SPHERE THEOREM BY MEANS OF THE RATIO OF MEAN CURVATURE FUNCTIONS

SUNG-EUN KOH

Department of Mathematics, Konkuk University, Seoul, 143-701, Korea e-mail:sekoh@kkucc.konkuk.ac.kr

(Received 2 June, 1998)

Abstract. It is well known that a compact embedded hypersurface of the Euclidean space without boundary is a round sphere if one of mean curvature functions is constant. In this note, we show that a compact embedded hypersurface of the Euclidean space (and other constant curvature spaces) without boundary is a round sphere if the ratio of some two mean curvature functions is constant.

1991 Mathematics Subject Classification. 53C40, 53C42

1. Introduction. Let M^n be an emdedded submanifold of N^{n+1} and let H_k denote the k-th mean curvature function of M^n , that is, H_k is the k-th elementary symmetric polynomial of principal curvatures of M^n divided by $\binom{n}{k}$, and H_0 is defined to be 1. For instance, H_1 is the usual mean curvature and H_n is the Gauss-Kronecker curvature.

Alexandrov's well-known sphere theorem [1] states that, when N^{n+1} is the Euclidean space \mathbb{R}^{n+1} , the hyperbolic space \mathbb{H}^{n+1} or the open half sphere \mathbb{S}^{n+1}_+ , M^n is a round sphere if H_1 is constant. This theorem was generalized in [3] in the following way.

THEOREM A. Let N^{n+1} be one of \mathbb{R}^{n+1} , \mathbb{H}^{n+1} or \mathbb{S}^{n+1}_+ and let $\phi : M^n \to N^{n+1}$ be an isometric embedding of a compact oriented n-dimensional manifold without boundary M^n . If H_k is constant for some k = 1, 2, ..., n, then $\phi(M^n)$ is a geodesic hypersphere.

In this note, we generalize Theorem A in the following way.

THEOREM B. Let N^{n+1} be one of \mathbb{R}^{n+1} , \mathbb{H}^{n+1} or \mathbb{S}^{n+1}_+ and $\phi : M^n \to N^{n+1}$ be an isometric embedding of a compact oriented n-dimensional manifold without boundary M^n . If the ratio H_k/H_l is constant for some k, l = 0, 1, 2..., n, k > l and H_l does not vanish on M^n , then $\phi(M^n)$ is a geodesic hypersphere.

As H_0 is defined to be 1, the above theorem reduces to Theorem A if l = 0. Theorem B is a generalization of Theorem A in this sense. Note also that we cannot expect the result for the whole sphere \mathbb{S}^{n+1} . For example, H_1 and H_2 of the embedding

 $\mathbb{S}^1(a)\times\mathbb{S}^1(b)\subset\mathbb{S}^3,\ a^2+b^2=1,\ a\neq b,$

are nonzero constants.

SUNG-EUN KOH

2. Proof. We use the hyperboloid model for \mathbb{H}^{n+1} and the usual embedding of \mathbb{S}^{n+1} into \mathbb{R}^{n+2} . Let η denote a unit normal field on M^n . We use the following Minkowski formula (for proof, see [3]) where \langle , \rangle denotes the usual Euclidean inner product on \mathbb{R}^{n+1} (on \mathbb{R}^{n+2}) when N^{n+1} is \mathbb{R}^{n+1} (when N^{n+1} is \mathbb{S}^{n+1}_+) and the Lorentzian inner product on \mathbb{R}^{n+2} when N^{n+1} is \mathbb{H}^{n+1} .

LEMMA A. The following identities hold for every k = 1, ..., n.

(i) When N^{n+1} is \mathbb{R}^{n+1} .

$$\int_{M} (H_{k-1} + H_k \langle \phi, \eta \rangle) \, dM = 0$$

(ii) When N^{n+1} is \mathbb{H}^{n+1} ,

$$\int_{M} (H_{k-1}\langle \phi, p \rangle + H_k \langle \eta, p \rangle) \, dM = 0 \quad for \ any \ p \in \mathbb{R}^{n+2}.$$

(iii) When N^{n+1} is \mathbb{S}^{n+1}_+ ,

$$\int_{M} (H_{k-1}\langle \phi, p \rangle - H_k\langle \eta, p \rangle) \, dM = 0 \quad for \ any \ p \in \mathbb{R}^{n+2}$$

We also use the following inequalities for higher order mean curvatures.

LEMMA B. Suppose $H_k > 0$ for some k = 1, 2, ..., n. Then the following hold. (i) $H_k^{\frac{k-1}{k}} \leq H_{k-1}$; hence every H_l , $l \leq k$, is positive. (ii) $H_k/H_{k-1} \leq H_{k-1}/H_{k-2}$. (iii) For every l < k, $H_k/H_l \leq H_{k-1}/H_{l-1}$.

Proof of Lemma B. For (i), (ii), see, for example, [2, Section 12]. From (ii), we have

$$H_k/H_{k-1} \le H_{k-1}/H_{k-2} \le \cdots \le H_{l+1}/H_l \le H_l/H_{l-1},$$

which is equivalent to (iii).

Now, assume

$$H_k/H_l = \alpha$$

for a constant number α .

(2.1). Proof when $N^{n+1} = \mathbb{R}^{n+1}$. Since M^n is compact, one can find a point in M^n where all the principal curvatures are positive. Then H_k , H_l are positive at that point. Since H_k/H_l is constant on M^n and since H_l does not vanish on M^n by

assumption, H_k and H_l are positive on M^n . Then $\alpha > 0$ and from the inequality (ii) of Lemma B, we have

$$0 < \alpha = H_k / H_l \le H_{k-1} / H_{l-1}.$$
 (*)

Since $H_k = \alpha H_l$, we have by Lemma A,

$$0 = \int_{M} (H_{k-1} + H_k \langle \phi, \eta \rangle) \, dM$$
$$= \int_{M} (H_{k-1} + \alpha H_l \langle \phi, \eta \rangle) \, dM$$

that is,

$$\int_{M} H_{k-1} dM = \int_{M} (-\alpha H_{l} \langle \phi, \eta \rangle) dM.$$
(1)

On the other hand, since α is constant, we also have by Lemma A,

$$\int_{M} \alpha(H_{l-1} + H_{l}\langle \phi, \eta \rangle) \, dM = 0$$

that is,

$$\int_{M} \alpha H_{l-1} \, dM = \int_{M} (-\alpha H_{l} \langle \phi, \eta \rangle) \, dM. \tag{2}$$

From (1) and (2), we have

$$\int_M (H_{k-1} - \alpha H_{l-1}) \, dM = 0.$$

Since we have from (*)

$$H_{k-1} - \alpha H_{l-1} \ge 0,$$

it follows that

$$H_{k-1}/H_{l-1} = \alpha = H_k/H_l$$

everywhere on M^n . Thus, proceeding inductively, we have finally

$$H_{k-l} = H_{k-l}/H_0 = \alpha$$

everywhere on M^n . Thus, by Theorem A, $\phi(M^n)$ is a geodesic hypersphere.

(2.2) Proof when $N^{n+1} = \mathbb{H}^{n+1}$: At a point of M^n where the distance function of \mathbb{H}^{n+1} attains its maximum, all the principal curvatures are positive. Then H_k , H_l are positive on M^n and (*) also holds in this case. Since $H_k = \alpha H_l$, we have

$$0 = \int_{M} (H_{k-1}\langle \phi, p \rangle + H_{k}\langle \eta, p \rangle) \, dM$$

=
$$\int_{M} (H_{k-1}\langle \phi, p \rangle + \alpha H_{l}\langle \eta, p \rangle) \, dM,$$

that is,

$$\int_M H_{k-1}\langle \phi, p \rangle \, dM = \int_M (-\alpha H_l \langle \eta, p \rangle) \, dM.$$

Since α is constant, we also have

$$\int_{M} \alpha(H_{l-1}\langle \phi, p \rangle + H_{l}\langle \eta, p \rangle) \, dM = 0,$$

so that

$$\int_{M} (H_{k-1} - \alpha H_{l-1}) \langle \phi, p \rangle \, dM = 0.$$

Now, if we take $p = (1, 0, ..., 0) \in \mathbb{R}^{n+2}$, then the sign of $\langle \phi, p \rangle$ does not change on M^n . Since $H_{k-1} - \alpha H_{l-1} \ge 0$ from (*), we have

$$H_{k-1}/H_{l-1} = \alpha = H_k/H_l$$

everywhere on M^n . Thus, proceeding inductively, we have finally

$$H_{k-l} = H_{k-l}/H_0 = \alpha$$

everywhere on M^n . Thus, by Theorem A, $\phi(M^n)$ is a geodesic hypersphere.

(2.3) Proof when $N^{n+1} = \mathbb{S}^{n+1}_+$. Let $c \in \mathbb{S}^{n+1}$ be the centre of \mathbb{S}^{n+1}_+ . Then at a point of M^n where the height function $\langle \phi, c \rangle$ attains its maximum, all the principal curvatures are positive because M^n lies in the open half sphere with the centre c. Now proceeding as in (2.2), we have

$$\int_{M} (H_{k-1} - \alpha H_{l-1}) \langle \phi, p \rangle \, dM = 0.$$

Since M^n lies in the open half sphere, one can find a vector $p \in \mathbb{R}^{n+2}$ so that $\langle \phi, p \rangle$ is positive on M^n . Since $H_{k-1} - \alpha H_{l-1} \ge 0$ by (*), arguing in the same way as before, we can see that $H_{k-l} = \alpha$, that is, $\phi(M^n)$ is a geodesic hypersphere.

ACKNOWLEDGEMENTS. This research was supported by the KOSEF 96-0701-02-01-3, by BSRI-97-1438 and by Konkuk University in 1998. The author would like to thank Professor Hong-Jong Kim for his interest in this paper.

94

A SPHERE THEOREM

REFERENCES

1. A. D. Alexandrov, A characteristic property of spheres, Ann. Mat. Pura Appl. 58 (1962), 303–315.

2. E. F. Beckenbach and R. Bellman, Inequalities (Springer-Verlag, Berlin, 1971).

3. S. Montiel and A. Ros, Compact hypersurfaces: the Alexandrov theorem for higher order mean curvatures, in *Differential geometry* (B. Lawson, ed.), Pitman Monographs 52 (Longman, New York, 1991), 279–296.