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ABSTRACT. Longitudinal profiles of roches mOlltOnlleeS have been measured once every centimetre over a 
total length of more than 100 m . Only wavelengths in the range 3.6 cm < A < 40 cm have been kept and 
a nalysed. Levels and their slopes have a symmetrical, non-Gaussian distribution. The spectral power 
density varies roughly as Yov- n (v = wavenumber = I fA ) ; n being the same for a ll the profiles (n = 2.36) 
and Yo being dependent on the studied area. No significant difference h as been found for the shadowing 
fun ction of the different studied areas. It differs consistently from Smith's theoreti cal function . 

R EsuME. Ana!yse spectra le etfonction d'eclairement d'un microreliif glaciaire a l'echelle du decimetre. On a mesure 
tous les centimetres, plus de 100 m de profils sur des roches moutonnees. Seules les longueurs d'onde A 
entre 3,6 cm et 40 cm ont ete analysees. Les ordonnecs d 'une part et leurs pentes d'aut re part, ont une 
distribution symetrique non gaussienne. La densite speetrale de p uissance deeroit sensiblement eomme 
Yov - n (v = frequenee = l fA); n est le meme pour tous les profils (n = 2,36) Yo differe suivant la zone 
etudiee. Il n'y a pas de difference signifieative pour le fonetion d'eclairement calculee pour Ies differentes 
zones. Elle differe de fa,>on sensible de la courbe theorique ealculee par Smith. 

ZUSAMMENFASSUNG. Leistllngsspektrum und Fensterfunktion glazialen Mikroreliifs im Dezimeterbereich. Uings­
profile uber Rundh6eker mit einer Gesamtlange von mehr als 100 m wurden Zentimeter fur Zentimeter 
eingemessen . Festgestel lt und a nalysiert wurden nur Wellen langen im Bereieh 3,6 cm < ,\ < 40 cm. 
Die Ordinaten und ihre ersten Ableitungen ha ben eine symmetrische, nieht-normale Verteilung. Das 
Leistungsspektrum sehwankt a nnahernd mit Yov- n (v = Frequenz = 1/ A), wobei n fur alle Profile denselben 
Wert (11 = 2,36) besitzt, wahrend Yo verschieden ist. Fur die Fensterfunktion der versehiedenen untersuehten 
Gebiete wurde kein signifika nter U ntersehied festgestellt; sie weieht j edoch konsequent von Smith's theoreti­
sehem ' '''ert ab. 

INTRODUCTION 

Nye (1970) a nd Kamb ( 1970) give the expression for the basal shear stress Tb (equation (4), 
Nye (1970)) 

Cf. 

o 

where y(v) IS the power spectral density of microrelief and 

v ... = L/( 167T2CK'I )' 

In these equations L is the la tent heat of fusion, C is the constant rela ting the depression of the 
melting-point to the pressure, K is the mean thermal conductivity of ice and rock, 1} is the 
effective viscosity of the ice, u is the ice velocity, and 11 is the wave number of the microrelief. 
This rela tion applies (Kamb, 1970; Lliboutry, 1975) if the ice has a non-linear viscosity and 
if there is no cavitat ion. In such a case, the spectral power density of microrel ief is a very 
important parameter in the study of glacier sliding. 

Observation of glacial bedrock shows that tiny cavities, a few centimetres long, appear at 
the interface between the ice and the rock. At Blue Glacier, a four-centimetre cavity has been 
observed under 11 9 m of ice (Kamb, 1970). Lliboutry (1968) has shown the importance of 
the shadowing function for the study of sliding wi th cavita tion . In this case Tb is given by 
equation (1-16) of Benoist and Lliboutry (1978) 

I - S(t) 
(Pro-p) k S[t) (- t), 
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where poo is the mean pressure of ice against bed, and p is the pressure when cavitation is 
absent. S(t ) is the shadowing function of bedrock and t the mean slope of the ceiling of the 
cavities. If cavitation occurs, the bedrock shadowing function becomes the most important 
geometrical parameter. 

In this paper, the preliminary results of a statistical and spectral analysis of glacial bedrock 
are given. Only profiles levelled in the mean direction of ice flow deduced from striations on 
rock are studied. For each profile the spectral power density and shadowing function are 
given. As the shadowing function depends on the distribution of elevations and profile slopes 
(Benoist and Lliboutry, 1978), these distributions are also studied. 

The sampling interval , the method used for the spectral analysis, and the available data 
determine the bandwidth which can be studied, and the frequency v. given by Equation (2) 
is of the order of a few decimetres. Thus, only the wavelengths between 3.6 and 40 cm will 
be analysed, for reasons which will be discussed later. 

FIELDWORK 

The profiles which were studied are near the snout of Glacier de Saint-Sorlin (Massif des 
Grandes Rousses, France) in the contact area between arkoses and carboniferous schists; 
therefore, these two formations can be found in the same profile. The drift deposited by the 
receding glacier was removed from three areas numbered I , I1, and Ill. Zone I is a very 
smooth area with large undulations ( ~5 m long). Four separate longitudinal profiles ( ~ 15 m 
long) were taken in this area. Zone I I is composed of elongated bumps ( ;::::: 2 m long) in the 
direction of ice flow, separated by deep channels with striations at their bases: this zone can 
really be referred to as an area of Taches moutannees. The appearance of zone III is intermediate 
between the appearance of the first and the second zone. Two profiles (;::::: 20 m long) were 
levelled in this area. 

Measurements were taken vertically every centimetre between a reference horizontal and 
the rock. The levelling device consisted of a beam two metres long supported at each end 
by a tripod and a carriage which supported a vertical rule. The beam was levelled with an 
accurate spirit level. The accuracy and reproducibility of the measurements were good, 
vertical accuracy is ±o.s mm and horizontal accuracy is better than 0.1 mm. 

This simple, precise method has three disadvantages: it is not suitable for the study of long 
wavelengths, it is not readily applicable to the two-dimensional problem, and a considerable 
amount of time is necessary to level IQ 000 points in the field (this amount of data is a working 
minimum for our data analysis). For these reasons, photogrammetry has been employed; 
it is less accurate but it does not have these disadvantages. Data are acquired using a stereo­
comparator. Results obtained by this method will be published later. 

FILTERING OF LARGE WAVELENGTHS 

As explained by Nye (1970), microreliefmust be defined relative to a smoothed bedrock, 
the reference profile . To obtain this, low frequencies must be removed from the actual profile. 
Since all information about frequencies higher than (2 ~x) - I (llx is the sampling interval) is 
lost in the data digitization, a numerical bandpass filter was used . This gives a better stability 
than with a high-pass filter. The procedure needed to define a bandpass filter from its transfer 
function is described by Radix (1970). 

The 3 dB low cut-off frequency is 0 .01 cm- I. In order to reduce spurious response the 
high cut-off frequency is 0.4 cm- I. The transient response of this bandpass filter vanishes at 
x = 120 cm which means that the first 120 points of each filtered profile correspond to the 
transient response and they will have to be removed from the profile before analysis. The gain 
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is consta nt from v, = 0.025 cm- I to vl = 0.275 cm- I. Thus, in the spectra l analysis, only the 
frequencies between v, a nd "l wi ll have to be considered in the interpretation. The frequencies 
lower than ", constitute the general topograph y of the reference bedrock. 

STATISTICAL DISTRIB UTION OF ELEVATIONS AND SLOPES 

Results of the distribut ions of elevations a re collected in Table I. The first four moments 
and the stand a rd devia tion of the first three moments have been computed for each profile. 

Plotting the results on Gaussian (normalized) paper shows that the elevation distributions 
of the profiles a re not Gaussian . For each zone, variances have been tested to establish 
whether the different profi les could be considered as samples of the same set. For zones I and 
I I, these tes ts are positive wi th 99 ° u confidence limits. On the other hand, the two profiles of 
zone I I I must be considered separately, the difference of their variances being significant. 
T hey wi ll be na med zone III-I and zone III-2 . The difference between the two profiles of 
the third area could be produced by the anisotropy of bedrock . Only a two-dimensional study 
of bedrock ca n explain what has happened in this zone. 

TABLE I . STATISTICAL STUDY OF L EV E LS 

. Ylllllb fr 
of .\1ellll Vllriallce AlellTl VnriaTlct' .Heall Varia1lce .Ileml 

IJoi1lts 1'1 (It'l I'z aJl ~ 1'3 aJl~ 1'-. 
Z Oll e I 1444 - 0.038 0.026 1.0lD 0.047 0.02 0. 14 4. 14 

1432 - 0.059 0.029 1.166 0.058 0.2~ 0. 19 6. 12 
1 506 - 0.035 0.028 1.186 0.054 0.26 0. 18 5 ·79 
1 39 1 - 0.058 0.02 7 1.002 0.046 0. 13 0.13 3·94 

Z one 11 869 - 0.052 0.046 1.868 0. 130 0·4 0.6 18 
300 - 0.250 0.08 7 2.280 0.2 75 - 2 2 2 7 
780 - 0. 124 0.054 2.250 0. 128 .~ 0.6 18 

Zone I11 1280 - 0.046 0.073 6.790 0.340 2 3 194 
1320 - 0.03 1 0.062 5. 190 0.30 1.5 3 145 

According to the theory (H ald , 1952), if a distribution is not Gaussian, then all th e 
moments , up to a high order, must be tested to examine whether the samples have been 
selected from a single population . However, accuracy decreases rapidly with increasing order 
because the number of individuals in the sa mples is not large enough. In practice, a stability 
to degree two is sufficient. 

If we ta ke the inaccuracy into account , fJ-1 a nd iL3 do not differ significantl y from zero. 
The di stributions of ordina tes are then quite symmetrica l. The following values will be used: 

zone I iL, = 0 , 
zone 11 iLl = 0, 

iL l = 1.092 , 

iL z = 2.08, 
U /iZ = 0. 02 5, 
u l12 = 0 .09, 

~2 = 4.20, 
~2 = 4·5· 

Coefficient f3l = iL4/iL/ is the flatness coefficient for the distribution. It is equal to three 
for a Gaussian distribution. Values greater than three are associated with distributions which 
a re sharper tha n a Gaussia n curve with the same standard d eviation (a leptokurtic distribu­
tion ). 

For each profile, slopes at point j have been estimated by 
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TABLE II. STATISTICAL STUDY OF SLOPES 

Number 
of Mean Variance Mean Variance M ean Variance Mean 

points 1-'1 a~, I-'-z = m2 a~, 1-'3 a~, 1-'. 

Zone I 1444 - 0 .006 0.004 0.030 0.002 0 .000 0.002 0.007 

1437 0.000 0 .005 0.03 2 0.003 0 .003 0.003 0.010 

1492 0.003 0.005 0.03 1 0.002 0.002 0.002 0.009 

1 392 - 0.003 0.005 0.03 1 0.002 0.002 0.003 0.008 

Zone II 880 - 0.006 0.007 0 .05 1 0.004 -0.004 0.003 0 .0 18 

3 1 3 0.008 0.01 3 0 .054 0.008 0.006 0.006 0.024 

890 - 0.002 0.007 0.049 0.003 0.006 0.003 0.012 

Zone III 124 6 -0.0 18 0.008 0.086 0.004 0.009 0.005 0.03 2 

1289 -0.01 5 0.007 0.065 0 .004 0 .005 0 .005 0.022 

R esults of slope distributions are given in Table lI. The same verifying tests as for the 

elevations have been carried out. The conclusions are the same, for zone I and Il profiles 

come from the same population, but profiles of zone III come from different populations, 

zone I 
zone 11 

!-L1 = 0, 

!-L1 = 0, 

!-L, = 0.03 1 , 

!-L2 = 0.05 1 , 

G", = 0.001, 

cr '" = 0.003, 
!-Ll = 0, 
!-L3 = 0, 

f32 = 8·74, 
f32 = 6.15· 

Distributions are symmetric and leptokurtic. A symmetric distribution of slopes in 

Toches moutonnees may be surprising, but it is at the scale of one metre that their asymmetry 

appears- the microrelief is studied here at the scale of one decimetre . 

These results are very important in the study of the shadowing function and the spectral 

analysis. For zone I and II treated separately, the profiles come from the same statistical 

process and it becomes possible to average the estimated values of shadowing function or the 

spectral power density. This averaging improves the accuracy of the estimations. 

SPECTRAL ANALYSIS 

Two m ethods can be chosen to compute the spectral power density: the classical method, 

which is to compute the discrete Fourier transform (D .F.T. ), or the maximum entropy 

method (M.E.M.) (Smylie and others, 1973) . M.E.M. is more attractive than the classical 

methods because it gives results for wavelengths longer than the profile length, also, the sharp­

ness of the analysis is better, but the method has many disadvantages, in some cases split 

peaks appear (Fougere and others, 1976), the variance of estimated power spectral density 

is not known, and the computation is faster when using a fast Fourier transform algorithm 

than when using the M .E.M. For these reasons, I chose the classical method. 

Let sequence Zk (k = 0 to M - I ) be the sequence of the profile z(x) which has been 

sampled at an interval ~x. The discrete Fourier transform of sequence Zk is sequence Zl 
(l = 0 to M - I ) defined by the equation 

(5) 

The D.F.T. has been computed with a fast Fourier transform algorithm (Eberhard, 

unpublished). An estimate of spectral power density Yl is given by 

(6) 

(where the circumflex ~ indicates the estimate of a parameter) . 
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With the above formulae , Parseval's theorem becomes 
AI - 1 

P-2 = L Yl. 
t = 0 

(T he momen t of order two m easures the power of a signal. ) 
I t can be shown (Oppenhei m and Scha fer, 1975) tha t this estimator of spectral power density is not cons istent , the variance does no t tend to zero as the number of observations becomes la rge. W elch's method (Oppenheim and Schafer , 1975) has been used as a better estimator of sp ectral power d ensity. 
The whole sequence Zk is cu t in N indep endent slices of !-vI points. The m ean of the various es ti mates for spectral power densities gives a fi nal es timate Yl . The variance of Yl is given by 

(8) 
T o reduce the side lobes of the response, the spectra have been fi ltered with H amming's window (Ba th , 1974). In order not to lose a n y information, slices must overla p by one-half. As the number of samples is fixed , this method forces a com pro mise between the number of slices N a nd the number of analysed poin ts M in each slice or , in other words, between variance and sha rpness of ana lysis. Fast Fourier t ransform computa tion has been performed with slices having j\t[ = [2 8 points. T he sharpness of analysis is ( 6.x = I cm) 

I 
6. 11 = M6.x = 0.007 8 12 5 cm- I. 

Figure I shows the spectral power density Yl es ti mated by this method plo tted with logarith mic coordina tes. If the real value of the spectral power density is required , Yl must be multiplied by M = 128. 
In the frequency range 0.025 cm- I < 11 < 0.275 cm- I, spec tral power d ensity Y(II) decreases roughly as Yoll- n w here 11 = [6.11 (l = 0 to 111- 1) . Using a weigh ted least-square m ethod , each spec trum has been fitt ed to the linear rela tion 

log (Y(II)) = log Yo- IZ log 11 . (9) 
The weighting function equa ls the inverse of t he standard d eviation of log (Y(II)) . Bois (unpublished ) gives a m ethod for checking the validity of a linear regression if the distribut ion of the residues is G a uss ian. R esidues a re the quantities given by 

Ei = Yi - ji , ( [0) 
where Yi is the m easured value a t Xi and ji the va lue estima ted by the linear regress ion. Let Ej be the sum of the first j residues 

j 

E j = L Ei 

i = I 

a nd r (j) the ellipse given by 

(Eo = 0), 

r(j) ± t(j) (J.{j( IZ - j )!( IZ - [ ))~, 
(J. is the standa rd devia tion of residues. It is given by 

u. = ( I - C2) l, 
where C is the correlation coeffi cient between )'i and Xi. At a given probability threshold 1, the curve of E; against j is inside r (j) if the res idues are randomly distributed . t ( f ) is the normal standarized va riable of p robability [ - f !2 (J = 1%, t ( f ) = 2.56) . (Bois' results can be found in Bernier, [977.) 

https://doi.org/10.3189/S0022143000029749 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000029749


-I 
10 

-z 
10 

., 
10 

JO U RNAL OF GLACIOLOGY 

-I 
10 

)" cm3 

G?+0 
10 -, 

I-
Kjl 

I 

., I 
10 l .z 

f- IO 

-z 
10 

,o~ 1'0
-' 

,o .~ 
~ I 

10 I "/,, 
f-_-+--___ +-_ --t _ __ ~m-I ) 

001 0.025 01 o 275 1 

Fig. I. Spectral power density y (v). CD ZOl/e I ; c;!; ZOlle II ; :\ ,;:ol/e 1//-1; :j" ,;:olle //1-2. The vertical lille lIIarks the 

frequency range within which thefilter-gainfactor is cOIIstallt (0.025 CIII - ' <' v < 0.275 CIII ' ) . Slrai.~hl !ines aY( gil'etI 

by the model y(v ) ~ yov- II , complltedfor each ZOl/e. 

For zone I , there are 44 independent es timates of y (v), the distribution of log (y (v)) for a 

fixed v value is fairly Gaussian. The model can be tested with the m e thod described b y Bois. 

Results obtained for the fitted spectra are gathered in Table II I. The various es tima tes 

of n overlap with 99° n confidence and the following m ean va lue wi ll be lIsed: 

11 = 2.36 ± 0. I ; 

on the other hand , Yo values are different for each zone. 

The model explains 99 ~o of the variance, in the frequency range 0.025 cm - I to 0.275 cm - I, 

but , assuming that the residues are , in fact , Gaussian , the cumulated residues (Fig. 2) go out 

of the ellipse constructed for 99°/0 confidence limits. This result can occur for two reasons : 

the tests may not work because the popula,Jion is not strictly Gaussian (there are not enough 

data at present to give a good estimate distribution of log (y(.,) ), or the model may not be 

adequate to explain the variation of the spectrum, and the tests may b e showing a systematic 

difference between model and spectrum. 

Theorists have considered the same model for non-dimensional profiles with 11 = 3. 

In the frequency range studied here, spectra l power density does not d ecrease as fast as in a 
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Fig. 2 . CUlllulated residues assulllillg {/ Gaussial/ distributiol/. Ellipses aTe drawl/ for ,9,90" cOl/fider/ce limits ,' (/. ZOl/e 1; b. zone 11; c. zOlle 111-1 ; d. ,:olle llI- 2. 

non-dimensional model. Kamb's model (1970) with a truncated spectrum at short wave­lengths seems to be unrealistic. In Table Ill , estimates of power and of quadratic slope p (square root of slope variance) are given in the frequency ra nge 0.025 cm- I < v < 0.275 cm - I. T he Fouri er transform of the derivative of x(t ) is 2i7TvX(v) where X (v) is the Fourier transform of x(t ) (Bath , 1974), therefore, the spectra l power density of the slopes y, (v) IS relat ed to the spectra l power density of the levels y(v) by : 

y, (v) = 47T2vly(V). ( 14) 

TABLE Ill. R ESULTS OF SPECTRAL POWER DENSITY FITTING BY T il E MODEL 

P Correlatioll 0.025 < v < 0.275 coefficient P, .(olle ] If C II a" YO m1n YO max 0.01 < v < 0.4 SpectTllIII 0 1 X 10- 2 X 10- 5 X 10- 5 0 

I 44 99 2.396 3·5 1.24 1.38 0.87 0.350 11 22 98 2.298 6·5 2. 14 2.58 1.81 0·53 111- 1 11 99 2.214 4. 1 7. 20 8.18 6 .5 1 1. 39 111-2 11 99 2.458 4·9 2.04 2·34 3.38 0 .92 
y(v) = Yov- n with 0.025 cm- I < v < 0.275 cm- I is computed with 99 % confidence limits. [z (x)] = cm; [x] = cm; [y (v)] = cm'; [Yo] = cm(J- n) where [] indicates unit of parameter. y(v) m ust be multiplied by M = 128 to have the real value of power spectral density. 

lv[odei 

0.31 
0.56 
1.83 
0·57 

III 

lHodel 

0.265 
0.356 
0.642 
0·343 

https://doi.org/10.3189/S0022143000029749 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000029749


JOURNAL OF GLACIOLOGY 

To verify the accuracy of this estimation, the power PI in the band pass of the filter has 

been compu ted . Because of spectral errors and owing to the fac t that filtration is not perfect 

outside of the pass band , the f-L z value, computed in the statistical study (Table I ), is found to 

agree well. 
Computation of power can be performed in two ways in the frequency range 

0.025 cm-I < v < 0.275 cm- I, by using yt values as given by the spectral analysis directly, 

or by using model yt = Yo(l.6.v )- Z·36. Results given by the computations are good. The 

quadratic slopes could be expected to be estimated well if Equation (14) is used , but, unfor­

tunately, the results obtained by this method are very bad. This difference comes from 

either a breakdown in the proposed model, or it arises from Equation (4) which is used to 

estimate slopes in the sta tistical study. It is only when direct computation of spectral slopes 

is carried out that this point will be clarified. 

SHADOWING F UNCTION 

Let t be the tangent of the angle made between a beam and the horizontal , it is negative 

when the light source is up-stream of the profile, positive when it is down-stream . The 

shadowing function S(t) is the ratio of the profile section which is illuminated with incidence 

tangent t to the total length. 
The shadowing function has been computed for profiles in zone I and II using the method 

described by Benoist and Lliboutry (1978). Experimental results and the function computed 

by Smith ( 1967) for a Gaussian profile are plotted in Figure 3. 

For zone I, the mean curve, drawn by a broken line, has been computed, vertical lines 

give the dispersion of the es timated shadowing function for this zone. The broken line does 

not go through the origin because the computational method introduces a systematic error 

for small angles of incidence. In the early stages of the computation, it is assumed that the 

1.0 

0.9 

0 .8 

07 
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0 5 

004 

0 .3 

o 
8 
o 

Z one I 1>0 or< 0 

1 <0 I 
1>0 

Z on e II 

Mean for ~one I 
Gauss/on profIle 

Fig. 3. The shadowing Junction computedJor various cases. Vertical lines along the broken line indicate scattering oJ estimated 

values Jor zone I . 
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first point is illuminated for any angle of incidence. For a given profile, this error increases 
when t vanishes or, for a given t value, it decreases when the total length of the profile increases. 
In absolute value, for t = 0, it is the ratio of the maximum wavelength to ·twice the length of 
the profile. In this study, t is approximately 0.05. Fewer results for zone II have been plotted 
separately, their mean varies along the broken line. Similar results have been obtained for 
zone III (not plotted on Fig. 3). 

These results confirm every assumption made previously. There are no important 
variations when the profile is illuminated in the direction of flow (t < 0) or in reverse direction 
(t > 0). The distribution of slopes is symmetric. The gap between the broken line and the 
continuous one is significant. For small t values , S (t fm) is greater than in the Gaussian case, 
there are more bumps of large size which are illuminated, but , for large incidences, the trend 
is reversed, there are more hollows in shadow than in the Gaussian case. These results confirm 
that the distributions are non-Gaussian. The conclusions of Benoist and Lliboutry (1978) 
are thus confirmed, the shadowing function of the profile is a function of I f m which depends 
on the distribution of levels and slopes. 

CONCLUSION 

In the frequency range 0.025 cm- I to 0.275 cm - I, the statistical analysis and a study of the 
shadowing function shows that the distribution of levels and slopes is symmetric and sharper 
than the Gaussian distribution with same standard deviation . The shadowing function leads 
to the assumption that these distributions are independent of the studied area, but this 
assumption needs to be checked further. The spectral power density y(v) varies roughly as 
yov- n , n = 2.36 being the same for all studied zones , YH being a characteristic of the roughness 
of each area. 

It seems that few parameters can quantitatively describe roches moutonnees ; among these 
are the distribution of slopes and levels, the spectral power density, and the shadowing 
function. To confirm these results, a study of coarse-grained rocks including granites or 
conglomerates, will be undertaken. A survey of the longer wavelengths using photogrammetry, 
which may be of particular interest for glacial morphologists , is in progress. _ 
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DISCUSSION 

B. HALLET: How can you justify choosing to conduct the spectral analysis over such a short 
wave number range? This is particularly problematical in view of the fact that judgement of 
the important wavenumber range is based on implicit assumptions about the roughness 
spectrum of the glacier bed. Yet this is precisely what you are documenting in your analysis. 

J.-P. BENOIST: The controlling obstacle size is found when I compare sliding by plasticity with 
sliding by melting-refreezing over a sine profile, without the necessity of assuming any 
continuous spectral power density. Also, the range of wavelengths has been chosen to make 
the best use of our actual data, making the compromise between the sharpness of analysis 
and a sufficiently low value of variance of the spectral density estimate. 

I. S. EVANS: How was the Gaussian profile calculated? What auto-correlation properties 
were allocated to it? 

BENOIST: A theoretical calculation of the shadowing function has been made by Smith (1967) 
assuming a Dirac delta function as the auto-correlation. Benoist and Lliboutry (1978) have 
shown by numerical simulation that the shadowing function does not depend on the auto­
correlation function of the studied profile. 
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