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THE SPECTRAL POWER DENSITY AND SHADOWING
FUNCTION OF A GLACIAL MICRORELIEF AT THE
DECIMETRE SCALE

By J.-P. BEnonsT
(Laboratoire de Glaciologie du CNRS, 2 rue Trés-Cloitres, 38031 Grenoble Cedex, France)

ABSTRACT. Longitudinal profiles of roches moutonnées have been measured once every centimetre over a
total length of more than 100 m. Only wavelengths in the range 3.6 cm < A < 40 cm have been kept and
analysed. Levels and their slopes have a symmetrical, non-Gaussian distribution. The spectral power
density varies roughly as yo»~" (v = wavenumber = 1/}); n being the same for all the profiles (n = 2.36)
and y, being dependent on the studied area. No significant difference has been found for the shadowing
function of the different studied areas. It differs consistently from Smith’s theoretical function.

RisumE. Analyse specirale et fonction d’éclairement d*un microrelief glaciaire d I'échelle du décimétre. On a mesuré
tous les centimétres, plus de 100 m de profils sur des roches moutonnées. Seules les lengueurs d’onde A
entre 3,6 cm et 40 cm ont été analysées. Les ordonnées d’une part et leurs pentes d’autre part, ont une
distribution symétrique non gaussienne. La densité spectrale de puissance décroit sensiblement comme
yor " (v = fréquence — 1/A); n est le méme pour tous les profils (n = 2,36) y, différe suivant la zone
étudiée. Il n’y a pas de différence significative pour le fonction d’éclairement calculée pour les différentes
zones. Elle différe de fagon sensible de la courbe théorique calculée par Smith.

ZUSAMMENFASSUNG.  Leistungsspektrum und Fensterfunktion glazialen Mikroreliefs im Dezimeterbereich. Langs-
profile Gtber Rundhécker mit einer Gesamtlinge von mehr als 100 m wurden Zentimeter fiir Zentimeter
eingemessen. Festgestellt und analysiert wurden nur Wellenlingen im Bereich 3,6 em < X < 40 cm.
Die Ordinaten und ihre ersten Ableitungen haben eine symmetrische, nicht-normale Verteilung. Das
Leistungsspektrum schwankt anniihernd mit yov" (v = Frequenz — 1/A), wobei n fiir alle Profile denselben
Wert (n = 2,36) besitzt, wihrend y, verschieden ist. Fiir die Fensterfunktion der verschiedenen untersuchten
Gebiete wurde kein signifikanter Unterschied festgestellt; sie weicht jedoch konsequent von Smith’s theoreti-
schem Wert ab.

INTRODUGTION

Nye (1970) and Kamb (1970) give the expression for the basal shear stress 7, (equation (4),
Nye (1970))

¢ 5
Th = 16quv, f y(v) 1)”.zﬁ;dv, (1)

where y(v) is the power spectral density of microrelief and
vy = L[(1672CKy). (2)

In these equations L is the latent heat of fusion, C is the constant relating the depression of the
melting-point to the pressure, K is the mean thermal conductivity of ice and rock, 7 is the
effective viscosity of the ice, u is the ice velocity, and » is the wave number of the microrelief.
This relation applies (Kamb, 1970; Lliboutry, 1975) if the ice has a non-linear viscosity and
if there is no cavitation. In such a case, the spectral power density of microrelief is a very
important parameter in the study of glacier sliding.

Observation of glacial bedrock shows that tiny cavities, a few centimetres long, appear at
the interface between the ice and the rock. At Blue Glacier, a four-centimetre cavity has been
observed under 119 m of ice (Kamb, 1970). Lliboutry (1968) has shown the importance of
the shadowing function for the study of sliding with cavitation. In this case = is given by
equation (1-16) of Benoist and Lliboutry (1978)

—8
0 = (po—p) kg (1), (3
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where p is the mean pressure of ice against bed, and p is the pressure when cavitation is
absent. S(t) is the shadowing function of bedrock and ¢ the mean slope of the ceiling of the
cavities. If cavitation occurs, the bedrock shadowing function becomes the most important
geometrical parameter.

In this paper, the preliminary results of a statistical and spectral analysis of glacial bedrock
are given. Only profiles levelled in the mean direction of ice flow deduced from striations on
rock are studied. For each profile the spectral power density and shadowing function are
given. As the shadowing function depends on the distribution of elevations and profile slopes
(Benoist and Lliboutry, 1978), these distributions are also studied.

The sampling interval, the method used for the spectral analysis, and the available data
determine the bandwidth which can be studied, and the frequency vy given by Equation (2)
is of the order of a few decimetres. Thus, only the wavelengths between 3.6 and 40 cm will
be analysed, for reasons which will be discussed later.

FIELDWORK

The profiles which were studied are near the snout of Glacier de Saint-Sorlin (Massif des
Grandes Rousses, France) in the contact area between arkoses and carboniferous schists;
therefore, these two formations can be found in the same profile. The drift deposited by the
receding glacier was removed from three areas numbered I, II, and 1II. Zone I is a very
smooth area with large undulations ( &~ 5 m long). Four separate longitudinal profiles (~ 15 m
long) were taken in this area. Zone II is composed of elongated bumps (2 m long) in the
direction of ice flow, separated by deep channels with striations at their bases: this zone can
really be referred to as an area of roches moutonnées. 'The appearance of zone 111 is intermediate
between the appearance of the first and the second zone. Two profiles (~20 m long) were
levelled in this area.

Measurements were taken vertically every centimetre between a reference horizontal and
the rock. The levelling device consisted of a beam two metres long supported at each end
by a tripod and a carriage which supported a vertical rule. The beam was levelled with an
accurate spirit level. The accuracy and reproducibility of the measurements were good,
vertical accuracy is +0.5 mm and horizontal accuracy is better than 0.1 mm.

This simple, precise method has three disadvantages: it is not suitable for the study of long
wavelengths, it is not readily applicable to the two-dimensional problem, and a considerable
amount of time is necessary to level 10 000 points in the field (this amount of data is a working
minimum for our data analysis). For these reasons, photogrammetry has been employed;
it is less accurate but it does not have these disadvantages. Data are acquired using a stereo-
comparator. Results obtained by this method will be published later.

FILTERING OF LARGE WAVELENGTHS

As explained by Nye (1970), microrelief must be defined relative to a smoothed bedrock,
the reference profile. To obtain this, low frequencies must be removed from the actual profile.
Since all information about frequencies higher than (2Ax)~' (Ax is the sampling interval) is
lost in the data digitization, a numerical bandpass filter was used. This gives a better stability
than with a high-pass filter. The procedure needed to define a bandpass filter from its transfer
function is described by Radix (1g970).

The 3 dB low cut-off frequency is 0.01 cm~'. In order to reduce spurious response the
high cut-off frequency is 0.4 cm~'. The transient response of this bandpass filter vanishes at
x = 120 cm which means that the first 120 points of each filtered profile correspond to the
transient response and they will have to be removed from the profile before analysis. The gain
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is constant from »; = 0.025 cm~! to v, — 0.275 cm~". Thus, in the spectral analysis, only the
frequencies between v, and v, will have to be considered in the interpretation. The frequencies
lower than v, constitute the general topography of the reference bedrock.

S'[‘ATISTlCAL DISTRIBUTION OF ELEVATIONS AND SLOPES

Results of the distributions of elevations are collected in Table I. The first four moments
and the standard deviation of the first three moments have been computed for each profile.

Plotting the results on Gaussian (normalized) paper shows that the elevation distributions
of the profiles are not Gaussian. For each zone, variances have been tested to establish
whether the different profiles could be considered as samples of the same set. For zones I and
I1, these tests are positive with 9g°, confidence limits. On the other hand, the two profiles of
zone 111 must be considered separately, the difference of their variances being significant.
They will be named zone IT1-1 and zone I11-2. The difference between the two profiles of
the third area could be produced by the anisotropy of bedrock. Only a two-dimensional study
of bedrock can explain what has happened in this zone.

TABLE I. STATISTICAL STUDY OF LEVELS

Number
of Mean  Variance ~ Mean Variance Mean Variance — Mean
points i O, Bz Tu, K Ty, 2
Zone | 1 444 —0.038 0.026 1.010  0.047 0.02 o0.14 4.14
1432 —0.059 0.029 1.166  0.058 0.23 0.19 6.12
1 506 —0.035 0.028 1.186  0.054 0.26 0,18 5.79
1391 —0.058 o0.027 1.002  0.046 0.13 0.13 3.94
Zone 11 869 —0.052 0.046 1.868 o.130 0.4 06 18
300 —0.250 0.087 2.280 o0.275 —2 2 g9
780 —0.124 0.054 2.250 0,128 2 0.6 18
Zone 111 1 280 —o0.046  0.074 6.790 0.340 2 3 194
1 320 —0.031 0.062 5.190 0.30 1.5 3 145

According to the theory (Hald, 1952), if a distribution is not Gaussian, then all the
moments, up to a high order, must be tested to examine whether the samples have been
selected from a single population. However, accuracy decreases rapidly with increasing order
because the number of individuals in the samples is not large enough, In practice, a stability
to degree two is sufficient,

If we take the inaccuracy into account, #y and py do not differ significantly from zero.
The distributions of ordinates are then quite symmetrical. The following values will be used:

zone I u, = o, K, = 1.092, 0, = 0.025, B, = 4.20,
zone Il u, = o, p. = 2.08, 5,, = 0.09, B. = 4.5.

#a

Coefficient B, = u,/u,? is the flatness coefficient for the distribution. It is equal to three
for a Gaussian distribution. Values greater than three are associated with distributions which
are sharper than a Gaussian curve with the same standard deviation (a leptokurtic distribu-
tion).

For each profile, slopes at point j have been estimated by

d_z! S e (4)
dx 2Ax 4
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TasBLE II, STATISTICAL STUDY OF SLOPES

Number

of Mean Variance  Mean Variance Mean Variance ~ Mean

points B oy, pa=m* oy, B3 Oy, Ha
Zone I 1444 —0.006 0.004 0.030 0,002 0.000 0.002 0.007
1 437 0.000 0.005 0.032 0,003 0.003 0.003 0.010
1 492 0.003 0.005 0.031 ©0.002 0.002 0.002 0.009
1 392 —0.003 0.005 0.031 0.002 0.002 0.003 0.008
Zone 11 880 —o0.006 0.007 0.051 0.004 —0.004 0.003 0.018
313 0.008 0.013 0.054 0.008 0.006 0.000 0.024
8go —0.002 0.007 0.049 0.003 0.006 0.003 0.012
Zone 111 1 246 —0.018 0,008 0.086 o0.004 0.009 0.005 0.032
1 289 —0.015 0.007 0.065 0.004 0.005 0.005 0.022

Results of slope distributions are given in Table 11. The same verifying tests as for the
clevations have been carried out. The conclusions are the same, for zone I and II profiles
come from the same population, but profiles of zone I11 come from different populations,

zonel p; =0, Wy = 0.031, G,, = 0.001, By = O, B = 8.5,

4z
zone IT p, =0, [y = 0.051, aiu = 0.003, iy = O, B, = 6.15.

Distributions are symmetric and leptokurtic. A symmetric distribution of slopes in
roches moutonnées may be surprising, but it is at the scale of one metre that their asymmetry
appears—the microrelief is studied here at the scale of one decimetre.

These results are very important in the study of the shadowing function and the spectral
analysis. For zone I and II treated separately, the profiles come from the same statistical
process and it becomes possible to average the estimated values of shadowing function or the
spectral power density. This averaging improves the accuracy of the estimations.

SPECTRAL ANALYSIS

Two methods can be chosen to compute the spectral power density: the classical method,
which is to compute the discrete Fourier transform (D.F.T.), or the maximum entropy
method (M.E.M.) (Smylie and others, 1973). M.E.M. is more attractive than the classical
methods because it gives results for wavelengths longer than the profile length, also, the sharp-
ness of the analysis is better, but the method has many disadvantages, in some cases split
peaks appear (Fougére and others, 1976), the variance of estimated power spectral density
is not known, and the computation is faster when using a fast Fourier transform algorithm
than when using the M.E.M. For these reasons, I chose the classical method.

Let sequence zx (kK = o to M—1) be the sequence of the profile z(x) which has been
sampled at an interval Ax. The discrete Fourier transform of sequence zx is sequence <i
(I = o to M—1) defined by the equation

M—1

o .y
= i zexp | —21m 77 ). (5)

k=0

The D.F.T. has been computed with a fast Fourier transform algorithm (Eberhard,
unpublished). An estimate of spectral power density y; is given by

P = |Z? (6)

(where the circumflex * indicates the estimate of a parameter).
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With the above formulae, Parseval’s theorem becomes
M—1

o= D fu (7)
=0
(The moment of order two measures the power of a signal.)

It can be shown (Oppenheim and Schafer, 1975) that this estimator of spectral power
density is not consistent, the variance does not tend to zero as the number of observations
becomes large. Welch’s methad (Oppenheim and Schafer, 1975) has been used as a better
estimator of spectral power density.

The whole sequence zj is cut in N independent slices of A points. The mean of the
various estimates for spectral power densities gives a final estimate $;. The variance of 7118
given hy
1
W_ Y% (8)

o

var (§1) =

To reduce the side lobes of the response, the spectra have been filtered with Hamming’s
window (Bath, 1974). In order not to lose any information, slices must overlap by one-half.
As the number of samples is fixed, this method forces a compromise between the number of
slices M and the number of analysed points M in each slice or, in other words, between
variance and sharpness of analysis. Fast Fourier transform computation has been performed
with slices having M =128 points. The sharpness of analysis is (Ax—1 cm)

1
Ay = WAs = 0007 812 5cm—1,

Figure 1 shows the spectral power density ; estimated by this method plotted with
logarithmic coordinates. If the real value of the spectral power density is required, 7; must
be multiplied by M = 128.

In the frequency range 0.025 cm™" < v <C 0.275 cm~!, spectral power density j(»)
decreases roughly as y,~7 where v = (Ay ({l =0 to M—1). Using a weighted least-square
method, each spectrum has been fitted to the linear relation

log (7(v)) = log yo—nlogv. (9)
The weighting function equals the inverse of the standard deviation of log (7(v)).
Bois (unpublished) gives a method for checking the validity of a linear regression if the
distribution of the residues is Gaussian. Residues are the quantities given by
& = yi—Jj, (10)
where y; is the measured value at x; and j; the value estimated by the linear regression.
Let Ej be the sum of the first j residues
1

Ej:ZEi (E“'—‘-O), ([I)

and ¥(j) the ellipse given by

() = 24 f) ocli(n—j)/(n—1)}4, (12)
5. is the standard deviation of residues. It is given by
e — (l_cz}é! (13)

where C is the correlation coefficient between y1 and x;. At a given probability threshold f,
the curve of Ej against j is inside ¥(j) if the residues are randomly distributed. ¢( f) is the
normal standarized variable of probability 1—fj2 (f= 19, t(f) = 2.56). (Bois’ results
can be found in Bernier, 1977.)
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00! 0025 01 0 275 1

Fig. 1. Spectral power densily y(v). (L zone I; 2 zone l; 3 zone Il-1; 4 zome IIl-». The vertical line marks the
frequency range within which the filter-gain factor is constant (0.025 em Vs = o.275 cm V). Straight lines are given
by the model y(v) — yov™ ", compuled for each zone.

For zone 1, there are 44 independent estimates of y(v), the distribution of log (y(v)) for a
fixed v value is fairly Gaussian. The model can be tested with the method described by Bois.

Results obtained for the fitted spectra are gathered in Table I11. The various estimates
of n overlap with 99¢, confidence and the following mean value will be used:

n=246+0.1;

on the other hand, y, values are different for each zone.

The model explains gg¢, of the variance, in the frequency range 0.025 cm ' 10 0.275 em=",
but, assuming that the residues are, in fact, Gaussian, the cumulated residues (Fig. 2) go out
of the ellipse constructed for 99, confidence limits. This result can occur for two reasons:
the tests may not work because the population is not strictly Gaussian (there are not enough
data at present to give a good estimate distribution of log (y(v)), or the model may not be
adequate to explain the variation of the spectrum, and the tests may be showing a systematic
difference between model and spectrum.

Theorists have considered the same model for non-dimensional profiles with n = 3.
In the frequency range studied here, spectral power density does not decrease as fast as in a
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Cumulated
residues

Cumulared
residues

Fig. 2. Cumulated residues assuming a Gaussian distribution,

Ellipses are drawn for 99°,, confidence limits: a. zone I G
b. zone Il; ¢. zone Ill-1 ; d. zone Il]-».

non-dimensional model. Kamb’s model (1970)
lengths seems to be unrealistic. In Table I11, estimates of power and of quadratic slope p
(square root of slope variance) are given in the frequency range 0.025 cm™"' < v < 0.275 cm—!,

The Fourier transform of the derivative of x(t) is 2imvX(v) where X(v) is the Fourier

transform of x(t) (Bath, 1974), therefore, the spectral power density of the slopes yq(v) is
related to the spectral power density of the levels y(v) by:

with a truncated spectrum at short wave-

ye(v) = gmaviy(v). (14)

TasLE 111, ReEesurts OF SPECTRAL POWER DENSITY FITTING BY THE MODEL

P
Correlation 0.025 << v < 0.275

coefficient P, —_—_

Zone N n on Yomim  Yopay 001 << v << 0.4 Spectrum Model  Model
ge X 1072 X 1075 X 105

I 44 99 2.396 3.5 .24 1.38 0.87 0.350 0.31 0.26
11 22 98 2.298 6.5 2.14 258 1.81 0.53 0.56 0.358
I1I-1 I1 99 2.214 4.1 7.20 8.18 6.51 1.39 1.83 0.642
1II-2 1T 99 2.458 4.9 2.04  2.34 3.38 0.92 0.57 0.343

y(r) = yor—" with 0.025 cm!
[2(x)] = em; [4] = cm; [y(v)
y(v) must be multiplied by A7

< v < 0.2
] = em¥; [

~ 128 to have the real value of po

75 cm~! is computed with g99%, confidence limits.

Yol = cmG-%) where [ ]

indicates unit of parameter,
wer spectral density.
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To verify the accuracy of this estimation, the power P, in the band pass of the filter has
been computed. Because of spectral errors and owing to the fact that filtration is not perfect
outside of the pass band, the p, value, computed in the statistical study (Table 1), is found to
agree well.

Computation of power can be performed in two ways in the frequency range
0.025 cm™' < v <L 0.275 cm™Y, by using 7 values as given by the spectral analysis directly,
or by using model y; = yo(lAv)~236. Results given by the computations are good. The
quadratic slopes could be expected to be estimated well if Equation (14) is used, but, unfor-
tunately, the results obtained by this method are very bad. This difference comes from
cither a breakdown in the proposed model, or it arises from Equation (4) which is used to
estimate slopes in the statistical study. It is only when direct computation of spectral slopes
is carried out that this point will be clarified.

SHADOWING FUNCTION

Let ¢ be the tangent of the angle made between a beam and the horizontal, it is negative
when the light source is up-stream of the profile, positive when it is down-stream. The
shadowing function S(t) is the ratio of the profile section which is illuminated with incidence
tangent ¢ to the total length.

The shadowing function has been computed for profiles in zone I and IT using the method
described by Benoist and Lliboutry (1978). Experimental results and the function computed
by Smith (1967) for a Gaussian profile are plotted in Figure 3.

For zone I, the mean curve, drawn by a broken line, has been computed, vertical lines
give the dispersion of the estimated shadowing function for this zone. The broken line does
not go through the origin because the computational method introduces a systematic error
for small angles of incidence. In the early stages of the computation, it is assumed that the

-
09
08—
o7
o6~
o5 ‘ Zonel t>0 0r<0
7
04— . 1 <0
Zone IT
= =0
03 e
— — — Mean for zone I
Goussion profile
0.2

| | .
0 1 2 t/m

Fig. 3. The shadowing function computed for various cases. Vertical lines along the broken line indicate scattering of estimated
values for zone I.
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first point is illuminated for any angle of incidence. For a given profile, this error increases
when ¢ vanishes or, for a given { value, it decreases when the total length of the profile increases.
In absolute value, for t = o, it is the ratio of the maximum wavelength to-twice the length of
the profile. In this study, ¢ is approximately 0.05. Fewer results for zone I have been plotted
separately, their mean varies along the broken line. Similar results have been obtained for
zone 111 (not plotted on Fig. 3).

These results confirm every assumption made previously. There are no important
variations when the profile is illuminated in the direction of flow (¢ << 0) or in reverse direction
(t > o). The distribution of slopes is symmetric. The gap between the broken line and the
continuous one is significant. For small ¢ values, S(t/m) is greater than in the Gaussian case,
there are more bumps of large size which are illuminated, but, for large incidences, the trend
is reversed, there are more hollows in shadow than in the Gaussian case. These results confirm
that the distributions are non-Gaussian. The conclusions of Benoist and Lliboutry (1978)
are thus confirmed, the shadowing function of the profile is a function of ¢/m which depends
on the distribution of levels and slopes.

C.ONCLUSION

In the frequency range 0.025 cm~' to 0.275 cm™!, the statistical analysis and a study of the
shadowing function shows that the distribution of levels and slopes is symmetric and sharper
than the Gaussian distribution with same standard deviation. The shadowing function leads
to the assumption that these distributions are independent of the studied area, but this
assumption needs to be checked further. The spectral power density y(v) varies roughly as
Yo~ ", n = 2.36 being the same for all studied zones, y, being a characteristic of the roughness
of each area.

It seems that few parameters can quantitatively describe roches moutonnées; among these
are the distribution of slopes and levels, the spectral power density, and the shadowing
function. To confirm these results, a study of coarse-grained rocks including granites or
conglomerates, will be undertaken. A survey of the longer wavelengths using photogrammetry,
which may be of particular interest for glacial morphologists, is in progress. _
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DISCUSSION

B. HaLLET: How can you justify choosing to conduct the spectral analysis over such a short
wavenumber range? This is particularly problematical in view of the fact that judgement of
the important wavenumber range is based on implicit assumptions about the roughness
spectrum of the glacier bed. Yet this is precisely what you are documenting in your analysis.

J.-P. Benoist: The controlling obstacle size is found when I compare sliding by plasticity with
sliding by melting-refreezing over a sine profile, without the necessity of assuming any
continuous spectral power density. Also, the range of wavelengths has been chosen to make
the best use of our actual data, making the compromise between the sharpness of analysis
and a sufficiently low value of variance of the spectral density estimate.

I. S. Evans: How was the Gaussian profile calculated? What auto-correlation properties
were allocated to it?

BenoisT: A theoretical calculation of the shadowing function has been made by Smith (1967)
assuming a Dirac delta function as the auto-correlation. Benoist and Lliboutry (1978) have
shown by numerical simulation that the shadowing function does not depend on the auto-
correlation function of the studied profile.
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