nk
or each eigenvalue N of the Laplacian satisfies the inequality
A > 2ﬂK0.

(B) Remark. As for a sphere of constant sectional curvature x the first
nonzero eigenvalue is given by \; = u«, the second by A\s = (27 4+ 1)x. The
second eigenvalue A\, of the Laplacian on closed Einstein spaces of dimension
n = 3 generally satisfies

)\2 > 27“(0.
So on closed Einstein spaces, n = 3, there is no eigenvalue X\ such that

nry < A é 271K0.

Examples in [1] (cf. pp. 43 and 47; choose s = 2 for ¥, ) and the value of X\,
on spheres lead to the following.

CONJECTURE. On closed Einstein spaces, n = 3, there is no eigenvalue \
such that

nkg < A < 2(n + 1)«k,.
Both bounds are the best possible.
A result related to Theorem A was proved by S. Tanno [8]. The author

thanks S. Tanno and the referee for valuable hints.

1. Notations and auxiliary results. Let (}/, g) be a connected Rieman-
nian manifold of class C*, n = dim M = 2, denote by V the corresponding
covariant differentiation and by g;;(respectively g%) the components of the
metric tensor g (respectively g~!) in local coordinates (u?); denote by do the
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volume element on M and by R";;. (respectively R;;) the components of the
curvature tensor (respectively the Ricci tensor) (with the sign of (3, I, p. 201]);
let R denote the scalar curvature (such that R = 1 on the unit sphere). As
usual, raising and lowering of indices are defined.

Let f: M — R be a C®function, let f;;: = V;V,f be the Hessian and
(1.1) Af: = ¢g¥f;; the Laplacian and
(1.2) Y (f,f): = gtV fV,f the first Beltrami operator.

1.3. LEmma (16, (7a-b]). Let f: M — R be @ C*-function. Then [ fulfils the
equation

IA(fuf?) =2 ; kij(o — a))" 4+ U,V (Af)

+ Vif VY + fU2V iRy — ViRy),
where oy, . . ., o, are the eigenvalues of the Hesstan, Ey, . . . , E, are corresponding
orthonormal eigenvectors and «;; is the sectional curvature of the plane { E,, E;} ;..

1.4. LEMMA. Let M be a closed Einstein manifold, dim M = n > 2. There
exists a nontrivial function f: M — R, f € C%, which fulfils

(1.4.1) n-fiy=ANf g4y
if and only if M is isometrically diffeomorphic to a sphere.
Proof. Cf. [9].
For the following two lemmata cf. [5, Lemma 2.6 and Lemma 2.8].

1.5. LEMMA. Let (M, g) be closed (compact without boundary), dim M = 2.
Letf, h : M — R be C*-functions. Then

ff”h”do— fAfAhdo—i— fR”fihjdo = 0.

1.6. LEMMA. If M is closed and f : M — R 1s a C*-function, then
f > (oi—o,)do= (n — 1) f (Af)’do — n fR“fifjdo.
i<

2. Proof of the main theorem. Let (1, g) be a closed connected Einstein
space, n = dim M > 2. Then R is a constant. We assume (M, g) not to be
isometrically diffeomorphic to a sphere. Then each eigenvalue fulfils A\ > nR
[4]. We make the following calculations.

(a) From (1.5) we get for h = Af = —\f

(2.1) ff”v,vi(Af)do = =\ f (Af)'do + (n — DR - N f V (f,f Yo

=AN®m —1)-R — )] f Y (f,f)do
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by Green's theorem. Af 4+ A = 0 and (1.6) imply

(2.2) f ;j (01— 0;)’do = (n — 1)(\ = nR) fV(f,f)dO;

therefore from (2.1) we get

3 [ 49,9 (ando - o TR I S @i oo
(b) As

0= vk(fif - i Af- gii)vk(f“ - ;LAf'g“) = Vifi; V'

ALIEN)
we get from Af + M = 0 and (2.1)

(2.4) 0 < kaf”ka”do—%fV(Af, A f)do

= f kaijkaijdo - ;1;)\2 f YV (f,f)do
kpij z* 2
= f kaijv f do — n(n — 1)()\ _ nR) f ;] (01 - Uf) do.

(c) Applying (1.3) to a closed Einstein space, using (2.1)-(2.4), we get

0=73 f A(fi;f)do = f {kaijv"fi’ - i V(A Af)}do
vz (0= o 20— 2o

Assume N\ < 2nk; then V,f V44 — (1/n)V (Af, Af) = 0. Misirreducible
(as the sectional curvature is positive from 0 < X\ =< 2#uk,), therefore

Vilfiy — (1/n)(Af) - gi5) =0
impliesfi; — (1/n) (Af)gi; = - g4, 0 € R, which again together with Af+ A\ =0
implies u = 0. But then (M, g) is isometrically diffeomorphic to a sphere [9]

which contradicts our assumption at the beginning of the proof. Therefore
AD> 2”1K0.

3. Two dimensional Riemannian manifolds. Let M be closed, dim M =
2, and let « denote the curvature of (M, g). (1.5) gives

3.1) A f fido = f (Af)*do = f fuf“do + f R*ff do.
Now 2f,f% = (01 — 02)* + (Af)?; therefore

(3.2) 2 f fuftdo = f (01 — 02)°do + A f Y (f,f)do.
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Furthermore

[ v.pio =~ [ sagi0 = [ s

The integral formulas above give:

3.3. LEMMA. Let (M, g) be a closed, connected Riemannian manifold, dim
M = 2. Then each eigenvalue \ of the Laplacian fulfils

f (o1 — o2)’do . f (o1 — 03)’do
——fv(f,f)do +2mink £\ = fv .o

where f 1s an eigenfunction corresponding to the eigenvalue N and o1, o2 are the
eigenvalues of the Hessian of f.

“+ 2 max «,

3.4. THEOREM. Let (M, g) be a closed, connected two dimensional Riemannian
manifold of genus zero. Then the first nonzero eigenvalue 1 of the Laplacian fulfils

(3.4.1) 2mink £\ £ 2max«

and the equality on the left or on the right implies (M, g) to be isometrically
diffeomorphic to a sphere.

Proof. J. Hersch [2] proved

M = SW{fdo}—l

where equality holds if and only if (M, g) is isometrically diffeomorphic to a
sphere. Using the theorem of Gauss-Bonnet we get the assertion for the right
hand side of (3.4.1). (3.3) implies 2 min ¥ < \; and equality if and only if
o1 = g2 = :o on M. But this gives f;; = og;;and —N = Af = 2¢; so finally
we have

A
fi+ ‘Q‘fgif =0
and (M, g) is isometrically diffeomorphic to a sphere [4].
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