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Iwasawa theory for elliptic curves at unstable primes
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Abstract. In this paper we examine the lwasawa theory of modular elliptic cubvdefined overQ
without semi-stable reductionatBy constructingy-adic L-functions at primes of additive reduction,
we formulate a ‘Main Conjecture’ linking this-function with a certain Selmer group fér over the
Z.,-extension. Thus the leading term is expressible in terms pf B(Q):wrs and ap-adic regulator
term.
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Let £ be a modular elliptic curve defined ov@r and assumg denotes an odd
rational prime. fQ(y,~ ) denotes the field obtained by adjoining@aibower roots
of unity to Q, then GalQ(pp~)/Q) =T x A wherel’ = Z, andA = (Z /pZ)*.
Write 6(E/Qx,) for the Selmer group off overQ,, = Q(up )2, and letA =
Z,[I'] be the lwasawa algebra bf

The lwasawa theory of overQ,, is best understood whet has semi-stable
ordinary reduction gb. On the analytic sideg-adic L-functions were constructed
by Mazur and Swinnerton—Dyer [MSD] in the case of good ordinary reduction,
and the method was further extended to include primes of (bad) multiplicative
reduction in the paper of Mazur, Tate and Teitelbaum [MTT]. Theganctions
are identified via a ‘Main Conjecture’ with the characteristic power series of the
Pontrjagin duat(E/Q. ). Itis conjectured that (E/Q. )" is A-torsion in the
ordinary case, but this assertion has only been proved \iheither has CM or
trivial analytic rank.

A natural question to ask is what happeng i an unstable prime foFE. In
this paper we constructiaadic L-function for E under the assumption thathas
bad additive reduction at but possesses semi-stable reduction over a cyclotomic
extension ofY, . If we view thesel-functions as distributions on G&l(y:,~ ) /Q),
then they are bounded measureifs potentially ordinary and l-admissible
measures ip is potentially supersingular.

WhenE has potential ordinary reductionatwe formulate a Main Conjecture
linking the characteristic power series®{E/Q., )" to ourp-adic L-series. Fur-
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thermore ifE has analytic rank zero, then we can prove thaE/Q,, )" is indeed
A-torsion and thus calculate the leading term of its characteristic power series.
Jones [Jon] has considered Iwasawaunctions at additive primes in terms of

the flat cohomology of the &lon model of elliptic curves defined over a general
number fieldK . In our caseX = Q, the behaviour of the analyticadic L-function

is in perfect agreement with his results. Once one makes a canonical chéjce of
invariant in the Main Conjecture, this conjecture impliesgkgart of the Birch and
Swinnerton—Dyer conjecture for the Hasse—\Weseries ofF at unstable primes.

1. The analytic side

In the first part of this paper we attachpaadic L-function to modular elliptic
curves with bad additive reductionzatThe method generalizes the construction in
[MTT] to elliptic curves which have semi-stable reduction over a subfiel@gbf

the maximal abelian extension@f . This gives us a nice criterion for determining
which elliptic curves satisfy the conditions of our construction. Examples of such
curves are presented at the end.

1.1. MODULAR FORMS

We begin by recalling some standard definitions from the theory of modular forms.
If

v=(00) oL,

then the left action

az+b forzes _a
z= z , 00 = —,
K cz+d K c

defines an automorphism 8fU R U {oco}. For anyM € N define the congruence
modular group$'o(M), T'1(M) by

To(M) = {(Z‘ Z) € SLy(2)| CEO(M)}.
and
Ty(M) = {(Z‘ Z) € SLy(z) | c=0(M),a=d = 1(M)}.

Fix anintegek > 2. Let us denote bg, (M) the space of holomorphic cusp forms
of weightk onT'1 (M) with the standard action of G(R), i.e.

_ (deyl/2 k
Fly = (cz T F(yz) forall F € S(M).
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Define the subspace of cusp forms of weighlevel M and charactey by

Se(M, ) = {F € Sp(M) \F‘(j Z) _ p(d)F foral (Z Z) € I‘O(M)} .

We will write C,, for the conductor of) considered as a Dirichlet character.
The spacesy (M, 1)) is stable under the Hecke operat@jsdefined forevery
prime number by

FIT; = 1121 (lép‘(é }‘) +¢(l)F‘ (g 2)) .

In particular, ifl 1 M we have our usual Hecke operatotaf /|M we have the
formula forU;. Heres is identified with a Dirichlet character moduld .

DecomposeéV/ = Q@' into relatively prime factors) and@’. Then we may
write ¢ = 1pg1pgr Whereyg (resp.ipg) is a character modul@ (resp.Q’).

DEFINITION. We define the operatarg : S, (M, 1)) — S,.(M, o) by

wo(F)i=bowvo@F|( T, %, ).

wherez, y, z,t € Z are chosen such th@zt — Q'yz = 1.
It is easy to verify that

wy(F) = (=1)"q (-Q)F
and

wQ(FITy) = po(wo(F)|Th, 1M,

(see Atkin and Li [AtL]). .
Finally if F(z) = ¥,514,¢" With ¢ = €™, then theL-series off’ is defined
as the Mellin transform

- —o_ (2m)" oo sl
L(F,s) ._T;Ann _ F(s)/o Pty <.

If F'isanewform (i.e.a normalized simultaneous eigenform for the Hecke algebra),
then the completed.-function A(F, s) satisfies a functional equation and has
analytic continuation to the wholeplane. If¢ is any Dirichlet character, then
define the twist o’ by ¢ as

F. := Z Ape(n)q”.

n>1
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Even though¥. may not be a newform, there is always a newfdrna: En>1;{;q”
equivalent toF;, so thatd,, = A,e(n) for all n prime toM C..

1.2. H.LIPTIC CURVES WITH ADDITIVE REDUCTION

Let £ be a modular elliptic curve defined ov@rof conductorV, so there exists a
non-constan@ -rational map

¢: Xo(N) — E(C)
oo — O.

Letf = X,>1a,9" € S2(NN, 1) be the (normalised) newform associated to the pull-
back¢*wg, wherewg is the Neron differential associated to a minimal Weierstrass
equation forE’ overz, with 1 denoting the trivial character.

Writing Go = Gal(Q/Q), we have a compatible systemleddic representations

II={m},
m: Gy — AW(TE ®z,Q), |prime,

coming from the action of/, on the Tate modules; E of E.

Letp be anoddprime number. IfE has good reduction at p-adic L-functions
were first defined by Mazur and Swinnerton—Dyer [MSD] and the construction was
generalised to newforms of higher weight in the work of Manin [Man] and Vishik
[Vis]. Mazur, Tate and Teitelbaum [MTT] further extended the method to allow
primes of (bad) multiplicative reduction. (See [MTT] for a good overview.)

Roughly speaking, their construction uses congruencesaitic distributions
attached via the modular symbolsffThe key step in the proof lies in the fact that
the Hasse-Weil-seriesL(E, s) = X,,>1a,n~° of £ has a non-trivial Euler factor
atp. If D, D I,, denote a decomposition group 16, atp and its inertia subgroup,
then this is equivalent to thieadic realisationH}(E) = Hom(T,E ®z, Q;,Q;)
possessing a non-trivid)-invariant subspacé & 2, p).

Unfortunately this method breaks down if we have (bad) additive reductign at
since the Euler factor is 1. To overcome this problem we consider the Hasse-Well
L-series ofE as theL-function of our compatible system 6hdic representations
IT = {m}. As we shall see, if, factors through GaQ, (11,)/Q,) then there is a
twisted representatiorl' ® e~ whose L-function is the Mellin transform of a
newform f. Furthermorel.(f, s) has a non-trivial Euler factor at Interpolating
twists ofL(f, 1) instead, the admissibility of ogradic L-function depends solely
on the Hecke polynomial ofatp.

1.3. POTENTIAL GOOD REDUCTION

Assume now thatt! has potential good reduction gt so there exists a finite
extensionL/Q, such thatl}E is unramified as a G&D, / L)-representatiori (#
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2, p). Precise information is known about the action/pfon T; E irrespective of
whetherE is modular or not.

For each integem > 3 with (m,p) = 1, let ®, denote the inertial subgroup
of @, (En)/Qy, whereQ, (E,;,) denotes the extension @}, obtained by adjoining
the coordinates of the group ef-torsion pointsE,,, on E. Then the action of),
factors throughp, and this definition is independent of (see [SeT]). In fac®,
is one of

1,2/2,2/3,Z/4,Z/6,

or alsoz /4 x 7./3if p = 3. In fact, we shall only be interested in the case in which
®, is cyclic.

Let us consider the twisted representatibhs e 1 = {m; ® ¢~} wheree
is a Dirichlet character gf-power conductor. By a theorem of Carayol [Car] the
representations

m®e 1 Gy — AU(TIE ®7,Q;),

correspond to a cusp forfhe Sy(N, = 2), such thatf is the newform equivalent
to f._1. Furthermore the leveV of f is equal to confll ® ¢~1), the conductor of
thel-adic systen{m; ® ¢~1}. Sincee is a character of-power conductorV and
N can only differ in the power of dividing them. We shalll writeV,, for thep-part
of N.

LEMMA. Letd = #®,. Assume thap > 2, p { d and ®,, is cyclic. Then the
following conditions are equivalent:

() The action off,, onT; E factors throughGal(Q, (1+,)/Q,) for all primesl #
2,p;
(i) Q,(E1)/Q, is abelian for all primes # 2, p;
(i) There exists a characterof p-power condu~ctor such that ff € Sp(N, e72)
is the newform obtained frof ® e 1, thenN, = C.»;
(iv) p= 1(d).

Proof.SinceQ, (E;~)/Q, (£;) is unramified, we note th&, (E;)/Q, is abelian
if and only if Q, (Ej~)/Q, is abelian.

By the preceding remark, clearly (i) implies (ii). On the other har@, if£;) /Q,
is abelian then the action @f factors through the inertia subgroup of @” /Qp),
and so factors through the group Ga) (x>~ )/Q, ). Butp { d and hence we know
that Gal(Q, (up=)/Qy (11p)) acts trivially onT; E. Hence conditions (i) and (ii) are
equivalent.

We now show that (ii) implies (iii). Let us identif, with the inertial subgroup
of @) (E;), and assume thab, = (7). If o denotes any lift of the Frobenius
element, then Gal)" (E;)) is topologically generated byando.
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By local class field theory, = Q7" (E;)?=! corresponds to a characteof L,
of finite order. Sincer| p, factors through G&Q" (E;)/Q,), and asr, is injective
on @, and diagonalizes, we may assume

Hencer; ® e andm; ® 1 are twists of minimap-conductor (equal iff = 1 or 2),
wheree is locally X atp. Thus condll @ 1) = CL..

Conversely we can deduce (ii) from (iii). Becaulg = C.., H}(E) ® e*!
possesses a non-trivigj-invariant subspace. By the Weil pairing there exist basis
vectorsz,y € T)E ®z, Q such thatr(z) = e(7)z and7(y) = g(7)y. Hence the
totally ramified cyclic extensiod./Q, defined bye is contained inQ, (£~ ). As
Qy (Eje0) /L is unramifiedQ, (E;) /Q, is abelian.

To see the equivalence of (ii) and (iv) first observe that all the field extensions
we consider are tamely ramified singe d. Now if Q,(E;)/Q, is abelian then
Q) (Ep=) C Q, so the ramification degre#i(p — 1)p" for somen € Ny. But
p t d so we must have|p — 1.

On the other hand there exists a unique tamely ramified extef&iQy" of
degree d. Ifi[p — 1 thenH = Q" (Ej=) C Q" (1p) C Qg” as required. The proof
is complete.

It is straightforward to determine whether a particulasatisfies the conditions
of this lemma. IfE hasj-invariantjg and discriminaniA g, thenE has potential
good reduction if and only if orgz > 0, whilstd = #®, can be read off from
ord, Ar modulo 12 (see the paper of Serre [Ser] for a full description).

In fact one can show thatif > 2,p > 5 andp # 1(d), thenE has potential
supersingular reduction at

1.4. MEASURES ATTACHED TO NEWFORMS

In this section we will briefly recall the method used to attaghealic distribution
to a newform of weight 2. For the case of general weight 2 the reader should
consult [MTT].

LetJ > 0 be a fixed integer prime t@ Set

Lp,y = WM(Z/p"JL) = Ly x (L] I )
and
Ly = Nm(Z/p"JL)" =7, x (2]JL)".
Thep-adic analytic Lie groum;J is covered by open disks of the form

D(a,n) :=a+p"JZys CZL,)
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wheren € N and (a,pJ) = 1. We embed once and for al — C,, with G,
denoting the Tate field.

Fix a newformF € Sz(M, ) with the g-expansionF” = -, A,q". We
factorize the (inverse) Hecke polynomial Bfatp as

X2 — A,X +4(p)p = (X — o) (X — Bp),

where we assume that grgl, < ord,3, with at leasta;,, non-zero. One may
considerp-adic L-functions attached t@ as the p-adic) Mellin transforms of
distributions orlzlf’J. These distributions are determined by their integrals against
the elements of HofiZ ; ;, Q™)rs which we view as Dirichlet characters.

Now suppose that is a primitive Dirichlet character of conduct6t, € p"e.J.

Let Q" denote complex periods fdt, so that
L(F,X,1)
Qsign(x)

DEFINITION. Define thep-adic distributiony:(F, o)) by

pmJ (1_ Y(p)w(p)> (1_ X(p)> L LEXD)

/Z;J X dM(Fa Olp) = 70{21G(Y) & a Qsign(x) )

€ Q forall suchy.

for all x € Hom(z ,,@%)"*", C, = p™J andm € No, where we denote by
G(X) := £CX,%(n)e2™m/Cx the Gauss sum of.
Here it is important to remember thatis a charactemodulo)M .

The p-adic boundedness of the distributipiF, ;) can be characterised in

terms of h-admissibility’. It is a result due to Vishik [Vis] that(F, «,) is a
1-admissible measuyee.

/ d:U‘(Fa Oép)
D(a,n)

under our embeddin@ — C,. As a consequengg F, «,) is uniquely determined
by the integralszxJXdu(F, ap) forall x € Hom(Z;J,@X)tO'S. Furthermore if
D, )
ord,a, = 0O (thus if 4, is ap-adic unit), theru(F, o) is abounded measuyee.
< afixed constant

/ du(F, o)
D(a,n) »

foralln € Nand(a,pJ) = 1. (See [Vis] for the full details.)
Now asp is an odd prime, we can decompase Z,’ via

=0 (|P"|;1) foraln e N and (a,pJ) =1,
p

z = w(r)(z),
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wherew(z) is the Teichniller representative af and(z) € 1+ pZ,. If we define
(@ to be the largest positive divisor @f prime top.J, then writeM = QQ’ as in
Section 1.1 and assume ttggl{p™ J for large enoughv. The distributiory.(F, a)
satisfies the functional equation

| xojfa) dulFray)

= ()Mo (=g (QX(—Q)Q 7 (Q)*

/ vty a) ™ d (wg(F): B

whereCy, € p™°J, s € Zy, j € Z andx, : 7, ; - Z,; corresponds to the
pth- cyclotomlc character (see [MTT]). The functional equatlon forpkeadic L-
function attached t& will be deduced from this relation in the next section.

1.5. THE p-ADIC L-FUNCTION

We are ready to attachyaadic L-function to E. However we are forced to make
the following assumption about the reduction.

HYPOTHESIS (G).E has potential good reduction atand £ possesses good
reduction over a field, C Q, (1,) where[L: Q,] = d.

By the lemma of Section 1.3() is_equivalent to the existence of a newform
f=2ns100q" € 82(N £72) with N,, =C.andf = fE It is an easy exercise

to show tha{o|N if and only if d = 3,4 or 6. In all cases the Euler factor
1—ayp ™ +2(p)p™ %,

of L(f, s) atp is non-trivial; this is exactly what we need.
Let o, now denote a nonzero root of the polynomial

X% — @ X +%(p)p.

Without loss of generality we may assume thatosd< % (if not twist IT = {m;}
by e instead of ! since we know thaty, @, = p).
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DEFINITION. We define they-adic muItipIier;:,(,G) (X) by
( X X g
(1-2)(2- %) if d=1,
XY (1 X
( ;)( af’l if d =2,
o= (1-57) (-5
(1-2)
Le ifd=3,40r6
)
p

(In fact if d = 2 we clearly have

A @)
) ) )

but it actually makes more sense to wnilg;) (X) without this cancellation.)

At first glance the definition of:;(,G) (X') seems rather arbitrary. The best justi-

fication for this strange multiplier is that it makes everything work!

THEOREM 1.Assume¥ satisfies(G). Then there exists a unigueadmissible
measure,p such that

Q%gn(x)

)

mJ
/zx Xt = Ly(B,x) = el (x.(p))
p,J

wherey. is the primitive character associatedta 1, p™J = Cy. andQE (resp.
2;) denotes the redresp. imaginary period of E.

Furthermore, ifE has potential good ordinary reduction at . is a bounded
measure.

We remark that i = 1 (i.e. good reduction ove®,), thene = 1, x. = x and
we retrieve the.-function of Mazur and Swinnerton—Dyer [MSD]. &> 1 then
the denominator im:,(,G) (Xe(p)) puts back the ‘missing Euler factor’ that is lost by

interpolatingL(E, x =1, 1) instead ofL( f=, 1).

The Functional EquationDecomposingV = QQ’ with @ the largest positive
divisor of N prime top.J, we have the-adic functional relation
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[ o

= (D QRX(-QQ QT x [ X7 o)™ da

whereC,, = p™.J, s € Z,, j € Z,andwq(f) = éof withg(—Q)ég € {+1}.
Proof Consider the distributiop(F', ) of the previous sectlon WltIF .
¢ =e"2andM = N. Defininguz to be the twist ofu(f, a,) by et

np(e) = e N @)u(f, ap) (@),

we see immediately that

/X xdup = /X Xe A (f )
ZP=J Z

p™J X=(p)e %(p) x:(p)\ _ L(f.xz,1)
- G(Xe) (1 ap ) (1_ ap > x Qsign(x:)

whereQ* := G(z)Q5%9"%) Butif d > 1 then

L(f,x%,1)
(1—xz(p)app~t + X=2(p)e—2(p)p~1)’

L(f,x=1) =

which explains the denominator termgff” (x. (p)), and

1 ifd=1or2
6_2p =
0 ifd=3,40r6

which explains the numerator term. The functional equatiopfpis then a direct
consequence of the functional equation

| xewjla)* dulF.ep)

— (- 2AQRE(-Q)Q Q)
< [ e300ty (@) dulwo (). o)

and the fact thazth(f) = ch for somecQ ;é 0, sincewq (f )T, = aweg(f) for
all I prime toN. (In facth(f) cQ 2f=¢ 2(— Q)f)

comp4171.tex; 8/07/1998; 12:04; v.7; p.10

https://doi.org/10.1023/A:1000408925932 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000408925932

IWASAWA THEORY FOR ELLIPTIC CURVES AT UNSTABLE PRIMES 133

All that remains to be proven is thatif has potential good ordinary reduction
atp then orga;, = 0. As L is totally ramified over, its residue field is,. Write
3 for the reduction of2 overL. If I, denotes the inertial subgroup of G@J /L),
we know that

#S(Fp) =1-Tro+p
— de(1— o Y{H}(E)"Y)

= (1—op)(1-m),
wheres : z — 2P is the Frobenius automorphism 8pando a lift to D,,.
But E has good ordinary reduction oveérso the dual isogeny of & cannot

be inseparable. Sind@rs] = 7 +  as an endomorphism @f, consequently
p 1t Tro. Hence Tra is ap-adic unit and saey, must be too. By Vishik’s criteria

[Vis], ur = e 1u(f, ap) is bounded.

1.6. POTENTIAL MULTIPLICATIVE REDUCTION

We can apply the same ideas to all modular elliptic curves with potential multiplica-
tive reduction ap. Assume now that ofgr < 0 so thatE becomes isomorphic
over a quadratic extension @f, to the Tate curvé?, = G, /¢%, wheregg € pZ,

is given by the expansion

qp = j5+ + T44j5,° + 7504202 + - - -

HYPOTHESIS (M). E has potential multiplicative reduction at and hencel
possesses (bad) multiplicative reduction over a fletd Q, (x,) where[L: Q,] =
lor2.

Denote bye the non-trivial quadratic character of conducto(resp. the trivial
characted) if [L: Q,] = 2 (resp. ifL = Q,), so that condI ® ¢) = p.
It is straightforward to deduce th@h/) implies the existence of a newform
J =Y ns1anq" € S2(N, 1) with p|| N and f = f.. Furthermore the Euler factor
of L(f,s) atpis
S

1—ayp™.

Puttinga, = a,, we know thaty, € {+1} sincea,” = 1.

DEFINITION. We define the-adic multiplieres™ (X) by

(1_%) if L =qQ,,
0x) =1 (1-3) if [L: Q] = 2.
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THEOREM 2 Assume satisfiegM). Then there exists a unique bounded measure
w1 such that

/X xOue = Ly(E,x)
ZP,J'
p™J

= W%M) (xe(p)) x

L(E,x™11)
Q%gn(x)

wherey. is the primitive character associated ta 1, p™J = Cy. and Q§ are

the periods oft.

The proof of this result runs along identical lines to that of Theorem 1. We simply
remark that since,, € {£1}, nr will be bounded. Moreovet i satisfies exactly
the functional equation given in the last section. Needless to shy-ifQ,, e = 1
then we retrieve thd.-function attached at multiplicative primes in Mazur, Tate
and Teitelbaum [MTT].

It is interesting to observe that theadic multiplier ,Q,(,M) (x=(p)) vanishes
if x:(p) = «a,. This phenomenon was first noted for elliptic curves with split
multiplicative reduction [MTT], and has no analogue in the case of potential good
reduction. One expects this vanishing to be related to the extended Mordell-Weil
groupE".

Without digressing too much, we remark that for a global number f€|d
E'(K) sits inside the exact sequence

0-zf - Ef(K) - E(K) = 0,

where R denotes the number of placesdividing p such that the Bron model
of F is split multiplicative atv. There is a well-defined bilinear symmetric height
pairing

(Ve EN(K)®Q, x EN(K) @ Q, — @,

connected with Schneider’'s norm-adapted height [Sch], and it would be a useful
exercise to follow the procedure in [MTT] and computadic regulator data for
some numerical examples of curves satisfy(if{)). However we do not pursue the
idea any further here.

Greenberg [Gr2] has an alternative description of this vanishing for arbitrary
ordinary representations. In our case we deduce thapthdic L-function has a
trivial zero if and only if the Frobenius element acting ontkedic representation
Vo E ® € has eigenvalues 1 gt From the non-split exact sequence

0—-Q(() = V,E, - Q — 0,

we see that this vanishing occurs if and only/jf, = V,E ® ¢ asGg,-modules.
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If E has additive reduction at > 5 andV,,E, = V,E ® ¢, then itis a simple
consequence of the Greenberg—Stevens formula [GrS] that
d log, g1 P L(E,¢)
—~L.(E s =P .
p(E,e(z)(z)’) s—0 0ord,qp G(e)(p — 1) Qs];gr(e)

ds
Simply apply their formula to compute the derivative of th@dic L-function
attached to the Tate cunzel®) which is the quadratic twist af by ¢.

1.7. SOME NUMERICAL EXAMPLES

Before we examine the algebraic part of the problem let us consider some modular
elliptic curves defined oveép which satisfy the conditions of our construction. The
examples all have analytic rank zero, and no complex multiplication.

EXAMPLE A. Consider the elliptic curvé 4 defined by the minimal Weierstrass
equation

Exiy?+y=a°-3z-5.

It has conductor 99= 32.11 and potential good ordinary reduction at 3. Further-
more, #b3 = 2 s0¢e(+) = (3).
If £4 (resp.f4) denotes the newform obtained frafy (resp.II ® ¢ 1), then

fa= (E)e

In fact}’vA is the newform obtained from an elliptic cur@ﬁf) of conductor 11.
As we shall see later, our twisted 3-adiefunction L3(E4, (3)) evaluated at

contains information about the arithmeticl@ff) as well.

EXAMPLE B. Consider now the elliptic curvEp defined by
Ep:y?>+y=a23—2?>—2c—1

Its conductor is 147 3.72and ithas bad additive reduction at 7. Since;gig > 0
and orgA g, = 2 modulo 12, we see thétz has potential good reduction and the
size of inertia #7 = 6. But as §7 — 1, E satisfie§ G) and we may again apply
our construction.

EXAMPLE C. Lastly consider the elliptic curvB defined by the equation
Ec:y? +zy = 23 — 2% + 9z.

It has conductor 63= 32.7 and thus bad additive reduction at 3. This time
ordzjr., < 0 soE¢ has potential (split) multiplicative reduction.
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If fc isthe newform obtained fromi, then
fo = (fc)e,

wheree(-) = (3), and f¢ corresponds to an elliptic curv@é” of conductor 21

with bad multiplicative reduction. In faw(c‘f) over Qs is a Tate curve and the
reduction is split.

2. The algebraic side

The rest of this paper concerns the relationship betweep-adic L-functions and

the characteristic power series%f,, the Pontrjagin dual of the Selmer group of

E over the cyclotomic,-extension ofQ. We formulate a ‘Main Conjecture’ for

E at odd prime9 satisfying hypothese&~) or (M), and by examining the case
whereFE has analytic rank zero in detail, we predict thenvariant that enters into

the conjecture at additive primes. As we shall see, this constant depends only on
the reduction oft atp.

2.1. FLMER GROUPS

Let us first recall the definition of Selmer groups férin terms of Galois coho-
mology. We do not yet make any hypothesis about the modularify, eor about
the nature of its reduction at# 2.

Let @ denote the cyclotomia.,-extension ofQ, so thatQy = U,50 Qs
where[Q, : Q] = p™. If I' ;= Gal(Qx /Q) then GalQ(up~)/Q) =T x A where
A = (7 /pZ)*. Fix a topological generator of I".

Throughout® will denote any finite set of non-archimedean primesQof
which is always assumed to contairand the primes of bad reduction 6% Let
Qx, be the maximal extension @ unramified outside: and infinity, and put
Gy = GalQx /Q).

By our choice ofy, clearly Q(E,~) C Qs and so we can regarH,~ as a
Gx-module. We also puti s = Gal(Qx/Qx) and write £, for the set of
primes ofQ, lying overX. If v denotes any finite place @, we defineQ,, , to
be the union of the completionsabf the finite extensions dp contained iy .

DEFINITION. We define the Selmer gro@(E/Q) for E atp by the exactness of
the sequence

0— 6(E/Q) — HY(Gyx, By=) = @ HY(Qy, E)(p).
qeEY

Similarly we define the Selmer gro@(E/Q ) for E overQ, by the exactness
of

0= 6(E/Qu) = HY Goo iz, Bp) —3 P HY (Qxop. E)(p).

1/6200
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As an immediate consequence of these definitions, we obtain the classical exact
sequence

0— 6(E/Q) —» HYQ Ey=) 5 @ HYQy, E)(p),

and bothd(E/Q) and&(E/Qx ) are clearly independent of the choiceXaf
If M is any Abelian group we writd/ ®Z, = I|<_m M /p™ M for thep-adic com-

pletion of M. If M is a discrete-primaryI’-module, letM" := Hom(M, Q, /Z,)
be its Pontrjagin dual, endowed with its naturaaction. This-action extends by
linearity and continuity to an action of the whole Iwasawa algebra: Z,[I'] on
M.

Now " acts by conjugation oHY(G w5, Ep~) and this action leaves( E/Qx, )
stable. It is well known thaHl(GOO,E, Ey)" is a finitely generated-module
(for example, see Greenberg’s paper [Grl]). We define the analyticriaok £
by

rg .= ordef—1L(E, s).

If i is equalto O or 1 and is modular, therHl(Goo,g, Ep )" hasA-rank 1 and
possesses no finite non-zeYesubmodules (see [CMc]).
Our primary object of study will be th&-module

¥oo := 6(F/Qu)".

If p is potentially supersingular faF (i.e. there exists a finite extensidn of Q
such thatE/ K has good supersingular reduction at all places alpdvinen it is
conjectured that rankX,, = 1, and this can be proven whep < 1. On the other
hand, ifp is potentially ordinary fotZ (i.e. there exists a finite extensidh of Q
such thatt// K has either multiplicative or good ordinary reduction at all places
abovep), it is conjectured that rankx, = 0, i.e.X, IS A-torsion. It was Mazur
who first observed that this conjecture can be proven if the Selmer graupwér

Q is finite.

For the rest of this paper we consider the case wiieie a modular elliptic
curve of analytic rank zero and satisfies the hypothééBsor (M). If E is
potentially ordinary ap we shall prove that ., is indeedA-torsion, by applying
the deep results of Kolyvagin, Gross—Zagier and others on the finiteness of the
Tate—Shafarevic group. We shall also calculate the leading term of the characteristic
power series ok, in this case.

2.2. TAMAGAWA FACTORS

Let us consider the restriction m@p H(Gy, Ep~) — HY(Goo 5, Epeo)'. AST
has cohomological dimension 1, we have the inflation-restriction exact sequence

0= HYT, By (Qno)) = HYGs, Bye) -5 HYGoox, Epoe)T — 0.
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Furthermore we know that the order of the kernepadg equal to #,~(Q) (use
the fact thatE,~(Qx) is finite [Ima], whence we haveHE (T, Ey~(Qx)) =
#Epo (Qoo)1).

The restriction maps give us the commutative diagram

0 S(E/Qu)’ —= HY G ooz, Ep)' 22 @ HY(Quon, E)(p))"
VEY xo
0 S(E/Q) HY Gy, Epo) —>—— P HY(Q,. E)(p)

Ve

and sinces is surjective we deduce from the snake lemma that we have an exact
sequence

0 — Ker(a) — Ker(3) — Ker(d) nIm(\) — Cokefa) — 0.

Hence Kefa) is finite. Furthermore, Cokét) will be finite provided we can show
that Ker(¢) is finite. We devote the rest of this section to calculating #&er
The inflation-restriction sequence shows that

Ker(6) = P H Qo /Q, E(Qso))(p),

vEYD

where we have fixed a prime @f,, lying abover. Hence itis sufficient to determine
#Hl(@oo,V/Qua E(@w,u))(p)-

LEMMA. Assume that # p. Then#H(Qwo,, /Qv, E(Qso,)) (p) is thep-part of
¢y, Wheree, = [E(Q,): Eo(Q, )] denotes the local Tamagawa factor.at

Proof. Recall thatEy(Q,) is the subgroup o (Q,) that maps to the non-
singular pointsEns(]F,,), where E denotes the reduction of over Q,. Since
Gal(Q /Q,) = Z andQ..,, /Q, is unramified, we know that

H Qo0 / Qs B(Qoo)) (p) = HHQ" /Q, B(Q))) (p)-

But McCallum [McC] has shown that the exact orthogonal complemeB (®, )
in the Tate pairing?(Q,) x H(Q,, E) — Q/Z is the unramified cohomology
HY(Q/Q,, E(Q¥)), and so the lemma follows.

Now let p be the unique prime af), lying abovep. Recall thatp is totally
ramified inQ, and that G&lQx, , /Q,) = T'.

Assuming thai?” satisfiegG) or (M), let L be the smallest subfield @, (1)
where E has semi-stable reduction. We denotegbthe reduction ofE over the
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field L, and we writek for the reduction map. Recalling thathas residue field
Fp, the map

R: E(L) — §(F,),
is clearly surjective.

LEMMA.
(i) Assume thatl has potential good ordinary reduction atand satisfie3G).
Then

HH(Qoo,p /Qp s B(Qoo,)) (p) = #3(E,) (D)HRE(Q)) (p)-

(i) Assumer satisfieq M) and does not have split multiplicative reduction over
Q- Then

#H " (Qoop /Qp» B(Qoop)) (p) = 1.

For example, if has good ordinary reduction andE denotes the reduction of
E overQ,, then®: E(Q,) — E(F,) surjects and #(Qwo, /Qp, E(Quop)) (p) =
#E(F,) (p)?.

Proof. Let us begin with some general remarksVif= T,E ® Q, then seiV’
to be the G4dlQ, /Q, )-invariantQ, -subspace of” of minimal dimension, such that
some subgroup of, of finite index acts trivially on the quotieft/1V. Let C be
the image o/ under the map

V = V/T,E = Ey~,

so we know thatC' is GalQ, /Q,)-invariant. Puth = corank,, C and letD =
E,~/C.

As Coates and Greenberg [CoG] point out we may idewdiifyith F,~, where
F denotes the formal group o’ defined over the ring of integei®;, of L.
ConsequentlyC' is a connecteg-divisible group overO;, andD is anétalep-
divisible group ovel?;,. Furthermoré, = 1, since in our situatiodF has height
1.

In fact if E has potential good reduction théncan be identified witl,~, and
we have the exact sequence

0— F(Q@) = E(Q) — 3(F,) — 0.
As E is defined ove), this is an exact sequence of Gg]/Q,)-modules.
We dispose of (ii) first. Lef2(¥) denote a quadratic twist df that has split

multiplicative reduction ove@,, so E = E(¥) over a quadratic extensiaft of
Q,. We sell” := Gal(F.,/F') whereF__ is theZ,-extension ofF".
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It is well known (for example see [Jon]) that we have a decomposition
HYI',B(Fy,)) = HY(I", B(FL,))" @ H(I', B(F,))~
= HY(T, BE(Qx,)) ® HYT, EY) (Qx,)),

asp # 2. By Tate local duality

HY(T, B(Qooyp)) = E(Qy) /Ng, B(Qooyp);

where

Ng,E(Qxp) = [ Ny, E(H),
QpCHCQoo,p

denotes the group of universal normsfofrom Q. , to Q,. Clearly it is sufficent
to show the triviality of £(Q,)/Ng, £(Qs,p )-
Now from our decomposition we see that

E(F')/Np E(FL) 2 E(Qy)/Ng, E(Qsp) X EY)(Q,)/Ng, ) (Qso,p)-

There are two possibilities (see [CoG], p. 172).

Firstly, if the Tate periodg, is itself a universal norm fror@,, , to @, then both
E(F")/NpE(FL) and E¥)(Q,)/Ng, ) (Qx,,) are isomorphic tcz,, which
implies £(Qy)/Ng, £(Q,p) is trivial. Conversely, ifgx is not a universal norm
thenE(F") /N E(F.,) andE™¥)(Q,)/Ng, E™)(Qx,, ) have finite order given by
the index of the norm residue symbokgffor the extensions / F’ andQx. ,, /Q,,
respectively. Since these extensions are translates of each other by a group of order
2 andp is odd, againF(Q,)/Ng, F(Qx,,) must be trivial and assertion (ii) is
proved.

The proof of (i) is trickier. LetX' = Q,(u,~) and selG, := Gal(K/Q,), so
G~ 2T x A. TakingG «-invariants of the exact sequence

0— F(K) = E(K) = §(F,) — 0,
we obtain the long exact sequence
BE(Q) = 3(F,) = HYGoo, F) = HY(Gwo, E)
— HY G, 3) = H* (G, F).

By inflation-restriction

0— HY(T, E(Qw,)) = HY(Goo, E(K)) — HY (A, E(K))"
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and sincey 1 #A implies H(A, -)(p) = 0, it immediately follows that

HY(T, E(Qo))(p) = H'(Goo, E(K)) (p)-

We will first show that theZ,,-corank of this group is zero, and then calculate its
size. In order to do this we apply the important theorem that

H'(K,F)=0 foralli>1,

since K over L has infinite conductor and so is a ‘deeply ramified’ extension of
L in the sense of Coates and Greenberg [CoG]. As a corollary of their result,
HYG, F(K)) = HY(Q,, F) by inflation-restriction. From the Hochshild-Serre
spectral sequence fdf/Q,, we know that

0=HYK,F) - H G, F(K)) - HQ,, F) » H¥K,F) =0
and henced?(G o, F(K)) = H*(Q,,F). Thus our long exact sequence becomes
0 — §(E,)/RE(Q,) — HYQy, F) » HY G0, B(K))
— HYGo, 3(F,)) = HY(Qy, F).

In fact the proof of the lemma can now be deduced from the following three
assertions, which we prove below:

(@) HY(Goo, 3(Fy))(p) = 3(F) ();

(b) H(Q,, ) is finite and #1(Q,, F) (p) = #3(F,) (p);

(€) H*(Qy, F)(p) = 0.

Consequently, corank H(G, E(K)) = 0 since both group§(F,)/RE(Q,)
andHY(Gw, 3(F,))(p) are finite. Moreover

#3(F,) (p)?
#(S(Fp)/mE(@p)) (p)

and hence the lemma &8'(T', E(Quo,,)) (p) = HY(Gwo, E(K))(p). We spend the
remainder of this section proving these three statements.
To deduce (a) we know that

#HY(Goo, E(K))(p) =

0— HYI,3(F,)) = HY(Goo, §(Fy)) — HY(A, F(F,)),
S0 HY(Gwo, 3(Fy))(p) = HY(T',3(F,))(p) asp t #A. But asT" acts trivially on
3(F,), HY(T, 3(F,)) = &(F,)(p) which is finite.
To prove (b) we start by computirig),-coranks. By Kummer theory

0—- F(Q)®Q/2),— Hl(@pa}-p“’) - Hl(@pa}-)(p) — 0.
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It follows from Mattuck’s Theorem thaf(Q,) ® Q,/Z, = Q,/Z,, and hence
corank, H(Q,, F) = corank,, H*(Q,, Fp=) — 1.

We use Tate’s Euler characteristic theorem [Mil] to calculate c%aﬂlé(@p y Fpoo).
If M is a finite Ga{Q, /Q, )-module ofp-power order, denote its dual by P =
Hom(M, ppe). Then Tate's Theorem (in this case) states that

#HO(Q,, M)#H?(Q,, M)
#H1(Q,, M)

So forM = F,» we find that #(Q,, Fpn) = p"#H(Q,, Fypr )#H?(Q,, Fpn) s
corank, C' = 1.

Now #H°(Q,, F,») = 1 asF(Q,) has trivialp-torsion. In factF (L) has trivial
p-torsion; suppose we have a paintf orderp, and letM, = (1) be the maximal
ideal of Oy,. If v, denotes the valuation afi;,, then

= #M) L.

vL(pr) 1
vr(z) < = .
t(o) p—1 (-1
Howeverr € My, sovr,(x) > 1. Asp > 2 this cannot happen, and sé#- (L) =
1.
On the other hand, the Weil pairing implies thg}. = EI{% and hence,» =
FR. Thus by Tate local duality

HH?(Qp, Fyn) = #HO(Qy, 3pn) = #3(F,) (),

for large enough:. Therefore we know thatB#(Q,, Fpn) = p"#3(F,)(p) for
n > 0. Again by Kummer theory

0= Fie (@) /" Fire (@) = H (@, Fyr) = (HNQp. Fp)) | =0,
so consequently corapk H(Q,, Fyp) = 1 and #1(Qy, F) (p) = #3(F,) (p).
)

Finally to show that (c) is true, choogé so large that it annihilate®(F, ) (p).
Consider the exact sequence

HYQ,, F) L5 BY(Q,, F) 2 HYQy, Fpr) = (HYQy, F)) | —0.
pn
Because” kills H(Q,, F)(p), thusd: HY(Q,, F)(p) — H?(Q,, Fp»)isaninjec-
tion. But by Tate duality #2(Q,, Fp») = ( )(p) S00: Hl(@p, F)p) —
H?(Q,, F,») is an isomorphism and K&y) = ( , F)p-div, its p-divisible sub-

group. Thus@ is surjective which implies thatf? ( ,F))p» = 0. The proof is
now complete.
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2.3. (HARACTERISTIC POWER SERIES FOR o,

Throughout this section we make the following assumption aBout

HYPOTHESIS (Kol).E is modular and its analytic rank; is zero.

It is important to note that (Kol) implies the finiteness of bditQ) and the
Tate—Shafarevic group, as a consequence of Kolyvagin’s deep results [Kol].

Lety,: GallQ(up~)/Q) — 7, denote theth-cyclotomic character. From the
last section’s work we have the following result.

THEOREM 3.Assume that eithdr has potential good ordinary reductionaand
satisfiegG), or E satisfies M) and does not have split multiplicative reduction
at p. Moreover suppose thdt satisfies the hypothediKol).

Then the modulé&,, is A-torsion. If G denotes its characteristic power series
then the leading terrd)(G) # 0.

Proof. Recall that in the last section we showed that the map

a: 6(E/Q) — 6(E/Qx)’,

has finite kernel and cokernel. We will first prove that, = 6(E/Qx)" is a
finitely generated\-module.

In fact all we need to show is th&k ., )r is finitely generated ovet,. Now
(X00)1 is dual toS(E/Qx )" so it suffices to prove that

S(E/Q) = (Q,/Zy)" @ (finite p-group).

But this is a classical result f@ (E/Q) and sax, is finitely generated ovek.
As a first application we must have

Xoo @ A" D A/(91) © - DA/ (gk),
wherer = ranky X, and 0# ¢g; € A, 1 < 7 < k, with = denoting pseudo-

isomorphism.
Let us recall that the Tate—Shafarevic group; li¢ defined by the exactness of

0l — HY(Q E) = P H W, E),

where the sum is ovell places ofQ). Remember that the hypothesis (Kol) implies
that bothE(Q) and llig(p) are finite [Kol]. Now

0— E(Q ®Q/Zp— 6(E£/Q) — Il g(p) =0,

is exact, hence bot(E/Q) and&(E/Qx )" are finite. Buts(E/Qx )" is dual
to (X )1; thereforex, must beA-torsion,Gr = (g1 - gk) andgg(gE) # 0.
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PROPOSITION 4Assume that eithefy has potential good ordinary reduction
at p and satisfiegG), or E satisfies(M) and does not have split multiplicative
reduction atp.

Again suppose that satisfies the hypothegiKol). Then

Ig(g ) ~ M#Hl((@oo,p /@va(QOO,p)) Cv,
BT #E Q)2 1;{,

wherelll g is the Tate—Shafarevic group BfoverQ, with ~ denoting equivalence
up to ap-adic unit.

Before we can begin the proof of Proposition 4, we need to examine the surjectivity
of the restriction map ove.,. In fact we shall prove a stronger result than we
need.

LEMMA. If H?(Goo 5, Ep=) = 0, then the restriction map

HYGoosy Epe) = @ HY Qoo E)(p),

VEEOO

IS surjective.
Proof.We use the notation of Perrin—Riou [PeR], although most of the ideas are
essentially due to Iwasawa. Feym € N put

S(E/Qn;p™) = Ker (Hl(@n,Epm) =P H Q. B) (p)) :

whereQ, denotes thexth-layer of theZ,-extension. We define the usual Selmer
groupsH f(-, Ep=) as

Hj(Qu, By) = lim S(E/Qq;p™).

We also define compact Selmer groups(Q,, T, E) C H*(Q, T, E) by
Hi(Q, TyE) = lim S(E/Qn;p™)-

Lastly set
Zyoy =IMHHQW, T,E),  Hf(Qo, Ep) = im Hf(Qn, Ep).

In order to prove our lemma it is sufficient to show tlﬂagg’f = 0, since by the
Cassels—Poitou—Tate exact sequence Querwe have

0 — H}(@w,Epm) — HY G ooz, Ep)

=B P HY (Quw, BE)p) = (2% ;)" =0,

VEEOO
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asH?(G w5, Ey=) = 0 by [CMc].
We shall now construct a map

zgo,f — HomA(H}(@oo,Epoo)A,A)',

where® indicates that the naturflaction has been inverted.
In fact we will prove the following two assertions:

(a) The mapzy, ; — Homy (H }(Qu, Ep=)", A)* is an embedding;
(b) The moduleZ, ; is A-torsion.

The triviality of Zgoﬂc then follows immediately, since HondX, A) is A-free if X

is finitely generated as/a-module, and{}((@oo , By )" is none other thatt .
In order to deduce (a), by a basic property of continuous cohomology we
can identify H}(@n,TpE) ® Q,/Z, with the maximal divisible subgroup of

H}(Qn , Epeo). This gives us an exact sequence
0— HH(Qu, TpE) ® Q/Zy — Hf(Qn, By) = M,

whereM is torsion and not divisible. Taking Pontrjagin duals, we obtain another
exact sequence

MN — Ifl}(@n,E,,oo)A — HOWP(H}(QH,TPE),ZP) — 0.

Applying the functor Hom, (-, Z,) to our finitely generated ,-modules, we have
a canonical injection

H}(@nanE)/H}(@naTpE)tOI’S — Horan(H}(@naEpoo)/\a Zp)a

since Hom ,(M", Z,) = 0 asM" is Z,-torsion.

Writing I = Gal(Qx /Qy ), the natural mapl H(Qy, Ep) — H(Qoo, Epee)""
certainly has finite kernel, whence we obtain the dual (rfﬁ};(@oo,Epoo)A)pn —
H}(@n , Ep )" with finite cokernel. Again applying Hom)(-, Z,) yields an injec-
tion

Homzp(H}(@naEp‘”)/\aZp) — Homzp((H}(@omEpw)/\)F”aZp)a
and from there a canonical embedding
H}(Qn, TpE)/ H}(Qun, Ty E)ors = Homy, (HF(Quo, Epe)")rn, Zy).

But F(Qu )tors is finite, so(li_mH}(@n,TpE)tc,rS =0 becausdf}(@n,TpE)tors =
E,~(Q,). Hence passing to the projective limit we have shown statement (a),
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as it is a standard fact that for any finitely generatedhodule X, the limit
Lim Homy (X1, Zp) = Homy (X, A)®.

To prove that (b) is true, we do a simple calculatiomeforanks. Again from
the Cassels—Poitou—Tate sequence, we know that

ranky Z2,

= Y corank H(Qux,v, E)(p) — corank H(Goo 5, Byee) + ranky Xo.
VEYso

Let 4 denote the stable height d&f atp, soh = 1 if p is potentially ordinary
andh = 2 if p is potentially supersingular. Now, coratl 1(Goo 52, Ep) = 1.
Furthermore, ifv t p then HY(Qx ., E)(p) is dual to7, EC3(Q/%=.v) "and so is
definitely A-cotorsion. On the other hand by [CoG], Proposition 4.9 Abr@ank of
HY(Qxp, E)(p) is equal to 2- h. Since rank X, = h — 1, we have shown that
ranky Z1 f= 0 and the lemma follows.

o0

Proof of Propositio. Recall in our commutative diagram

0 S(E/Qu)" —= HY G5, Epe)" 22 P (HY Qoo E)(p))"
VEY so
« ‘ﬂ 0
0 S(E/Q) HYGs, Ep) —>—— @ HY(Qy, E)(p),

qex

all the vertical maps have finite kernel and cokernel. Hence Gakeris finite,
since Cokef)) = (E(Q)®7,)" andE(Q) is finite.
By a standard lemma on finitely generatedorsion modules

©(GE) ~

Our previous lemma implies that (G 5, By ) = @,y HH(Qoo, E)(p) is
surjective, so takin@'-invariants we obtain the exact sequence

+ = HYGoo: Bp) 25 @D (HY Qo B)(p))"

VEEOO

— HYT,&(E/Qx)) = O,
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asHYT, HY(G w5, Ep=)) = 0 by [CMc], Theorem 2. Consequently#,)" =
#6(E/Qx )r = #CokefAy), and

HY(Goox; By )" 22 (H(Qso, E)(p))" —— Cokel(Apg) —— O
VEY s

8 )

HY Gy, Epo) —>—— P HYQy, E)(p)
qgeY

(E(Q&Zp)"

by the Cassels—Poitou—Tate sequence.

We know (i) 3 is surjective, (i) Ke(s) is finite with #Kel5) ~ #E(Q), and
(i) Ker (6) is finite with #Ke(d) ~ #H(Qwop/Qy, E(Qoop)) [l cv- By the
snake lemma

0 — Ker(a) — Ker(8) —L Ker(5) N Im(\) — Cokef(a) — 0
and computing orders
#5(E/Qx )" = #Cokefa)#Im(a)
_ #Cokefa)#S5(E/Q)#Im(5)
N #Ker(3)
B #S(E/Q)#Ker(0)
~ #Ker(B)[Ker(d): Ker(§) N Im(X\)]’

Thus our theorem holds|iKer(d) : Ker(d) N Im(X)] ~ #E(Q)/#Coke( )\ ), Since
#S(E/Q) ~ #lll g(p). The rest of the section will be used to show this equivalence.

As before the Cassels—Poitou—Tate sequence implies Coker( E(Q)®Z,)",
hence

Cokel(\) ~ #E(Q).

Considering the commutative diagram

0 Ker(6) @D HYQ, B)(p) —— Im(5) 0
veED
0 Ker(d) N Im()\) Im(\) d(Im(N\)) — 0O,

we see thafKer(0) : Ker(d) N Im(\)] ~ #E(Q)/Coker{\) if 0 is surjective, for
thend(Im(X)) = Im(As ). The theorem then follows immediately.
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In order to prove thad surjects, it is sufficient to verify that
Hz(@oo,u/@l/a E(Qoo,ll)) (p) = 07

for all placesr € Y. Let E(,,) be the formal group oF over@,, so for each
n > 0 we have an exact sequence

0— E(,,)(Qn,,,) — E(Qyy) = Bpy — 0,
whereB,, , is a torsion group. Taking the direct limit
0— E(,,)(Qoo,,,) — E(Qxy) =& Bsoy — 0,

where agaiB, , = Ilm B, is torsion. Applying cohomology

H* Qoo / Q' By (Qoo)) = H* Qoo / Qv E(Qsop))

— H*( Qs /Qs Boo)

and this last group is zero &shas cohomological dimension 1. It suffices to prove
that

H*(Qoo0 / Qv E(1)(Qoo)) () = O.

If v { p this is obvious becaugeis a unit inZ, wherev|q. If v = p, then it is
an easy consequence of the proof of our lemma in Section 2.2 and the fact that
Qoo,p /Q, is deeply ramified, that

HA(T, B, (@) (p) = H3(Qy, Eyy))(p) = 0.

Thusé surjects and the proof is now complete.

2.4. COMPARISON OF LEADING TERMS

For the moment we assume ttathas potential good ordinary reductionpeaind
satisfies hypothesgé&’) and (Kol). So by Proposition 4

#1ll 5 (p)
" #E(0)?

(Gr) #3(F, #RE(Q,) [ e,

v#Ep

whereg denotes the reduction over the fieldQ, of good reduction anék the
reduction map ovect.

DEFINITION. We define the constart; € Q* by

#3 (B JHRE(Qy )
[E(Q): Eo(Q)]

KE -—
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Note thatx g contains information solely about the reductionfat p.

Let us further assume thathas bad additive reductiongtsod = #®,, > 1. Then
thep-adic L-function defined in Section 1.5 is a bounded measurg pgrand has

leading term
L) = [ e = a0 x T
L(E,1)
QF

asC. = p andoy, is ap-adic unit.
(In the case of good reduction we would have

1\°L(E,1) .~ LLE1
L (B, 1) = (1— —) B ~ (e, AL,

ap
instead, agl — —) ~1—a,+p=#HE(F,)).
Anyhow, it follows from our definition that

-1
(Gr) ~ {ZIJQ(E&) IIe (L(é%’l)) } x kg Ly(E,1).

It is reasonable to conjecture that the tefrh above equals 1. (Indeed the Birch
and Swinnerton—Dyer conjecture for elliptic curves of analytic rank zero would
imply this equality.)

Recall Examples A, B and C from Section 1.7. Considering first the elliptic
curve 4 of conductor 99 with potential good ordinary reduction at 3, we have

L(E4,1)
0%,

=1, #E4(Q =1, c3=c5=1,

Me,(3) =1 and rp, ~1,
as # 4 (Fs) ~ #E) (F3) = 5. Thus
20(Ge,) ~ L3(Ea,1).

Recall thatf , was the newform obtained from the elliptic curEéE) of conductor
11. Ase is an odd quadratic charactér E(” ~ /30, so

L3(Ea,e) ~#E' (F3)
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sinceL(E4,e)/1— a3 1+ 371 = L(EY, 1) andG() ~ V3. In fact one might
even conjecture that the 3-adic Mellin transforfin.,, 5, e(z)(1 + T)%ug, is

the characteristic power serié%(e) (T) of G(ng)/(()goo)A by identification with
A

the e-eigenspace of the modu&(E 4/Q(u3~))" under the action of\, where
S(E4/Q(u3=)) is the Selmer group af 4 overQ(uz ).

Recall the definition of the elliptic curv&p of conductor 147 with potential
good ordinary reduction at 7, where the size of inerfig # 6. Here

= 1, #EB(Q) = 1, c3=c7 = 1, and ”IEB (7) =1

However the character is now of order 6 and it seems th@;ez; e(z)(1 +

T)*ug, no longer relates to the arithmetic of an elliptic curve, but rather a piece
of Jaq X1(147)).

Dropping the proviso of potential good ordinary reduction, consider the elliptic
curve E¢ of conductor 63 which has potential multiplicative reduction at 3. Again

L(Ec, 1
%:%, HE-(Q) =2, c3=2, c7=1,
Ec

Mg, (3)=1 and az=1

InterestinglyL3(Ec,e) = 0butL(Ec,¢e)/1 — % = L(E(CE), 1) # 0, so this zero is

a purelyp-adic phenomenon. As explained at the end of Section 1.6, it is related to
the fact thatEéf) overQs is a Tate curve with split multiplicative reduction, so its
extended Mordell-Weil grouEg>T(Q) has rank 1 WhiIsE(C‘f) (Q) only has rank 0.

One can even compute the derivative by using the variant of the Greenberg—Stevens
formula [GrS] given earlier.

2.5. THE MAIN CONJECTURE
From now on we make the following two assumptions:

(i) Eis modular;
(i) F has bad additive reduction at

Bearing in mind our analysis in thg; = 0 case, we formulate a Main Conjecture
for elliptic curves with bad additive reduction. We then conjecture a relationship
between the order of vanishing of giadic L-function and the analytic rankg of

E. Furthermore, assuming the existence of a non-degenesate height pairing

on E, we make gp-adic Birch and Swinnerton—Dyer type conjecture about the
leading term.
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Define the/,-invariant of E by

#3(Fp HRE(Qy) , .
. if E has potential good ordinary
[E(Qp): Eo(Q)]
ly(E) = reduction and satisfié§),
1

[E(Q): Eo(Q,)] if £ satisfie§M ).

Of course ifp > 3thenc, = [E(Q,): Eo(Q,)] is ap-adic unit anyway.
Recall thatA was the lwasawa algebralbfWe identify A with the power series
ring Z,[T] via the topological isomorphism+— 1+ 7.

MAIN CONJECTURE.Assume thaf¥ is potentially ordinary atp and satisfies
hypothesigG) or (M). ThenXy = 6(E/Qx )" is A-torsion. If G denotes its
characteristic power series, then

NIIGE(T) = 65(B) [ (14T d,

for somex € A*, with [ (14 T)*(¥) dup thep-adic Mellin transform ofuz.

Defining thep-adic height pairing is more difficult than in the semi-stable case.
Assume thatK is a Galois extension af) where E has good or multiplicative
reduction at all primes aboyelf (-, -) .- denotes the analytje-adic height pairing
onE(K) x E(K), then defing, ), : E(Q) x E(Q) — Q, by

1

(P,Q)g 32@(3@1@

for all P,Q € E(Q). This pairing is well-defined regardless of how we vary the
field K [Jon]. Denote thep-adic regulator associated to this height pairing by
Reg,(FE), so that

Reg,(E) = det((P;, Pj)o)i<ij<re
where{P;|1 < i < rg} form alinearly independent basis for the free pa£60).

BS-D(p) CONJECTUREAssume thafy satisfies eithe(G) or (M), so that
L,(E,-) is defined.
() The order of vanishing df ,(F, -) should be given by
ordet—ol ,(E, (z)°) = rg,
whererg is the order of the zero of the Hasse—Weieries ofFE.
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(i) The leadingterm aof ,(E, -) should satisfy the equivalence

1 dr #ll1 2(p) T1, ¢, Reg,(E)

g (B )|~ H#E(Q)fors

We remark that in the case of good ordinary reduction there ig,fAnvariant
entering into the Main Conjecture, butit instead turns up in the Bg-D¢njecture.

Indeed this arises because we were forced to interpolate the Galois representations
I ® 1 rather tharll, so we lost information about the reduction Bfat p as

a side-effect. In fact this information appearslip(Z, ¢) rather thanL ,(E, 1).

When we have good reduction= 1 and the terms coincide.

In the case of split multiplicative reduction, Mazur, Tate and Teitelbaum [MTT]
definel,(E) to be log, qr/ord, ¢z wheregg is the Tate period of. The order of
vanishing in this situation should lpg 4 1, and the sign in the functional equation
changes parity.

For elliptic curves with good ordinary reduction, Perrin—Riou calculates the
leading term oGz under the assumption that, is A-torsion. In our case of bad
additive reduction it should be possible to do the same sort of procedure. When
rg = 0 andE satisfieq G) or (M) this is Proposition 4.

A natural question to ask is what happeniis potentially supersingular at
p. ThenXx, will have A-rank 1. On the analytic side, we will have tweadic
L-functions instead of one (c.f. the case of good supersingular reduction), but these
power series won't lie il\ ®z, Q, anymore. However it should still be feasible to
calculate their leading terms.

More generally, what can we sayAf doesn't satisfy(G)? TwistingII by one-
dimensional representations will not give us any inertia invariant subspaceat
the method presented here cannot cope with these sort of curves. However there
would be much interest in finding such a construction.
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