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Abstract

We investigate Laplace type and Laplace–Stieltjes type multipliers in the d-dimensional setting of the
Dunkl harmonic oscillator with the associated group of reflections isomorphic to Zd

2 and in the related
context of Laguerre function expansions of convolution type. We use Calderón–Zygmund theory to prove
that these multiplier operators are bounded on weighted Lp, 1 < p <∞, and from L1 to weak L1.
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1. Introduction

In [20] the author defined and investigated square functions related to the Dunkl
harmonic oscillator Lα and the related group of reflections isomorphic to Zd

2. This
paper continues the study of Lp mapping properties of fundamental harmonic analysis
operators associated with Lα. We consider Laplace type and Laplace–Stieltjes type
multiplier operators; see Section 2 for the definitions. The most typical examples
of such operators are the imaginary powers L−iγ

α , γ ∈ R, and the fractional integral
operators L−δα , δ > 0, as pointed out in [21, Section 2]. Thus our main result,
Theorem 2.2 below, may be regarded as a continuation of the investigations of Nowak
and Stempak [10, 11], where these operators were studied in the context of Lα. A trivial
choice of the multiplicity function reduces the Dunkl setting to the situation of classical
Hermite function expansions. Thus, in particular, our considerations provide results
in the Hermite setting, where the Laplace type multiplier operators were implicitly
analysed by Stempak and Torrea; see the comment in [17, p. 46]. Moreover, our
Dunkl situation reduces to the setting of Laguerre function expansions of convolution
type after restricting to reflection-invariant functions. Consequently, we also obtain
results in the Laguerre context.

Multipliers related to numerous classic kinds of orthogonal expansions have been
widely investigated. In particular, Stempak and Trebels [18] studied multipliers of non-
Laplace type in a one-dimensional Laguerre setting, which is deeply connected to our
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Dunkl situation (see Remark 2.9 below). Some earlier results concerning multiplier
operators of Laplace type for discrete and continuous orthogonal expansions can be
found in [1, 2, 4, 5, 13, 21], among others. A general treatment of Laplace type
multipliers in a context of symmetric diffusion semigroups can be found in Stein’s
monograph [15].

We refer the reader to the survey article by Rösler [12] for basic facts concerning
Dunkl’s theory. A precise description of the Dunkl framework for the particular group
of reflections G isomorphic to Zd

2 can be found in [9, Section 3]. Here we invoke
only the most relevant facts. We shall work in the space Rd, d ≥ 1, equipped with the
measure

dwα(x) =

d∏
j=1

|x j|
2α j+1 dx, x = (x1, . . . , xd) ∈ Rd,

and with the Euclidean norm | · |. The multi-index α = (α1, . . . , αd) ∈ [−1/2,∞)d

represents the multiplicity function. Consider the reflection group G ' Zd
2 generated

by σ j, j = 1, . . . , d,

σ j(x1, . . . , x j, . . . , xd) = (x1, . . . , −x j, . . . , xd).

Clearly, the reflection σ j is in the hyperplane orthogonal to e j, the jth coordinate
vector. Notice that the measure wα is G-invariant. The Dunkl differential-difference
operators Tα

j , j = 1, . . . , d, are given by

Tα
j f (x) = ∂x j f (x) + (α j + 1/2)

f (x) − f (σ jx)

x j
, f ∈C1(Rd), j = 1, . . . , d.

The Dunkl Laplacian,

∆α f (x) =

d∑
j=1

(Tα
j )2 f (x) =

d∑
j=1

(
∂2 f

∂x2
j

(x) +
2α j + 1

x j

∂ f
∂x j

(x) − (α j + 1/2)
f (x) − f (σ jx)

x2
j

)
,

is formally self-adjoint in L2(Rd, dwα). The Dunkl harmonic oscillator is defined as

Lα = −∆α + |x|2.

In our investigations, this operator will play a similar role to that of the Euclidean
Laplacian in classical harmonic analysis. Note that for α = (−1/2, . . . , −1/2), Lα
becomes the classic harmonic oscillator −∆ + |x|2. We shall consider a self-adjoint
extension Lα of Lα, whose spectral decomposition is discrete and given by the
generalised Hermite functions hαn ; see Section 2 for details.

The main objects of our study are spectral multipliers associated with Lα. More
precisely, we investigate two kinds of such operators; see Definition 2.1 below. The
first is a multiplier of Laplace type, which originates in Stein’s monograph [15]. The
second is a multiplier of Laplace–Stieltjes type, which was considered recently by
Wróbel [21] in the context of Laguerre function expansions of Hermite type, and its
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definition has roots in the work of De Nápoli, Drelichman and Durán [4]. Our main
result, Theorem 2.2, says that the multiplier operators in question are bounded on
weighted Lp(dwα), 1 < p <∞, and satisfy a weighted weak type (1,1) inequality, for
a large class of weights. We note that the unweighted Lp-boundedness, 1 < p <∞,
of the Laplace type multiplier operators also follows from the refinement of Stein’s
general Littlewood–Paley theory for semigroups (see [15, Corollary 3, p. 121]) due to
Coifman, Rochberg and Weiss [3]; see also [6, Theorem 2].

In the proof of Theorem 2.2 we exploit the arguments from [10] that allow us to
reduce the analysis to suitably defined Laguerre-type operators related to the smaller
measure space (Rd

+, dw+
α); here Rd

+ = (0,∞)d and w+
α is the restriction of wα to Rd

+.
Then we apply the theory of Calderón–Zygmund operators with the underlying space
of homogeneous type (Rd

+, dw+
α , | · |). An essential technical difficulty connected

with this approach is to show the relevant kernel estimates. Here we employ a
convenient technique having roots in Sasso’s paper [14] and developed by Nowak
and Stempak [8–10] and the author [19, 20]. It is remarkable that similar methods
have recently been established in the contexts of Jacobi expansions [7] and Bessel
operators [1].

The paper is organised as follows. Section 2 contains the set-up, definitions of the
investigated multipliers and statements of the main results. Also, suitable Laguerre-
type operators, related to the restricted space (Rd

+, dw+
α), are defined and the proof of

the main theorem is reduced to showing that these auxiliary operators are Calderón–
Zygmund operators. Furthermore, we verify that the Laguerre-type operators are
associated, in the Calderón–Zygmund theory sense, with suitable integral kernels. The
section is concluded by comments on the relation between Laguerre-type operators and
the Laguerre setting studied in [8]. Finally, Section 3 is devoted to the proofs of the
relevant kernel estimates.

Throughout the paper we use a standard notation with essentially all symbols
referring to the spaces (Rd, dwα, | · |) or (Rd

+, dw+
α , | · |). Thus ∆ and ∇ denote the

Euclidean Laplacian and gradient, respectively. Further, Lp(Rd, Wdwα) stands for
the weighted Lp(Rd, dwα) space, W being a nonnegative weight on Rd. By 〈 f , g〉dwα

we mean
∫
Rd f (x)g(x) dwα(x) whenever the integral makes sense. In a similar way

we define Lp(Rd
+, Udw+

α) and 〈 f , g〉dw+
α
. For 1 ≤ p <∞ we denote by Aα,+

p the
Muckenhoupt class of Ap weights associated with the space (Rd

+, dw+
α , | · |).

When writing estimates we will frequently use the notation X . Y to indicate that
X ≤CY with a positive constant C independent of significant quantities. We will write
X ' Y when both X . Y and Y . X.

2. Preliminaries and main results

Let k = (k1, . . . , kd) ∈ Nd, N = {0, 1, . . . }, and α = (α1, . . . , αd) ∈ [−1/2,∞)d be
multi-indices. The generalised Hermite functions in Rd are defined as tensor products

hαk (x) = hα1
k1

(x1) · · · hαd

kd
(xd), x = (x1, . . . , xd) ∈ Rd,
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where hαi
ki

are the one-dimensional generalised Hermite functions

hαi
2ki

(xi) = d2ki,αi e
−x2

i /2Lαi
ki

(x2
i ),

hαi
2ki+1(xi) = d2ki+1,αi e

−x2
i /2xiL

αi+1
ki

(x2
i ).

Here Lαi
ki

is the Laguerre polynomial of degree ki and order αi, and dn,αi , n ∈ N, are
suitable normalizing constants; see [9, p. 544] or [10, p. 4]. The system {hαk : k ∈ Nd}

is an orthonormal basis in L2(Rd, dwα) consisting of eigenfunctions of Lα,

Lαhαk = λα
|k|h

α
k , λαn = 2n + 2|α| + 2d, n ∈ N.

Here |k| = k1 + · · · + kd is the length of k; similarly |α| = α1 + · · · + αd. The operator

Lα f =

∞∑
n=0

λαn

∑
|k|=n

〈 f , hαk 〉dwα
hαk ,

defined on the domain Dom(Lα), consisting of all functions f ∈ L2(Rd, dwα) for
which the defining series converges in L2(Rd, dwα), is a self-adjoint extension of Lα
considered on C∞c (Rd).

The heat semigroup associated with Lα, defined by the spectral theorem as

Tα
t f = exp(−tLα) f =

∞∑
n=0

e−tλαn
∑
|k|=n

〈 f , hαk 〉dwα
hαk , f ∈ L2(Rd, dwα),

is a strongly continuous semigroup of contractions on L2(Rd, dwα). We have the
integral representation

Tα
t f (x) =

∫
Rd

Gα
t (x, y) f (y) dwα(y), x ∈ Rd, t > 0,

where the Dunkl heat kernel is given by

Gα
t (x, y) =

∞∑
n=0

e−tλαn
∑
|k|=n

hαk (x)hαk (y). (2.1)

This oscillating series can be summed (see, for instance, [9, p. 544] or [10, p. 5]), and
the resulting formula is

Gα
t (x, y) =

∑
ε∈Zd

2

Gα,ε
t (x, y),

with the component kernels

Gα,ε
t (x, y) = (2 sinh 2t)−d exp

(
−

1
2

coth(2t)(|x|2 + |y|2)
) d∏

i=1

(xiyi)εi
Iαi+εi (xiyi/(sinh 2t))

(xiyi)αi+εi
,
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where Iν denotes the modified Bessel function of the first kind and order ν. Here
we consider the functions z 7→ zν and the Bessel function as analytic functions on C
cut along the half-axis {ix : x ≤ 0}; see the references given above. Note that each
Gα,ε

t (x, y), ε ∈ Zd
2, is also expressed by the series (2.1), but with the summation in k

restricted to the set

Nε = {k ∈ Nd : ki is even if εi = 0, ki is odd if εi = 1, i = 1, . . . , d}.

D 2.1. Following Stein [15, p. 58, p. 121], we say that m is a multiplier of
Laplace (transform) type associated with Lα if m has the form

m(z) = mη(z) = z
∫ ∞

0
e−tzη(t) dt, z ≥ λα0 , (2.2)

where η is a bounded measurable function on (0,∞). We also consider multipliers of
Laplace–Stieltjes type associated with Lα (see [21, Section 2] and comments therein)
having the form

m(z) = mµ(z) =

∫
R+

e−tz dµ(t), z ≥ λα0 , (2.3)

where µ is a signed or complex Borel measure on R+ with total variation |µ| satisfying∫
R+

e−tλα0 d|µ|(t) <∞. (2.4)

We are now prepared to define the main objects of our study. Given a Laplace type
or Laplace–Stieltjes type multiplier m, we consider the multiplier operators

m(Lα) f =

∞∑
n=0

m(λαn )
∑
|k|=n

〈 f , hαk 〉dwα
hαk , f ∈ L2(Rd, dwα). (2.5)

It is not hard to see that m defined either by (2.2) or by (2.3) is a bounded function on
the interval [λα0 ,∞). Since spec(Lα) ⊂ [λα0 ,∞), the operator m(Lα) is a well-defined
bounded operator on L2(Rd, dwα).

To state and prove our main result it is convenient to introduce the following
terminology. Given ε ∈ Zd

2, we say that a function f : Rd → C is ε-symmetric if, for
each j = 1, . . . , d, f is either even or odd with respect to the jth coordinate according
to whether ε j = 0 or ε j = 1, respectively. If f is (0, . . . , 0)-symmetric, then we simply
say that f is symmetric. Further, if there exists ε ∈ Zd

2 such that f is ε-symmetric,
then we denote by f + the restriction of f to Rd

+. This convention pertains also to
ε-symmetric weights defined on Rd.

The main result of the paper reads as follows.

T 2.2. Assume that α ∈ [−1/2,∞)d, W is a weight on Rd invariant under the
reflections σ1, . . . , σd, and m is as in (2.2) or (2.3). Then the multiplier operator
m(Lα), defined initially on L2(Rd, dwα) by (2.5), extends uniquely to a bounded linear
operator on Lp(Rd, Wdwα), W+ ∈ Aα,+

p , 1 < p <∞, and to a bounded linear operator
from L1(Rd, Wdwα) to weak L1(Rd, Wdwα), W+ ∈ Aα,+

1 .
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The proof we give relies on reducing the problem to showing similar mapping
properties for certain operators emerging from m(Lα) and related to the restricted
space (Rd

+, dw+
α). The details are as follows. Let 1 ≤ p <∞ be fixed and let W be

a symmetric weight on Rd such that W+ ∈ Aα,+
p . We decompose m(Lα) into a finite

sum of L2-bounded operators

m(Lα) =
∑
ε∈Zd

2

mε(Lα),

where

mε(Lα) =

∞∑
n=0

m(λαn )
∑
|k|=n
k∈Nε

〈 f , hαk 〉dwα
hαk , f ∈ L2(Rd, dwα).

Then we proceed as in [10, Section 3] (see also [20, Section 2]). We split a function
f ∈ L2(Rd, dwα) into a finite sum of ε-symmetric functions fε,

f =
∑
ε∈Zd

2

fε.

We also introduce the Laguerre-type operators acting on L2(Rd
+, dw+

α),

mε,+(Lα) f =

∞∑
n=0

m(λαn )
∑
|k|=n
k∈Nε

〈 f , hαk 〉dw+
α
hαk . (2.6)

Since hαk is ε-symmetric if and only if k ∈ Nε, we see that

m(Lα) f =
∑
ε∈Zd

2

mε(Lα) fε, f ∈ L2(Rd, dwα).

Taking into account the fact that mε(Lα) fε is ε-symmetric, and the relation
〈 fε, hαk 〉dwα

= 2d〈 f +
ε , hαk 〉dw+

α
for k ∈ Nε, we obtain

‖m(Lα) f ‖Lp(Rd ,Wdwα) ≤ 2d/p
∑
ε∈Zd

2

‖mε(Lα) fε‖Lp(Rd
+,W+dw+

α)

= 2d+d/p
∑
ε∈Zd

2

‖mε,+(Lα) f +
ε ‖Lp(Rd

+,W+dw+
α),

for f ∈ L2(Rd, dwα) ∩ Lp(Rd, Wdwα). Since

‖ f ‖Lp(Rd ,Wdwα) '
∑
ε∈Zd

2

‖ f +
ε ‖Lp(Rd

+,W+dw+
α)

(see [10, p. 6] for the unweighted case), the above estimates, together with the bounds

‖mε,+(Lα) f +
ε ‖Lp(Rd

+,W+dw+
α) . ‖ f

+
ε ‖Lp(Rd

+,W+dw+
α), ε ∈ Zd

2,
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imply the estimate
‖m(Lα) f ‖Lp(Rd ,Wdwα) . ‖ f ‖Lp(Rd ,Wdwα).

An analogous implication involving weighted weak type (1, 1) inequalities is also
valid. Thus we have reduced proving Theorem 2.2 to showing the following.

T 2.3. Assume that α ∈ [−1/2,∞)d, ε ∈ Zd
2 and m is of the form (2.2) or (2.3).

Then the Laguerre-type operators mε,+(Lα), defined initially on L2(Rd
+, dw+

α) by (2.6),
extend uniquely to bounded linear operators on Lp(Rd

+, Udw+
α), U ∈ Aα,+

p , 1 < p <∞,
and to bounded linear operators from L1(Rd

+, Udw+
α) to weak L1(Rd

+, Udw+
α), U ∈ Aα,+

1 .

The proof of Theorem 2.3 will be obtained by means of the general Calderón–
Zygmund theory. More precisely, we will show that each of the operators mε,+(Lα),
ε ∈ Zd

2, is a Calderón–Zygmund operator in the sense of the space of homogeneous type
(Rd

+, dw+
α , | · |). It is well known that the classical Calderón–Zygmund theory works,

with appropriate adjustments, when the underlying space is of homogeneous type; see,
for instance, the comments and references in [8, p. 649].

The following result combined with the Calderón–Zygmund theory implies
Theorem 2.3, and thus also Theorem 2.2. The corresponding proof splits naturally
into proving Proposition 2.5 and Theorem 2.6 below.

T 2.4. Assume that α ∈ [−1/2,∞)d and ε ∈ Zd
2. Then the Laguerre-type

operators from Theorem 2.3 are Calderón–Zygmund operators in the sense of the
space of homogeneous type (Rd

+, dw+
α , | · |).

Formal computations, similar to those from [21, Section 2], suggest that mε,+(Lα),
ε ∈ Zd

2, where m is either as in (2.2) or as in (2.3), are associated with the kernels

Kα,ε(x, y) = Kα,ε
η (x, y) = −

∫ ∞

0
∂tG

α,ε
t (x, y)η(t) dt, ε ∈ Zd

2, (2.7)

Kα,ε(x, y) =Kα,ε
µ (x, y) =

∫
R+

Gα,ε
t (x, y) dµ(t), ε ∈ Zd

2, (2.8)

respectively. The next result shows that this is indeed the case, at least in the Calderón–
Zygmund theory sense.

P 2.5. Let α ∈ [−1/2,∞)d and ε ∈ Zd
2.

(a) If m = mη is a Laplace type multiplier, then mε,+(Lα) is associated with the kernel
Kα,ε(x, y) in the sense that, for any f , g ∈C∞c (Rd

+) with disjoint supports,

〈mε,+(Lα) f , g〉dw+
α

=

∫
Rd

+

∫
Rd

+

Kα,ε(x, y) f (y) dw+
α(y) g(x) dw+

α(x). (2.9)

(b) If m = mµ is a Laplace–Stieltjes type multiplier, then mε,+(Lα) is associated
with the kernel Kα,ε(x, y) in the sense that, for any f , g ∈C∞c (Rd

+) with disjoint
supports,

〈mε,+(Lα) f , g〉dw+
α

=

∫
Rd

+

∫
Rd

+

Kα,ε(x, y) f (y) dw+
α(y) g(x) dw+

α(x). (2.10)
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P. Taking into account that for each ε ∈ Zd
2 the system {2d/2hαk : k ∈ Nε} is an

orthonormal basis in L2(Rd
+, dw+

α), by (2.6) and Parseval’s identity we see that

〈mε,+(Lα) f , g〉dw+
α

=

∞∑
n=0

m(λαn )
∑
|k|=n
k∈Nε

〈 f , hαk 〉dw+
α
〈hαk , g〉dw+

α
. (2.11)

To finish the proof it suffices to show that the right-hand side of (2.11) coincides with
the right-hand side of (2.9) or (2.10), according to whether m is as in (2.2) or (2.3),
respectively. This task reduces to justifying the possibility of changing the order
of integration, summation and differentiation in the relevant expressions. Then the
arguments are similar to those for other operators; see, for instance, [8, Proposition
3.3]. The crucial facts are the estimate (as in [20, (2.3)])

|hαk (x)| . (|k| + 1)cd,α , k ∈ Nd, x ∈ Rd
+,

and the bounds∫ ∞

0
|∂tG

α,ε
t (x, y) η(t)| dt .

1
w+
α(B(x, |y − x|))

, x, y ∈ Rd
+, x , y,∫

R+

Gα,ε
t (x, y) d|µ|(t) .

1
w+
α(B(x, |y − x|))

, x, y ∈ Rd
+, x , y,

which are verified in the proof of Theorem 2.6. We leave further details to the reader. �

Let B(x, r) denote the ball centred at x and of radius r, restricted to Rd
+.

T 2.6. Assume that α ∈ [−1/2,∞)d and ε ∈ Zd
2.

(a) The kernel Kα,ε(x, y) satisfies the growth estimate

|Kα,ε(x, y)| .
1

w+
α(B(x, |y − x|))

, x, y ∈ Rd
+, x , y,

and the gradient condition

|∇x,yKα,ε(x, y)| .
1
|x − y|

1
w+
α(B(x, |y − x|))

, x, y ∈ Rd
+, x , y.

(b) Analogous estimates hold for Kα,ε(x, y).

The proof of Theorem 2.6 is the most technical part of the paper and is located in
Section 3.

We conclude this section with various comments and remarks related to the main
result. First, note that our methods also allow us to treat Laplace and Laplace–Stieltjes
type multipliers related to the square root of Lα. Indeed, consider the multiplier
operator

m(
√
Lα) f =

∞∑
n=0

m(
√
λαn )

∑
|k|=n

〈 f , hαk 〉dwα
hαk , f ∈ L2(Rd, dwα), (2.12)
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and for ε ∈ Zd
2 the Poisson–Laguerre-type operators

mε,+(
√
Lα) f =

∞∑
n=0

m(
√
λαn )

∑
|k|=n
k∈Nε

〈 f , hαk 〉dw+
α
hαk , f ∈ L2(Rd

+, dw+
α), (2.13)

where m is as in Definition 2.1 with λα0 replaced by
√
λα0 . Then the operators m(

√
Lα)

and mε,+(
√
Lα) are well defined and bounded on L2(Rd, dwα) and L2(Rd

+, dw+
α),

respectively. The integral kernels associated with mε,+(
√
Lα) have forms analogous

to (2.7) and (2.8), where Gα,ε
t (x, y) should be replaced by the subordinated kernel

Pα,ε
t (x, y) =

∫ ∞

0
Gα,ε

t2/(4u)
(x, y)

e−u du
√
πu

.

Proceeding similarly as in the case of m(Lα), with only slightly more effort we obtain
the following result.

T 2.7. Assume that α ∈ [−1/2,∞)d and ε ∈ Zd
2. Then the Poisson–Laguerre-

type operators mε,+(
√
Lα), ε ∈ Zd

2, defined by (2.13), are Calderón–Zygmund operators
in the sense of the space of homogeneous type (Rd

+, dw+
α , | · |). Consequently, each of

these operators, defined initially on L2(Rd
+, dw+

α), extends uniquely to a bounded linear
operator on Lp(Rd

+, Udw+
α), U ∈ Aα,+

p , 1 < p <∞, and to a bounded linear operator
from L1(Rd

+, Udw+
α) to weak L1(Rd

+, Udw+
α), U ∈ Aα,+

1 .

C 2.8. Assume that α ∈ [−1/2,∞)d and W is a weight on Rd invariant
under the reflections σ1, . . . , σd. Then the multiplier operator m(

√
Lα), defined

initially on L2(Rd, dwα) by (2.12), extends uniquely to a bounded linear operator
on Lp(Rd, Wdwα), W+ ∈ Aα,+

p , 1 < p <∞, and to a bounded linear operator from
L1(Rd, Wdwα) to weak L1(Rd, Wdwα), W+ ∈ Aα,+

1 .

Next, we comment on the relation between the auxiliary operators mε,+(Lα), ε ∈ Zd
2,

and the Laguerre setting from [8]. Note that for the particular ε0 = (0, . . . , 0) the
Laguerre-type operator mε0,+(Lα) coincides, up to the factor 2−d, with the multiplier
operator m(L`α) related to the Laguerre Laplacian L`α considered in [8] and [19]. More
precisely,

m(L`α) f =

∞∑
n=0

m(λα2n)
∑
|k|=n

〈 f , `αk 〉dµα`
α
k , f ∈ L2(Rd

+, dµα), (2.14)

where `αk are the Laguerre functions of convolution type and µα ≡ w+
α . Therefore

the results of this section also deliver analogous results in the Laguerre setting
of convolution type; see [20, Section 2] for further explanations concerning the
connection between the Dunkl and Laguerre settings.

T 2.9. Assume that α ∈ [−1/2,∞)d and m is as in (2.2) or (2.3). Then
the Laguerre multiplier operator m(L`α), defined initially on L2(Rd

+, dµα) by (2.14),
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is a Calderón–Zygmund operator in the sense of the space of homogeneous type
(Rd

+, dµα, | · |). Consequently, m(L`α) extends uniquely to a bounded linear operator
on Lp(Rd

+, Udµα), U ∈ Aα,+
p , 1 < p <∞, and to a bounded linear operator from

L1(Rd
+, Udµα) to weak L1(Rd

+, Udµα), U ∈ Aα,+
1 .

A similar result holds for Laplace and Laplace–Stieltjes type multipliers related to
the square root of L`α; see Theorem 2.7 and Corollary 2.8 above.

3. Kernel estimates

This section delivers proofs of the relevant kernel estimates. We use the technique
developed by Nowak and Stempak [8–10], which is based on Schläfli’s integral
representation for the modified Bessel function Iν involved in the Dunkl heat kernel.
This method was refined by the author in [19, 20] to obtain standard estimates for
various kernels related to L`α and Lα. Below, we will frequently invoke estimates
obtained in the latter paper. Recall that we always assume that α ∈ [−1/2,∞)d.

Given ε ∈ Zd
2, the ε-component of the Dunkl heat kernel is given by

Gα,ε
t (x, y) =

1
2d

(1 − ζ2

2ζ

)d+|α|+|ε|

(xy)ε

×

∫
[−1,1]d

exp
(
−

1
4ζ

q+(x, y, s) −
ζ

4
q−(x, y, s)

)
Πα+ε(ds) (3.1)

(see [9, Section 5]), where (xy)ε = (x1y1)ε1 · · · (xdyd)εd ,

q±(x, y, s) = |x|2 + |y|2 ± 2
d∑

i=1

xiyisi

and t > 0 and ζ ∈ (0, 1) are related by ζ = tanh t; equivalently,

t = t(ζ) =
1
2

log
1 + ζ

1 − ζ
. (3.2)

The measure Πβ appearing in (3.1) is a product of one-dimensional measures, Πβ =⊗d
i=1 Πβi , where Πβi is given by the density

Πβi (dsi) =
(1 − s2

i )βi−1/2dsi
√
π2βiΓ(βi + 1/2)

, βi > −1/2,

and in the limiting case Π−1/2 =
(
δ−1 + δ1

)
/
√

2π, with δ−1 and δ1 denoting the point
masses at −1 and 1, respectively.

To estimate the kernels defined via Gα,ε
t (x, y) we will need several auxiliary results.

In particular, the following modification of [16, Lemma 1.1] will be useful.

L 3.1. Given a > 1, we have∫ 1

0
(1 − ζ2)−1/2ζ−a exp(−Tζ−1) dζ . T−a+1, T > 0.
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P. We split the region of integration into (0, 1/2) and (1/2, 1). For ζ ∈ (0, 1/2) we
have (1 − ζ2)−1/2 ' 1, so the bound for the integral over (0, 1/2) is a straightforward
consequence of [16, Lemma 1.1]. It remains to estimate the integral over (1/2, 1).
Since ζ ' 1 in this case and supu≥0 ua−1e−u <∞, we see that

ζ−a exp(−Tζ−1) . T−a+1(Tζ−1)a−1 exp(−Tζ−1) . T−a+1, ζ ∈ (1/2, 1), T > 0.

Now the conclusion follows because
∫ 1

1/2
(1 − ζ2)−1/2 dζ <∞. �

The lemma below establishes an important connection between estimates emerging
from the representation (3.1) and standard estimates related to the space (Rd

+, dw+
α , | · |).

L 3.2 ([9, Lemma 5.3], [10, Lemma 4]). Assume that α ∈ [−1/2,∞)d and let
δ, κ ∈ [0,∞)d be fixed. Then for x, y ∈ Rd

+, x , y,

(x + y)2δ
∫

[−1,1]d
(q+(x, y, s))−d−|α|−|δ| Πα+δ+κ(ds) .

1
w+
α(B(x, |y − x|))

and

(x + y)2δ
∫

[−1,1]d
(q+(x, y, s))−d−|α|−|δ|−1/2Πα+δ+κ(ds) .

1
|x − y|

1
w+
α(B(x, |y − x|))

.

To state the next lemma and to perform the relevant kernel estimates we will use the
same abbreviation as in [20],

Exp(ζ, q±) = exp
(
−

1
4ζ

q+(x, y, s) −
ζ

4
q−(x, y, s)

)
.

Also, we will often neglect the set of integration [−1, 1]d in integrals over Πα and will
frequently write q+ and q− for brevity, omitting the arguments.

L 3.3. Assume that α ∈ [−1/2,∞)d and ε, ξ, ρ ∈ Zd
2 are fixed and such that ξ ≤ ε,

ρ ≤ ε. Given C > 0 and u ≥ 1, define the function pu acting on Rd
+ × R

d
+ × (0, 1) by

pu(x, y, ζ) =

√
1 − ζ2 ζ−d−|α|−|ε|+|ξ|/2+|ρ|/2−u/2−1/2xε−ξyε−ρ

∫
[−1,1]d

(Exp(ζ, q±))CΠα+ε(ds).

Then pu satisfies the integral estimate

‖pu(x, y, ζ(t))‖L1(dt) .
1

|x − y|u−1

1
w+
α(B(x, |y − x|))

, x , y,

where t and ζ are related as in (3.2).

P. Changing the variable as in (3.2) and then using in order the Fubini–
Tonelli theorem, Lemma 3.1 (with a = d + |α| + |ε| − |ξ|/2 − |ρ|/2 + u/2 + 1/2) and the
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inequality |x − y|2 ≤ q+, we obtain

‖pu(x, y, ζ(t))‖L1(dt)

= xε−ξyε−ρ
∫ ∫ 1

0
(1 − ζ2)−1/2ζ−d−|α|−|ε|+|ξ|/2+|ρ|/2−u/2−1/2

× (Exp(ζ, q±))C dζ Πα+ε(ds)

. xε−ξyε−ρ
∫

(q+)−d−|α|−|ε|+|ξ|/2+|ρ|/2−u/2+1/2 Πα+ε(ds)

≤ (x + y)2ε−ξ−ρ 1
|x − y|u−1

∫
(q+)−d−|α|−|ε−ξ/2−ρ/2| Πα+ε(ds).

This, in view of Lemma 3.2 (taken with δ = ε − ξ/2 − ρ/2 and κ = ξ/2 + ρ/2), gives
the desired conclusion. �

L 3.4 [19, Lemma 4.2]. Given b ≥ 0 and c > 0, we have

(q±(x, y, s))b exp(−cAq±(x, y, s)) . A−b exp
(
−cA

2
q±(x, y, s)

)
, A > 0,

uniformly in q±.

P  T 2.6(). The growth condition is a consequence of the estimate

|∂tG
α,ε
t (x, y)| .

√
1 − ζ2 ζ−d−|α|−|ε|−1 (xy)ε

∫
(Exp(ζ, q±))1/2 Πα+ε(ds),

which is stated explicitly in [20, (4.6)], the fact that η is bounded and Lemma 3.3
(applied with u = 1, ξ = ρ = 0).

To prove the gradient condition, by symmetry, it suffices to show that

|∂x j K
α,ε(x, y)| .

1
|x − y|

1
w+
α(B(x, |y − x|))

, x , y, j = 1, . . . , d.

Differentiating (2.7) with respect to x j (passing ∂x j under the integral sign can be easily
justified; see [19, Section 4.1]),

∂x j K
α,ε(x, y) = −

∫ ∞

0
∂x j∂tG

α,ε
t (x, y)η(t) dt, x , y.

Then, applying the first inequality in [20, (4.7)],

|∂x j∂tG
α,ε
t (x, y)| .

√
1 − ζ2 ζ−d−|α|−|ε|−3/2 (xy)ε

∫
(Exp(ζ, q±))1/4 Πα+ε(ds)

+ χ{ε j=1}

√
1 − ζ2ζ−d−|α|−|ε|−1 xε−e j yε

∫
(Exp(ζ, q±))1/2Πα+ε(ds),

the fact that η is bounded and Lemma 3.3 twice (with u = 2 and either ξ = ρ = 0 or
ξ = e j, ρ = 0), leads directly to the required bound.

The proof of (a) in Theorem 2.6 is complete. �
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P  T 2.6(). We first verify the growth condition. Using Lemma 3.4
(with b = d + |α| + |ε|, c = 1/4, A = ζ−1),

et(2d+2|α|)Gα,ε
t (x, y) ≤

(1 + ζ

1 − ζ

)d+|α|(1 − ζ2

2ζ

)d+|α|+|ε|

(xy)ε
∫
Exp(ζ, q±) Πα+ε(ds)

. ζ−d−|α|−|ε| (xy)ε
∫
Exp(ζ, q±) Πα+ε(ds)

. (x + y)2ε
∫

(q+)−d−|α|−|ε| Πα+ε(ds).

Now the conclusion follows with the aid of Lemma 3.2 (specified to δ = ε and κ = 0)
and the assumption (2.4) concerning the measure µ.

Next, our task is to show the gradient condition. By symmetry, it suffices to prove
that

|∂x jK
α,ε(x, y)| .

1
|x − y|

1
w+
α(B(x, |y − x|))

, x , y, j = 1, . . . , d.

Differentiating (2.8) with respect to x j (exchanging ∂x j with the integral sign is
legitimate; see, for instance, [19, Section 4.3]),

∂x jK
α,ε(x, y) =

∫
R+

∂x jG
α,ε
t (x, y) dµ(t), x , y.

Using the estimate

|∂x jG
α,ε
t (x, y)| .

(1 − ζ2

2ζ

)d+|α|+|ε|

ζ−1/2 (xy)ε
∫

(Exp(ζ, q±))1/2Πα+ε(ds)

+ χ{ε j=1}

(1 − ζ2

2ζ

)d+|α|+|ε|

xε−e j yε
∫
Exp(ζ, q±) Πα+ε(ds),

which is implicitly contained in [20, Section 4.2], and then proceeding in a similar
way as in the case of the growth condition, this time applying Lemma 3.4 twice
(with b = d + |α| + |ε| + 1/2, c = 1/8, A = ζ−1 and b = d + |α| + |ε|, c = 1/4, A = ζ−1),
we obtain

et(2d+2|α|)|∂x jG
α,ε
t (x, y)| . (x + y)2ε

∫
(q+)−d−|α|−|ε|−1/2 Πα+ε(ds)

+ χ{ε j=1}(x + y)2ε−e j

∫
(q+)−d−|α|−|ε−e j/2|−1/2Πα+ε(ds).

Taking into account (2.4), this estimate, together with Lemma 3.2 (with δ = ε, κ = 0
and δ = ε − e j/2, κ = e j/2), leads directly to the gradient condition forKα,ε(x, y). This
completes the proof of (b) in Theorem 2.6. �
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