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Abstract
This paper investigates a closed-loop visual servo control scheme for controlling the position of a fully constrained
cable-driven parallel robot (CDPR) designed for functional rehabilitation tasks. The control system incorporates
real-time position correction using an Intel RealSense camera. Our CDPR features four cables exiting from pulleys,
driven by AC servomotors, to move the moving platform (MP). The focus of this work is the development of a
control scheme for a closed-loop visual servoing system utilizing depth/RGB images. The developed algorithm
uses this data to determine the actual Cartesian position of the MP, which is then compared to the desired position
to calculate the required Cartesian displacement. This displacement is fed into the inverse kinematic model to
generate the servomotor commands. Three types of trajectories (circular, square, and triangular) are used to test the
controller’s compliance with its position. Compared to the open-loop control of the robot, the new control system
increases positional accuracy and effectively handles cable behavior, various perturbations, and modeling errors.
The obtained results showed significant improvements in control performance, notably reduced root mean square
error and maximal error in terms of position.

1. Introduction
Cable-driven parallel robots (CDPRs) utilize cables instead of conventional rigid links to control the
end-effector (EE) position, which is a moving platform (MP), serving as the orthosis in rehabilitation
applications. CDPRs provide numerous advantages over traditional serial and parallel robots. These
advantages include reduced weight and inertia, extended operational distances, high-speed motion capa-
bilities, modular geometry, reconfigurability, and heightened dynamics [1, 2]. CDPRs are classified as
over-constrained (m>n) when the number of cables (m) exceeds the degrees of freedom (DOF) (n) of
the EE with respect to the base [3]. A primary limitation of CDPRs derives from the unilateral nature
of cables, necessitating to be constantly kept under tension, allowing only pulling actions and requir-
ing redundant actuation for full constraint [4]. CDPRs offer major advantages [5–8]. Therefore, CDPRs
have been employed in medical rehabilitation [9–11]. In the field of rehabilitation, cable-driven actua-
tion has been successfully utilized in various robots such as CAREX [12]. CDPRs emerge as promising
tools for assisting individuals in rehabilitation following injuries, strokes, neurological disorders, or
other medical conditions. These robots facilitate targeted physical exercises to restore muscular function
and mobility. Specifically, functional rehabilitation tasks for the legs contribute to improving strength,
flexibility, balance, and coordination post-injury or surgery ensuring effective and targeted rehabilita-
tion exercises tailored to individual patient needs [13]. CDPRs employ distinct control strategies, as
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highlighted in ref. [13], aiming to minimize complexity and cost by focusing on a limited number of
controlled DOFs.

The principal limitation of CDPRs is their low accuracy. There are many approaches in the literature
to overcome this drawback. Creating an accurate CDPR model is challenging due to the flexible nature
of cables, which necessitates accounting for other factors such as elongation pulley kinematics and cable
sag [14]. Although the encoder provides feedback on joint movement, the use of direct kinematic model
(DKM) was avoided in refs. [15, 16] by roughly estimating the MP pose. The flexible nature of the cables
in the CDPR control system presents a significant challenge, as they can only apply one tensile force.
This flexibility makes it more complex to control MP position, which results in reduced accuracy [17].
Due to cable slackness, the encoder feedback is not sufficient to determine the MP position, when cables
lose tension, they fail to generate the intended MP movement. Consequently, the error in estimating the
MP pose increases, and the precision of its estimation is dependent on the slackness of the cables. This
is equally applicable to the DKM calculation based on cable length for a simplified CDPR model as in
ref. [18].

Existing CDRRs targeting rehabilitation movements are investigated with respect to control scheme
strategy, actuator type, controllers, and sensors [13]. CDPR control strategy can be classified accord-
ing to joint space or workspace, dynamic or inverse kinematics (IK), as well as trajectory planning.
Controller performance is generally evaluated in the literature on the basis of Cartesian error for
workspace tracking, position tracking error, or joint angle tracking error. The principal control strat-
egy employed to control CDRRs is the task space, which refers to the MP’s pose and orientation in
Cartesian space [13].

To achieve a good control process, the researchers explored various control systems and robots in the
literature [20] to understand specific robot parameters. For instance, angular sensors can measure the
cable angle [20]. Additionally, color sensors can detect color marks on cables, enhancing the accuracy to
determine cable length [21]. Cable tension sensors determine the center of gravity and can evaluate the
current payload mass [22]. Inertial Measurement Units to estimate Cartesian velocity of the MP [23].
During the design of automated systems, the implementation of vision systems is increasing, given its
role as an effective source of information, as noted in ref. [24]. Using vision-based data correctly, the
camera identifies, localizes, and computes position of any object, and responds to accomplish its tasks
[25]. Many CDPR systems are controlled via visual servoing [16, 26, 27]. For example, in ref. [28], four
cameras are utilized to accurately determine the MP pose of the CDPR. In addition, extra pairs of stereo
cameras were employed to monitor cable sag at their exit points from the CDPR base structure. Another
study employed a system of six infrared cameras to identify the position of MP [29].

The researchers opted to use a depth camera to obtain 3D data on the environment. Among var-
ious depth cameras commercially accessible, Microsoft Kinect [30, 31], RGB depth camera [32],
and RealSense [33, 34] are mostly used and utilized by the researchers. These devices combine data
from depth information with 2D RGB image, resulting in the generation of a depth map. Recent
studies have explored the metrological characterization of depth cameras [35], including comparative
studies evaluating accuracy and precision [36]. These studies utilized depth cameras and focused on
assessing their resolution, frame rate, and range performances [35, 36]. A recent study stated that,
while many instrumented solutions offer good performances, they are expensive and often restricted
to specialist assessment centers, which limits their applicability in large-scale clinical trials [37].
Consequently, Intel RealSense is preferred as it presents a good tradeoff between cost and efficacy
[37]. This camera is used in applications requiring high frame rates with compact size and is a
budget-friendly 3D coordinate measurement system, characterized by large acquisition volumes and low
costs [37].

The aim of this work is to propose a visual servoing algorithm that deals with forward kinematic.
Unlike other approaches in the literature, the proposed algorithm is based on tracking the MP’s Cartesian
pose and not on complex modeling of the cable [38]. This study presents the development of closed-loop
camera-based position control system for our CDPR prototype [39] designed for functional rehabilitation
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tasks using a Depth Camera. Acknowledging the findings of the mentioned studies, Intel RealSense is
employed for motion tracking as well as CDPR control correction. Three trajectories are selected, a
comparison between desired and actual trajectories is carried out, as well as error analysis of the results.
This document is structured as follows: Section 2 delves into CDPR modeling, presents the IK problem,
and introduces three different trajectories. Section 3 describes the controller design containing open-
loop and closed-loop control systems, and introduces a motion tracking system for MP movements via
IntelRealsense. Section 4 details the process of tracking algorithm utilizing the depth camera as well as
the control algorithm. Finally, Section 5, results and discussions, presents the experimental outcomes of
joint control system, as well as, the experimental and analysis results of Cartesian trajectories for both
control strategies applied on the control system before and after PD correction.

2. Kinematic control of CDPR
2.1. Kinematic model
CDPRs are comprised of an MP with dimensions c ×d and a base frame with dimensions h ×w, with
embedded actuators. These actuators are connected to an MP through four cables. The Cartesian position
and orientation of the MP are controlled by adjusting the cable lengths exiting the pulleys. The geometric
model CDPR involves four servomotors mounted at the corners of a vertical surface on the robot’s
chassis.
F0 {O,x0,y0,z0}: Fixed frame of the planar CDPR centered on the four motors, with the horizontal

x0-axis and the vertical y0-axis. C: Exit point of the cable from the pulley. M: Center of the pulley. G:
Center of the MP, b: The vector represents the Cartesian position of the center of MP in the frame F0,
this parameter depends on the movement executed by the MP.

θ : The angle at point M between the horizontal axis and the direction vector from M to point C.
ρ: Vector between the center of the pulley M and its corresponding corner B of the MP.
ai

T = [
w
2

h
2

]
for i = 1, The vector defines the center of the pulley in the fixed frame F0.

Rα: The rotation matrix represents the orientation, denoted by α, of the MP in the fixed frame F0.
ri

T = [ −c
2

−d
2

]
: Vector between G the center of the MP to the corresponding corner B.

Figure 1 illustrates the kinematic model of our planar cable robot. Equation (1) is applied to calculate
the distance‖ρ i‖ between the center of the pulley and the cable attachment point on the MP:

∥∥ρ i

∥∥2 = ‖a + b + Rαri‖2 (1)

Figure 1. Structure of our cable-driven parallel robot.
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The cable winds around the pulley with a radius r and exits from point C. By neglecting the diameter
of the cable relative to that of the pulley, we assume in the subsequent discussions that r is the effective
radius, including both the actual radius of the pulley and the cable. The cable departs from the pulley
at point C, and the angle between vector from M to C and the horizontal is denoted as θ . Referring to
Figure 1, the total length of the cable, accounting for the stretched part LS and the part wound on the
pulley LP, is expressed as follows in Equation (2):

L = LS + LP = LS + rθ (2)

where r is the radius of the pulley, as illustrated in the figure. θ is the angle where the cable is wound
around the pulley. LS is the stretched part of the cable starting from point C to point B. Taking into
consideration the two right-angled triangles, we can calculate the length through Equation (3):

LS
2 = ρ i

2 − r2 (3)

where ρT = [ρxρy], ρx, ρy are the vector ρ coordinates with respect to frame F0. To solve the IK, to
determine the angle βu we consider the tetragonal CMDB, noting that two angles at points C and D of
the tetragonal are right angles, we can conclude that the desired complementary angle βu at point M
is equal to the enclosed angle β1 + β2 at point B. Using elementary trigonometric functions, we obtain
Equation (4):

θ = βu = β1 + β2 = arccos
LS∥∥ρ i

∥∥ + arccos
ρy∥∥ρ i

∥∥ (4)

To determine the rate of change of the motor angle with respect to time, it is necessary to calculate
the variation in length of each cable as a function of time. This rate corresponds to the servomotor angle
variation for each actuator, and it is derived from the variation in the position of the MP over time, using
Equation (5).

V = L̇ = dL

dt
(5)

2.2. Trajectory
In order to assess the performance of the control method, three desired trajectories describing typical
kinematic applications were generated. The trajectories consist of:

• Circle Movement: The center of the circle coincides with the planar CDPR center, with a radius
of 50 cm. Equation (6) is applied to calculate the variation in cable length over time with a radius
ψ and frequency ω.

• Square Movement: Four vertical and horizontal displacements extend linearly over 1000mm,
over a square of a 25 cm width, passing through the points A (50, 50, 0), B (−50, 50, 0), C (−50,
−50, 0), and D (50, −50, 0) in the fixed frame F0. Equation (7) is applied for each displacement.

• Triangle Movement: Three linear movements over an equilateral triangle, passing through the
points E (50, 0), F (50cos(2π/3), 50cos(2π/3)), and G (50cos(−2π/3), 50cos(−2π/3)) in the
fixed frame F0.

For linear motions in the triangle and square movements, Equation (7) is utilized, with η and μ
representing the velocity along the x and y axes, respectively.

XT = [
ψcos (2πωt) ψsin (2πωt) 0

]
(6)

XT = [
Xp1 + ηt Yp1 +μt 0

]
(7)
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Figure 2. Cable-driven parallel robot prototype located at ENISO, Sousse. The components are: (1):
Pulley mounted on the Servomotor, (2): Cables, (3): AprilTag attached to the Moving Platform, (4):
AprilTag attached to the Fixed frame.

3. System overview
3.1. CDPR prototype
Figure 2 illustrates our CDPR prototype configured such that all cable exit points are positioned at the
four corners of the fixed platform. Cables in this study are supposed to be rigid and massless. The robot
frame is a 2.1 m × 1.7 m rectangle. The size of the MP is 0.2 m × 0.2 m. A depth camera is positioned
2.5 m in front of the MP and CDPR plane. To simplify the vision part, two AprilTags are placed as
objects on MP and the reference frame. An algorithm was developed for AprilTags recognition and
localization, allowing the robot to be controlled by tracking MP through a depth camera.

3.2. CDPR prototype control system
Figure 3 shows the hardware architecture of the CDPR control system. A programmable logic controller
(PLC) with high-speed pulse output and supporting four hardware 200 kHz high-speed counters is used.
This PLC controls the servomotors using a Proportional-Derivative (PD) control. Kinematic data are
computed on a PC and then transmitted to the PLC, which commands the actuators based on the desired
position and velocity. Each actuation chain, from the servomotors to the cables, has its own controller
that takes desired and measured motor position and velocity as input. The output is the corresponding
desired motor torque. Each cable will be driven by a servomotor. The specification of the servomotor
and encoder is shown in Table I below.
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Table I. Characteristics of the actuators.

Parameter (unit) Rated torque Output power Max speed optical Encoder
Value 4.77 Nm 1000 W 3000 rpm 17-bit

Figure 3. The hardware architecture of the cable-driven parallel robot control system.

3.3. Motion tracking system
This research aims to implement a tracking system that covers the robot’s workspace as well as the
movements performed by the mobile platform. The RealSense D435i, a depth camera widely utilized in
current applications, is employed for data collection. During this process, both RGB and depth images
are acquired simultaneously. D435i offers stereo depth resolution up to 1280 × 720@90 fps and depth
field of view 87◦ × 58◦, in a range from 0.2 m to over 3 m, which varies with lighting conditions.
It is also proficient in capturing RGB frames with resolution up to 1920 × 1080@30 fps and RGB field
of view 69◦ × 42◦. The camera is well-suited to the dimensions of our robot, exhibiting an root mean
square error (RMSE) subpixel depth error of less than 0.12 pixels [40].

After capturing depth maps and color images from each frame, the subsequent step involves cal-
culating their 3D point clouds and aligning them. Various methods are available for this purpose. In
our case, we found it adequate to rotate the point cloud data from both RGB and depth images using
a 3D transform that would both rotate and shift the point clouds, creating one large composite point
cloud.

AprilTag, introduced in 2011 by Olson [41], is a robust and adaptable visual fiducial system. It
employs a 2D code style, as illustrated in Figure 4, facilitating full 6-DOF feature localization from
an image. The system comprises two primary components: the coding system and the tag detector. The
tag detector’s function is to identify potential tag positions in the image using a graph-based algorithm
for image segmentation, followed by estimating the tag’s pose relative to the camera, and finally calcu-
lating the Euclidean transformation. By meticulously following these steps, one can accurately delineate
the kinematic motion of the MP relative to a fixed reference frame.
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Figure 4. Flow chart of the moving platform tracking process.

4. Overview of the position correction system
4.1. Motion tracking process
To determine the kinematic movement of a tag on the MP relative to a tag on a fixed CDPR platform
using a D435i depth camera, a systematic sequence of steps is described, as illustrated in Figure 5.
The process begins with initialization of the configuration and calibration of the depth camera. Then,
a colorization configuration is implemented by creating a colorizer object, which improves the visual
representation of depth data for better analysis. Point cloud object is initialized to store the 3D depth
information captured by the camera. The streaming process is launched by aligning the depth images
with the color images to facilitate accurate data fusion.

Reshaping and scaling the depth data involves adjusting the depth vector to match the resolution
of the color images, and scaling the depth values to represent distances in meters. Once data has been
converted into an image format suitable for viewing, AprilTag detection algorithm is applied, identifying
and locating the corners and centers of AprilTags in the captured color and depth images. Next, the 3D
Cartesian coordinates of the fixed and moving markers are calculated. Two transformation matrices are

Figure 5. Motion tracking process of the moving platform.
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presented: one determines the fixed frame relative to the camera frame TRF
RC

, and the other defines the
MP frame relative to the camera frame TRM

RC
. Each transformation matrix includes translation and rotation

information of the frame relative to the other, as shown in Equation (8).

T =
[

R3×3 t3×1

01×3 1

]
4×4

(8)

Where the R3×3is a rotation matrix and t3×1 is a translation vector. The translation vector represents
the position of the tag’s center, and the rotation matrix is obtained from the corners of the tag. Using
the Euclidean transformation and Equation (9), the geometric parameters of both the fixed and moving
frames are derived through the multiplication of the Euclidean transformation matrices:

TRM
RF

= TRM
RC

× TRC
RF

= TRM
RC

× (
TRF

RC

)−1 (9)

While TRC
RF

= (TRF
RC

)−1 =
[

RRF
RC

tRF
RC

01×3 1

]
4×4

4.2. Servomotor control algorithm
The test trajectory described in section 2.2 gives the desired MP pose, i.e., MP position and orien-
tation as well as the motion velocity, which are converted into desired servomotor angles position θ
through Equation (10) and servomotor angular velocities using the inverse CDPR geometric and kine-
matic models. To illustrate, all kinematic results computed by our model are transmitted to the PLC
overseeing our CDPR, as depicted in the Data Flow diagram of the control system in Figure 6. Then,
the data is transmitted to the servodrives to process the signals, and then send appropriate commands
to the servomotors. Simultaneously, feedback is collected from the encoder to ensure control precision
and accurate positioning of the system.

θ =	L/nmri (10)

Figure 6. Data flow diagram of the control system.

4.3. Closed-loop position correction algorithm
The closed-loop system computes the IK of the MP’s position using data from the depth camera, as
depicted in Figure 7 illustrating the architecture of the controller. Here, a vision system is integrated
with a PD position controller to set a closed-loop controller for our CDPR.

The vision system block, 3D reconstruction, computation of the current position Xc from RGB, and
depth images are discussed in section 4.1. The position of the MP is determined through Equation (9).
The presented control system is primarily based on real-time correction of the MP’s position towards
the targeted position Xd using the current position Xc. Where Equation (12) and Equation (13) illustrate
these two positions. The error matrix e between these positions, presented in Equation (11), is calculated,
followed by the implementation of a PD system to optimize the position control. Equation (14) represents
the PD calculating process. Consequently, the values of Kp and Kd are adjusted to find the optimal values
of Cartesian displacement Xr of the MP to be sent as a command to the CDPR controller.

The Inverse Kinematics block, introduced in section 2, alongside the conversion of motor pulses from
Equation (10) based on the position Xr, focuses on correcting the MP’s trajectory as well as real-time IK
computing. Operating at a frequency of 10 Hz, the program demonstrates its acceptable-speed process-
ing capabilities. This frequency significantly exceeds the relatively low Cartesian speed of the MP, which
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Figure 7. Flowchart of closed-loop camera-based control scheme of our cable-driven parallel robot.

is 0.05 m/s. The program’s execution rate enables precise monitoring and adjustment of the MP’s trajec-
tory. After performing the IK calculation, the program transfers the data continuously to the PLC to be
processed by a PLC program that controls the CDPR in position and speed. Transmission is performed
in parallel for all four servodrivers, each one is equipped with PID control and auto-tuning capabilities
for PID gains. This ensures precise control of system movements. Meticulously refined instructions are
then rapidly transmitted to the servomotors, facilitating smooth and precise task execution. This control
system allows precise and rapid adjustments to be made in order to maintain the MP’s trajectory with
high accuracy.

The tracking process outlined in section 4.1 is performed to calculate the real Cartesian position XC

of the MP and to rectify the error e with respect to the desired position Xd, where:
Xd , Xc, and Xr are vectors (3 × 1), which include both position and orientation of the MP.
θ r, θ i are vectors (4 × 1), which include joint angle pulses to command the servomotors.

e = Xd − Xc (11)

Xd
T = [

xd yd αd

]
(12)

Xc
T = [

xc yc αc

]
(13)

Xr
T
(t)= Kp · e(t)+ Kd · de(t)

dt
(14)

Xr: Vectors (3 × 1) representing the Cartesian displacement Xr of the MP to be sent as a command
to the CDPR controller.

Xc: vectors (3 × 1) presenting current MP position computed by the depth camera during the motion.
Xd: vectors (3 × 1) the desired position of the MP, computer
e: vectors (3 × 1), the error matrix between the desired position and the current position.
Kp, Kd are (3 × 3), matrices representing the proportional, and derivative gains respectively, where

each element of these matrices corresponds to the corresponding gain for each parameter (x, y, α).
In addition to processing feedback from the camera, the closed-loop control scheme for the CDPR

incorporates PD correction to further enhance performance. The PD controller adjusts the Cartesian dis-
placement Xr based on the error e between the desired and actual positions of the robot’s MP continuous
fine-tuning of the control signals, PD correction ensures that the system responds rapidly to minimize
error of the MP trajectory in the x and y axes on the plane, and improving overall tracking accuracy as
well as ensuring that MP is in a stable position and orientation α.

The integration of PD correction into the closed-loop control system is synchronized with camera
feedback, which collectively contributes to the accuracy enhancement of CDPR control. The pro-
posed CDPR control algorithm was programed in MATLAB employing the RealSense support package
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for camera management and data acquisition. The Computer Vision Toolbox is utilized for AprilTag
detection and tracking. MATLAB support for TCP/IP is employed to communicate with the PLC.

5. Results and discussion
5.1. Results of robot joint trajectories
In this section, the encoder feedback of the four actuators is evaluated and compared with the the-
oretical command transmitted to the servomotors, enabling us to accurately evaluate the control of
the CDPR.

As mentioned in Section 4.2, the IK calculation and the data computing of the variation in cable
lengths and the speed variation are converted into motor angle pulses and the operating speed of these
actuators over the trajectories generated. In order to evaluate this control optimally, a high-resolution 17-
bit encoder feedback with 100,000 pulses per revolution is used, and the acceleration time is 10 ms. Thus,
the response frequency is up to 550 Hz and the settling time is below 1 ms. The comparative analysis
of the motor angle variation commanded during the three motions (circular, square, and triangular) and
the encoder feedback over time is shown in Figure 8.

Figure 8. Comparative analysis of theoretical kinematic joint curves with encoder feedback. (a):
Circular trajectory, (b): Square trajectory, (c): Triangle trajectory.
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Table II. R-squared of kinematic joints angles performed.

Trajectory Motor 1 Motor 2 Motor 3 Motor 4
Circle 0.998 0.999 0.999 0.999
Square 0.999 0.999 0.999 0.999
Triangle 0.999 0.999 0.999 0.999

The aim of this analysis is to evaluate the performance of the control scheme and the actuator behav-
ior, as well as kinematic response of the joints, throughout the motions, without delving into cable
behavior and Cartesian motion.

Table II concludes this analysis by presenting the errors observed during the comparison process.
Notably, the minimum value of the coefficient of determination R-squared (R2) recorded is 0.999 for
all servomotors for the linear trajectories of the square and circular trajectories, showing a slight error
between the theoretical command and motor response.

Errors are slightly greater for circular movements, which present non-linear motion. This is likely
due to the variation in angles. However, even in the case of circular movements, where the R2 value
declines slightly to 0.998, the error remains minor and is unlikely to have a significant impact on motor
response. It’s worth mentioning that among the sources of error, a delay in control response has been
identified, but its effect on the overall system performance is negligible. This analysis highlights the
accuracy of the servomotor control, which does not impact the control of our CDPR. The error recorded
at the servomotor control is equivalent to an RMSE at the control angle of 2◦, which is equivalent to
1 mm at the cable length level.

5.2. Results of MP Cartesian motion tracking for control robot system and camera-based
Closed-Loop system

In this section, the motion of the MP is monitored using a 3D depth camera to evaluate motion errors
tracked during open-loop control. These errors are then corrected, tracked, and compared using vision-
based closed-loop control, all facilitated by Realsense camera. In order to optimize and rectify motion
errors, an analysis is carried out comparing the theoretically calculated desired Cartesian trajectories for
circular, square, and triangular motions with the trajectories executed in the plane tracked by the depth
camera for both control schemes. The curves captured by the camera reveal errors due to various factors.
To help analyze these errors, Table III presents the errors obtained for each trajectory. The evaluation
metrics include RMSE and the maximum error to assess the reduction in error achieved by the closed-
loop compared to open-loop control. These metrics provide insights into the accuracy and effectiveness
of the closed-loop control system in minimizing motion errors. The values in Table III for X, Y, and α

axes were measured by the experiment, as well as the error of the trajectory reference values.

Table III. Error analysis of moving platform position correction system.

X-axis Y-axis α-axis
RMSE Max RMSE Max RMSE Max

Control Scheme Trajectory (mm) (mm) (mm) (mm) (mm) (mm)
Open-Loop Circle 28 57 10 14 5.2 8.1

Square 24 54 14 40 5.1 8
Triangle 20 40 11 24 5.1 7.3

Closed-Loop Circle 1.9 5.4 1.7 5.7 0.9 3
Square 1.8 7.1 1.8 7.8 1.1 2.8

Triangle 2 6.6 1.6 8.4 1.2 2.9
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Figure 9. Comparison of circular cartesian trajectory tracking in the X-Y plane: Open-loop robot
control vs. camera-based closed-loop correction with circular trajectory steps executed by the moving
platform of our cable-driven parallel robot.

Figure 9 illustrates a comparison between both open-loop and closed-loop results with the desired
trajectory for the circular motion achieved for the two control schemes. The MP follows a circular path,
and the depth camera tracks its positions, which is shown in the figure from the starting point to the final
destination, passing through different points. Notably, the open-loop trajectory exhibits a curve that takes
on a circular shape with a variable radius, offset from the center compared to the desired trajectory, and
reveals high RMSE values. Based on the results presented in Table III, as the MP moves in a circular
path, the RMSE values for the open-loop were 28 mm for the X-axis and 10 mm for Y-axis. These results
are displayed in Figure 10, illustrating the MP displacement in the X and Y axes over time evolution
for the closed-loop and open-loop control methods as well as their deviation from the desired trajectory.
In contrast, the closed-loop trajectory showed RMSE values decrease to 1.9 mm and 1.7 mm for the X
and Y axes, respectively. By the same measure, the maximum error across the entire range of planar
parameters decreased significantly, from 57, 14 mm and 8.1◦ to 5.4, 5.7 mm and 3◦ for the X and Y axes,
respectively.

Furthermore, as depicted in Figure 11, the orientation of the MP exhibits instability, manifesting left
and right shifts, resulting in 5.2◦ RMSE for α and maximum error reaching 8.1◦. This Cartesian behavior
is attributed to the cable’s influence during the movement and corrected via the correction scheme to
reduce the RMSE value to 0.9◦ and maximum error by 82% to 3◦.

Introducing an error compensation scheme led to an 88% reduction in Y-axis error and an 88%
decrease in X-axis error. Furthermore, there was a noticeable improvement in MP rotation, with error
decreasing by 38.4%. The position curve oscillates relative to the reference curve, alternating between
values above and below the reference position. This oscillation is attributed to the PD correction applied
to the robot control.

The same analysis strategy for the square MP motion in Figure 12 is applied. We observe a compari-
son of the square motion trajectories achieved through two control schemes: open-loop and closed-loop,
compared with the desired trajectory. The figure also depicts the tracking of the MP as it traverses a
square path, capturing its positions at each of the four corners.

The open-loop trajectory represents a square-shaped trajectory but shows a very significant deviation
at the corners of the square as the MP is inclined and exhibits an RMSE of 23.1 mm.

The results indicate that during the motion of the MP in a square pattern, the RMSE values for the
open-loop were 24 mm for X-axis, 14 mm for Y-axis, respectively, as shown in Figure 13 we can see

https://doi.org/10.1017/S026357472400208X Published online by Cambridge University Press

https://doi.org/10.1017/S026357472400208X


Robotica 13

Figure 10. Circle cartesian trajectory variation for both closed-loop and open-loop robot control as
a function of time (a) moving platform (MP) displacement in the X-axis, (b) MP displacement in the
Y-axis, (c) MP displacement error in the X-axis, and (d) MP displacement error in the Y-axis.

Figure 11. Moving platform orientation variation as a function of time during circle trajectory for both
closed-loop and open-loop robot control.
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Figure 12. Comparison of square cartesian trajectory tracking in the X-Y plane: Open-loop robot con-
trol vs. camera-based closed-loop correction with steps executed by our cable-driven parallel robot,
and the moving platform tracked at the four corners of the path.

Figure 13. Square cartesian trajectory variation for both closed-loop and open-loop robot control as
a function of time (a) moving platform (MP) displacement in the X-axis, (b) MP displacement in the
Y-axis, (c) MP displacement error in the X-axis, and (d) MP displacement error in the Y-axis.

the curves as function of time as well as the recorded error of the two systems in relation to the desired
trajectory, and 5.1◦ for α, while in contrast, for the visual servoing the RMSE values of the trajectory
were 1.8 mm for X, 1.8 mm for Y, and 1.1◦ for α, respectively.
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Figure 14. Moving platform orientation variation as a function of time during square trajectory for
both closed-loop and open-loop robot control.

Utilizing the error compensation scheme resulted in a 92% reduction in error on the X-axis, while
there was a high increase of 87% for the Y-axis. Additionally, as shown in Figure 14, the error reduction
is evident in the rotation of the MP, with a decrease of 78% in the RMSE value, from 5.1◦ to 1.1◦.

Also, the effect of this correction system is even more obvious through the maximum error recorded
for all these planar parameters, these values have significantly decreased the MP, from 54, 40 and 8◦ to
7.1, 7.8 mm and 2.8◦ for the X, Y, and α axes, respectively.

Similar results were obtained in planar triangular Cartesian trajectory as shown in Figure 15, which
compares camera-based open-loop correction and closed-Loop CDPR control to the reference trajectory.
The figure also illustrates the trajectory of the MP as it follows a triangular path, tracking its positions
from the starting point to the final destination, passing through each of the three corners.

Besides, Figures 16 and 17 present Cartesian Trajectory and the orientation Variation of the MP
as a Function of Time as well as their errors to reference to the desired trajectories during triangle
Trajectory. Despite the linear nature of motions in open-loop control, the behavior of the cables, as well
as the imprecise starting position of the MP, introduces errors in the angle of each rectilinear motion
direction, and significant deviations occur at the corners of the triangle. This results in RMSE values
of 20, 11 mm and 5.1◦ at X, Y, and α axes, respectively. Thanks to closed-loop scheme, these errors are
reduced to RMSE values of 2, 1.6 mm and 1.2◦ at X, Y, and α, respectively.

Similarly, the maximum error covering all planar parameters in the error curves shown in Figs. 16
and 17 has been significantly reduced, from 40, 24 mm and 7.3◦ to 6.6, 8.4 mm and 2.9◦ along the X, Y,
and α axes, respectively.

The implementation of the visual servoing scheme produced a complete elimination of errors on
the Y-axis, alongside a minor increase ranging between 0.2% and 2% on the X-axis. Furthermore, a
noticeable decrease in error rates was observed in the rotation of the MP, with a reduction of 38.4%
from the initial 32.5% to 20.5%. The curve also oscillates in these motions for closed-loop control and
the shapes of the trajectories are closer to reality.

https://doi.org/10.1017/S026357472400208X Published online by Cambridge University Press

https://doi.org/10.1017/S026357472400208X


16 Kaiss Ghrairi et al.

Figure 15. Comparison of triangle cartesian trajectory tracking in the X-Y plane: Open-loop robot
control vs. camera-based closed-loop correction with steps executed by our cable-driven parallel robot,
and the moving platform tracked at the three corners of the path.

Figure 16. Triangle cartesian trajectory variation for both closed-loop and open-loop robot control
as a function of time (a) moving platform (MP) displacement in the X-axis, (b) MP displacement in the
Y-axis, (c) MP displacement error in the X-axis, and (d) MP displacement error in the Y-axis.
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Figure 17. Moving platform orientation variation as a function of time during triangle trajectory for
both closed-loop and open-loop robot control.

5.3. Discussion
In the results shown, the open-loop control strategy exhibits greater errors than the closed-loop control
strategy, indicating that multiple factors contribute to these errors. Visual servoing minimizes these
errors in our planar CDPR, demonstrating that the algorithm we implemented improves the accuracy.

Firstly, in the open-loop scheme performed by the CDPR, the errors occurred due to the starting
position, making it difficult to follow the reference path. The initial position is one of the primary factors
identified which can cause significant errors in the desired trajectories. There is a disparity between the
desired and actual poses on both axes, with the Y-axis generally outperforming the X-axis. Errors on the
horizontal X-axis are greater than those on the vertical Y-axis. The RMSE for the X-axis ranges from 20
to 30 mm, while for the Y-axis it is between 10 and 15 mm. This can be attributed to the starting position
of the coordinate path, which is offset by 500 mm to the left of the center on the X-axis. In contrast, for
the closed-loop system, the overall error is extremely close for both axes, with an RMSE of 1.8 mm for
the X and Y axes for the square trajectory. Based on these results, we can conclude that initial position
correction through visual servoing improves the accuracy of the trajectory.

Furthermore, in open-loop control, the orientation of the MP also deviates during the trajectory,
reaching an RMSE of 5◦ and a maximum error exceeding 7◦. For all trajectories, the orientation curve of
the MP increases and then decreases. The α value varies with y, showing positive values when y > 0 and
as the MP approaches the upper motors, and negative values when y < 0 and as the MP approaches the
lower motors. The displacement of the MP along the X-axis shows larger deviations than those along the
Y-axis. The error is lower for the triangular trajectory because the MP remains farther from the corners,
in comparison with other motions, resulting in less orientation deviation. In the square trajectory, the
α error is higher due to the proximity of the corners to the motors, leading to significant orientation
deviations. The relationship between the Cartesian position of the MP and the cable lengths is evident,
so the orientation of the MP changes based on its position along the trajectory and is influenced by
the forces exerted by the cables. When the MP approaches a particular motor, the corresponding cable
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shortens and becomes tighter, exhibiting less elasticity, greater rigidity, and higher tension. Conversely,
longer cables show more elasticity and flexibility, resulting in lower rigidity and tension. These cables
exert less influence on the orientation of the MP. When the MP is closer to the upper motors, it rotates
in the direct direction; when it is closer to the lower motors, it rotates in the reverse direction. Thus, the
tighter cables have higher tension and exert greater forces on the MP, directing its movement toward the
motor.

The closed-loop system controls the orientation of the MP in the opposite direction to its rotation in
order to rectify it, which explains the MP’s stability. As a result, the recorded RMSE is around 1◦, with a
reduction of over 75% and a maximum orientation of 3◦ for all trajectories. Contrary to the assumptions
of the CPPR model, the cables are not rigid, but rather flexible and elastic. This flexibility, which is not
taken into account in our model, leads to additional errors in the system’s performance.

Overall, the cable’s behavior creates uncertainties and perturbations in the MP’s motion, as well as
the initial position error for open-loop control, which can directly impact the accuracy of the trajec-
tory performed. The visual servoing control strategy is implemented to ameliorate these results, and
a real-time PD correction algorithm improves system performance. The closed-loop system, based on
feedback from the depth camera, maintains correction of the calculated IK with respect to the trajectory
followed by the camera. The error compensation obtained is high, exceeding 85% for all generated
trajectories: triangle, square, and circle, and reaching up to 95%. The error values recorded by the
correction scheme showed interesting results. RMSE remains below 2 mm and the maximum error is
less than 8 mm. Closed-loop control system also improves MP orientation, which has become more
stable with an orientation RMSE of less than 1.2◦. This is considered a suitable accuracy for func-
tional rehabilitation applications. This improvement in control accuracy is due to the correction of
the starting position and the reduction in trajectory error. This correction implicitly affects the cable’s
behavior.

6. Conclusion
A closed-loop visual control system for a planar cable robot has been addressed and investigated.
The previous control scheme, which relied on encoder feedback, has been refined by incorporating
closed-loop visual control through depth/RGB camera tracking in the Cartesian space, alongside error
compensation and PD correction. Control of the robot’s MP via the actuators’ encoders proved insuf-
ficient due to cable behavior and initial position estimation, resulting in high errors in the open-loop
control of Cartesian motion. Specifically, the RMSE exceeded 20 mm on the X-axis and 10 mm on the
Y-axis, with the maximum orientation of the MP exceeding 20◦, thereby reducing system accuracy. The
integration of visual feedback into the control strategy aimed to obtain the absolute and true Cartesian
position of the MP. Both control schemes were evaluated on three trajectories: circular, square, and tri-
angular. Overall, the open-loop control scheme exhibited reduced performance, with errors reaching
an RMSE of 30 mm during runtime. In contrast, the error correction with closed-loop visual control
demonstrated superior performance, substantially reducing errors for all trajectories. The RMSE value
was significantly lower, measuring less than 2 mm. Error reduction percentages were 92%, 88%, and
85% for circular, square, and triangular trajectories, respectively.

Abbreviations. MP: Moving Platform
EE: End-Effector
PD: Proportional-Derivative
CDPR: Cable-driven Parallel Robot
IK: Inverse Kinematic
PLC: Programmable Logic Controller
DOF: Degrees of freedom
DKM: Direct Kinematic Model
RMSE: Root Mean Square Error
R2: R-squared
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