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Introduction
Independence is a key concept in probability.  Conceptually, we think of

two events as being independent if the outcome of one event doesn't affect
the outcome of the other and vice versa.  Mathematically, we say that events

 and  are independent if the probability that both occur is the product of
the probabilities that each occurs. More precisely,
in which  denotes the probability of the given event. Alternatively, we
say that  and  are independent if the conditional probability that  occurs
given that  has occurred, , satisfies . That is,
whether or not  occurs does not affect whether or not  occurs.

A B
P (A ∩ B) = P (A) (P (B)

P ()
A B A

B P (A | B) P (A | B) = P (A)
B A

For example, if a coin is flipped twice and  is the event that a head
occurs on the first toss and  is the event that a head occurs on the second
toss, then  and  do not depend on each other – they are independent
events.  In this case, .

A
B

A B
P (A ∩ B) = 1

4 = 1
2 × 1

2 = P (A) × P (B)
For a slight twist, what if  is the event that at least one head appears on the

two tosses and  is the event of getting two heads?  Conceptually, the two
events depend on each other since the only way  can occur is if  occurred (but
note, not vice versa).  Mathematically, .

A
B

B A
P(A ∩ B) = 1

4 ≠ 3
4 × 1

4 = P(A) × P(B)
Textbooks and articles on probability are replete with examples of

independent events and random variables.  The alternative to independence
is typically just given as ‘not independent’ or ‘dependent’.  For nuance, why
not include a mathematical measure of how dependent one event is on
another that captures the spectrum of possibilities from ‘a tiny amount’ to
‘completely dependent’?  A few articles and books address levels of
dependence (see [1] to [5]).  However, the methods in [1] and [2] are highly
technical and require advanced mathematical tools.  The authors in [3, 4, 5]
discuss the independence/dependence of events by connecting events to
random variables via the indicator function and then using the Pearson
correlation coefficient for random variables (hereinafter referred to as the
correlation coefficient) as a surrogate measure for the dependence of events.
This approach makes sense but would benefit from an alternative
formulation derived directly for events.

How could one arrive at a comparable definition of the dependence of
events without resorting to the structure that goes into the correlation
coefficient?  The purpose of this paper is fourfold:
(1) to answer this question by going through an elemental process of

mathematical discovery that naturally leads to a measure of the
dependence of one event on another;

(2) to illustrate how well the measure comports with our intuitive sense of
how much events depend on each other;

(3) convince teachers to supplement their probability lessons with material
on dependence to deepen student understanding of events;
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(4) to invite the reader to create their own examples of events with various
levels of dependence − and to have fun doing so!

Coming up with a measure of dependence for events
A starting approach to come up with a measure for the dependence of

two events  and  is to see how much the events deviate from being
independent.  Mathematically, this could mean considering the size of the
differences  or .  For independent
events, those differences are zero.  So far, so good, but these differences by
themselves have drawbacks to being good measures of dependence.  As an
example, the first difference will be small when  and  have small
probabilities, automatically implying that  and  are somehow nearly
independent. Yet, if , then it only makes sense to think of  and  as
being completely dependent. This suggests that we need some normalising
factor in the differences above.  Also, a problem with the latter difference
above is that  is equally reasonable, but
is generally not the same as .

A B

P (A ∩ B) − P (A) P (B) P (A | B) − P (A)

A B
A B

B = A A B

P (B | A) − P (B) P (A | B) − P (A)
P (B | A) − P (B)

Normalising factors are commonly used in mathematics and other
fields. As examples, the decibel scale for sound and the Richter scale for
earthquakes use reference intensities. Probability density functions employ
normalising constants to ensure that the overall probability of a sample
space is 1.  With this in mind, we include a normalising factor and account
for the asymmetry of  and  to suggest the following as
possible measures for the dependence of two events:

P (A | B) P (B | A)

P (A | B) − P (A)
P (A)

or
P (B | A) − P (B)

P (B)
, (1)

which are equivalent to
P (A ∩ B) − P (A) P (B)

P (A) P (B)
. (2)

Of course, we need to require  and , although we
could account for these cases by way of limits.  Expressions (1) and (2) can
be negative or positive.  This is a desirable feature since an eventual goal for
a measure of dependence would be for it to lie between the normalised
values of  and  to correspond to the correlation coefficient for random
variables ([3 to 7]).   However, this goal isn't satisfied because of the
following shortcoming with the expressions: If say, , then they

become , which gets arbitrarily large as  goes to zero.

P (A) ≠ 0 P (B) ≠ 0

−1 1

B ⊆ A
1 − P (A)

P (A)
P (A)

To overcome this mathematical obstacle, we incorporate the idea that
and  are independent when the probability of  does not depend on
whether  occurs or does not occur. In mathematical terms, if  and  are
independent events, then so are  and , in which  denotes the
complement of  ([5 to 7]).  Likewise,  and  are independent.  Basically,
making use of the events  and  uses all the information in the sample
space, so their probabilities are important to include when measuring

A
B A

B A B
A BC BC

B AC B
AC BC
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dependence.  As such, we consider the following expression of dependence
of two events  and :A B

P (A ∩ B) − P (A) P (B)
P (A) P (B)

×
P (AC ∩ BC) − P (AC) P (BC)

P (AC) P (BC) . (3)

This expression can be visually simplified by the following
substitutions: ,  and  so that

,  and .
The last equality is true because .

P (A) = a P (B) = b P (A ∩ B) = c
P (AC) = 1 − a P (BC) = 1 − b P (AC ∩ BC) = 1 + c − a − b

P(AC ∩ BC) = P((A ∪ B)C) = 1 − (a + b − c)
Putting all this together and simplifying gives the following tidy

expression for a coefficient of dependence, , for two events  and :D A B

D =
c − ab

ab (1 − a) (1 − b)
. (4)

When taking the square root of (3), we used the same numerator as in (2) for
the value of  .D

Note that when two events are independent, then  since
. As it importantly turns out, the expression for

equates to the correlation coefficient for random variables defined by indicator
functions for the events  and  (see [3, 4, 5]).  We insert a caution here: note
that when considering more general cases than two simple events, the correlation
coefficient can take the value zero for dependent variables.  However, other
measures of dependence can be used to avoid this potential drawback.

D = 0
P (A ∩ B) = P (A) P (B) D

A B

Establishing −1 ≤ D ≤ 1
The result  follows from the fact that the correlation

coefficient is between  and ; this is usually proved using the Cauchy-
Schwarz inequality.  However, in the spirit of self-contained analysis we
show how to get this result independently.

−1 ≤ D ≤ 1
−1 1

To begin, we can assume that , without loss of generality. Since
 and the fact that the probability of any event is at least

 and at most , we get the extended inequality, .

b ≤ a
c = P (A ∩ B) ≤ b
0 1 0 ≤ c ≤ b ≤ a ≤ 1

Observe that the minimum value of  occurs when , and the
maximum occurs when  (for fixed  and ). When  and  are

mutually exclusive, then , so that .  Also,

 gives us the additional constraint, , since the sum of the
probabilities of  and  cannot exceed 1. Rewriting  as 

D c = 0
c = b a b A B

c = 0 D2 =
ab

(1 − a) (1 − b)
c = 0 a + b ≤ 1

A B D2

D2 = 1 −
1 − (a + b)

1 − (a + b) + ab
,

we see that the second term is non-negative and less than or equal to 1,
which implies that .  The case  occurs when , and it

results in .  This is a function of two variables defined over

|D| ≤ 1 c = b B ⊆ A

D2 =
1 − a

a
 

b
1 − b
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the triangular region .  As it turns out, standard calculus
techniques show that the maximum value of  in this region is 1, which
occurs on the boundary component, , of the region.  In sum, the
maximum value of  is 1 in both cases; therefore  satisfies .

0 ≤ b ≤ a ≤ 1
D2

a = b
|D| D −1 ≤ D ≤ 1

This inequality brings up the notion of positive and negative dependence.
Positive dependence  occurs when .  Likewise,
events  and  are negatively dependent when .

(D > 0) P(A ∩ B) > P(A)P(B)
A B P(A ∩ B) < P(A)P(B)

Examples 
The test of whether  is a good measure of the dependence of events is

how well it agrees with our intuitive sense of how much one event depends
on another. A variety of examples will illustrate this.

D

As a first example, we consider the case when .  Obviously, they
are completely dependent, and it is the case that  (assuming ).
However, if , we get  which indicates a complete negative
dependence.  This makes sense because  and  comprise the whole sample
space, yet they have no elements in common.

A = B
D = 1 a = b > 0

B = AC D = −1
A B

In the second example in the introduction in which a coin is tossed
twice and  is the event that at least one head appears while  is the event
that two heads appear, we get that  is the set  and

.  (The first/second element of each entry is the outcome of the
first/second coin toss).  As such, ,  and , yielding a
coefficient of dependence of .  As a related yet somewhat contrasting
example, suppose  is the event that a head appears on the first toss and  is
the same as above; in this case  and .
Conceptually  and  are more dependent on each other in this example
than in the prior example, and this is borne out in the coefficient of
dependence: .  Note that these two examples are special
cases of the general case when , as discussed above.

A B
A A = {HH, HT, TH}

B = {HH}
a = 3

4 b = 1
4 c = 1

4
D = 1

3
A B

A = {HH, HT} B = {HH}
A B

D = 3
3 ≈ 0.577

B ⊆ A
As a classical example, suppose one picks two marbles from a jar that

contains  green marbles and  red marbles.  Suppose  is the event that the
first marble is red, and  is the event that the second marble is green.  If the
first marble is replaced before picking the second, then  and  are
independent so that . However, let us consider the case in which the
first marble is not replaced. If we let , then  and

, in which the latter probability is obtained from Bayes' formula:
. Furthermore, the

probability of picking a red marble first and then a green is
;  this does not equal , so  and  are

not independent.  The coefficient of dependence is calculated to be
.  The interpretation is that as the number of marbles ( ) in the jar

increases, the dependence of the two events decreases and goes to zero as
the number of the marbles gets very large.  Basically, not replacing the first
marble becomes irrelevant from a dependence standpoint when the total
number of marbles is large.

g r A
B

A B
D = 0

n = g + r P (A) = r
n

P (B) = g
n

P(B) = P(B | A)P(A) + P(B | AC)P(AC) = g
n −1

r
n + g− 1

n −1
g
n = g

n

P (A ∩ B) = r
n

g
n − 1 P (A) P (B) = r

n gn A B

D = 1
n − 1 n
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As a further check on the reasonableness of  as a measure of the
dependence of events, we consider the case when the events  and  are
mutually exclusive; i.e.   This implies  in (4), so that

.  Firstly,  is negative (assuming ), signifying
that  and  are negatively dependent.  This agrees with our intuition since

 and  have no elements in common.  To further marshal our thoughts, we
illustrate two cases.  If  and  are both small, then  is also small, which
implies  and  are nearly independent.  This is expected since  and  do
not comprise much of the sample space.  To get values of  at the other end
of the  spectrum (  close to ), we consider events  and  such that

 comprises all of (or most of) the sample space; this implies
.  Since  when  and  are

mutually exclusive, we have that .  If  is 1 or close to 1,
then  is  or close to  as well.  These values for  makes sense since

 fills the sample space, yet  and  have no elements in common.

D
A B

A ∩ B = ∅ c = 0
D = − ab

(1 − a)(1 − b) D a, b > 0
A B

A B
a b D

A B A B
D

D D −1 A B
A ∪ B
P (A ∪ B) ≈ 1 P (A ∪ B) = P (A) + P (B) A B

a + b ≈ 1 a + b
D −1 −1 D

A ∪ B A B

Concluding Comments
The measure of dependence, , gives a scrutable way of characterising

two events by giving them a numerical place along the spectrum from
negative dependence to independent to positive dependence.  It is easy to
calculate  in all sorts of probability problems, and it can be both
informative and fun to see how  agrees with our sense of how dependent
two events are.  At a fundamental level, knowing the value of  is much
more satisfying than merely saying independent or dependent.

D

D
D

D
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