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Abstract
Formal enforcement punishing defectors can sustain cooperation by changing incen-
tives. In this paper, we introduce a second effect of enforcement: it can also affect the 
capacity to learn about the group’s cooperativeness. Indeed, in contexts with strong 
enforcement, it is difficult to tell apart those who cooperate because of the threat of 
fines from those who are intrinsically cooperative types. Whenever a group is intrin-
sically cooperative, enforcement will thus have a negative dynamic effect on coopera-
tion because it slows down learning about prevalent values in the group that would 
occur under a weaker enforcement. We provide theoretical and experimental evi-
dence in support of this mechanism. Using a lab experiment with independent inter-
actions and random rematching, we observe that, in early interactions, having faced 
an environment with fines in the past decreases current cooperation. We further show 
that this results from the interaction between enforcement and learning: the effect of 
having met cooperative partners has a stronger effect on current cooperation when 
this happened in an environment with no enforcement. Replacing one signal of devia-
tion without fine by a signal of cooperation without fine in a player’s history increases 
current cooperation by 10%; while replacing it by a signal of cooperation with fine 
increases current cooperation by only 5%.
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1 Introduction

Why does the level of cooperation vary across societies and organizations? A 
natural answer is that rules, and the strength of their enforcement, might differ. One 
expects high levels of cooperation where formal enforcement punishes defectors, 
for instance by the means of high fines. When strong formal enforcement is absent, 
cooperation can be sustained if cooperative values are prevalent enough in the 
group. For this second driver of cooperation, learning about the cooperativeness of 
the group becomes essential.

In this paper we study the interaction between these two drivers of cooperation. 
We explore a simple intuition: formal enforcement does not only affect the individual 
decisions to cooperate, it also impacts on the capacity to learn about the group’s 
cooperativeness. In contexts with high fines for those who do not cooperate, it is 
difficult to tell apart people who cooperate because of the threat of fines from those 
who are intrinsically cooperative types. The shadow of the law thus affects learning 
about the group and hence future cooperation. Consider for instance the situation of 
a taxpayer who needs to decide whether to truthfully report income or evade taxes. 
Taxpayers are disciplined by fines (Bérgolo et al., 2021) but at the same time high 
fines elicit tax compliance behavior that do not reveal the general intrinsic honesty 
of the population, which matters for future decisions.1 In this paper, we provide 
evidence, both theoretical and experimental, on this interaction between fines and 
learning.

We rely on a lab experiment where participants play a series of indefinitely 
repeated prisoner’s dilemma. At the beginning of each game, it is randomly 
determined whether a formal enforcement in the form of a fine will be imposed in 
all rounds of the game when a participant chooses to deviate rather than cooperate.2 
At the end of the game, each participant is re-matched with a new one and it is 
randomly determined whether the new game is played with fines. The design ensures 
that each participant (i) has a different history of exposure to fines and of past 
behavior of partners, and that this history both (ii) does not depend on self-selection 
into particular environments, and (iii) is independent from the current environment 
faced by each individual. Each experimental subject thus faces a different history of 
past cooperation observed in different enforcement environments.

Our first main result shows that, in early games, past enforcement negatively 
affects current cooperation. We argue that the interaction between cooperation-
enforcing institutions and learning can potentially explain such a pattern. Consider 

1 Learning about the honesty of others matters not only if tax compliance relies on social interactions 
(Fortin et al., 2007) but more generally in all daily decisions that are not legally enforceable.
2 In our setting when fines are present they are exogenously enforced. In this sense our setting differs 
from other studies like Acemoglu and Jackson (2017) or Zasu (2007) studying complementarities in the 
enforcement of cooperation between laws and social norms.
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the case where the population is fairly non cooperative (i.e., less cooperative than 
expected). In this case, experiencing a fine can speed up learning the bad news, 
since observing deviation in an environment with fines is a strong indicator that the 
partner is non-cooperative. Conversely, learning will be slow within a cooperative 
group in an environment with fines. In such a context, it will not be possible to learn 
whether cooperation is driven by fines or by partners’ willingness to cooperate. This 
interaction between fines and learning is the key driving force of our model, whose 
findings are confirmed in the data.

The finding that enforcement in the past decreases current cooperation in early 
games contrasts with what would be expected based on the literature documenting 
the behavioral spillovers of enforcement institutions—i.e., the fact that enforcement 
institutions faced either in the past (e.g., Peysakhovich & Rand 2016; Duffy & Fehr, 
2018; Galizzi & Whitmarsh, 2019, for a survey) or in other games (Engl et  al., 
2021), affect the current willingness to cooperate through behavioral channels.3 
Galbiati et  al. (2018) show that enforcement institutions foster future cooperation 
through indirect spillovers—fines increase the likelihood that the current partner 
cooperates, which in turn induces more cooperation in the future through indirect 
reciprocity (Nowak & Roch, 2007).4 This previous study uses the same experiment 
as in the current paper, but focuses only on games occurring late in the experiment 
under the assumption that learning has converged. In this paper, we focus on the 
interaction between fines and rational learning. In early games, there is uncertainty 
about intrinsic values in the group (i.e., about whether the average partner is of a 
cooperative or a non-cooperative type). In such circumstances, our theoretical model 
shows that partners’ behavior in previous games brings information about how 
cooperative the group is and thus affects current behavior. From an empirical point 
of view, observing learning becomes challenging due to the simultaneous effect of 
behavioral spillovers. We propose two identification strategies to identify learning 
separately from spillovers.

The main identification strategy exploits the idea that behavioral spillovers do 
not last (as shown in Galbiati et  al. 2018) while learning is cumulative: whether 
cooperation was observed one or two periods ago does not matter for learning, as 
the information it delivers remains the same, but will matter for spillovers if they 
decay over time. Thanks to the assumption that spillovers are short-lived, we can 
disentangle the two by regressing current cooperation levels on variables that are 
history dependent (spillovers) and history independent (learning). Our results show 
that replacing in the history one signal of deviation without fine by a signal of 
cooperation without fine, increases current cooperation by 10%; while replacing it 

3 Another strand of recent literature highlights the existence of possible unexpected effects of naive pol-
icy interventions in the presence of social norms by focusing on how the incentives introduced by poli-
cies interact with the endogenous emergence of these norms (see for instance Dutta et al. 2021).
4 This paper relies on the same data as Galbiati et al. (2018), who focus on games occurring late in the 
experiment, when learning about norms prevalent in the group has converged. Herein, we rather analyze 
the entire dataset, including early games.
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by a signal of cooperation with fine increases current cooperation only by 5%. This 
is coherent with rational learning dynamics.

As a robustness check, we also provide a structural analysis (provided in the 
“Alternative identification strategy” in Appendix  2) which identifies learning in 
early games conditional on behavioral spillover parameters, under the assumption 
that learning has converged in late games. We first generalize our theoretical model 
to the case in which individual values evolve over time as a result of past experience. 
This extended model allows us to express the probability of cooperation as a 
function of both learning and spillover parameters that we can estimate with our 
experimental data. The results confirm that lab participants behave in accordance 
with the learning dynamics described by the model: cooperation by the partner in 
the previous game, if it was played with a fine, has a smaller positive effect than 
if this cooperation took place in a game without fines. This learning effect may 
imply that current fines negatively affect future cooperation. If the group is non 
cooperative, fines may speed up learning, since more individuals will be observed 
deviating in a coercive environment.

By documenting the dynamic interaction between enforcement and learning about 
group values, our study provides several contributions to the existing literature.5 
Acemoglu and Jackson (2015), study how norms of cooperation can emerge in an 
environment where current generations learn from observed cooperation in past 
generations. They do not consider, however, the effect of institutional variations in 
the past and their interactions with learning. A recent literature shows that formal 
rules (Sliwka, 2007; Van Der Weele, 2009; Deffains & Fluet, 2020) or principals’ 
interventions (Friebel & Schnedler, 2011; Galbiati et  al., 2013) can convey 
information on their own about either the distribution of preferences or values in 
a group, or the type of the principal (Falk & Kosfeld, 2006; Bowles, 2008), thus 
leading to ambiguous contemporaneous effects of sanctions. The main focus of our 
study is rather on the information delivered by agents actions’ depending on the 
enforcing institutions, as in Benabou and Tirole (2011). In their setup, individuals 
care about their social-image, which is based on inferences made by other group 
members about their types. Institutions shape equilibrium behaviors and thus 
the inference induced by different actions. In our study, we rather focus on the 
informativeness of actions about cooperative types under different enforcement 
environments. We show that differential learning due to enforcement institutions 
lead to countervailing spillover effects on future cooperation as long as learning 
is in progress: strong enforcement weakens the signal of cooperativeness sent by 
cooperative types, and slows down future cooperation.

Our results are also informative on the impact of enforcement on learning, and 
could thus be very relevant for the performance of young organizations where 
members have not yet learned about the cooperativeness of the others. Such an 

5 In a related work, Dal Bó and Dal Bó (2014) show that explicit information about moral values affect 
cooperation in a standard voluntary contribution game. In their setting however the information is pro-
vided by the experimenter and does not allow for dynamic learning about the distribution of prevalent 
types in the lab.
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effect of enforcement on the extent to which cooperative decisions reveal intrinsic 
cooperativeness also echoes Ali and Bénabou (2020)’s social image model. In their 
framework, a benevolent principal needs to learn about the values prevalent in a 
group of agents who care about their social-image. Values evolve over time and the 
principal needs to decide on the optimal level of transparency to learn the prevalent 
values. A key result of the model is that some privacy is needed to achieve this goal. 
A high level of transparency leads to pro-social decisions that are mainly driven by 
the social-image motives and not representative of individual values. Our results 
provide empirical support to this key insight on the interaction between learning 
and enforcement. Last, we also contribute to the experimental literature on repeated 
games. Our results show how learning generates interdependence across games 
even when subjects are randomly re-matched. This suggests that independence 
across games is not granted even in settings with random matching and incentive 
compatible choices within each game. This point is coherent with previous findings 
showing that learning about the properties of the group matters for subjects’ choices 
(Dal Bó & Fréchette, 2011; Gill & Rosokha, 2020)6 and with the theoretical results 
of Azrieli et al. (2018), showing how uncertainty about the population can generate 
failure of incentive compatibility of the random incentive system.

2  Descriptive experimental evidence

2.1  Experimental design

The design of the baseline experiment closely follows the experimental literature on 
infinitely repeated games and in particular Dal Bó and Fréchette (2011). Subjects 
in the experiment play infinitely repeated games implemented through a random 
continuation rule. At the end of each round, the computer randomly determines 
whether or not another round is to be played in the current repeated game 
(“match”). This probability of continuation is fixed at � = 0.75 and is independent 
of any choices players make during the match. Participants therefore play a series 
of matches of random length, with expected length of 4 rounds. At the end of each 
match, players are randomly and anonymously reassigned to a new partner to play 
the next match. This corresponds to a quasi-stranger design since there is a non-
zero probability of being matched more than once with the same partner during the 
experiment. The experiment terminates once the match being played at the 15th 
minute ends.

The stage-game in all interactions is a prisoner’s dilemma. Enforcing institu-
tions are randomly assigned: at the beginning of each match, the computer randomly 
determines whether the match is played with a fine imposed in case of defection 
(payoffs in Table 1b) or without (Table 1a); the two events occur with equal prob-
ability. The result from this draw applies to both players of the current match, and 

6 More precisely Dal Bó and Fréchette (2011) document that the behavior of the partner in the previous 
match affects the subjects’ behavior.
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to all its rounds. The fine when imposed is set at F = 10 so that the resulting stage-
game payoff matrix is isomorphic to Dal Bó and Fréchette (2011) {� = 3∕4;R = 40} 
treatment, in which cooperation is a sub-game perfect and risk dominant action. 
When matched with a new partner, subjects are not provided with any information 
about the partner’s history. Players however receive full feedback at the end of each 
round about the actions taken within the current match.

2.2  Experimental data

Our data come from three sessions of the experiment conducted at Ecole Polytech-
nique experimental laboratory. The 46 participants are both students (85% of the 
experiment pool) and employees of the university (15%). Individual earnings are 
computed as the sum of all tokens earned during the experiment, with an exchange 
rate equal to 100 tokens for 1 Euro. At the end of the experiment, participants are 
asked to answer a socio-demographic questionnaire about their gender, age, level of 
education, labor market status (student/worker/unemployed) as well as the Dohmen 
et al. (2011) self-reported measure of risk-aversion. Participants earned on average 
12.1 Euros from an average of 20 matches, each featuring 3.8 rounds. This data deliv-
ers 934 game observations, 48% of which are played with no fine.

All our analysis in this paper will be based on the action chosen in the first round 
of each match. While this first round decision captures the effect of past history of 
play on individual behavior, the decisions made within the course of a match are 
a mix of this component and of the strategic interaction with the current partner, 
and would thus be noisy measures of learning. To render this restriction meaning-
ful, and also to be consistent with the model we introduce in Sect. 3, we thus restrict 
the sample to player-game observations for which the first round decision summa-
rizes the future history (“Replication of the statistical analysis on the full sample” 
in Appendix 3 provides a replication of our statistical analysis on the full sample). 
As explained in more detail in the “Data description” in Appendix  1, if subjects 
choose among the following repeated-game strategies, Always Defect (AD), Tit-For-
tat (TFT) or Grim Trigger (GT), the first round decision is a sufficient statistic for 
the future sequence of play. While AD dictates defection at the first round, TFT and 

Table 1  Stage-game payoff matrices

(a) Baseline game

C D

C 40   ;   40 12   ;   60
D 60   ;   12 35   ;   35

(b) With fine

C D

C 40   ;   40 12   ;   60-F
D 60-F   ;   12 35-F   ;   35-F

Downloaded from https://www.cambridge.org/core. 06 Jan 2025 at 04:48:04, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


171Learning to cooperate in the shadow of the law  

GT induce cooperation at the first round and are both observationally equivalent if 
the partner chooses within the set restricted to these three strategies and give rise 
to the same expected payoff. The resulting working sample is made of 785 games 
among which 50.3% are played with a fine. Our outcome variable of interest is the 
first round decision made by each player in each of these matches. Importantly, all 
lagged variables are computed according to actual past experience: one’s own coop-
eration at previous match, partner’s decision and whether the previous match was 
played with a fine are all defined according to the match played just before the cur-
rent one, whether or not this previous match belongs to the working sample.

2.3  Learning to cooperate: descriptive evidence

Figure 1 provides an overview of the cooperation rate observed in each of the two insti-
tutional environments. The overall average cooperation rate is 32%, with a strong gap 
depending on whether a fine enforces cooperation: the average cooperation rate jumps 
from 19% in the baseline, to 46% with a fine. This is clear evidence of a strong dis-
ciplining effect of current enforcement. Figure 1a documents the time trend of coop-
eration over matches. The vertical line identifies the point in time beyond which we 
no longer observe a balanced panel—the number of matches played within the dura-
tion of the experiment is individual specific, since it depends on game lengths. Time 
trends beyond this point are to a large extent driven by the size of the sample. Focus-
ing on the balanced panel, our experiment replicates in both environments the standard 
decrease in cooperation rates: from 15% at the initial match in the baseline, 69% with 
a fine, to 11% and 41% at the 13th game. The time trends are parallel between the two 
conditions. Note that since the history of past enforcement is both individual specific 
and random, it is statistically the same for the two curves for any match number.

(a) Match-level behavior
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(b) Individual level cooperation
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Fig. 1  The disciplining effect of current enforcement. Note: Cooperation observed at first round of each 
match in the working sample as a function of the current fine. Left-hand side: evolution of the average 
rate of cooperation among players over the number of matches played. The vertical line identifies the 
point in time beyond which we no longer observe a balanced panel. Right-hand side: cumulative distribu-
tion of individual cooperation rate at first round of all matches played respectively with and without a 
fine
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Figure 1b reorganizes the same data but at the individual level, and displays the 
cumulative distribution of cooperation in a given environment. We observe varia-
tions in both the intensive and the extensive margin of cooperation in the adjust-
ment to the fine—resulting in first order stochastic dominance of the distribution of 
cooperation with no fine. First, regarding the extensive margin, we observe a switch 
in the mass probability of subjects who always choose the same first round response: 
45% never cooperate with a fine, while only 26% do so with a fine, and the share of 
subjects who always cooperate raises from 4 to 17% when a fine is implemented. 
More than half the difference in mass at 0 thus moves to 1. Turning to the intensive 
margin, the distribution of cooperative decisions with no fine is more concentrated 
towards the left: 70% of individuals who switch between cooperation and defection 
cooperate less than 30% of the time with no fine, while it is the case of only 40% of 
individuals who switch from one match to the other in the fine environment.

We now turn to the main focus of the paper. To present the evidence graphically, 
we restrict to early games where the uncertainty about group cooperativeness is 
large.7 Fig.  2a documents the surprising effect of fines experienced in previous 
matches on current cooperation. Comparing the two left-hand side bars to the 
right-hand side ones unambiguously demonstrates that current enforcement has a 
strong disciplining effect. For instance, restricting to matches where no fine was 
experienced in the past, the average rate of cooperation increases from 0.25 to 0.54 
in environments with enforcement (bars 1 and 3). On the contrary, enforcement in 
the past induces a fall in current cooperation. For instance, comparing the two bars 

(a) The effect of past enforcement
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(b) The effect of the history of play
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Fig. 2  Observed dynamics of cooperation in early games Note: Cooperation at first stage in the working 
sample in early games (see Footnote 7) according to individual history. In each figure, the data is split 
according to whether the previous match was played with No fine (“No fine (past)”) or with a fine (“Fine 
(past)”). Left-hand side: each subpanel refers to current enforcement; Right-hand side each sub-panel 
refers to the partner’s decision experienced at previous match

7 We distinguish early and late games by splitting the matches in three groups, in such a way that one 
third of the observed decisions are classified as “early”, and one third as “late”. Observed matches are 
accordingly defined as “early” up to the 7th, as late after the 13th, in line with the definitions used in the 
“Alternative identification strategy” in Appendix 2. Note that the matches we exclude from the working 
sample all appear in late games. As a result, Fig. 2a is not affected by the choice of the working sample.
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on the right hand side, corresponding to matches where a fine is currently in place, 
having played the previous match with fines decreases cooperation from an average 
of 0.54 to 0.38 (bars 3 and 4). Such an effect of past enforcement is puzzling, since 
one would expect that past fines are either neutral or exert a positive effect on current 
cooperation through behavioral channels (e.g., Peysakhovich & Rand, 2016).

The interaction between cooperation-enforcing institutions and learning can 
potentially explain such a pattern. Consider the case where the news are bad (i.e., the 
population is less cooperative than expected; as seems to be the case according to the 
evolution of cooperation over time shown in Fig. 1). In this case, experiencing a fine 
can speed up learning the bad news, since observing deviation in an environment 
with fines is a strong indicator that the partner is non-cooperative. This interaction 
between enforcement and learning is presented in Fig. 2b, which reports the level 
of cooperation depending on whether cooperation (right panel) or a deviation (left 
panel) has been observed in the previous match in an environment with or without 
a fine. Comparing the two left hand side bars to the right hand side ones shows 
that cooperation by the partner in the previous match increases cooperation in the 
current match, consistent with the idea that experimental subjects learn about the 
willingness to cooperate of their partners thanks to their decisions. However this 
learning is clearly affected by the institutional environment. When the cooperative 
action was taken in an environment without fines, it leads to higher levels of 
current cooperation. For instance, comparing the two bars on the right hand side, 
corresponding to matches where the partner cooperated in the previous match, if 
that cooperation was observed in an environment with no enforcement, the average 
level of cooperation is 0.69 while it falls to 0.49 if the previous match was played 
with fines (bars 3 and 4).

Changes in cooperation according to the history of institutional exposure however 
combine the effect of learning as well as the direct effect of past enforcement on 
cooperation behavior. To clarify the link between learning and enforcement 
institutions, we now turn to a theoretical model that formalizes the interaction 
between the institutional environment and learning about group cooperativeness.

3  A theoretical model of cooperation dynamics

In each match (we use index t for the match number), the players simultaneously 
choose between actions C and D to maximize their payoff in the current match. At 
the end of the match, players observe the partner’s decision. In the case where a 
match is a repeated prisoner’s dilemma, as is the case in the experiment, this requires 
the first period action in a match to fully summarize strategies. To ease exposition, 
we denote i the player under consideration and jt the partner of i in match t. Whether 
player � experience a fine in match t is tracked by the variable F

�,t ∈ {0, 1} and the 
action of player � in match t is denoted a

�,t ∈ {C,D}.
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The payoff of player i from playing ait ∈ {C,D} in match t is denoted Ua
it
 and is 

given by8:

where Va
it
(Fit, pit) is the material payoff player i expects from choosing action a in 

match t. This expected payoff depends in particular on the beliefs player i holds on 
the probability that the partner jt cooperates, pit , and on whether the current match 
is played with a fine, Fit . Note that pit is in fact a function of Fit , since the presence 
of a fine affects the probability that the partner cooperates.9

The parameter �i measures player i’s intrinsic values, i.e., the individual 
propensity to cooperate.10 We suppose there is uncertainty on the set of group’s 
values, i.e., the set of individual values �i . We consider two possible states of 
the world. With probability q0 the state is high and �i is drawn from the normal 
distribution �(�H , �

2) , while with probability 1 − q0 , �i is drawn from �(�L, �
2) , 

with 𝜇L < 𝜇H . The value attached to cooperation by society is higher in the high 
state.

3.1  Benchmark model

First consider a benchmark model with no uncertainty on values ( q = 1 ). We now 
use the specific payoffs corresponding to the prisoner’s dilemma to explicitly 
describe the impact of fines on payoffs. Denote �ait ,ajt the monetary payoff of i in a 
match where ait is played against ajt . Individual i, with beliefs pit that her partner 
will cooperate, chooses action C if and only if the following condition is satisfied11:

This condition can be re-expressed as

{

UC
it

(

Fit, pit
)

= VC
it

(

Fit, pit
)

+ �i,
UD

it

(

Fit, pit
)

= VD
it

(

Fit, pit
)

,

pit
1

1 − �
�C,C +

(
1 − pit

)[
�C,D +

(
�D,D − F × 1{Fit=1}

) �

1 − �

]
+ �i

≥ pit

[(
�D,C − F × 1{Fit=1}

)
+
(
�D,D − F × 1{Fit=1}

) �

1 − �

]

+ (1 − pit)
1

1 − �

(
�D,D − F × 1{Fit=1}

)
.

(1)�i ≥ �∗(Fit) ≡ �1 − F × 1{Fit=1}
+ pit

[
�2 −

�

1 − �

(
F × 1{Fit=1}

+�3

)]
,

8 This is a specific functional form of the more general function in, e.g., Kartal amb Müller (2018).
9 We drop this dependency of pit on Fit in the notation.
10 In the generalized model presented in the “The dynamics of learning with behavioral spillovers” in 
Appendix 2, we introduce spillovers by assuming that the values �it depend on t and in particular can be 
affected by past experiences.
11 We explicitly use the fact that players are restricted to choosing between Grim Trigger, Tit For Tat and 
Always Defect.
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with the parameters defined as 𝛱1 ≡ 𝜋D,D − 𝜋C,D > 0 , �2 ≡ (�D,C − �D,D)
− (�C,C − �C,D) and 𝛱3 ≡ 𝜋C,C − 𝜋D,D > 0.12

Condition (1) implies that the decision to cooperate follows a cutoff rule, such 
that an individual i cooperates if and only if she attaches a sufficiently strong value 
to cooperation �i ≥ �∗(Fit) , where the cutoff �∗ depends on whether the current 
match is played with a fine. Since there is no uncertainty, and thus no learning, all 
players share the same belief over the probability that the partner cooperates, given 
by pit(Fit) = P

[
�j ≥ �∗(Fit)

]
= 1 −�H

[
�∗(Fit)

]
 . The cutoff value �∗(Fit) is thus 

defined by the indifference condition:

We show in Proposition 1 below that there always exists at least one equilibrium, 
and this equilibrium is of the cutoff form. There could exist multiple equilibria, but 
all stable equilibria share the intuitive property that individuals are more likely to 
cooperate in an environment with fines.

Proposition 1 In an environment with no uncertainty on values ( q = 1 ), there exists 
at least one equilibrium. Furthermore all equilibria are of the cutoff form, i.e., indi-
viduals cooperate if and only if �i ≥ �∗(Fit) and, in all stable equilibria, �∗ decreases 
with F and with �H.

Proof See “Appendix 5: Proofs”.   ◻

The benefit of cooperation is increasing in the probability that the partner 
cooperates. There exist equilibria where cooperation is prevalent, which indeed 
makes cooperation individually attractive. On the contrary there are equilibria with 
low levels of cooperation which makes cooperation unattractive. These equilibria 
can be thought of as different norms of cooperativeness in the group, driven by 
complementarities in cooperation.

3.2  Learning in the shadow of the law

We now consider the more general formulation with uncertainty about the group’s 
values. We denote qit the belief held by player i at match t that the state is H. All 
group members initially share the same beliefs qi0 = q0 . They gradually learn about 
the group’s values when observing the decisions of partners in previous matches and 
we show how fines impact learning.

First consider the initial match, t = 1 . All members of the group share the same 
belief q0 that the state is H. The equilibrium is defined by a single cutoff value 
�∗(Fit) as in the benchmark model,

(2)
�∗(Fit) = �1 − F × 1{Fit=1}

+
[
1 −�H

[
�∗
(
Fit

)]][
�2 −

�

1 − �

(
F × 1{Fit=1}

+�3

)]
.

12 In the case of the experiment, �1 = 23 , �2 = −3 and �3 = 5.
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The only difference with the benchmark model is that the probability that the partner 
cooperates takes into account the uncertainty about the group’s values:

We now consider how beliefs about the state of the world are updated following the 
initial match. The updating following this initial match provides all the intuitions for 
the more general updating process. The update depends on the action of the partner 
and whether the match was played with or without a fine. The general notation we 
use is qit(Fit−1, ajt−1 , qit−1) . For the update following the first match, we can drop the 
dependence on qit−1 , since all individuals initially share the same belief.

Clearly, the belief that the state is H decreases if the partner chose D, while it 
increases if the choice was C. The update however depends as well on whether 
the previous match was played with a fine or not. If the partner cooperated in 
presence of a fine, it is a less convincing signal that society is cooperative than if 
he cooperated in the absence of the fine—qi2(0,C) > qi2(1,C) . Similarly, deviation 
in the presence of a fine decreases particularly strongly the belief that the state is 
high—qi2(1,D) < qi2(0,D) . This is summarized in the following lemma13:

Lemma 1 In any stable equilibrium, beliefs following the first period actions are 
updated in the following way:

Proof See “Appendix 5: Proofs”.   ◻

We show in Proposition 2 that this updating property is true in general for 
later matches. The beliefs on how likely it is that the partner cooperates in match 
t, p∗

t
(Fit, qit) , depends both on player i’s history, but also on the beliefs about the 

partner’s history. For instance if the partner faced a lot of cooperation in previous 
games, she becomes more likely to cooperate. The general problem requires to keep 
track of the higher order beliefs. However if a stationary equilibrium exists, with 
the property that 𝛽∗(0, q) > 𝛽∗(1, q) for all beliefs q, then the updating property of 
Lemma 1 is preserved. Furthermore, in the “Appendix 5: Proofs”, we show existence 
of such a stationary equilibrium, under a natural restriction on higher order beliefs, 
i.e., if we assume that a player who had belief qit in match t believes that players in 
the preceding match had the same beliefs qj�,t−1 = qit.

�∗(Fi1) = �1 − F × 1{Fi1=1}
+ p∗

1
(Fi1)

[
�2 −

�

1 − �

(
F × 1{Fi1=1}

+�3

)]
.

p∗
1
(Fi1) = q0

[
1 −�H

[
�∗(Fi1)

]]
+ (1 − q0)

[
1 −�L

[
�∗(Fi1)

]]
.

qi2(0,C) > qi2(1,C) > q0,

qi2(1,D) < qi2(0,D) < q0.

13 Stability guarantees that when the current match is played with a fine, the probability of cooperation 
increases.
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Proposition 2 (Learning) In an environment with spillovers and learning, if an 
equilibrium exists, all equilibria are of the cutoff form, i.e., individuals cooperate if 
and only if �i ≥ �∗(Fit, qit) . Furthermore, if in equilibrium 𝛽∗(0, q) > 𝛽∗(1, q) for all 
beliefs q, then the beliefs are updated in the following way following the history in 
the previous interaction:

Proof The “Appendix  5: Proofs”, proves the result in the more general case with 
spillovers.   ◻

Lemma  1 and Proposition  2 show how enforcing institutions affect learning. 
These results imply that having fines in the previous match can potentially decrease 
average cooperation in the current match. If the state is low, a fine can accelerate 
learning if, on average, sufficiently many people deviate in the presence of a fine. 
This in turn decreases cooperation in the current match.

4  Results

We now study empirically the interaction between enforcement and learning 
highlighted in the model. The descriptive evidence provided in Fig. 2b (Sect. 2.3), 
suggests that the pattern of cooperation observed in the current match is consistent 
with the ranking of posterior beliefs predicted in Lemma  1 and Proposition  2, 
qit(0,C) > qit(1,C) > qit(0,D) > qit(1,D).14

The identification of learning effects is however complicated by the fact that 
both enforcing institutions and cooperation by the partner in previous matches can 
also create spillovers on current cooperation. Two types of such spillovers of past 
enforcing institutions can be at stake: direct spillovers, according to which the fine 
experienced in the immediate past directly affects preferences and increases current 
cooperation; and indirect spillovers, according to which fines in the past increase 
cooperation of the previous partner, which in turn increases current cooperation. If 
such spillovers exist, they both interfere with the identification of learning effects. 
On the one hand, cooperation by the previous partner affects current cooperation 
both because it provides information on the cooperativeness of the group, but also 
because of indirect spillovers. On the other hand, a fine in the previous period simi-
larly impacts learning as explained in the model, but also gives rise to direct spillo-
vers. Galbiati et al. (2018) show that these spillovers are short-living: cooperation by 
the partner two matches ago has a much weaker effect on current cooperation than 
cooperation by the partner in the previous match.

qit(0,C, qit−1) > qit(1,C, qit−1) > qit−1,

qit(1,D, qit−1) < qit(0,D, qit−1) < qit−1.

14 qit(0,C) corresponds to the third bar in Fig. 2b, qit(0,C) to the fourth, qit(0,D) to the first and qit(1,D) 
to the second.
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We use these findings to identify separately learning from spillovers. To 
illustrate the idea, compare two situations, with identical institutional histories: 
the first where the partner in the previous match cooperated while the one two 
matches ago did not and the second, with the opposite behavior, the partner in the 
previous match deviated and the one two matches ago did not. From the point of 
view of learning, both situations are equivalent since the information obtained is 
identical: one of the two previous partners did cooperate. However, in terms of 
spillovers, the first situation should lead to higher levels of current cooperation: 
if spillovers decay over time, facing cooperation two periods ago has a smaller 
spillover effect than cooperation one period ago.

We exploit this idea in Fig. 3, where we examine the effect of the history, in 
terms of fines and behavior of the partner, in the five previous matches inde-
pendently of the order in which this history occurred. Figure  3a for instance 
displays how average cooperation is affected by the number of matches without 
fines where the partner cooperated (an outcome we denote C0 ). An increase in 
the number of C0 has a very strong effect on current cooperation, with an aver-
age rate of cooperation of 0.29 when it never occurred in the 5 previous matches 
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Fig. 3  Current cooperation as a function of history in the previous 5 games. Note: Each panel reports the 
average level of cooperation in t as a function of the number of decisions aj,t−s, s = 1,… , 5 in the current 
history. The abscissa is 

∑5

s=1
C0
t−s

 in panel a, 
∑5

s=1
C1
t−s

 in panel b, 
∑5

s=1
D0

t−s
 in panel c and 

∑5

s=1
D1

t−s
 

in panel d. For both C0 and D1 , observed histories only range from 0 to 4. For D1 , the observed level of 
cooperation when 5 of them belong to history is 0%
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to full cooperation when it occurred 4 times. Another striking feature visible in 
Fig. 3, is that the rate of increase in cooperation is much faster as a function of 
the number of C0 than as a function of the number of C1 (cooperation of the part-
ner in an environment with fines). More specifically, Fig. 3b shows that the aver-
age rate of cooperation increases from 0.15 when C1 never occurred in the 5 pre-
vious matches to 0.53 when it occurred 4 times. This reflects the idea, highlighted 
in the model, that cooperation in the absence of fine is a much stronger signal of 
intrinsic cooperativeness than cooperation in the presence of fines. The behavior 
for D0 and D1 is similar. The rate of cooperation tends to decrease more sharply 
with the number of D1 than with the number of D0 , even though the pattern is less 
striking than in the case of cooperation.

Table 2  Statistical evidence on the interaction between enforcement and learning

Probit models with individual random effects on the decision to cooperate at first stage estimated on 
the working sample. Standard errors (in parenthesis) are clustered at the session level. All specifications 
include control variables for gender, age, whether participant is a student, whether a fine applies to the 
first match, the decision to cooperate at first match, the length of the previous game and match number. 
Marginal effects are computed at sample mean, assuming random effects are 0. Significance levels: ∗10%, 
∗∗5%, ∗∗∗1%.

(1) (2) (3)

Coef. Marg. eff. Coef. Marg. eff. Coef. Marg. eff.

Constant 0.040 0.147 0.179
(0.274) (0.306) (0.152)

1{Ft=1}
1.356*** 0.305*** 1.361*** 0.303*** 1.355*** 0.302***
(0.270) (0.052) (0.271) (0.051) (0.268) (0.047)

C0 =
∑5

s=1
C0
t−s

0.410*** 0.092*** 0.406*** 0.091*** 0.433*** 0.097***
(0.061) (0.013) (0.056) (0.011) (0.083) (0.017)

C1 =
∑5

s=1
C1
t−s

0.210*** 0.047*** 0.164*** 0.037*** 0.167* 0.037*
(0.016) (0.006) (0.009) (0.003) (0.092) (0.020)

D1 =
∑5

s=1
D1

t−s
− 0.123*** − 0.028*** − 0.180*** − 0.040*** − 0.195*** − 0.043***
(0.046) (0.008) (0.038) (0.006) (0.063) (0.014)

1{Ft−1=1}
0.230*** 0.051*** 0.199 0.044
(0.070) (0.019) (0.275) (0.061)

1{ajt−1=C}
− 0.019 − 0.004 0.073 0.016
 (0.037) (0.008) (0.111) (0.025)

ajt = C in a row − 0.059 − 0.013*
(0.037) (0.008)

Fit in a row 0.020 0.004
(0.152) (0.034)

N 599 – 599 – 599 –
�u 1.196 – 1.201 – 1.208 –
� 0.588 – 0.591 – 0.593 –
LL − 220.466 – − 219.610 – − 219.454 –

Downloaded from https://www.cambridge.org/core. 06 Jan 2025 at 04:48:04, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


180 R. Galbiati et al.

We confirm these graphical results in Table  2 where we estimate a Probit 
model on Cit = 1{ait=C}

∈ {0, 1} , the observed decision to cooperate of participant 
i in the first round of match t in the experiment. All estimated models control for 
current enforcement. Current fines have a very strong disciplining effect on current 
cooperation, increasing the probability of cooperation by more than 30%. In model 
(1), we do not account for spillovers and examine the effect of the history in the five 
previous matches.15 The ranking of the effect is perfectly coherent with the results 
of Proposition 2: the signal C0 (variable C0 in the table) has a positive significant 
effect compared to D0 (the reference) and the effect is larger than C1 (variable 
C1 ). Similarly, D1 (variable D1 ) decreases cooperation relative to D0 . In terms of 
magnitudes, replacing in the history one signal D0 by a signal C0 increases the 
probability of cooperation by 10% while replacing it by a signal C1 only increases 
the probability of cooperation by 5%. Replacing in the history one signal D0 by a 
signal D1 decreases the probability of cooperation by 3%.

In models (2) and (3), we control for potential spillovers. Model (2) introduces 
short-living spillovers by controlling for whether the previous match was played 
with a fine and whether the partner cooperated in the previous match. As explained 
previously, identification here relies on the assumption that spillovers are short 
lived, whereas learning is cumulative. Controlling for spillovers does not change 
the ordering of histories and only marginally affects magnitudes. Finally, in model 
(3), we relax the identifying assumption and allow spillovers to be longer lasting. 
We add a control for the number of matches in a row where partners cooperated, 
as well as the number of fines in a row in all previous matches. Identification here 
relies on the assumption that learning does not depend on the order in which signals 
were received, while it affects the strength of the effect of spillovers. None of these 
controls impact the results on learning, which still strongly affects how current 
cooperation react to past enforcement and behavior.

We provide an alternative identification strategy in the “Alternative identification 
strategy” in Appendix 2, where we model explicitly the interaction between learning 
and spillovers. To that end, we extend the model in Sect. 3 to the assumption that 
the taste for cooperation, �i , is directly affected by the history of partner’s behavior 
and institutional settings. Proposition D shows that updated beliefs obeys the same 
ranking as in Proposition  2. This model explicitly shows that the learning and 
spillovers parameters cannot be separately identified when both affect cooperation 
simultaneously. The empirical analysis provided in “The dynamics of cooperation 
with learning and spillovers” in Appendix 2 relies on the assumption that learning 
has converged in games occurring late in the experiment so as to achieve separate 
identification of both kinds of parameters—i.e., estimate learning parameters 
conditional on the estimated spillovers. We test the predictions of the model and 

15 The specification of the empirical model is the same as the one used in the “Alternative identifica-
tion strategy” in Appendix 2. All results are robust to alternative definitions of the number of previous 
matches included in the past history. The results are available from the authors upon request.. The “Rep-
lication of the main results with bootstrapped standard errors” in Appendix 4, provides the results from a 
robustness exercise with bootstrapped standard errors.
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confirm in Table  3 the ranking predicted in Proposition  D. The similarity of the 
results between the two identification strategies confirm (i) that learning about values 
is a transitory issue that no longer affects cooperation once enough interactions has 
taken place and (ii) that the number of games implemented in our experiment gives 
enough room to learning so that only spillovers affect cooperative behavior in late 
games.

5  Conclusion

This paper studies cooperative behavior in a setting in which individuals interact 
without knowing each others’ propensity to cooperate. In these situations, exogenous 
enforcement of cooperation may affect individuals’ capacity to make inferences 
about the prevalent types in the society and, as a consequence, their propensity to 
cooperate.

We analyze this setting through the lens of a theoretical model tailored to interpret 
the results from an experiment where individuals play a series of infinitely repeated 
games with random re-matching. We rely on two different identification strategies to 
disentangle institution-specific learning from the effect of past enforcement on one’s 
own willingness to cooperate (i.e., behavioral spillovers). The first relies on the fact 
that institution-specific learning, in contrast with spillovers, does not depend on the 
order in which a given history of cooperation occurred. The second, presented in the 
“Appendix 1”, relies on the structure of the model and the (untestable) assumption 
that learning has converged in games occurring late in the experiment. The results 
provide strong support for the main behavioral insights of the model. The presence 
or absence of cooperation enforcing institutions affects the dynamics of learning 
about others’ likely behavior: cooperation from partners faced in the past fosters 
cooperation today (with different partners) differently according to the institutional 
environment of past interactions. Past cooperation is more informative about 
other’s cooperativeness when it is observed under weak enforcement institutions. 
Similarly, defection is more detrimental to cooperation when it was observed in an 
environment with strong enforcement.

These results show that the choice of an institutional setting must be fine-tuned to 
the prevalent values in the target group. Strong enforcement aims at providing incen-
tives to cooperate, which aren’t necessary if the cooperative standards are high in the 
group to which enforcement applies. Our results show that such a mismatch between 
the institutional arrangement and the prevalent values comes with a cost whenever 
there is imperfect information about these values. Providing incentives to cooperate 
will slow down the virtuous dynamic in cooperation that would result from learning 
about the group values thanks to cooperative behavior observed without enforce-
ment. Similarly, weak enforcement within an intrinsically non-cooperative group 
hinders the rate of learning that would occur from observing deviations under a 
stronger (and better suited) enforcement policy. These countervailing effects of the 
mismatch between values and enforcement typically applies to situations in which 
learning has not yet converged. In young organizations, in which the members of the 
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group need to learn about each others, offering incentives that best fit the underlying 
values in the group is key to the early success of the organization.

From a methodological point of view, our results show that games played in a 
sequence are related to one another even under random rematching for two reasons: 
first, under imperfect information about other players’ preferences, the action 
observed in past matches provide information about the prevalent preferences in the 
population. Second, behavioral spillovers induce path-dependence in the willingness 
to cooperate across games. This suggests in particular that identifying spillovers, 
the focus of a large recent literature (see Galizzi & Whitmarsh, 2019, for a survey), 
can be challenging when the group members are also learning about prevalent 
values. This might lead to an underestimation of the size of spillovers in the case 
where the group has a low level of cooperation, since having fines might speed up 
learning and thus initially have a negative effect on cooperation. The similarity in 
the results between our two identification strategies however confirms that learning 
is transitory, and enough repetitions allows learning to converge so that path-
dependence only results from behavioral spillovers in interactions that happen late 
enough in the sequence.

Appendix 1: Data description

Our data delivers 934 game observations, 48% of which are played with no fine. Fig-
ure 4a displays the empirical distribution of game lengths in the sample split accord-
ing to the draw of a fine. With the exception of two-rounds matches, the distribu-
tions are very similar between the two environments. This difference in the share of 
two-rounds matches mainly induces a slightly higher share of matches longer than 
10 rounds played with a fine. In both environments, one third of the matches we 
observe lasts one round, and one half of the repeated matches last between 2 and 5 
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Fig. 4  Sample characteristics: distribution of game lengths and repeated-game strategies. Note: Left-
hand side: empirical distribution of game lengths in the experiment, split according to the draw of the 
fine. Right-hand side: distribution of repeated-games strategies observed in the experiment. One-round 
matches are excluded. AD: Always Defect; AC: Always Cooperate; TFT: Tit-For-Tat; GT: Grimm Trig-
ger
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rounds. A very small fraction of matches (less than 5% with a fine, less than 2% with 
no fine) feature lengths of 10 rounds or more.

As explained in the text, Sect.  2.2, for matches that last more than one round 
(2/3 of the sample), we thus reduce the observed outcomes to the first round 
decision in each match, consistently with the theory. The first round decision is 
a sufficient statistic for the future sequence of play if subjects choose among the 
following repeated-game strategies: Always Defect (AD), Tit-For-tat (TFT) or 
Grim Trigger (GT). While AD dictates defection at the first round, both TFT and 
GT induce cooperation and are observationally equivalent if the partner chooses 
within the set restricted to these three strategies and give rise to the same expected 
payoff. Figure 4b displays the distribution of strategies we observe in the experiment 
(excluding games that last one round only). Decisions are classified in each repeated 
game and for each player based on the observed sequence of play. For instance, 
a player who starts with C and switches forever to D when the partner starts 
playing D will be classified as playing GT. In many instances, TFT and GT cannot 
be distinguished (so that the classes displayed in Fig.  4b overlap): it happens for 
instance for subjects who always cooperate against a partner who does the same (in 
which case, TFT and GT also include Always Cooperate, AC), or if defection is 
played forever by both players once it occurs. Last, the Figure also reports the share 
of Always Cooperate that can be distinguished from other match strategies—when 
AC is played against partners who do defect at least once.

All sequences of decisions that do not fall in any of these strategies cannot be 
classified—this accounts for 14% of the games played without a fine, and 24% of 
those played with fine. The three strategies on which we focus are thus enough to 
summarize a vast majority of match decisions: AD accounts for 70% of the repeated-
game observations with no fine, and 41% with a fine, while TFT and GT account for 
14% and 34% of them.

Appendix 2: Alternative identification strategy

The empirical evidence presented in the paper relies on the insights from the model 
to provide a reduced-form statistical analysis of the interaction between learning and 
enforcement institutions. As a complement to this evidence, this section provides a 
structural analysis which takes into account both learning and behavioral spillovers. 
To that end, we first generalize the model presented in Sect. 3.2 to the case in which 
individual values evolve over time as a result of past experience. We then estimate 
the parameters of the model. This provides an alternative strategy to separately 
estimate learning and spillovers.

The dynamics of learning with behavioral spillovers

Consistent with Galbiati et al. (2018), we allow both for past fines and past behaviors 
of the partners to affect values:
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According to this simple specification, personal values evolve through two channels. 
First, direct spillovers increase the value attached to cooperation in the current match 
if the previous one was played with a fine, as measured by parameter �F . Second, 
indirect spillovers, measured by �C , increase the value attached to cooperation if in 
the previous match the partner cooperated.16

Introducing behavioral spillovers in the benchmark

We start by introducing spillovers in the benchmark model. Under the assumption 
that values follow the process in (3) and 𝜙F > 0,𝜙C > 0 , the indifference condition 
(1) remains unchanged,17 but now �it is no longer constant and equal to �i since past 
shocks affect values. In this context, individual i cooperates at t if and only if:

The cutoff value is defined in the same way as before:

The main difference with the benchmark model is in the value of p∗
t
(Fit) . There 

is now a linkage between the values of the cutoffs at match t, �∗
t
 , and the values 

of the cutoffs �∗
t�
 in all the preceding matches t′ < t through p∗

t
(Fit) . Indeed, when 

an individual evaluates the probability that her current partner in t, player jt , will 
cooperate, she needs to determine how likely it is that she received a direct and/
or an indirect spillover from the previous period. The probability of having a direct 
spillover is given by P[Fjt−1 = 1] = 1∕2 and is independent of any equilibrium 
decision. By contrast, the probability of having an indirect spillover is linked to 
whether the partner of jt in her previous match cooperated or not. This probability 
in turn depends on the cutoffs in t − 1 , �∗

t−1
 , which also depends on whether that 

individual himself received indirect spillovers, i.e on the cutoff in t − 2 . Overall, 
these cutoffs in t depend on the entire sequence of cutoffs.

(3)�it = �i + �F1{Fit−1=1}
+ �C1{ajt−1,t−1

=C}.

�it ≥�1 − F × 1{Fit=1}
+ pit�2 −

�

1 − �
pit
(
F × 1{Fit=1}

+�3

)
.

(4)�∗
t
(Fit) =�1 − F × 1{Fit=1}

+ p∗
t
(Fit)

[
�2 −

�

1 − �

(
F × 1{Fit=1}

+�3

)]
.

16 The model can easily be extended to allow for longer histories to impact values. For instance, the 
effect on past institutions on values could be extended to:

with �F� and �C� increase in � , in other words the more recent history having more impact. This could be 
introduced at the cost of added complexity.

�it = �i +

T∑

�=1

�F�1{Fit−�=1}
+

T∑

j=1

�C�1{ajt−� ,t−�=C}
,

17 As stated above, we work under the assumption that players are myopic and choose between C and D 
to maximize their payoff in the current match. Without this assumption, when spillover are introduced, a 
player would need to take into account that her current action would influence her partner’s future actions 
and thus influence the partner’s future partners. An alternative would be to assume that players are negli-
gible enough so that current actions cannot influence future beliefs.
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In the remaining, we focus on stationary equilibria, such that �∗ is independent of 
t. We show in Proposition C that such equilibria do exist.

Proposition C (Spillovers) In an environment with spillovers ( 𝜙F > 0 and 𝜙C > 0 ) 
and no uncertainty on values, there exists a stationary equilibrium. Furthermore all 
equilibria are of the cutoff form, i.e individuals cooperate if and only if �it ≥ �∗(Fit).

Proof See “Appendix 5: Proofs”.   ◻

Proposition C proves the existence of an equilibrium and presents the shape of 
the cutoffs. The Proposition also allows to express the probability that a random 
individual cooperates as:

where

The dynamics of cooperation with learning and spillovers

We now solve the full model with uncertainty about the group’s values and with 
spillovers. As in the main text, we denote qit the belief held by player i at match t 
that the state is H.

In this expanded model, the beliefs on how likely it is that the partner 
cooperates in match t, p∗

t
(Fit, qit) , depends on the probability that the partner 

experienced spillovers. In addition, the probability that the partner j had an 
indirect spillover itself depends on whether his own partner k in the previous 
match did cooperate, and thus depends on the beliefs qkt−1 of that partner in the 
previous match. The general problem requires to keep track of the higher order 
beliefs. The proof of the following Proposition shows the existence of such a 
stationary equilibrium, under a natural restriction on higher order beliefs, i.e if 
we assume that a player who had belief qit in match t believes that players in the 
preceding match had the same beliefs qj�,t−1 = qit.

Proposition D In an environment with spillovers and learning, if an equilibrium 
exists, all equilibria are of the cutoff form, i.e individuals cooperate if and only if 
�i ≥ �∗(Fit, qit) . Furthermore, if in equilibrium 𝛽∗(0, q) > 𝛽∗(1, q) for all beliefs q, 
then the beliefs are updated in the following way given the history in the previous 
interaction:

(5)1 −�H

[
�1 − �F1{Fit−1=1}

− �C1{ajt−1,t−1
=C} − �21{Fit=1}

]
,

�1 ≡�
∗(0) = �1 + p∗(0)

[
�2 −

�

1 − �
�3

]
,

�2 ≡�
∗(1) − �∗(0) = F + [p∗(0) − p∗(1)]

[
�2 −

�

1 − �
�3

]
+

�

1 − �
p∗(1)F.
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Proof See “Appendix 5: Proofs”.   ◻

Proposition  D derives a general property of equilibria. The Proposition also 
allows to express the probability of cooperation for given belief qit−1 as:

where

Note that the parameters �3 , �4 and �j

k,l
 in Eq. (6) depend on qit−1 . Compared to the 

case without learning, there are 6 additional parameters, reflecting the updating of 
beliefs. According to the result in Proposition D, these parameters, both in the case 
where the current match is played with a fine and when it is not, are such that:

Overall, having fines in the previous match can potentially decrease average 
cooperation in the current match. There are two countervailing effects. On the 
one hand, a fine in the previous match increases the direct and indirect spillovers 
and thus increases cooperation. On the other hand, if the state is low, a fine can 
accelerate learning if, on average, sufficiently many people deviate in the presence 
of a fine. This then decreases cooperation in the current match.

Statistical implementation of the model

The main behavioral insights from the model are summarized by Eq. (6), which 
involves both learning and spillover parameters. As the equation clearly shows, 
exogenous variations in legal enforcement are not enough to achieve separate 
identification of learning and spillover parameters—an exogenous change in 

qit(0,C, qit−1) > qit(1,C, qit−1) > qit−1,

qit(1,D, qit−1) < qit(0,D, qit−1) < qit−1.

(6)
1 −�H

[

�3 − �F�{Fit−1=1} − �C�{ajt−1,t−1=C}
− �4�{Fit=1}

−
∑

j,k∈{0,1},l∈{C,D}
�j
k,l�{Fit=j,Fit−1=k,ajt−1,t−1=l}

]

.

𝛬3 ≡ 𝛱1 + p∗(0, 0,D, q)
[
𝛱2 −

𝛿

1 − 𝛿
𝛱3

]
,

𝛬4 ≡ F −
[
p∗(1, 0,D, q) − p∗(0, 0,D, q)

]
[
𝛱2 −

𝛿

1 − 𝛿
𝛱3

]
+

𝛿

1 − 𝛿
p∗(1, 0,D, q)F > 0,

𝛬0

k,l
≡ [p∗(0, k, l, q) − p∗(0, 0,D, q)]

[
𝛱2 −

𝛿

1 − 𝛿
𝛱3

]
,

𝛬1

k,l
≡ −[p∗(0, k, l, q) − p∗(0, 0,D, q)]

[
𝛱2 −

𝛿

1 − 𝛿
(F +𝛱3)

]
.

(7)
𝛬1

0,C
> 𝛬1

1,C
> 0 > 𝛬1

1,D
,

𝛬0
0,C

> 𝛬0
1,C

> 0 > 𝛬0
1,D

.
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any of the enforcement variables, or past behavior of the partner, involves both 
learning and a change in the values �it . In the main text, identification relies on the 
assumption that spillovers are short-living in the sense that their effect on behavior 
is smaller the earlier they happen in one’s own history—while learning should not 
depend on the order in which a given sequence of actions happens. In this section, 
we report the results from an alternative identification strategy that relies on the 
assumption that learning has converged once a large enough number of matches has 
been played. Under this assumption, in late games, behavior is described by Eq. (5), 
which involves only spillover parameters. Exogenous variations in enforcement thus 
provide identification of spillover parameters in late games, which in turn allows to 
identify learning parameters in early ones.

To that end, as explained in the text, we split the matches in three groups, in such 
a way that one third of the observed decisions are classified as “early”, and one third 
as “late”. We use matches, rather than periods, as a measure of time since we focus 
on games for which the first stage decision summarizes all future actions within 
the current repeated game—hence ruling out learning within a match. Observed 
matches are accordingly defined as “early” up to the 7th, as late after the 13th—
we disregard data coming from intermediary stages.18 Denote 1{Early} the dummy 
variable equal to 1 in early games and to 0 in late games. Under the identifying 
assumption that learning has converged in late games, the model predicts that 
behavior in the experiment is described by:

which is the structural form of a Probit model on the individual decision to 
cooperate. This probability results from equilibria of the cutoff form involving the 
primitives of the model. Denoting �it observation specific unobserved heterogeneity, 
� the vector of unknown parameters embedded in the above equation, xit the 
associated set of observables describing participant i experience up to t and C∗

it
 the 

latent function generating player i willingness to cooperate at match t, observed 
decisions inform about the model parameters according to:

P(Cit = 1) =1 −�H

[

�1 + (�3 − �1)1{Early} − �F1{Fit−1=1}

− �C1{ajt−1,t−1=C}
− �21{Fit=1}

− (�4 − �2)1{Fit=1} × 1{Early}

−
∑

j,k∈{0,1},l∈{C,D}
�j

k,l1{Fit=j,Fit−1=k,ajt−1,t−1=l}
× 1{Early}

]

Cit = 1[C∗
it
= xit� + 𝜀it > 0]

18 All results are robust to alternative definitions of these thresholds. The results are available from 
authors upon request.
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The structural parameters govern the latent equation of the model. Our empirical 
test of the model is thus based on estimated coefficients, � =

�C∗

�xit
 , rather than 

marginal effects, �C
�xit

= �
��(xit�)

�xit
.

In the set of covariates, both current ( 1{Fit=1}
 ) and past enforcement ( 1{Fit−1=1}

 ) are 
exogenous by design. The partner’s past decision to cooperate, Cjt−1 , is exogenous 
to Cit as long as player i and j have no other player in common in their history. 
Moreover, due to the rematching of players from one match to the other, between 
subjects correlation arises over time within an experimental session. We address 
these concerns in three ways. We include the decision to cooperate at the first 

Table 3  Learning and spillovers arising from past enforcement

Probit models with individual random effects on the decision to cooperate at first stage estimated on the 
working sample restricted to early (before the 7th) and late (beyond the 13th) games. Standard errors (in 
parenthesis) are clustered at the session level. All specifications include control variables for gender, age, 
whether participant is a student, whether a fine applies to the first match, the decision to cooperate at first 
match, the length of the previous game and match number. Significance levels: ∗10%, ∗∗5%, ∗∗∗1%.

Variable Model (1) (2) (3) (4) (5)
Parameter

Constant (−�1) − 1.986*** − 2.020*** − 2.290*** − 2.302*** − 2.291***
(0.392) (0.362) (0.298) (0.317) (0.220)

1{Fit}
(�2) 1.448*** 1.454*** 1.480*** 1.473*** 1.472***

(0.164) (0.149) (0.150) (0.142) (0.137)
Early (−�3 + �1) 0.285 0.292 0.348 0.460 0.453

(0.411) (0.415) (0.440) (0.383) (0.377)
Early ×1{Fit}

(�4 − �2) − 0.698*** − 0.698*** − 0.646** − 0.644** − 0.643**
(0.243) (0.245) (0.258) (0.261) (0.271)

1{Fit−1}
(�F) 0.049 0.306** 0.094 0.085

(0.120) (0.140) (0.193) (0.306)
1{ajt−1=C}

(�C) 0.693*** 0.674***
(0.169) (0.121)

Early ×C0 (�0,C) 1.066*** 0.430 0.448*
(0.186) (0.363) (0.246)

Early ×C1 (�1,C) 0.233 − 0.228** − 0.230**
(0.168) (0.096) (0.094)

Early ×D1 (�1,D) − 0.876** − 0.631* − 0.621*
(0.423) (0.329) (0.334)

C1 0.029
(0.380)

N 553 553 553 553 553
�u 1.063 1.064 1.063 1.060 1.060
� 0.531 0.531 0.530 0.529 0.529
LL − 234.677 − 234.624 − 224.416 − 220.033 − 220.031
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stage of the first match in the set of control variables, as a measure of individual 
unobserved ex ante willingness to cooperate. To further account for the correlation 
structure in the error of the model, we specify a panel data model with random 
effects at the individual level, control for the effect of time thanks to the inclusion of 
the match number, and cluster the errors at the session level to account in a flexible 
way for within sessions correlation.

Table 3 reports the estimation results from several specifications, in which each 
piece of the model is introduced sequentially. The parameters of interest are the 
learning parameters �k,l, k ∈ {0, 1}, l ∈ {C,D}.19 Columns (1) and (2) focus on the 
effect of past and current enforcement. While we do not find any significant change 
due to moving from early to late games per se (the Early variable is not significant), 
the effect of current enforcement on the current willingness to cooperate is much 
weaker in early games. This is consistent with participants becoming less confident 
that the group is cooperative, thus less likely to cooperate, as time passes—i.e., 
prior belief over-estimate the average cooperativeness of the group. The disciplining 
effect of current fines is thus stronger in late games.

Column (3) introduces learning parameters. As stressed above, the learning 
parameters play a role before beliefs have converged. They are thus estimated in 
interaction with the Early dummy variable. Once learning is taken into account, 
enforcement spillovers turn-out significant. More importantly, the model predicts 
that learning is stronger when observed decisions are more informative about 
societal values, which in turn depends on the enforcement regime under which 
behavior has been observe: cooperation is more informative about cooperativeness 
under weak enforcement, while defection is stronger signal of non-cooperative 
values under strong enforcement. This results in a clear ranking between learning 
parameters—see Eq. (7). We use defection under weak enforcement as a reference 
for the estimated learning parameters. The results show that cooperation under weak 
enforcement ( Early × C0 ) leads to the strongest increase in the current willingness to 
cooperate. Observing this same decision but under strong enforcement institutions 
rather than weak ones ( Early × C1 ) has almost the same impact as observing 
defection under strong institutions (the reference): in both cases, behavior is aligned 
with the incentives implemented by the rules and barely provides any additional 
insights about the distribution of values in the group. Last, defection under strong 
institutions ( Early × D0 ) is informative about a low willingness to cooperate in the 
group, and results in a strongly significant drop in current cooperation.

Column (4) adds indirect spillovers, induced by the cooperation of the partner 
in the previous game. The identification of learning parameters in this specification 
is quite demanding since both past enforcement and past cooperation are included 
as dummy variables. We nevertheless observe a statistically significant effect of 
learning in early games, with the expected ordering according to how informative 
the signal delivered by a cooperative decision is, with the exception of C1—i.e., 
when cooperation has been observed under fines. Finally, column (5) provides a 

19 Note that we do not separately estimate these parameters according to the current enforcement envi-
ronment, but rather estimate weighted averages �k,l = 1{Fit=0}

�0

k,l
+ 1{Fit=1}

�1

k,l
.
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robustness check for the reliability of the assumption that learning has converged in 
late games. To that end, we further add the interaction between observed behavior 
from partner in the previous game and the enforcement regime. Once learning has 
converged, past behavior is assumed to affect the current willingness to cooperate 
through indirect spillovers only. Absent learning, this effect should not interact with 
the enforcement rule that elicited this behavior. As expected, this interaction term is 
not significant: in late games, it is cooperation per se, rather than the enforcement 
regime giving rise to this decision, that matters for current cooperation.

Appendix 3: Replication of the statistical analysis on the full sample

In this section, we replicate the results on the full sample of observations: instead of 
restricting the analysis to the working sample made of decisions consistent with the 
subset of repeated-game strategies described in Sect. 2.2, we include all available 
observations. As already mentioned in the text, the matches we exclude from the 
working sample all appear in late games so that Fig. 2a is not affected by the choice 
of the working sample. Figure 5 below replicates Fig. 3 in the paper; and Table 4 
replicates Table 2. In both instances, the data is more noisy but the qualitative con-
clusions all remain the same.
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Fig. 5  Current cooperation as a function of history in the previous 5 games, computed on the full sample
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Appendix 4: Replication of the main results with bootstrapped 
standard errors

As explained in the main text, the statistical analysis presented in Table 2 clusters the 
standard errors at the session level, so as to take into account in a flexible way the 
possible correlations between subjects due to random rematching of subjects within 
pairs. While this approach is conservative (since it does not impose any structure on the 
correlation between subjects over time), the number of clusters is small and there is a 
risk of small sample downward bias in the estimated standard errors. Table 5 provides 
the results from a robustness exercise replicating Table 2 in the text with bootstrapped 
standard error based a delete-one jackknife procedure (see Bell & McCaffrey, 2002; 
Cameron et al. 2008).

Table 4  Replication of Table 2 on the full sample

Marginal effects are computed at sample mean, assuming random effects are 0. Significance levels: ∗10%, 
∗∗5%, ∗∗∗1%.

(1) (2) (3) (4) (5) (6)
Enforcement Spillovers est6

Constant − 0.029 0.037 0.126
(0.736) (0.733) (0.847)

1{Ft=1}
1.172*** 0.310*** 1.168*** 0.307*** 1.165*** 0.306***
(0.279) (0.034) (0.278) (0.034) (0.265) (0.031)

C0 =
∑5

s=1
C0
t−s

0.347** 0.092*** 0.321** 0.084** 0.361* 0.095**
(0.142) (0.032) (0.149) (0.034) (0.185) (0.040)

C1 =
∑5

s=1
C1
t−s

0.196** 0.052** 0.122 0.032 0.101 0.027
(0.090) (0.022) (0.086) (0.022) (0.148) (0.037)

D1 =
∑5

s=1
D1

t−s
− 0.049 − 0.013* − 0.090* − 0.024** − 0.133** − 0.035**
(0.036) (0.008) (0.052) (0.011) (0.060) (0.015)

1{Ft−1=1}
0.195** 0.051*** 0.089 0.023
(0.083) (0.017) (0.232) (0.059)

1{ajt−1=C}
0.146** 0.039* 0.258* 0.068**
(0.074) (0.022) (0.137) (0.031)

ajt = C in a row − 0.079 − 0.021
(0.081) (0.019)

Fit in a row 0.071 0.019
(0.109) (0.030)

N 694 – 694 – 694 –
�u 1.099 – 1.100 – 1.113 –
� 0.547 – 0.547 – 0.553 –
LL − 300.754 – − 298.972 – − 298.235 –
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Appendix 5: Proofs

Proof of Proposition 1

As derived in the main text, if an equilibrium exists, it is necessarily such that players 
use cutoff strategies. Reexpressing characteristic Eq. (2), we can show that the cutoffs 
are determined by the equation g(�∗[Fit]) = 0 , where g is given by

The function g has the following properties: g(x) > 0 when x converges to −∞ and 
g(x) < 0 when x converges to +∞ . Thus, since g is continuous, there is at least one 
solution to the equation g(�∗[Fit)] = 0 . At least one equilibrium exists.

If g is non monotonic, there could exist multiple equilibria. However, in all stable 
equilibria, �∗ is such that g is decreasing at �∗ , i.e.,

g(x) = −x +�1 − F1{Fit=1}
+
(
1 −�H(x)

)[
�2 −

�

1 − �

(
F1{Fit=1}

+�3

)]
.

Table 5  Replication of Table 2 using bootstrapped errors

Marginal effects are computed at sample mean, assuming random effects are 0. Significance levels: ∗10%, 
∗∗5%, ∗∗∗1%.

(1) (2) (3) (4) (5) (6)
Enforcement Spillovers est6

Main constant 0.040 0.147 0.179
(0.167) (0.217) (0.258)

1{Ft=1}
1.356** 0.305** 1.361** 0.303** 1.355** 0.302**
(0.281) (0.056) (0.280) (0.055) (0.285) (0.052)

C0 =
∑5

s=1
C0
t−s

0.410** 0.092** 0.406** 0.091** 0.433** 0.097**
(0.078) (0.015) (0.074) (0.014) (0.095) (0.018)

C1 =
∑5

s=1
C1
t−s

0.210*** 0.047** 0.164*** 0.037*** 0.167 0.037
(0.018) (0.007) (0.006) (0.003) (0.111) (0.024)

D0 =
∑5

s=1
D1

t−s
− 0.123 − 0.028* − 0.180** − 0.040** − 0.195 − 0.043
(0.048) (0.009) (0.041) (0.007) (0.073) (0.016)

1{Ft−1=1}
0.230* 0.051* 0.199 0.044
(0.060) (0.017) (0.323) (0.072)

1{ajt−1=C}
− 0.019 − 0.004 0.073 0.016
(0.041) (0.009) (0.140) (0.031)

ajt = C in a row − 0.059 − 0.013
(0.053) (0.011)

Fit in a row 0.020 0.004
(0.182) (0.041)

N 599 599 599 599 599 599
�u 1.196 1.196 1.201 1.201 1.208 1.208
� 0.588 0.588 0.591 0.591 0.593 0.593
LL − 220.466 − 220.466 − 219.610 − 219.610 − 219.454 − 219.454
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Using the implicit theorem we have:

where �H is the density corresponding to distribution �H . For stable equilibria, the 
denominator is negative as shown in (8), so that overall

Similarly,

Again, in stable equilibria the denominator is negative by (8). Furthermore we have 
𝜕𝛷H [𝛽

∗]

𝜕𝜇H

< 0 since an increase in the mean of the normal distribution decreases �H[x] 
for any x. Overall we get

Proof of Lemma 1

We first show the result: qi2(1,D) < qi2(0,D) < q0 . According to Baye’s rule, the 
belief that the state is H following a deviation by the partner in the first match 
(which has been played with a fine) is:

Furthermore, since 𝛷L[𝛽
∗(1)] > 𝛷H[𝛽

∗(1)] , we have qi2(1,D)<q0 . Similarly we 
have:

(8)−1 − 𝜙H

[
𝛽∗
][
𝛱2 −

𝛿

1 − 𝛿

(
F1{Fit=1}

+𝛱3

)]
< 0.

��∗

�F
= −

�g

�F
∕
�g

��∗
= −

−1 −
(
1 −�H[�

∗]
)

�

1−�

−1 − �H[�
∗]
[
�2 −

�

1−�

(
F1{Fit=1}

+�3

)] ,

𝜕𝛽∗

𝜕F
< 0.

��∗

��H

= −
−

��H [�
∗]

��H

[
�2 −

�

1−�

(
F1{Fit=1}

+�3

)]

−1 − �H[�
∗]
[
�2 −

�

1−�

(
F1{Fit=1}

+�3

)] .

𝜕𝛽∗

𝜕𝜇H

< 0.

(9)

qi2(1,D) =
q0P[D|Fi1 = 1, s = H]

q0P[D|Fi1 = 1, s = H] + (1 − q0)P[D|Fi1 = 1, s = L]

=
q0�H[�

∗(1)]

q0�H[�
∗(1)] + (1 − q0)�L[�

∗(1)]

=
1

1 +
1−q0

q0

�L[�
∗(1)]

�H [�
∗(1)]

.
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Thus,

Using the fact that �L[x]

�H [x]
 is decreasing in x as shown in Property 1 below, and the fact 

that in stable equilibria, we have �∗(1) ≤ �∗(0) , as shown in Proposition 1, implies 
directly that qi2(1,D) < qi2(0,D) . The proof that qi2(0,C) > qi2(1,C) > q0 follows 
similar lines.

Property 1 �H [x]

�L[x]
 is increasing in x.

Proof Denote �H (resp. �L ) the density of �H (resp. �L ). Given that �H (resp. �L ) 
is the density of a normal distribution with standard deviation � and mean �H (resp. 
�L ), it is the case that:

Thus �H

�L

 is increasing in x. In particular for y < x , we have: 𝜙H

[
y
]
𝜙L[x] < 𝜙L

[
y
]
𝜙H[x] . 

By definition, �s(x) = ∫ x

−∞
�s(y)dy . Integrating with respect to y between −∞ and x 

thus yields:

Consider now the function �H

�L

 . The derivative of this function is given by �H�L−�L�H

�2
L

 , 
which is positive by Eq. (11). This establishes Property 1 that �H [x]

�L[x]
 is increasing in 

x.   ◻

Proof of Proposition D (that generalizes Proposition 2)

In the first part of the proof we assume a stationary equilibrium exists and is such 
that the equilibrium cutoffs are always higher without a fine in the current match 
𝛽∗(0, q) > 𝛽∗(1, q) for any given belief q. We then derive the property on updating of 
beliefs. In the second part of the proof we show existence under a natural restriction on 
beliefs.

Part 1: We first derive the properties on updating. We have

(10)qi2(0,D) =
1

1 +
1−q0

q0

𝛷L[𝛽
∗(0)]

𝛷H [𝛽
∗(0)]

> q0.

qi2(1,D) < qi2(0,D) ⇔
𝛷L[𝛽

∗(0)]

𝛷H[𝛽
∗(0)]

<
𝛷L[𝛽

∗(1)]

𝛷H[𝛽
∗(1)]

.

�H[x]

�L[x]
=

1

�
√
2�
e−(x−�H )

2∕�2

1

�
√
2�
e−(x−�L)

2∕�2

= e−(x−�H )
2∕�2+(x−�L)

2∕�2

= e
1

�2
(�H−�L)(2x−�L−�H ).

(11)𝛷H[x]𝜙L[x] < 𝛷L[x]𝜙H[x].
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We can express the probability that the partner jt−1 in match t − 1 cooperated, by 
considering all the possible environments this individual might have faced in the 
past, in particular what his partner in match t − 2 , individual kt−1 chose:

Denote

and

Using expression (12), we have:

We then use all possible values of the vector (Fjt−1,t−2
, akt−1,t−2, qjt−1,t−1) in turn. Take 

such a value v for this vector and denote

We clearly have a < b . Furthermore, we can write

(12)

qit(Fit−1, ajt−1,t−1, qit−1)

=
qit−1P[ajt−1,t−1|Fit−1, s = H]

qit−1P[ajt−1,t−1|Fit−1, s = H] + (1 − qit−1)P[ajt−1,t−1|Fit−1, s = L]
.

P[ajt−1,t−1 =D|Fit−1, s = H]

=
∑

Fjt−1,t−2,akt−1,t−2,qjt−1,t−1

�H

[

�∗(1, qjt−1,t−1) − �F1{Fjt−1,t−2=1}

−�C1{akt−1,t−2=C}

]

× P[Fjt−1,t−2, akt−1,t−2, qjt−1,t−1].

�∗
(
Fjt−1,t−2

, akt−1,t−2, qjt−1,t−1
)

= �∗(1, qjt−1,t−1) − �F1{Fjt−1,t−2
=1} − �C1{akt−1,t−2

=C}.

R(x) ≡

∑
Fjt−1,t−2

,akt−1,t−2
,qjt−1,t−1

�H

�
�∗
�
x, akt−1,t−2, qjt−1,t−1

��
P[Fjt−1,t−2

, akt−1,t−2, qjt−1,t−1]

∑
Fjt−1,t−2

,akt−1,t−2
,qjt−1,t−1

�L

�
�∗
�
x, akt−1,t−2, qjt−1,t−1

��
P[Fjt−1,t−2

, akt−1,t−2, qjt−1,t−1]
.

qit(1,D, qit−1) < qit(0,D, qit−1) ⇔ R(1) ≥ R(0).

a ≡
∑

(Fjt−1,t−2
,akt−1,t−2

,qjt−1,t−1
)≠v

�H

[
�∗
(
x, akt−1,t−2, qjt−1,t−1

)]

P[Fjt−1,t−2
, akt−1,t−2, qjt−1,t−1],

b ≡
∑

(Fjt−1,t−2
,akt−1,t−2

,qjt−1,t−1
)≠v

�L

[
�∗
(
x, akt−1,t−2, qjt−1,t−1

)]

P[Fjt−1,t−2
, akt−1,t−2, qjt−1,t−1].

R(x) ≡
a +�H[�

∗(v)]P[v]

b +�L[�
∗(v)]P[v]
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We have 𝛽∗(0, q) > 𝛽∗(1, q) imply that 𝛾∗
(
0, ak�t−2, qj�t−1

)
> 𝛾∗

(
1, ak�t−2, qj�t−1

)
 . 

Thus, using Property 2 below, it implies that R(1) ≥ R(0) and thus 
qit(1,D, qit−1) < qit(0,D, qit−1).

Property 2 a+p�H [x]

b+p�L[x]
 where b > a is increasing in x.

Proof The derivative of the ratio is given by

We showed in the proof of Property 1 that: 𝜙H𝛷L − 𝜙L𝛷H > 0 . Furthermore, we 
also showed that �H

�L

 is increasing and since a < b this implies: 𝜙Hb − 𝜙La > 0 . 
Combining these two results in condition (13) establishes Property 2.  ◻

Part 2: We show that an equilibrium exists if we assume that a player who 
has belief qit in match t believes that other players in match t and t − 1 shared the 
same belief qjt ,t = qkt ,t = qit.

If a stationary equilibrium exists, it is necessarily such that players use cutoff 
strategies where the cutoff is defined by:

We have:

Furthermore, we have

(13)
�H

(
b + p�L

)
− �L

(
a + p�H

)

(
b + p�L

)2

�∗
t
(Fit, qit) =�1 − F1{Fit=1}

+ p∗
t
(Fit, qit)

[
�2 −

�

1 − �

(
F1{Fit=1}

+�3

)]

p∗
t
(Fit, qit) = P[ajt ,t = C|Fit, qit]

= qit

∑

(Fjt ,t−1
,akt ,t−1,qjt ,t−1)

[
1 −�H

[
�∗(Fjt ,t

, qjt ,t−1)

−�F1{Fjt ,t−1
=1} − �C1{akt ,t−1=C}

]]

× P[Fjt ,t−1
, aktt−1, qjt ,t−1|s = H]

+ (1 − qit)
∑

(Fjt ,t−1
,akt ,t−1,qjt ,t−1)

[
1 −�L

[
�∗(Fjt ,t

, qjt ,t−1)

−�F1{Fjt ,t−1
=1} − �C1{akt ,t−1=C}

]]

× P[Fjt ,t−1
, aktt−1, qjt ,t−1|s = L]

P[Fjt ,t−1
, akt ,t−1, qjt ,t−1|s = H] = P[Fjt ,t−1

]

P[akt ,t−1|Fjt ,t−1
, s = H]ft(qjt ,t−1|s = H)

=
1

2
P[akt ,t−1|Fjt ,t−1

, s = H]ft(qjt ,t−1|s = H)
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we assumed that a player who had belief qit−1 in match t − 1 believes that all other 
players in that match share the same belief qit−1 . Under this restriction, we have 
ft(qj�t−1|s = .) = 1(qj� t−1=qit−1)

We get a similar expression as in the proof of Proposition 2:

This implies that for each belief q, there is a system of equation equivalent to system 
A in the proof if Proposition 2. We thus have a solution of this system for each value 
q.
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