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The spherical Couette system consists of two differentially rotating concentric spheres
with the space in between filled with fluid. We study a regime where the outer sphere
is rotating rapidly enough so that the Coriolis force is important and the inner sphere is
rotating either slower or in the opposite direction with respect to the outer sphere. We
numerically study the sudden transition to turbulence at a critical differential rotation seen
in experiments at BTU Cottbus-Senftenberg, Germany, and investigate its cause. We find
that the source of turbulence is the boundary layer on the inner sphere, which becomes
centrifugally unstable. We show that this instability leads to generation of small-scale
structures which lead to turbulence in the bulk, dominated by inertial waves, a change in
the force balance near the inner boundary, the formation of a mean flow through Reynolds
stresses and, consequently, to an efficient angular momentum transport. We compare our
findings with axisymmetric simulations and show that there are significant similarities in
the nature of the flow in the turbulent regimes of full three-dimensional and axisymmetric
simulations but differences in the evolution of the instability that leads to this transition.
We find that a heuristic argument based on a Reynolds number defined using the thickness
of the boundary layer as a length scale helps explain the scaling law of the variation of
critical differential rotation for transition to turbulence with rotation rate observed in the
experiments.
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1. Introduction

The spherical Couette system consists of two concentric spheres differentially rotating
about a common axis, with the space in between filled with a viscous fluid. The differential
rotation is considered ‘positive’ when the inner sphere rotates faster than the outer sphere
and ‘negative’ when it rotates slower than or in the opposite direction to the outer sphere.
Being the spherical analogue of the more well-known Taylor–Couette system (Chossat &
Iooss 1994), it is an interesting fluid dynamical system in its own right with very different
instabilities. Applications to the interiors of astrophysical bodies (e.g. planetary interiors
and stellar radiative zones) seem more obvious than in the Taylor–Couette geometry. The
study of the spherical Couette system goes back to the analytical asymptotic formulation of
Proudman (1956) for an infinitely fast rotating outer sphere and an infinitesimal differential
rotation. He showed that most of the fluid differential rotation remains confined within
the cylinder tangent to the inner sphere equator, known as the tangent cylinder (TC),
whereas the fluid outside the TC co-rotates with the outer boundary. A complex nested
shear layer at the TC, known as the Stewartson layer (Stewartson 1966), accommodates
the jump in the fluid rotation rate and its derivatives. For a spherical Couette system with
a wide gap, this shear layer is the source of the first flow instabilities for a rapidly rotating
outer boundary. Note that when the gap becomes narrow, the flow instabilities resemble
Taylor rolls similar to the Taylor–Couette system (Egbers & Rath 1995). Instabilities of a
Stewartson layer driven by differential rotation were first studied experimentally by Hide &
Titman (1967) for a cylindrical system with a differentially rotating disc and theoretically
by Busse (1968). For the case of the spherical Couette system, Stewartson layer instabilities
as well as other instabilities have been studied extensively using experiments (e.g. Sorokin,
Khlebutin & Shaidurov 1966; Munson & Menguturk 1975; Egbers & Rath 1995; Kelley
et al. 2007, 2010; Triana 2011; Zimmerman et al. 2014; Hoff, Harlander & Triana 2016;
Yoshikawa, Itano & Sugihara-Seki 2023) and numerical computations (e.g. Munson &
Joseph 1971a,b; Hollerbach 2003; Hollerbach et al. 2004; Hollerbach, Junk & Egbers
2006; Wei & Hollerbach 2008; Matsui et al. 2011; Rieutord et al. 2012; Wicht 2014).
These studies have revealed a complex zoo of instabilities and have left many open
questions.

Our previous study (Barik et al. 2018, hereafter referred to as B18) and the present
study are based on the experiments of Hoff et al. (2016) (hereafter referred to as H16)
in a wide-gap spherical Couette set-up. Once the radius ratio of the two spheres is fixed,
the system is characterised by two parameters, the Ekman number E = ν/ΩoL2 and the
differential rotation, �Ω/Ω = (Ωi − Ωo)/Ωo. Here, ν is the viscosity of the fluid, L
is the thickness of the spherical shell and Ωi and Ωo denote the rotation rates of the
inner and outer sphere, respectively. H16 and B18 both focused on the case when the
differential rotation was negative, i.e. when the inner sphere rotated slower than or in the
opposite direction compared with the outer sphere. At intermediate or low Ekman numbers
(3 × 10−6 ≤ E ≤ 10−4), as the differential rotation is made progressively more negative,
the flow transitions through either four or five different hydrodynamic regimes.

(i) An axisymmetric flow described by Proudman (1956).
(ii) The axisymmetric flow gives rise to a linear non-axisymmetric instability of the

Stewartson shear layer with a fixed azimuthal wavenumber m.
(iii) The first instability gives way to a regime with a mode with m = 1. For a certain

moderate to low range of Ekman numbers (3 × 10−5 ≤ E ≤ 10−4), these two
regimes may coincide and the first non-axisymmetric instability may occur in the
form of m = 1.
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Turbulence in the wide-gap spherical Couette system

(iv) The above regime gives way to equatorially antisymmetric (EA) wave-like ‘inertial
modes’ which have been observed in several past studies (Kelley et al. 2007, 2010;
Matsui et al. 2011; Triana 2011; Rieutord et al. 2012; Wicht 2014) and formed the
focus of B18.

(v) Finally, a sharp and sudden transition to bulk turbulence takes place at a critical
negative differential rotation.

These regimes have been observed in the simulations of Wicht (2014) and B18 and the
experiments of H16. More specifically, H16 observed that the transition to turbulence was
characterised by a broadband temporal power spectra. Well-defined inertial mode peaks
observed on top of these broadband spectra displayed an abrupt change in frequency right
at the onset of turbulence. In addition, there was an increase in the spatial extent of the
axisymmetric zonal flow and a decrease in the energy content of the inertial modes. They
further observed a dependence of the critical differential rotation required for transition
|�Ω/Ω|c on the Ekman number as |�Ω/Ω|c ∼ E1/5. In the present study we concentrate
on this transition to turbulence, addressing the following questions: how does the flow
behave during and beyond the transition and what causes its onset?

There have been a few other studies on turbulence in spherical Couette flow, but
not for the radius ratios and parameter ranges used in this study. Belyaev et al. (1979)
experimentally analysed a wide-gap spherical Couette system for a stationary outer sphere
and postulated that the transition to turbulence seems to follow the scenario of Ruelle &
Takens (1971) but with several differences such as the existence of discrete peaks on top of
a continuous background power spectrum. Yavorskaya & Belyaev (1986) experimentally
investigated a thin-gap system (ri/ro = 0.9) with both spheres rotating over a wide
parameter range. They noted that the transition to turbulence involves an onset of ‘spatial
intermittency’ in the form of small-scale structures on top of large-scale flow. Wulf, Egbers
& Rath (1999) studied two different gap widths (ri/ro = 0.75 and 0.67) and found that the
transition to turbulence was characterised by broadband temporal power spectra with some
well-defined peaks.

The rest of the paper is arranged as follows. Section 2 provides details of the formulation
of the problem, a brief description of the numerical methods used for simulation and
the methods used to construct spectrograms and distinguish regimes (i)–(v) mentioned
previously. Our results begin in § 3 with a discussion of the temporal and spatial spectra
of flow and their variations. Section 4 discusses our results in the physical space with
an analysis of the mean zonal flow, angular momentum transport and the effect of
turbulence on inertial modes. Section 5 provides insight into the transition to turbulence
by investigating force balances in the system. Section 6 investigates the instability of the
boundary layer at the inner boundary and its effects and provides a heuristic explanation
of the E1/5 scaling law obtained by H16. Finally, § 7 discusses our main conclusions and
open questions.

2. Numerical methods

2.1. Simulation set-up
Let us denote the radii and dimensional rotation rates of the two coaxial spheres as ri and
Ωi for the inner sphere and ro and Ωo for the outer sphere, respectively. To simulate this
system, we solve the Navier–Stokes and continuity equations in a reference frame rotating
with the outer boundary. We use spherical coordinates (r, θ, φ) denoting radial distance,
colatitude and longitude, respectively. We also use s = r sin θ to denote the cylindrical
radius, perpendicular to the rotation axis. The equations are non-dimensionalised using
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Figure 1. Schematic of the spherical Couette system, indicating the rotation rates, the radii of the outer and
inner boundaries and the spherical coordinate system (r, θ, φ).

L = ro − ri as the length scale and the viscous diffusion time τ = L2/ν as the time scale,
where ν is the kinematic viscosity of the fluid. This gives us,

∂u
∂t

= −∇p − u · ∇u − 2
E

ẑ × u + ∇2u, (2.1)

∇ · u = 0. (2.2)

Here, u represents velocity, p represents an effective pressure that includes centrifugal
forces due to the outer boundary (system) rotation. The Ekman number E = ν/ΩoL2 =
1/Ω , where Ω is the non-dimensional outer boundary rotation rate. The inner sphere
rotation rate (in the rotating frame) can also be similarly non-dimensionalised: �Ω =
(Ωi − Ωo)L2/ν. The system and the coordinate system is illustrated in figure 1.

The flow problem is then characterised by three non-dimensional numbers: the Ekman
number, E, the differential rotation �Ω/Ω and the radius ratio η = ri/ro, which is set to
either 0.33 or 0.35. The former is the same as used in H16, whereas the latter is close to
the ratio for Earth’s core and has been used in B18 and other previous studies. No-slip
boundary conditions allow for the viscous driving of the flow:

u(ro) = 0,

u(ri) = (ur, uθ , uφ) = (0, 0, �Ωri sin θ).

}
(2.3)

We numerically solve these equations using two independent pseudo-spectral codes:
MagIC (Wicht 2002; Gastine et al. 2021) (see https://github.com/magic-sph/magic) and
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ID Case Ekman number η = ri/ro �Ω/Ω range �Ω/Ωc

E1 BTU C-S 3.043 × 10−5 0.33 −2.37 to −0.19 −2.011
E2 BTU C-S 1.522 × 10−5 0.33 −2.36 to −0.2 −1.730
S1 XSHELLS 1.125 × 10−4 0.33 0.00 to −3.50 −2.3
S2 MagIC 3.043 × 10−5 0.33 −2.10 to −2.00 −2.015
S3 MagIC 10−4 0.35 −1.00 to −3.50 −2.3
S3a MagIC 10−4 0.35 −0.01 to −3.50 −2.1
S4 MagIC 3 × 10−5 0.35 −0.18 to −2.30 −2.0
S4a MagIC 3 × 10−5 0.35 −0.01 to −2.30 −1.9

Table 1. Parameters for different experiments at BTU C-S and simulations using MagIC and XSHELLS
used in this study. Label ‘a’ denotes axisymmetric simulations and �Ω/Ωc indicates the critical �Ω/Ω for
transition to turbulence.

XSHELLS (Figueroa et al. 2013) (see https://bitbucket.org/nschaeff/xshells). The details
of the numerical methods can be found in the respective publications. Both codes use the
SHTns library (Schaeffer 2013) for spherical harmonic transforms.

As in H16 and B18, we concentrate on the case �Ω/Ω < 0. The evolution of the flow
is studied by keeping the outer boundary rotation (or Ekman number E) constant and
running a simulation at a fixed �Ω/Ω and letting the kinetic energy reach a statistically
stationary state. This state is then used as an initial condition to start the simulation for
more negative �Ω/Ω . The various parameters used in simulations and experiments along
with the critical �Ω/Ω for transition to turbulence are listed in table 1, with each suite of
experiments and simulations identified by a unique ID (first column). In B18 we already
presented the simulation suites S1 and S3. In this study, we have run the rest of the suites,
S2, S3a, S4 and S4a, with the suffix ‘a’ representing cases where the parameters are the
same as the other case but the simulation is axisymmetric. The case S2 was run to confirm
that numerical calculations yield the same critical �Ω/Ω for the turbulent transition as
the experimental case E1. The ranges of �Ω/Ω in the table indicate how the differential
rotation was changed within a suit, each using the previous simulation as starting condition
(e.g. −1.00 to −3.50 means �Ω/Ω was made more negative starting from −1). This is
important since the behaviour of the system has some amount of hysteresis (Egbers & Rath
1995). Through the rest of the paper, we mostly focus on simulation suites S3 and S4 with
some comparisons with their axisymmetric counterparts S3a and S4a, respectively, and
with experiments of H16 where appropriate. ‘Simulations’ will thus refer to simulations
using MagIC unless otherwise specified. Figure 2 shows a diagram of the different regime
transitions identified in simulations (filled circles) and experiments (open triangles). The
suites S3 and S4 that are used throughout this paper clearly marked using squares (before
transition to turbulence) and crosses (after transition). This does not show the suites S3a
and S4a which would largely overlap with S3 and S4.

2.2. Spectrograms and identification of inertial modes
It has been shown in previous studies that inertial waves and modes are fundamental
instabilities of the spherical Couette system. They obey the linear Euler equation,

∂u
∂t

= −∇p − 2Ω ẑ × u. (2.4)
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100

10–1

10–5

Axisymmetric flow

Simulations (B18 + Wicht 2014)
Experiments, H16
This study, EA modes
This study, turbulence

EA inertial modes

Turbulence

m = 1 mode

E
10–4

|�
Ω

/
Ω

|

Figure 2. Physical regimes covered in H16, B18 and the present study. The horizontal axis shows Ekman
number, E, whereas the vertical axis shows |�Ω/Ω|. The open triangles and filled circles represent where
various transitions to another regime have been found by experiments of H16 and simulations of B18 and
Wicht (2014), respectively. The brown squares and purple crosses show the simulation suites S3 and S4 from
table 1, with squares indicating simulations in the EA inertial mode regime and crosses indicating simulations
in the turbulent regime.

This can be written as (see e.g. Greenspan 1968; Tilgner 2007)

∂2

∂t2
∇2u + 4Ω2 ∂2

∂z2 u = 0, (2.5)

which supports plane wave solutions (u ∝ exp(i(k · r − ωt))), called ‘inertial waves’, in
an unbounded fluid or bounded global oscillatory modes (u ∝ exp(i(mφ − ωt))), called
‘inertial modes’, in a bounded container (Greenspan 1968). In both cases, it can be
shown that |ω| ≤ 2Ω where ω is the frequency associated with a drift in azimuth φ.
Here, k and m are the radial wavevector and the azimuthal wavenumber, respectively.
For a spherical container, the solutions for inertial modes can be obtained analytically
(Bryan 1889; Kudlick 1966; Greenspan 1968; Zhang et al. 2001) and have the form of a
spherical harmonic at the surface. Consequently, they are identified using indices (l, m)

corresponding to the spherical harmonic degree and order. These, together with the drift
frequency ω, uniquely determine a mode. Thus, as in our previous study (Barik et al. 2018),
we denote a mode using the notation (l, m, ω/Ω).

The different hydrodynamic regimes (i)–(v) mentioned in the introduction can be clearly
identified using the spectrograms obtained from experimental data. The spectrograms
are built by taking the single-sided fast Fourier transform (FFT) amplitude spectrum of
the radially averaged azimuthal velocity uφ at each �Ω/Ω . The velocity measurements
were performed via particle image velocimetry (PIV) techniques using a laser sheet
perpendicular to the axis of rotation. The method is described in further detail in Hoff
et al. (2016) and Hoff & Harlander (2019). Such spectrograms can also be constructed
for simulations where we obtained data for the azimuthal component at eight different
locations: θ = (π/4, 3π/4) and φ = (0, π/2, π, 3π/2), all on a single radial surface,
r = 0.7ro, which were stacked after correcting for their phase shift using cross-correlation
of the time series. Thereafter, we performed a Fourier transform of this stacked time
series to obtain spectra at each �Ω/Ω (see also Barik et al. 2018). The spectrograms
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m = 2 mode
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Figure 3. Spectrograms obtained from velocity time series, from simulations: (a) spectrogram from
XSHELLS simulations at E = 1.125 × 10−4; (b) spectrogram from simulations at E = 3 × 10−5. Here ω is
the angular frequency of the Fourier transform whereas S(ω) is the amplitude spectrum. The hydrodynamic
regimes are marked and the inertial modes observed have been annotated. SI denotes Stewartson layer
instability; EA denotes equatorially antisymmetric.

obtained from two suites of simulations are shown in figure 3(a,b), with identified inertial
modes denoted by the indices (l, m). Having access to the full three-dimensional (3-D)
flow as well as a number of other diagnostics (kinetic energy, spatial spectra, etc.) in
simulations helps distinguish these different regimes much better. For example, when
the first non-axisymmetric m = 1 mode appears, all the equatorially symmetric m = 1
spherical harmonic flow coefficients can be seen to oscillate at the same frequency. An
analysis of the spectral coefficients, the frequencies in a spectrogram, combined with
a visualisation of the flow field is used to differentiate between the different regimes.
The non-axisymmetric zonal flow fields in the three different regimes at E = 10−4 are
illustrated in figure 4. Figure 4(a) shows the flow at �Ω/Ω = −1 with the m = 1
Stewartson layer instability (SI) clearly visible. Figure 4(b) shows the flow dominated by an
EA (3,2) inertial mode with some small-scale features inside the TC, whereas figure 4(c)
shows the flow in the turbulent regime at �Ω/Ω = −3, with a lot of small-scale features
near the inner boundary and a more chaotic flow field.

In the experiments of H16, the inertial modes were identified by comparing their
frequencies against frequencies from theoretical works (Zhang et al. 2001; Wicht 2014)
as well as past experimental works (Kelley et al. 2007, 2010; Matsui et al. 2011; Triana
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–2000
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4000

2000
1000

–1000
–2000

–4000

0

uφ – 〈uφ〉

0

–700

Figure 4. Isosurfaces of non-axisymmetric zonal flow from simulations at E = 10−4: (a) �Ω/Ω = −1 is in
regime (ii) with the m = 1 mode; (b) �Ω/Ω = −2 is in the regime with EA inertial modes; and (c) �Ω/Ω =
−3 is in the turbulent regime.

2011; Rieutord et al. 2012). Additional comparisons of morphology of modes were also
made against theoretical inertial mode structures in spheres (Zhang et al. 2001). In
the case of simulations, the inertial modes can be clearly identified by a few different
methods. The first is by comparing the frequencies observed in the spectrograms to the
oscillation frequencies of the spectral spherical harmonic coefficients. This determines
the longitudinal symmetry m as well as the equatorial symmetry (l − m) of the mode. The
exact mode is then determined by comparing the frequency with the nearest analytical
frequency of inertial modes in a sphere (Zhang et al. 2001), as well as by spectrally filtering
out the structure of the mode and comparing it with the theoretical structure.

3. Identifying transition to turbulence

In experiments as well as simulations, the temporal spectra help us determine the
transition to turbulence. We examine here the spectra at individual �Ω/Ω values from
the XSHELLS spectrogram presented in figure 3(a). We have selected three representative
�Ω/Ω values, �Ω/Ω = (−0.6, −1.8, −2.7), which lie in regimes (iii), (iv) and (v),
respectively, as shown in figure 5. At �Ω/Ω = −0.6, the spectrum consists of only
discrete peaks at the drift frequency of the m = 1 SI and its higher multiples. In the
EA inertial mode regime, at �Ω/Ω = −1.8 (orange), there is a drastic change in the
nature of the spectrum and it consists of a nearly flat background for ω/Ω ≤ 2 and
a sharp decay for larger Fourier frequencies. The frequencies of the m = 1 SI (around
ω/Ω = 0.1) and of the dominant inertial mode ((3, 2) mode, around ω/Ω = 0.7) are the
most clearly visible peaks on top of the flat background. A flat background of energy for
0 < ω < 2Ω and a subsequent decay demonstrates the fact that most of the kinetic energy
in the flow manifests in inertial waves and is characteristic of inertial wave turbulence
(e.g. Duran-Matute et al. 2013; Clark di Leoni, Cobelli & Mininni 2015). Thus, there is
some amount of inertial wave turbulence already present in the EA inertial modes regime.
This can be seen in the small scales visible inside the TC in figure 4(b), close to the
inner boundary. However, the large-scale inertial mode still carries the dominant amount
of energy in this regime.

What we define as the ‘turbulent’ regime in this study is characterised by a further
sudden increase in this flat background spectrum of inertial waves, as seen for �Ω/Ω =
−2.7, whereas the decay beyond ω/Ω = 2 becomes less steep. Consequently, the peaks for
the m = 1 SI and the (3, 2, 0.666) mode, despite having similar energies as for �Ω/Ω =
−1.8, are now less prominent with respect to the background. The small scale inertial wave
turbulence is no longer limited to inside the TC, but now can be seen in the bulk as well
(figure 4c) and, thus, the global large-scale inertial mode no longer carries a huge fraction
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Figure 5. Temporal spectra at three different values of differential rotation, each in a different hydrodynamic
regime. The horizontal axis shows the Fourier frequency ω scaled with the outer boundary rotation rate Ω

whereas the vertical axis shows the amplitude spectrum S(ω). Vertical dotted lines mark ω/Ω = 0.1, 0.7
and 2.
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Figure 6. Change in the power spectrum of the zonal flow uφ with �Ω/Ω at different latitudes at a fixed
radius r/ro = 0.354. The horizontal axis shows the azimuthal wavenumber m whereas the vertical axis shows
the power in a single wavenumber. Here �Ω/Ω = −2.3 marking the transition to turbulence is plotted with a
black line.

of the energy. The typical decay of the spectrum beyond 2Ω has also been observed by
H16 (figure 10 of Hoff et al. 2016) and in the 3-meter experiment (figures 6.3 and 6.15
of Triana 2011). The shallower decay of the spectrum beyond 2Ω in the turbulent regime
shows a decrease in the influence of rotation which results in a greater content of energy for
ω > 2Ω . This is consistent with the fact that smaller scales and increased flow velocities
in the turbulent regime lead to a dominance of advection over the effect of the Coriolis
force. The change in the force balance is further discussed in § 5.

Pseudo-spectral codes provide direct information on different flow length scales and,
hence, spatial spectra of kinetic energy. Figure 6 shows the change in energy spectrum
in the zonal flow with �Ω/Ω at different colatitudes, very close to the inner boundary
at r/ro = 0.354. In figure 6(a), we see that for all |�Ω/Ω| ≥ 1.5 in the EA inertial
mode regime, there already is a significant amount of energy in the smaller scales
(high m) inside the TC. In figure 6(b), we find that the energy in the smaller scales
are high for |�Ω/Ω| ≥ 2.3, indicating that the boundary layer at the inner boundary
gets progressively destabilised at lower latitudes as �Ω/Ω becomes more negative.
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Figure 7. Kinetic energy spectra from simulations at E = 10−4, shown at different radial levels: (a) the case
for �Ω/Ω = −1.5, before the transition to turbulence; (b) the case for �Ω/Ω = −3, after the transition.

The turbulent regime sets in at �Ω/Ω = −2.3 and its significance is that the boundary
layer at the equator gets destabilised.

Figure 7 shows the total kinetic energy spectra with respect to spherical harmonic order
l at different radial levels from S3 simulations at E = 10−4. The onset of turbulence in the
spatial spectra is characterised by an increase in energy in the small scales in general and
close to the inner boundary in particular, which is the region of the highest flow speeds
and thus most extreme Reynolds numbers. The system is driven by imposed differential
rotation at the largest system scale. The energy then cascades to smaller scales via the
different instabilities and nonlinear interactions. This cascade becomes decisively more
efficient in the turbulent regime. The decrease in the influence of rotation can be seen in
the spatial spectrum at large spherical harmonic degree as it gets progressively closer to a
classic Kolmogorov −5/3 spectrum, as shown in figure 7(b).

4. Flow analysis

4.1. Mean flow and angular momentum transport
The transition to turbulence is characterised by a sudden increase in the axisymmetric
flow, whereas there is a drop in the non-axisymmetric kinetic energy (figure 8). The
axisymmetric flow is clearly dominated by the zonal component, which is by a factor of
E−1/2 larger than the meridional circulation. Both components increase upon turbulence
onset. The non-axisymmetric component is dominated by the EA part owing to the
presence of the EA inertial modes before the transition to turbulence. This changes upon
turbulence onset when EA inertial modes lose their energy. Figure 9(a,b) illustrates that
the mean zonal flow not only intensifies but also starts to spread beyond the TC. The panels
show the mean zonal flow, averaged in the z- and φ-directions and in time, as a function
of the cylindrical radial distance s and the differential rotation rate for experiments E1 (a)
and simulations S4 (b). Before the transition to turbulence (vertical lines), the zonal flow
roughly resembles the Proudman solution for spherical Couette flow (Proudman 1956),
staying restricted to the region inside the TC (horizontal lines). Beyond the transition,
the zonal flow is significantly more vigorous and extends beyond the TC. The mean flow
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Figure 8. Change in kinetic energy with differential rotation: (a) E = 10−4; (b) E = 3 × 10−5. As the flow
transitions to turbulence (marked with vertical dotted lines), there is a sudden ‘burst’ in axisymmetric, mostly
zonal, kinetic energy. The non-axisymmetric flow contributions, on the other hand, decrease in amplitude.
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Figure 9. Plots of z, φ and time-averaged zonal flow velocity: (a) zonal flow from the experiments of H16 at
3.043 × 10−5; (b) the same from simulations at E = 3 × 10−5. The horizontal axis shows differential rotation
whereas the vertical axis shows the cylindrical radial coordinate, scaled to the outer boundary s/ro. The
horizontal dotted line marks the TC whereas the vertical dotted line marks the critical differential rotation
for the transition to turbulence.

behaves the same way for simulations at E = 10−4. From table 1, we can compare the onset
of turbulence for full 3-D simulations S3 and S4 and their axisymmetric counterparts,
S3a and S4a. For E = 10−4, turbulence sets in at a 13 % lower differential rotation rate,
at E = 3 × 10−5 the difference has reduced to 5 %. Figure 10 compares the time and
azimuthally averaged zonal flow and meridional circulation in the turbulent regime at
E = 10−4 of a 3-D simulation (a) and an axisymmetric simulation (b). Both cases show
an additional pair of rolls along the inner boundary. These rolls represent an outward flow
at the inner boundary which can contribute to advection towards the equator and then into
the region outside the TC. In the axisymmetric case (figure 10b), the inner roll pair is
more pronounced than in the 3-D case at the same parameters (figure 10a). In addition, an
additional pair of rolls develops near the inner boundary equator and subsequently joins
the set of rolls at higher latitudes to form a continuous radial jet. This jet-like feature is
not seen in the 3-D case. The overall structure of the zonal flows is very similar in the two
cases, axisymmetric turbulence is also characterised by a spreading of zonal flows beyond
the TC.

One can notice that the meridional circulation in figure 10(a) looks equatorially
asymmetric compared with figure 10(b). Beyond the onset of the EA inertial modes,
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Figure 10. Zonal flow and streamlines of meridional circulation from simulations at E = 10−4. Dashed (solid)
lines represent anticlockwise (clockwise) circulation. (a) The case for a turbulent 3-D simulation at �Ω/Ω =
−3.5. (b) The same for an axisymmetric simulation at �Ω/Ω = −3.5. Both are averaged in time and azimuth.
Colours indicate zonal flow with blue being retrograde and red, if any, being prograde.

the 3-D simulations continue to possess an EA component of kinetic energy (figure 8),
whereas the kinetic energy for the axisymmetric simulations continues to remain purely
equatorially symmetric, even beyond the onset of turbulence. Thus, the symmetry breaking
with respect to the equator seems unique to the presence of non-axisymmetric flows. The
extension of the mean flow into the bulk along with the additional roll pair seems to push
the Stewartson layer away from the TC. Whether we should still call this a Stewartson
layer is unclear. As already discussed by Wicht (2014), the appearance of a new pair
of rolls close to the inner boundary indicates that the Coriolis force due to the outer
boundary rotation ceases to be dominant. We expect this to happen when �Ω/Ω becomes
smaller than −1. At �Ω/Ω = −1, the inner boundary is at rest in the inertial frame. For
�Ω/Ω ≤ −1 it rotates in the opposite direction to the outer boundary. When �Ω/Ω is
negative enough, centrifugal forces drive an outward flow at the inner boundary that gives
rise to the additional meridional roll pair. The transition from Coriolis-force-dominated
dynamics to inertia-dominated dynamics should start close to the inner boundary where
the effective rotation in the inertial frame is minimal.

Turbulence creates small-scale flow and transports angular momentum more efficiently
from the inner boundary to the bulk of the flow outside the TC. This increases the viscous
friction at the inner boundary so that a larger torque at the inner boundary is required
to maintain the flow. Figure 11 shows the increase of the viscous torque on the inner
core with �Ω/Ω for simulations at two different Ekman numbers. Before the onset of
turbulence, the torque is simply proportional to |�Ω/Ω| and scales like G ∼ |�Ω/Ω|α
with α = 1, as shown with the compensated plot. In the turbulent regime, however, the
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Figure 11. Torque applied to the inner sphere and its variation with differential rotation magnitude,
compensated by the linear scaling. The solid purple lines show a quadratic scaling.

torque increases more steeply with α ∼ 2. Zimmerman (2010) reported approaching α =
2 in the 3-metre experiment in Maryland for a non-rotating outer boundary. The torque
scalings for the axisymmetric simulations show a similar behaviour but the torque becomes
smaller than in the 3-D simulations where non-axisymmetric instabilities provide a more
efficient transport of angular momentum. In conclusion, the instability responsible for the
onset of turbulence is predominantly an instability of the axisymmetric flow. The weaker
non-axisymmetric flow components help stabilise the flow and yield a later onset.

4.2. Inertial modes
The large-scale EA inertial modes that get excited in regime (iv) continue to exist after
the transition to turbulence. There is, however, a jump in the inertial mode frequencies.
This can clearly be seen in the ‘brightest’ spectral lines in both panels of figure 3. This
goes together with the sudden spreading of the background zonal flow beyond the TC
causing further deformation of the inertial modes, as shown in B18. In both 3-D simulation
suites that we studied, the flow is dominated by the inertial mode (3, 2, 0.666) when
turbulence sets in. After the transition, the mode loses at least half of its energy but still
clearly dominates against the broadband turbulent background, as shown in figure 12 for
experiments E1 and simulations S3. The energy estimates were determined by using a
frequency filter on velocity obtained in experiments. In case of simulations, the energy
in the large-scale spherical harmonic coefficients (order l ≤ 6) of the equatorial and
azimuthal symmetry corresponding to a mode was used to estimate the energy in a mode.

In both the numerical simulations S3 at E = 10−4 (MagIC) and S1 at E = 1.125 × 10−4

(XSHELLS), a new m = 2 mode emerges around �Ω/Ω = −2.9 with a frequency of
ω/Ω ≈ 0.4. The mode is visualised at �Ω/Ω = −3 in figure 13(a). We project snapshots
of the flow velocity u and its non-axisymmetric part at different times onto equatorially
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Figure 12. Kinetic energy of the different inertial modes: (a) data from experiments E1 at E = 3.043 × 10−5;
(b) data from simulations S3 at E = 10−4. Both show the same features of the dominant inertial mode (3, 2)

having a sudden drop in its kinetic energy. Vertical dotted lines mark the transition to turbulence in each case.
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Figure 13. A new m = 2 mode emerging in the turbulent regime. (a) The 3-D side view of a snapshot from
a MagIC simulation at E = 10−4, �Ω/Ω = −3. The isosurfaces show non-axisymmetric zonal flow with red
(blue) being positive (negative) at uφ = ±500. (b) Top view of the same. (c) The projection of the flow onto
equatorially symmetric inertial modes.

symmetric inertial modes of a sphere Qj exp(i(mφ − ωjt)), similar to B18,

u =
∑

cjQj exp(i(mφ − ωjt)),

u − 〈u〉φ =
∑

c′
jQj exp(i(mφ − ωjt)).

⎫⎬
⎭ (4.1)

The projection coefficients are normalised by [
∫

u · u dV
∫

Qj · Q†
j dV]1/2 (or [

∫
(u −

〈u〉φ) · (u − 〈u〉φ)
∫

Qj · Q†
j dV]1/2 in the case of c′

j). The corresponding projection
coefficients c and c′, respectively, are shown in figure 13(b). It is clear that a single inertial
mode cannot be used to characterise this flow structure, with dominant contributions from
all modes with m = 2, l ≤ 10 that were analysed. We also could not find other modes that
form triadic resonances with this mode.

5. Force balance

The transition to the turbulent regime for both S3 and S4 goes along with a sudden rise in
the nonlinear term (u · ∇u). As a consequence, advection rather than Coriolis becomes the
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dominant force. To understand the force balance at different length scales, we decompose
the magnitude of each force F into spherical harmonics,

F(r) =
lmax∑
l=0

l∑
m=−l

Flm(r)Ylm(θ, φ), (5.1)

where Ylm(θ, φ) denotes a spherical harmonic of degree l and order m. We then investigate
the magnitude of forces, at different specific spherical harmonics degrees l and radius
levels, similar to Schwaiger, Gastine & Aubert (2019),

F2
rms(l, r) = 1

V

l∑
m=0

r2|Flm(r)|2, (5.2)

where V = 4/3π(r3
o − r3

i ) is the volume of the spherical shell. Figure 14 compares the
respective spectra for two simulations at E = 10−4, one before the transition to turbulence
(a,b) and one after (c,d). This is done for two different radial levels, one near the inner
boundary and one in the bulk. At large scales (low l), the leading-order force balance
near the inner boundary is dominated by advection and the Coriolis force whereas the
dynamics in the bulk is determined by a geostrophic balance between the Coriolis force
and the pressure gradient. This remains true for both before as well as after the transition
to turbulence. At small scales (large l), after the transition to turbulence, there is a clear
dominance of advection close to the inner boundary. This leads to the large-scale flow
in the system being aligned with the rotation axis even in the turbulent regime, whereas
small-scale flows dominate close to the inner boundary. This can be seen in the 3-D flow
visualisation in figure 4(c) combined with the zonal flow visualised in figure 10.

We investigate the effect of the turbulent small scales on angular momentum transport
using the azimuthal component of the Navier–Stokes equation. Separating the flow
velocity and pressure into mean and fluctuating parts and a subsequent mean in azimuth
and time gives us the Reynolds-averaged Navier–Stokes (RANS) equation for the mean
zonal flow:

− 2
E

φ̂ · 〈ẑ × u〉 + φ̂ · 〈∇2u〉 − φ̂ · 〈∇ · ūū〉 − φ̂ · 〈∇ · u′u′〉 = 0, (5.3)

where a bar denotes a mean in azimuth, 〈〉 denotes an average in time and prime denotes
a non-axisymmetric part. We use about 700 snapshots of the 3-D flow at �Ω/Ω = −2
in the inertial mode regime and about 1000 snapshots at �Ω/Ω = −3 in the turbulent
regime at E = 10−4, to compute the terms above, corresponding to 100 rotations of the
outer boundary in each case. In addition, we use a time-averaged flow file for computing
the terms for an axisymmetric case at �Ω/Ω = −3, where the Reynolds stress 〈∇ · u′u′〉
is absent. The results are shown in figure 15. In all cases, as expected, viscous forces
are a dominant contributor to the zonal flow acceleration near the inner boundary. In the
inertial mode regime (figure 15a), there is very little zonal flow generation and, hence, very
little forcing outside the TC. Here the advection force 〈∇ · ūū〉 balances the viscous force
near the equator and the Coriolis force away from the equator. Beyond the transition to
turbulence (figure 15b), Reynolds stresses near the inner boundary balance the viscous
force in this region, whereas the advective force provides the balance away from the
equator. Slightly away from the boundary, the advective force balances the Coriolis force.
In the axisymmetric turbulent case (figure 15c), in the absence of Reynolds stresses, the
advective force balances both the Coriolis force as well as the viscous drag.
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Figure 14. Root-mean-square (RMS) spectra of different forces in the Navier–Stokes equation at two different
radial levels, from simulations at E = 10−4: (a) r/r0 = 0.353, (b) r/r0 = 0.834, (c) r/r0 = 0.353 and
(d) r/r0 = 0.896. Horizontal axes show spherical harmonic degree whereas vertical axes show RMS values.
Panels (a,b) show the case at �Ω/Ω = −1.5 in the laminar regime whereas panels (c,d) show the case at
�Ω/Ω = −3 in the turbulent regime. All plots have the same scale on the vertical axis.

In the case of 3-D turbulence, the small scales in the bulk of the fluid lead to Reynolds
stresses that play the dominant role in forcing the zonal flow outside the TC, whereas
in the axisymmetric case, the advection due to the strong radial jet plays the same role.
The resultant efficient transport of angular momentum manifests itself in a change in
torque scaling. Before the transition to turbulence, the zonal flow is restricted to the
TC and its amplitude is linearly dependent on �Ω , just as shown by Proudman (1956).
Thus, the torque on the inner sphere, G = ri

∫
τrφ dS = ri

∫
∂/∂r(uφ/r) dS, where dS =

ri sin θ dθ dφ is the differential surface area at the inner boundary, is also proportional to
�Ω . Beyond the transition to turbulence, the Reynolds stresses and the advective force
contribute significantly to the zonal flow near the equator and become the major player in
enhancing angular momentum transport. Their quadratic nature thus explains the quadratic
scaling law in the turbulent regime.

1001 A1-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

65
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.650


Turbulence in the wide-gap spherical Couette system
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Figure 15. Different terms of the RANS equation (5.3) computed near the inner boundary for simulations
at E = 10−4: (a) the case for �Ω/Ω = −2, in the inertial mode regime; (b) the case for �Ω/Ω = −3, in
the turbulent regime; (c) a turbulent axisymmetric simulation at �Ω/Ω = −3. The plots are clipped at a
cylindrical radius of s/ro = 0.65 and a vertical extent of −0.6 to 0.6.

6. Instability near the inner boundary

As noted in § 3, as �Ω/Ω becomes increasingly negative, the flow near the inner
boundary first becomes unstable at high latitudes and gives rise to small-scale flows. At the
transition to bulk turbulence, the flow near the inner boundary at and around the equator
becomes unstable. This is illustrated in figure 16. Figure 16(a) shows radial velocity near
the inner boundary before the transition to turbulence for suite S4 at �Ω/Ω = −1.98
and figure 16(b) shows the same after the transition to turbulence at �Ω/Ω = −2. The
presence of small scales at all latitudes is markedly visible in figure 16(b). This is made
even more clear if during this transition to turbulence, we track the radial velocity near
the inner boundary at all latitudes and at a single longitude with respect to time. As
illustrated in figure 17, when the fluid near the inner boundary spins up to �Ω/Ω = −2,
small-scale turbulent features start appearing near the equator. At the same time, the total
and axisymmetric kinetic energies see a marked increase, as also explained in § 4.1.

In order to visualise the dynamics of these small scales, we also produced a movie
using snapshots of the simulation suite S3 at E = 10−4, �Ω/Ω = −2.4, in the turbulent
regime. The initial condition was a solution at �Ω/Ω = −2.25, without any boundary
layer instability at the equator. Several snapshots at regular intervals were used to produce
the movie, which is available as supplementary material (§ 7). The movie illustrates
how small-scale structures of high angular momentum fluid emanate from the equatorial
boundary layer and give rise to a mean flow. It also illustrates in an equatorial section how
the zonal flow is close to being axisymmetric and large scale initially, destabilising soon
after as it transitions into the turbulent regime. As discussed in § 4.1, a secondary pair
of meridional circulation rolls are onset close to the inner boundary. However, the movie
shows that their role is rather unimportant at this stage and the primary circulation is still
responsible for most of the transport.
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Figure 16. Mollweide projection of radial velocity near the inner boundary at r/ro = 0.36. Both simulations
are for the suite S4 at E = 3 × 10−5: (a) the case for �Ω/Ω = −1.98 before the transition to turbulence;
(b) the case for �Ω/Ω = −2, after the transition to turbulence.
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Figure 17. Transition to turbulence through instability at the equator at E = 3 × 10−5, �Ω/Ω = −2. Top
panel shows radial velocity near the inner boundary r/ro = 0.36 as a function of time (on the horizontal axis)
and co-latitude θ on the vertical axis. Bottom panel shows the total, axisymmetric and non-axisymmetric kinetic
energy as a function of time. The vertical dotted line marks the spin-up time based on ΔΩ .
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Figure 18. Visualising the Rayleigh stability criterion near the inner boundary for a couple of snapshots at
E = 10−4 and �Ω/Ω = −2.3: (a) the state at the beginning of the simulation; (b) after 9.5 rotations of the
outer boundary (or 4 rotations of the inner boundary). The right panel in each case shows the zonal flow uφ and
the left panel shows the Rayleigh discriminant Φ. Here Nrot denotes the number of outer boundary rotations.

The Rayleigh stability criterion in a rotating frame is given by (Rayleigh 1917;
Kloosterziel & van Heijst 1991; Ghasemi et al. 2016)

Φ = ∂

∂s
(uφs + Ωs2)2 < 0, (6.1)

where Ω = 1/E is the outer boundary rotation rate. We use a couple of snapshots in time
of the zonal flow at zero longitude to visualise the Rayleigh discriminant Φ near the inner
boundary. We use a simulation at E = 10−4, �Ω/Ω = −2.3 for this purpose. Figure 18(a)
shows the at the beginning of the simulation when turbulence has not yet set in, whereas
figure 18(b) shows the case after 9.5 outer boundary rotations when the boundary layer
is fully unstable at all latitudes. We can see that Φ is strongly negative close to the inner
boundary right at the start of the simulation. Though the colour bars are the same for
both plots, in terms of actual values of Φ, at the beginning of the simulation (figure 18a),
Φmin = −2.02 × 1010 and Φmax = 4.63 × 108 whereas after 9.5 outer boundary rotations
(figure 18b), Φmin = −4.42 × 109 and Φmax = 7.28 × 108. This implies that, in terms
of extreme values of Φ, the fluid near the inner boundary is 4.6 times more stable and
only about half as unstable in figure 18(a) compared with figure 18(b). The boundary
between strongly negative and positive parts correlate quite well with the unstable regions
in figure 18(b).

We compute the thickness of the equatorial boundary layer at the inner boundary using
a slope intersection method (similar to e.g. Verzicco & Camussi 1999; Gastine, Wicht
& Aurnou 2015; Barik et al. 2023). We use time-averaged profiles of ∂uh/∂r, where
uh =

√
u2
θ + u2

φ is the magnitude of horizontal velocity. These profiles are obtained by
averaging uh in azimuth and then in co-latitude with a window of 10◦ centred at the
equator. Fitting two lines to the respective profiles, one close to the inner boundary and
a second one for the bulk, we assume that the boundary layer ends where both lines
intersect. This is illustrated in figure 19. We then explore how the equatorial boundary
layer thickness δ scales with differential rotation |�Ω/Ω|. The thickness is compensated
for by the theoretical E2/5 scaling of the equatorial boundary layer thickness (Stewartson
1966; Marcotte, Dormy & Soward 2016) in figure 20(a). We can see that the scaling works
rather well, except for the axisymmetric suite S3a near the transition to turbulence. The
equatorial boundary layer thickness increases very slowly with |�Ω/Ω| before the onset
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Figure 19. Illustration of how the thickness of the boundary layer at the inner boundary is determined by
slope intersection method, at E = 3 × 10−5, �Ω/Ω = −1.6. The dashed lines show the slopes near the inner
boundary and in the bulk, whereas the shaded region shows the boundary layer.
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Figure 20. (a) Scaled thickness of the equatorial boundary layer δ as a function of |�Ω/Ω| for 3-D (solid
lines, filled symbols) and axisymmetric simulations (dashed lines, open symbols). (b) Plot of Reδ as a function
of �Ω/Ω for 3-D simulation suites S3 and S4.

of turbulence. Close to the onset, there is an increase in the boundary layer thickness. After
the transition to turbulence, the averaging in azimuth and time measures the thickness of
the viscous sublayer, which is thinner than the laminar boundary layer and it decreases
with Reynolds number (Landau & Lifshitz 1959; Grossmann & Lohse 2000). This is seen
as a rapid decrease in δ beyond the transition and then a slow decrease with |�Ω/Ω|. We
can define a Reynolds number based on the boundary layer thickness,

Reδ = (Ωi − Ωo)δ
2

ν
= (Ωi − Ωo)

Ωo

ΩoL2

ν

(
δ

L

)2

= �Ω

Ω

1
E

(
δ

L

)2

. (6.2)

If we assume that the boundary layer becomes turbulent once it exceeds a critical Reynolds
number Rec and use the fact that δ/L = CE2/5, where C is a constant, we find that at
criticality,

C
(

�Ω

Ω

)
c

1
E

E4/5 = Rec,

⇒
(

�Ω

Ω

)
c

E−1/5 = Rec/C.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(6.3)

Figure 20(b) shows the variation of Reδ with |�Ω/Ω| for all simulation suites. We find
that, except for suite S3a, the rest of them peak at Rec = 42, 42 and 45 for suites S3,
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Figure 21. A compensated plot of |�Ω/Ω|cE−1/5 vs Ekman number for the experimental data of H16 (open
circles), our 3-D simulations (orange filled circles) and axisymmetric ones (green squares).

S4 and S4a, respectively. This implies that the assumption the existence of a critical
Reynolds number works fairly well. Furthermore, figure 21 shows the compensated plot of
|�Ω/Ω|cE−1/5 with data from both experiments of H16 as well as our simulations. We
find that the spread in the compensated plot is small, especially noting the variation along
the vertical axis. The higher Ekman number simulations are slightly off a flat line, with
the axisymmetric suite S3a being a complete outlier.

7. Conclusion

The two sets of simulations at Ekman numbers of 10−4 and 3 × 10−5 presented here
yield similar results and reproduce the experimental observations of Hoff et al. (2016)
in the turbulent regime. These include the generation of zonal flow in the bulk, violating
the classic solution for spherical Couette flow by Proudman (1956), the loss of energy
in inertial modes and inertial wave turbulence. Unfortunately, the experimental data are
extremely limited in spatial extent, being limited to a single plane perpendicular to the
rotation axis just above the inner sphere. This makes it difficult to make more quantitative
comparisons with experiments beyond what we already made in Barik et al. (2018) and
in § 4.1. However, using simulations, we have been able to generate a more complete
picture of the transition to turbulence. The cause of the onset of turbulence seems to
be a centrifugal instability of the boundary layer at the equator of the inner boundary,
giving rise to Taylor–Görtler vortices, similar to those observed by Noir et al. (2009) and
Ghasemi et al. (2016, 2018). The hysteresis exhibited by the system (Egbers & Rath 1995)
implies a subcritical transition. Beyond the regimes of axisymmetric flow and the first
linear instability, as the differential rotation rate is made increasingly negative, we find
that the boundary layer at the inner boundary first becomes unstable at high latitudes.
This is seen in both in spectral space (§ 3) as well as physical space (§ 6). This instability
gives place to spiral structures along the boundary layer, ejecting small-scale plume-like
structures. These small-scale structures in a rotating environment are known to excite
inertial waves (Davidson, Staplehurst & Dalziel 2006; Davidson 2013), leading eventually
to inertial wave turbulence as shown in § 3.

At a critical negative differential rotation, the boundary layer at the inner boundary
becomes unstable at the equator and, thus, the resultant Görtler vortices can now propagate
into the bulk, outside the TC. They further contribute to an increase in the energy carried
by inertial waves as well as to an increase in energy in the small scales away from the
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inner boundary as evidenced by the temporal and spatial spectra (§ 3). A significant
increase in Reynolds stresses driving zonal flow ensues, which leads to the zonal flow
spreading outside the TC just as seen in experiments as well as simulations (§ 4.1). This
also leads to a more efficient angular momentum transport and, thus, to an increase
in the scaling exponent of the torque at the inner boundary from linear to quadratic.
A second set of axisymmetric simulations at E = 10−4 and 3 × 10−5 show a very similar
behaviour in terms of creation of large-scale zonal flow, torque scalings and destabilisation
of the inner boundary layer near the equator. However, in this case the instability of the
equatorial boundary layer at the inner boundary gives rise to an equatorial jet, which
makes the subsequent evolution of the centrifugal instability markedly different than the
3-D simulations. This equatorial jet also serves to transport angular momentum in the
axisymmetric cases as opposed to Reynolds stresses for the full 3-D simulations.

The Ekman layer near the inner boundary merges with the Stewartson layer into a layer
that has an extent of δs × δz = E2/5 × E1/5 (Stewartson 1966; Marcotte et al. 2016) with s
and z representing the cylindrical radius and axial direction, respectively. Using a heuristic
critical Reynolds number argument for the destabilisation of the equatorial boundary layer
at the inner boundary, we show that this scaling can help explain the experimental E1/5

scaling for the critical differential rotation, especially at lower Ekman numbers (§ 6). The
finer details of this transition are something that can still be explored and investigated, but
the centrifugal instability of the equatorial boundary layer is the clear precursor. It remains
to be seen whether this scaling law extends to asymptotically low Ekman numbers. The
narrowing gaps between the values of (�Ω/Ω)c for the full 3-D and the axisymmetric
simulations and their similar nature of instabilities is encouraging. This could enable us
to obtain an estimate of (�Ω/Ω)c at lower Ekman numbers with cheaper axisymmetric
computations.

Furthermore, our previous work (Barik et al. 2018) and current study have been limited
to �Ω/Ω < 0. An in-depth study for �Ω/Ω > 0 is still lacking. In particular, it is not
clear why one obtains high-wavenumber spiral Stewartson layer instabilities for �Ω/Ω >

0, but low-wavenumber instabilities trapped inside TC for �Ω/Ω < 0 (Hollerbach 2003;
Wicht 2014). More simulations and experiments are needed to establish better scaling laws
pertaining to the different hydrodynamic regimes at lower Ekman numbers. This will prove
helpful not only in order to extrapolate the behaviour of the spherical Couette system to
real objects, but also to understand the dichotomies between �Ω/Ω < 0 and �Ω/Ω > 0.
The theoretical foundation for spherical Couette flow is still in its infancy as compared with
the more traditional Taylor–Couette system (Grossmann, Lohse & Sun 2016). Our present
study shows that there is a great scope for similar studies in spherical shells as well, where
the presence of spherical curvature makes the problem less tractable.

Supplementary movies. The movie for transition to turbulence can be found at doi.org/10.6084/m9.figshare.
9108533. The full 4k version can be viewed as an unlisted youtube video: https://youtu.be/6vBWwYIapC8.
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