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Path Decompositions of Kneser and
Generalized Kneser Graphs

C. A. Rodger and_omas Richard Whitt, III

Abstract. Necessary and suõcient conditions are given for the existence of a graph decomposition
of the Kneser Graph KGn ,2 and of the Generalized Kneser Graph GKGn ,3,1 into paths of length
three.

1 Introduction

An H-decomposition of a graph G = (V , E) is a pair (V , B), where B is a collection
of edge-disjoint subgraphs of G, each isomorphic to H, whose edges partition E(G).
_ere ismuch in the literature concerning decompositions of various graphs. _e sub-
graphs used to partition the edges ofG are, for example, cycles [1,8,12] and paths [14],
and G is most commonly a complete multipartite graph. More recently, stemming
from statistical designs, G has been chosen to be the graph formed from a complete
multipartite graph with multiplicity λ2 by adding a copy of λ1Kn to each part of size n
and H is a 3-cycle, a 4-cycle, or a Hamilton cycle [2, 5, 6].

In this paper, we consider path decompositions in the case where G, the graph
being decomposed, is a Kneser Graph or a Generalized Kneser Graph. _e Kneser
GraphKGn ,k is the graphwhose vertices are the k-element subsets of some set of n ele-
ments, in which two vertices are adjacent if and only if their intersection is empty. _e
Generalized Kneser Graph, GKGn ,k ,r is the graph whose vertices are the k-element
subsets of some set of n elements, in which two vertices are adjacent if and only if
they intersect in precisely r elements. _e graph-decomposition problem of ûnding
necessary and suõcient conditions for the existence of P3-decompositions of KGn ,2
andGKGn ,3,1 is completely solved in _eorems 1 and 2 respectively, where Pi denotes
a path of length i. An explicit construction is provided to ûnd the relevant decompo-
sitions.

It is worth noting that Kneser graphs have attracted much interest in the years
since Kneser ûrst described them in 1955 [9]. For instance, Kneser Graphs are known
to contain a Hamiltonian cycle if n ≥ 3k [4]. _e current conjecture is that all Kneser
Graphs are Hamiltonian if n ≥ 2k + 1, with the exception of KG5,2, which is the Pe-
tersen Graph. It has been shown computationally that all connected Kneser graphs
with n ≤ 27 except for the Petersen Graph are Hamiltonian [13]. Also, much interest
has centered on solving the conjecture by Kneser that χ(KGn ,k) = n−2k+2 whenever
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n ≥ 2k [3, 7, 9–11], where χ(G) is the chromatic number of G (KGn ,k has no edges if
n < 2k).

2 Building Blocks

Let Tk(V) be the set of k-element subsets of the set V . Let P3 = (a, b, c, d) denote
the path of length three with edge set {{a, b}, {b, c}, {c, d}}.

_e following lemmas will be useful in the constructions to come.

Lemma 1 _ere exists a P3-decomposition of each of the following graphs:
(i) K2,3;
(ii) K3,3;
(iii) Kn ,3k for any n ≥ 2 and k ≥ 1;
(iv) H4 = K3,3 − F with bipartition {Z3 ,Z6/Z3} of V(K3,3), and where E(F) =

{{i , i + 3} ∣ i ∈ Z3} ;
(v) H5 = H4 ∪G′, where G′ = (Z9/Z3 , {{3, 6}, {4, 7}, {5, 8}});
(vi) H6, the bipartite graph with bipartition {T2(Z4),Z4} of V(H6) and E(H6) =

{{a, b} ∣ b ∉ a, a ∈ T(Z4), b ∈ Z4};
(vii) KG5,2 (the Petersen Graph);
(viii) H8, the bipartite graph with bipartition {T2(Z5),Z5} of V(H8) and E(H8) =

{{a, b} ∣ b ∉ a, a ∈ T(Z5), b ∈ Z5}.

Proof (i) Deûne K2,3 with bipartition {Z2 ,Z5/Z2} of the vertex set Z5. _en

(Z5 , {(0, 2, 1, 3), (3, 0, 4, 1)})

is the required decomposition.
(ii) Deûne K3,3 with bipartition {Z3 ,Z6/Z3} of the vertex set Z6. _en

(Z6 , {(3, 0, 5, 2), (1, 3, 2, 4), (0, 4, 1, 5)})

is the required decomposition.
(iii) Since n ≥ 2, form a partition P of Zn into sets of size 2 and 3, and a par-

tition Q of Zn+3k/Zn into sets of size 3. For each p ∈ P and q ∈ Q, let (p ∪ q,
Bp,q) be a P3-decomposition of K∣p∣,3 with bipartition {p, q} of the vertex set. _en
(Zn+3k ,⋃p∈P ,q∈Q Bp,q) is the required P3-decomposition of Kn ,3k .

(iv) With bipartition {Z3 ,Z6/Z3}, (Z6 , {(0, 4, 2, 3), (0, 5, 1, 3)}) is the required
decomposition with F = {{0, 3}, {1, 4}, {2, 5}}.

(v) (Z9 , {(6, 3, 1, 5), (7, 4, 2, 3), (8, 5, 0, 4)}) is the required decomposition.
(vi)

(V(H6), {(0, {2, 3}, 1, {0, 2}), (1, {0, 3}, 2, {1, 3}),

(2, {0, 1}, 3, {0, 2}), (3, {1, 2}, 0, {1, 3}))

is the required decomposition.
(vii) Let V(KG5,2) = T2(Z5). _en

(T2(Z5), {({i , i + 1}, {i + 2, i + 3}, {i + 1, i + 4}, {i , i + 3}) ∣ i ∈ Z5}
reducing the sums modulo 5 is the required decomposition.
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(viii)

(V(H8), {(1, {0, 2}, 3, {0, 1}), (2, {0, 3}, 4, {0, 2}),
(2, {0, 4}, 1, {0, 3}), (0, {1, 2}, 3, {0, 4}),
(0, {1, 3}, 4, {1, 2}), (3, {1, 4}, 2, {1, 3}),
∗ (4, {2, 3}, 0, {1, 4}), (3, {2, 4}, 1, {2, 3}),

(1, {3, 4}, 0, {2, 4}), (4, {0, 1}, 2, {3, 4}))

is the required decomposition.

A graph G is said to have an Euler tour if there exists a closed walk in G that con-
tains each edge of G exactly once.

_e following is well known.

Lemma 2 A connected simple graph G has an Euler tour if and only if the degree of
every vertex in G is even.

From this, we can easily obtain the following result.

Lemma 3 If G is a connected bipartite simple graph in which the number of edges is
divisible by three and all vertices have even degree, then G has a P3-decomposition.

Proof By Lemma 2, let P = (v0 , v1 , . . . , ve) be an Euler tour ofG. SinceG is bipartite,
each set of three consecutive edges of P induce a P3. _erefore, since e = ∣E(G)∣ is di-
visible by three, (V(G), {(v3i , v3i+1 , v3i+2 , v3i+3) ∣ i ∈ Ze/3}) is a P3-decomposition
of G.

Lemma 4 _ere exists a P3-decomposition of each of the following graphs:
(i) GKG5,3,1 (the Petersen Graph), and
(ii) GKG6,3,1.

Proof (i)GKG5,3,1 = KG5,2 as can be seen by taking the complement of each vertex.
_e result follows from Lemma 1(vii).

(ii) Partition the vertices of GKG6,3,1 into the following two types:
● Type 1: T3(Z5), and
● Type 2: T3(Z6)/T3(Z5).
Let G1 be the subgraph induced by the Type 1 vertices, G2 be the subgraph induced
by the Type 2 vertices, and G3 be the bipartite subgraph induced by the edges of
the form {x , y} where x is a Type 1 vertex and y is a Type 2 vertex. G1 is clearly a
GKG5,3,1 and has a P3-decomposition by (i). G2 is isomorphic to KG5,2 (all vertices
share the element 5, so two are adjacent only if their other two elements are disjoint)
and has a P3-decomposition by Lemma 1(vii). G3 is a bipartite graph that is 6-regular,
so ∣E(G3)∣ is a multiple of three. To see that G3 is connected, for each Type 1 ver-
tex, {a, b, c} in G3 we display a path to each vertex of Type 2 as follows (where a, b,
c, d and e are the distinct elements of Z5): ({a, b, c}, {a, d , 5}, {b, c, d}, {a, b, 5}),
({a, b, c}, {a, d , 5}, {a, b, e}, {d , e , 5}), and ({a, b, c}, {a, d , 5}). _ese account for
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all pairs of nonadjacent vertices in G3, so G3 is connected. _erefore, G3 is a con-
nected even regular bipartite graph with a multiple of three edges, so by Lemma 3, it
also has a P3-decomposition. _e union of these three decompositions forms a P3-
decomposition of GKG6,3,1.

3 A P3-Decomposition of KGn,2

_eorem 1 KGn ,2 is P3-decomposable if and only if n /= 4.

Proof If n ∈ {1, 2, 3}, then KGn ,2 has no edges, so the result is vacuously true. Since
KG4,2 is a 1-factor on six vertices, it is clearly not P3-decomposable. KG5,2 is decom-
posable by Lemma 1(vii).

_e remaining cases are proved by induction on n. So now assume that KGw ,2
is P3-decomposable for all w ≤ n for some n ≥ 5. It is shown that G = KGn+1,2 is
P3-decomposable. Let є ∈ {0, 1, 2} such that є ≡ n (mod3). Let (T2(Zn), B) be a
P3-decomposition of KGn ,2.

_e subgraph of KGn+1,2 induced by vertices in T2(Zn+1)/T2(Zn) clearly has
no edges, since they all share the element n. What remains to be shown is that
the subgraph induced by the edges connecting vertices in T2(Zn) to vertices in
T2(Zn+1)/T2(Zn) has a P3-decomposition.

Partition Zn into t = (n − є)/3 sets: S i = {3i , 3i + 1, 3i + 2} for i ∈ Zt−1 and
St−1 = {i ∣ n − 3 − є ≤ i ≤ n − 1}. It is convenient to partition the old vertices, T(Zn),
into the following two types:

Vi = {{x , y} ∣ x , y ∈ S i , x /= y} for i ∈ Zt ,

Vi , j = {{x , y} ∣ x ∈ S i , y ∈ S j} for 0 ≤ i < j < t.

Further, partition the new vertices into t sets:

S′i = {{x , n} ∣ x ∈ S i} for i ∈ Zt .

All of the edges not involving vertices with elements in St−1 are handled ûrst. Of
these edges, the edges that require special attention are those joining two vertices in
{{v , s} ∣ v ∈ Vi , s ∈ S′i} for some i ∈ Zt−1. For each i ∈ Zt−1, these edges induce
a matching on six vertices, so they can’t be decomposed into three paths in isola-
tion. To decompose these edges, they are combined with edges joining two vertices
in {{v , s} ∣ v ∈ V0, i , s ∈ S′i} for some i ∈ Zt−1/{0} to form 3-paths as described in the
next two paragraphs, with i = 1 being an even more special case.
First, consider the bipartite subgraph G0 of KGn+1,2 induced by the edges joining

the vertices in V0 ∪V1 ∪V0,1 to the vertices in S′0 ∪ S′1. Partition these edges as follows.
_e edges joining the vertices of V1 ∪ {{0, x} ∣ x ∈ S1} to S′1 induce a subgraph
isomorphic toH5, so by Lemma 1(v), there exists a P3-decomposition of this subgraph.
_e edges joining the vertices of V0 ∪ {{x , 3} ∣ x ∈ S0} to S′0 also form a subgraph
isomorphic toH5, so by Lemma 1(v), there exists a P3-decomposition of this subgraph
as well. Now, for each k ∈ {1, 2} consider the edges joining the vertices {{k, x} ∣ x ∈

S1} to the vertices in S′1. _ese edges induce a subgraph isomorphic to H4, so by
Lemma 1(iv), there exists a P3-decomposition of this subgraph. Also, for each k ∈
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{4, 5} the edges joining the vertices {{x , k} ∣ x ∈ S0} to the vertices in S′0 induce
a subgraph isomorphic to H4, so by Lemma 1(iv), there exists a P3-decomposition
of this subgraph. _e union of these sets of 3-paths produces a P3-decomposition
(V(G0), B′0) of most of G0. _e edges connecting V1 to S′0 and connecting V0 to S′1
occur in paths in B′1,0 and B′0,1, respectively as deûned below.

Now, for each i ∈ {Zt−1/Z2}, consider the bipartite subgraph G i of KGn+1,2 in-
duced by the edges joining the vertices in Vi ∪ V0, i to the vertices in S′0 ∪ S′i . _e
edges in G i connecting the vertices of Vi ∪ {{0, x} ∣ x ∈ S i} to S′i induce a sub-
graph isomorphic to H5, thus it has a P3-decomposition by Lemma 1(v). Now, for
each k ∈ {1, 2}, the edges joining the vertices in {{k, x} ∣ x ∈ S i} to the vertices
in S′i induce a subgraph isomorphic to H4, so there exists a P3-decomposition of the
subgraph by Lemma 1(iv). Further, for each k ∈ S i , the edges connecting the vertices
of {{x , k} ∣ x ∈ S0} to the vertices of S′0 induce a subgraph isomorphic to H4 which
therefore has a decomposition by Lemma 1(iv). _e union of these decompositions
produce a P3-decomposition, (V(G i), B′i) , of most of G i for each i ∈ {Zt/Z2}. _e
remaining edges in G i , namely those connecting Vi to S′0, are in paths in B′i ,0 as de-
ûned below.
For each i ∈ Zt−1 and for each j ∈ Zt−1/{i}, the bipartite subgraph of G in-

duced by the edges joining vertices in Vi to vertices in S′j is isomorphic to K3,3, so
by Lemma 1(ii) there exists a P3-decomposition (Vi ∪ S′j , B′i , j) of this subgraph.
For 1 < j < t−1, the edges connecting vertices ofV0,1 to vertices of S′j induce a K9,3,

and thus this graph has a P3-decomposition (V0,1 ∪ S′j , B0,1, j) by Lemma 1(iii).
For each i ∈ Zt−1/Z2 and for each j ∈ Zt−1/{0, i}, the edges connecting ver-

tices of V0, i with the vertices of S′j induce a copy of K9,3 so this graph has a P3-
decomposition, (V0, i∪S′j , B0, i , j), by Lemma 1(iii). For 0 < i < j < t−1 and 0 ≤ k < t−1,
consider the bipartite subgraph of G induced by edges joining vertices in Vi , j to ver-
tices in S′k . _is subgraph of G has a P3-decomposition as follows:
(a) if k ∉ {i , j}, then the subgraph is isomorphic toK9,3, so it has a P3-decomposition
(Vi , j ∪ S′k , B i , j,k) by Lemma 1(iii);

(b) if k = i, then for each y ∈ S j the edges connecting the vertices {{x , y} ∣ x ∈ S i}

and S′k=i induce a subgraph isomorphic to H4, which has a P3-decomposition
(Vi , j ∪ S′k , B i , j,k) by Lemma 1(iv);

(c) if k = j, then for each x ∈ S i the edges connecting the vertices {{x , y} ∣ y ∈ S j}

and S′k= j forma subgraph isomorphic toH4, which has a P3-decomposition (Vi , j∪

S′k , B i , j,k) by Lemma 1(iv).
_e only edges le� to consider are all the edges which are incident with a vertex in

S′t−1 ∪ Vt−1 ∪ Vi ,t−1, i ∈ Zt−1. _e handling of thse edges depends on the value of є.
First, consider the bipartite subgraphGt−1 of KGn+1,2 induced by the edges joining

the vertices in Vt−1 ∪V0,t−1 to the vertices in S′0 ∪ S′t−1. We consider each value of є in
turn.
For є = 0, the edges in Gt−1 connecting the vertices of Vt−1 ∪ {{0, x} ∣ x ∈ St−1}

to S′t−1 induce a subgraph isomorphic to H5, thus it has a P3-decomposition by
Lemma 1(v). Now, for each k ∈ {1, 2}, the edges joining the vertices in {{k, x} ∣
x ∈ St−1} to the vertices in S′t−1 induce a subgraph isomorphic to H4, so there exists a
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P3-decomposition by Lemma 1(iv). Further, for each k ∈ St−1, the edges connecting
the vertices of {{x , k} ∣ x ∈ S0} to the vertices of S′0 induce a subgraph isomorphic
to H4 which therefore has a decomposition by Lemma 1(iv). Lastly, the edges joining
the vertices in vt−1 to the vertices in S′0 induce a subgraph isomorphic to K3,3, and so
has a P3-decomposition be Lemma 1(ii). _e union of these decompositions produce
a P3-decomposition, (V(Gt−1), B′t−1) , of Gt−1.
For є = 1 or 2, the edges connecting vertices in Vt−1 to S′t−1 induce a graph iso-

morphic to H6 or H8 respectively, which has a P3-decomposition by Lemma 1(vi)
((viii) respectively). Regarding the edges connecting vertices in V0,t−1 to S′t−1, for
each y ∈ St−1 the edges connecting the vertices {{x , y} ∣ x ∈ S0} and S′t−1 induce a
subgraph isomorphic to K3,3 if є = 1 and K3,4 if є = 2, which has a P3-decomposition
by Lemma 1(iii) in both cases. For each k ∈ St−1 the edges connecting the vertices
in {{x , k} ∣ x ∈ S0} to the vertices in S′0 induce a subgraph isomorphic to H4, so
there exists a P3-decomposition by Lemma 1(iv). Lastly, the edges joining the ver-
tices in vt−1 to the vertices in S′0 induce a subgraph isomorphic to K3+є ,3, and so has
a P3-decomposition be Lemma 1(iii). _e union of these decompositions produce a
P3-decomposition, (V(Gt−1), B′t−1) , of Gt−1.

_e rest of the edges are easier to decompose.
For each i ∈ Zt−1, the bipartite subgraph induced by the edges joining the ver-

tices of Vi to the vertices of S′t−1 induce a graph isomorphic K3,3+є , so it has a P3-
decomposition (Vi ∪ S′t−1 , B i ,t−1) by Lemma 1(iii).
For 0 ≤ i < j < t − 1, the bipartite subgraph induced by the edges joining the

vertices of Vi , j to the vertices of S′t−1 induce a graph isomorphic to K9,3+є , so it has a
P3-decomposition (Vi , j ∪ S′t−1 , B i , j,t−1) by Lemma 1(iii).
Finally, for 0 < i < t − 1 and 0 ≤ k < t, consider the bipartite subgraph of G

induced by edges joining vertices in Vi ,t−1 to vertices in S′k . _is subgraph of G has a
P3-decomposition as follows.
(a) If k ∉ {i , t − 1}, then the subgraph is isomorphic to K3(3+є),3, so it has a P3-

decomposition (Vi ,t−1 ∪ S′k , B i ,t−1,k) by Lemma 1(iii).
(b) If k = i, then for each y ∈ St−1 the edges connecting the vertices {{x , y} ∣ x ∈ S i}

and S′k=i induce a subgraph isomorphic to H4, which has a P3-decomposition
(Vi ,t−1 ∪ S′k , B i ,t−1,k) by Lemma 1(iv).

(c) If k = t − 1, then we have the following cases:
● Case є = 0: For each x ∈ S i the edges connecting the vertices {{x , y} ∣ y ∈ S j}
and S′k= j induce a subgraph isomorphic to H4, which has a P3-decomposition
(Vi , j ∪ S′k , B i , j,k) by Lemma 1(iv).

● Case є = 1: For each y ∈ St−1 the edges connecting the vertices {{x , y} ∣
x ∈ S i} and S′k=t−1 induce a subgraph isomorphic to K3,3, which has a P3-
decomposition (Vi ,t−1 ∪ S′k , B i ,t−1,k) by Lemma 1(ii).

● Case є = 2: For each y ∈ St−1 the edges connecting the vertices {{x , y} ∣
x ∈ S i} and S′k=t−1 induce a subgraph isomorphic to K4,3, which has a P3-
decomposition (Vi ,t−1 ∪ S′k , B i ,t−1,k) by Lemma 1(iii).

_is accounts for all new edges.
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Let B1 = ⋃i∈Zt B′i , B2 = ⋃0≤i< j<t B′i , j , and B3 = ⋃0≤i< j<t ,k∈Zt B′i , j,k . _e required
P3-decomposition of G is given by (V(G), B ∪ B1 ∪ B2 ∪ B3) .

4 A P3-Decomposition of GKGn,3,1

Before stating and proving the main result for GKGn ,3,1, a few deûnitions and a tech-
nical lemma are presented.
A digraph is an ordered quadrupleD = (V , E , t, h)whereV is a set of vertices, E is

a set of ordered pairs of vertices (each element of which is called an arc or directed
edge), and t, h∶ E → V are functions deûned by t((u, v)) = u and h((u, v)) = v for
each arc (u, v) ∈ E (t(e) and h(e) are called the tail and head of arc e, respectively).
A complete digraph is a digraph in which E = V × V .
A directed 2-factor of a digraphD is a spanning subdigraph F inwhich every vertex

is the head of exactly one arc and the tail of exactly one arc of F.
Let D = (V , E , t, h) be a digraph, let C be a set of colors, and for each e ∈ E, let

Ce ⊆ C. A (C1 , . . . ,Ce)-coloring of D is a function c∶ E → C such that if e ∈ E then
c(e) ∈ Ce (this is known as a list arc-coloring). A list arc-coloring is said to be proper
if no two adjacent arcs receive the same color. In the following lemma, the vertex set
is T3(Zn), so we can refer to the intersection of two vertices (it is the intersection of
two 3-element sets).

Lemma 5 Let D = (T3(Zn), E , t, h) be a complete digraph. Let C = Zn be a set of
colors. For each e ∈ E, let Ce = t(e) ∩ h(e) (so possibly Ce = ∅). _ere exists a proper
list arc-colored directed 2-factor of D.

Proof Let D, C, and Ce be deûned as stated in the lemma. Form a directed 2-
factor, F, of D as follows.
First, form a partition, P, of the vertex set T3(Zn) so that two vertices {a, b, c} and

{x , y, z} are in the same element of P if and only if {x , y, z} = {a + i , b + i , c + i} for
some i ∈ Zn with the sums reduced modulo n. If n is not a multiple of three, then P
contains l = (n−1)(n−2)

6 sets, each containing n elements. If n is a multiple of three,
say n = 3k, then P contains l = ((3k3 ) − k)/3k = 3(k2) sets of size n and one set of
size k. In either case, let the elements of P of size n be {E0 , E1 , . . . , E l−1}, and if n is a
multiple of three then let E l = {{i , i + k, i + 2k} ∣ i ∈ Zk} be the single set of size k.
For 0 ≤ i < l , among the vertices in E i , let e i = {0, a i , b i} with a i < b i be one that

contains both zero and as small a nonzero element ofZn as possible (two such vertices
might exist, in which case either can be e i). Let d i = gcd(a i , n). For 0 ≤ j < d i , and
for 0 ≤ r < n

d i , deûne the arc e i ,r , j = ({ra i + j, (r + 1)a i + j, ra i + b i + j}, {(r + 1)a i +

j, (r + 2)a i + j, (r + 1)a i + b i + j}) in D. _en for each j ∈ Zd i , the subgraph S i , j of D
induced by {e i ,r , j ∣ 0 ≤ r < n

d i } is a directed cycle. Note that the both the tail and head
of each arc e i ,r , j contains the element (r+1)a i + j; so let c(er , j) = (r+1)a i + j. Clearly
this coloring is proper since consecutive arc colors diòer by a i (mod n), where clearly
a i < n. If n is not a multiple of three, then F = ⋃i∈Zl , j∈Zdi

S i , j is a directed 2-factor
that is properly list arc-colored as required.
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If n is a multiple of three, then F is a properly list arc-colored directed 2-factor
that includes all of the vertices in D except for those in E l . We now insert the k
vertices in E l into an already created directed cycle in F and then give a proper list
arc-coloring to the modiûed cycle. Recall that E l = {i , k + i , 2k + i} ∣ 0 ≤ i < k}.
Consider the colored directed cycle, C′, in F containing the vertex {0, 1, 1 + k}. _en
C′ = (v′0 , v′1 , . . . , v′n−1)where for each j ∈ Zn , v′j = {0+ j, 1+ j, 1+ k+ j} and where the
arc (v′j , v′j+1) is colored j+1. For 0 ≤ j ≤ k, replace the arc ({0+ j, 1+ j, 1+k+ j}, {1+ j, 2+
j, 2+k+ j}) colored i+ j in F with the arcs ({0+ j, 1+ j, 1+k+ j}, {1+ j, 1+k+ j, 1+2k+ j})
colored 1+ k + j and ({1+ j, 1+ k + j, 1+ 2k + j}, {1+ j, 2+ j, 2+ k + j}) colored 1+ j.
_e resulting cycle is still properly list edge-colored since the only potential con�ict
is at the vertex {0, 1, 1 + k} which previously was incident with arcs colored 0 and 1
and now is incident with arcs colored 0 and 1 + k.

We are now ready to prove our second main result.

_eorem 2 G = GKGn ,3,1 has a P3-decomposition for all n > 0.

Proof For n ∈ {1, 2, 3, 4}, G has no edges, so the result is vacuously true. For n = 5,
G has a P3-decomposition by Lemma 4(i). For n = 6, G has a P3-decomposition by
Lemma 4(ii).

_e remaining cases are proved by induction on n. So now assume thatGKGw ,3,1 is
P3-decomposable for all w ≤ n for some n ≥ 6. It is shown that H = GKGn+2,3,1 is P3-
decomposable. Let (T3(Zn), B0) be a P3-decomposition of G = GKGn ,3,1. Partition
the vertices of H as follows:
(i) V0 = T3(Zn) (the vertices of G),
(ii) V1 = {{a, b, n} ∣ a, b ∈ Zn} ,
(iii) V2 = {{a, b, n + 1} ∣ a, b ∈ Zn} , and
(iv) V3 = {{a, n, n + 1} ∣ a ∈ Zn} .
Consider the following subgraphs of H:
(i) H0 is the subgraph induced by the vertices of V0;
(ii) H1 is the subgraph induced by the vertices of V1 ∪ V3;
(iii) H2 is the subgraph induced by the vertices of V2 ∪ V3;
(iv) H3 is the bipartite subgraph induced by the edges {{x , y} ∣ x ∈ V0 , y ∈ V1∪V2} ;
(v) H4 is the bipartite subgraph induced by the edges {{x , y} ∣ x ∈ V1 , y ∈ V2} ;
(vi) H5 is the bipartite subgraph induced by the edges {{x , y} ∣ x ∈ V0 , y ∈ V3} .

_ese six subgraphs clearly partition the edges of H, so combining P3-decomposi-
tions of each will create a P3-decomposition of H itself.

Since H0 = G, it has a decomposition (T3(Zn), B0) by assumption.
Next, notice that in H1 and H2, all vertices share the element x = n or n + 1 re-

spectively; so any two vertices, say {a, b, x} and {c, d , x}, are adjacent if and only if
{a, b}∩{c, d} = ∅. SoH1 is clearly isomorphic toKGn+1,2 with vertex set {v/{n} ∣ v ∈
V(H1)} and H2 is isomorphic to KGn+1,2 with vertex set {v/{n + 1} ∣ v ∈ V(H2)} .
_erefore, H1 and H2 have P3-decompositions (V(H1), B1) and (V(H2), B2) re-
spectively by _eorem 1.
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Next, consider the bipartite subgraph H3. If v ∈ V0, then dH3(v) = 6(n−3
2 ), and

if v ∈ V1 ∪ V2, then dH3(v) = 2(n−2
2 ), both of which are even. Also, ∣E(H3)∣ =

6(n2)(
n−3
2 ) which is clearly a multiple of three. Finally, to show H3 is connected, for

each {s, t, u} ∈ V0 we display a path to each vertex in V1 ∪ V2 as follows (where a, b,
s, t, and u are distinct elements of Zn and x ∈ {n, n + 1}):

({s, t, u}, {a, s, x}, {b, s, u}, {a, b, x}),
({s, t, u}, {a, s, x}, {a, b, t}, {s, t, x}), and ({s, t, u}, {a, s, x}).

_ese account for all pairs of nonadjacent vertices in H3, so H3 is easily seen to be
connected. _erefore, H3 has a P3-decomposition (V(H3), B3) by Lemma 3. We
also use Lemma 3 to ûnd a P3-decomposition of H4 as the following shows. H4 is
a 2(n−2

2 )-regular bipartite graph, so all vertices have even degree. Also, ∣E(H4)∣ =

2(n2)(
n−2
2 ) which is a multiple of three. To see this, note ∣E(H4)∣ is the product of

four consecutive integers (one of which must be a multiple of three) divided by two.
Finally, to show that H4 is connected, for each vertex {a, b, n} ∈ V1 we display a path
to each vertex in V2 as follows (where a, b, s, and t are distinct elements of Zn):

({a, b, n}, {a, t, n + 1}, {a, s, n}, {a, b, n + 1}),
({a, b, n}, {b, s, n + 1}, {a, s, n}, {s, t, n + 1}), and ({a, b, n}, {a, c, n + 1}).

_ese account for all pairs of nonadjacent vertices in H4, so H4 is easily seen to be
connected. _erefore, H4 has a P3-decomposition (V(H4), B4) by Lemma 3. Fi-
nally, consider H5. Using Lemma 5, let F be a properly list arc-colored 2-factor of the
complete digraph with vertex set V0, with the set of colors C = Zn , and with lists of
colors (C0 ,C1 , . . . ,C∣E∣−1) deûned by Ce = t(e) ∩ h(e) for each e ∈ E. Assume F
has components { f0 , f1 , . . . , fm−1}. For each i ∈ Zm , consider the directed cycle f i
of length l with E( f i) = {e0 , e1 , . . . , e l−1} where h(ek) = t(ek+1) for k ∈ Zl with
additions done modulo l . Form the following 3-paths in H5:

Ti = {( t(e j), {c(e j), n, n + 1}, h(e j), {h(e j)/{c(e j), c(e j+1)}, n, n + 1}) ∣ j ∈ Zl}

with subscript additions done modulo l . _e edges in Ti exist in H5 since Ce is a list
of the shared elements of t(e) and h(e). H5 has a P3-decomposition (V(H5), B5)
where B5 = ⋃i∈Zm Ti . To see that each edge inH5 is in exactly one path in B5, consider
the edge e = ({a, b, c}, {a, n, n + 1}) in H5. _e vertex {a, b, c} is in exactly one
component, f i , of F. Consider the two arcs, e1 and e2 in f i such that h(e1) = {a, b, c}
and t(e2) = {a, b, c}. _ere are three possibilities.
(i) If c(e1) = a, then e is in ( t(e1), {a, n, n+1}, {a, b, c}, {{b, c}/c(e2), n, n+1}) .
(ii) If c(e2) = a, then let e3 be the arc in f i with t(e3) = h(e2). _en e is in

({a, b, c}, {a, n, n + 1}, h(e2), {h(e2)/{a, c(e3)}, n, n + 1}) .
(iii) If a ∉ {c(e1), c(e2)}, the e is in ( t(e1), {c(e1), n, n+ 1}, {a, b, c}, {a, n, n+ 1}) .
Since F is a properly list arc-colored 2-factor, exactly one of the previous three cases
holds. _us every edge of H5 is in exactly one path in B5.

Let B = ⋃i∈Z6 B i . _en (V(H), B) is the desired P3-decomposition.
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