SPHERE THEOREM BY MEANS OF THE RATIO OF MEAN CURVATURE FUNCTIONS

SUNG-EUN KOH
Department of Mathematics, Konkuk University, Seoul, 143-701, Korea
e-mail:sekoh@kkucc.konkuk.ac.kr

(Received 2 June, 1998)

Abstract

It is well known that a compact embedded hypersurface of the Euclidean space without boundary is a round sphere if one of mean curvature functions is constant. In this note, we show that a compact embedded hypersurface of the Euclidean space (and other constant curvature spaces) without boundary is a round sphere if the ratio of some two mean curvature functions is constant.

1991 Mathematics Subject Classification. 53C40, 53C42

1. Introduction. Let M^{n} be an emdedded submanifold of N^{n+1} and let H_{k} denote the k-th mean curvature function of M^{n}, that is, H_{k} is the k-th elementary symmetric polynomial of principal curvatures of M^{n} divided by $\binom{n}{k}$, and H_{0} is defined to be 1 . For instance, H_{1} is the usual mean curvature and H_{n} is the GaussKronecker curvature.

Alexandrov's well-known sphere theorem [1] states that, when N^{n+1} is the Euclidean space \mathbb{R}^{n+1}, the hyperbolic space \mathbb{U}^{n+1} or the open half sphere $\mathbb{S}_{+}^{n+1}, M^{n}$ is a round sphere if H_{1} is constant. This theorem was generalized in [3] in the following way.

Theorem A. Let N^{n+1} be one of $\mathbb{R}^{n+1}, \mathbb{W}^{n+1}$ or \mathbb{S}_{+}^{n+1} and let $\phi: M^{n} \rightarrow N^{n+1}$ be an isometric embedding of a compact oriented n-dimensional manifold without boundary M^{n}. If H_{k} is constant for some $k=1,2, \ldots, n$, then $\phi\left(M^{n}\right)$ is a geodesic hypersphere.

In this note, we generalize Theorem A in the following way.
Theorem B. Let N^{n+1} be one of \mathbb{R}^{n+1}, \mathbb{H}^{n+1} or \mathbb{S}_{+}^{n+1} and $\phi: M^{n} \rightarrow N^{n+1}$ be an isometric embedding of a compact oriented n-dimensional manifold without boundary M^{n}. If the ratio H_{k} / H_{l} is constant for some $k, l=0,1,2 \ldots, n, k>l$ and H_{l} does not vanish on M^{n}, then $\phi\left(M^{n}\right)$ is a geodesic hypersphere.

As H_{0} is defined to be 1 , the above theorem reduces to Theorem A if $l=0$. Theorem B is a generalization of Theorem A in this sense. Note also that we cannot expect the result for the whole sphere \mathbb{S}^{n+1}. For example, H_{1} and H_{2} of the embedding

$$
\mathbb{S}^{1}(a) \times \mathbb{S}^{1}(b) \subset \mathbb{S}^{3}, \quad a^{2}+b^{2}=1, \quad a \neq b,
$$

are nonzero constants.
2. Proof. We use the hyperboloid model for \mathbb{H}^{n+1} and the usual embedding of \mathbb{S}^{n+1} into \mathbb{R}^{n+2}. Let η denote a unit normal field on M^{n}. We use the following Minkowski formula (for proof, see [3]) where 〈, 〉 denotes the usual Euclidean inner product on \mathbb{R}^{n+1} (on \mathbb{R}^{n+2}) when N^{n+1} is \mathbb{R}^{n+1} (when N^{n+1} is \mathbb{S}_{+}^{n+1}) and the Lorentzian inner product on \mathbb{R}^{n+2} when N^{n+1} is \mathbb{H}^{n+1}.

Lemma A. The following identities hold for every $k=1, \ldots, n$.
(i) When N^{n+1} is \mathbb{R}^{n+1},

$$
\int_{M}\left(H_{k-1}+H_{k}\langle\phi, \eta\rangle\right) d M=0 .
$$

(ii) When N^{n+1} is $\mathbb{-}^{n+1}$,

$$
\int_{M}\left(H_{k-1}\langle\phi, p\rangle+H_{k}\langle\eta, p\rangle\right) d M=0 \text { for any } p \in \mathbb{R}^{n+2}
$$

(iii) When N^{n+1} is \mathbb{S}_{+}^{n+1},

$$
\int_{M}\left(H_{k-1}\langle\phi, p\rangle-H_{k}\langle\eta, p\rangle\right) d M=0 \text { for any } p \in \mathbb{R}^{n+2}
$$

We also use the following inequalities for higher order mean curvatures.
Lemma B. Suppose $H_{k}>0$ for some $k=1,2, \ldots, n$. Then the following hold.
(i) $H_{k}^{\frac{k-1}{k}} \leq H_{k-1}$; hence every $H_{l}, l \leq k$, is positive.
(ii) $H_{k} / H_{k-1} \leq H_{k-1} / H_{k-2}$.
(iii) For every $l<k, \quad H_{k} / H_{l} \leq H_{k-1} / H_{l-1}$.

Proof of Lemma B. For (i), (ii), see, for example, [2, Section 12].
From (ii), we have

$$
H_{k} / H_{k-1} \leq H_{k-1} / H_{k-2} \leq \cdots \leq H_{l+1} / H_{l} \leq H_{l} / H_{l-1}
$$

which is equivalent to (iii).
Now, assume

$$
H_{k} / H_{l}=\alpha
$$

for a constant number α.
(2.1). Proof when $N^{n+1}=\mathbb{R}^{n+1}$. Since M^{n} is compact, one can find a point in M^{n} where all the principal curvatures are positive. Then H_{k}, H_{l} are positive at that point. Since H_{k} / H_{l} is constant on M^{n} and since H_{l} does not vanish on M^{n} by
assumption, H_{k} and H_{l} are positive on M^{n}. Then $\alpha>0$ and from the inequality (ii) of Lemma B, we have

$$
\begin{equation*}
0<\alpha=H_{k} / H_{l} \leq H_{k-1} / H_{l-1} . \tag{*}
\end{equation*}
$$

Since $H_{k}=\alpha H_{l}$, we have by Lemma A,

$$
\begin{aligned}
0 & =\int_{M}\left(H_{k-1}+H_{k}\langle\phi, \eta\rangle\right) d M \\
& =\int_{M}\left(H_{k-1}+\alpha H_{l}\langle\phi, \eta\rangle\right) d M
\end{aligned}
$$

that is,

$$
\begin{equation*}
\int_{M} H_{k-1} d M=\int_{M}\left(-\alpha H_{l}\langle\phi, \eta\rangle\right) d M \tag{1}
\end{equation*}
$$

On the other hand, since α is constant, we also have by Lemma A,

$$
\int_{M} \alpha\left(H_{l-1}+H_{l}\langle\phi, \eta\rangle\right) d M=0
$$

that is,

$$
\begin{equation*}
\int_{M} \alpha H_{l-1} d M=\int_{M}\left(-\alpha H_{l}\langle\phi, \eta\rangle\right) d M \tag{2}
\end{equation*}
$$

From (1) and (2), we have

$$
\int_{M}\left(H_{k-1}-\alpha H_{l-1}\right) d M=0 .
$$

Since we have from (*)

$$
H_{k-1}-\alpha H_{l-1} \geq 0
$$

it follows that

$$
H_{k-1} / H_{l-1}=\alpha=H_{k} / H_{l}
$$

everywhere on M^{n}. Thus, proceeding inductively, we have finally

$$
H_{k-l}=H_{k-l} / H_{0}=\alpha
$$

everywhere on M^{n}. Thus, by Theorem A, $\phi\left(M^{n}\right)$ is a geodesic hypersphere.
(2.2) Proof when $N^{n+1}=\mathbb{H}^{n+1}$: At a point of M^{n} where the distance function of \mathbb{H}^{n+1} attains its maximum, all the principal curvatures are positive. Then H_{k}, H_{l} are positive on M^{n} and (*) also holds in this case. Since $H_{k}=\alpha H_{l}$, we have

$$
\begin{aligned}
0 & =\int_{M}\left(H_{k-1}\langle\phi, p\rangle+H_{k}\langle\eta, p\rangle\right) d M \\
& =\int_{M}\left(H_{k-1}\langle\phi, p\rangle+\alpha H_{l}\langle\eta, p\rangle\right) d M
\end{aligned}
$$

that is,

$$
\int_{M} H_{k-1}\langle\phi, p\rangle d M=\int_{M}\left(-\alpha H_{l}\langle\eta, p\rangle\right) d M .
$$

Since α is constant, we also have

$$
\int_{M} \alpha\left(H_{l-1}\langle\phi, p\rangle+H_{l}\langle\eta, p\rangle\right) d M=0
$$

so that

$$
\int_{M}\left(H_{k-1}-\alpha H_{l-1}\right)\langle\phi, p\rangle d M=0
$$

Now, if we take $p=(1,0, \ldots, 0) \in \mathbb{R}^{n+2}$, then the sign of $\langle\phi, p\rangle$ does not change on M^{n}. Since $H_{k-1}-\alpha H_{l-1} \geq 0$ from (*), we have

$$
H_{k-1} / H_{l-1}=\alpha=H_{k} / H_{l}
$$

everywhere on M^{n}. Thus, proceeding inductively, we have finally

$$
H_{k-l}=H_{k-l} / H_{0}=\alpha
$$

everywhere on M^{n}. Thus, by Theorem A, $\phi\left(M^{n}\right)$ is a geodesic hypersphere.
(2.3) Proof when $N^{n+1}=\mathbb{S}_{+}^{n+1}$. Let $c \in \mathbb{S}^{n+1}$ be the centre of \mathbb{S}_{+}^{n+1}. Then at a point of M^{n} where the height function $\langle\phi, c\rangle$ attains its maximum, all the principal curvatures are positive because M^{n} lies in the open half sphere with the centre c. Now proceeding as in (2.2), we have

$$
\int_{M}\left(H_{k-1}-\alpha H_{l-1}\right)\langle\phi, p\rangle d M=0
$$

Since M^{n} lies in the open half sphere, one can find a vector $p \in \mathbb{R}^{n+2}$ so that $\langle\phi, p\rangle$ is positive on M^{n}. Since $H_{k-1}-\alpha H_{l-1} \geq 0$ by $(*)$, arguing in the same way as before, we can see that $H_{k-l}=\alpha$, that is, $\phi\left(M^{n}\right)$ is a geodesic hypersphere.

Acknowledgements. This research was supported by the KOSEF 96-0701-02-01-3, by BSRI-97-1438 and by Konkuk University in 1998. The author would like to thank Professor Hong-Jong Kim for his interest in this paper.

REFERENCES

1. A. D. Alexandrov, A characteristic property of spheres, Ann. Mat. Pura Appl. 58 (1962), 303-315.
2. E. F. Beckenbach and R. Bellman, Inequalities (Springer-Verlag, Berlin, 1971).
3. S. Montiel and A. Ros, Compact hypersurfaces: the Alexandrov theorem for higher order mean curvatures, in Differential geometry (B. Lawson, ed.), Pitman Monographs 52 (Longman, New York, 1991), 279-296.
