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Abstract

Objective: A better understanding of the genetic, molecular and cellular mechanisms of
brain-derived neurotrophic factor (BDNF) and its association with neuroplasticity could play
a pivotal role in finding future therapeutic targets for novel drugs in major depressive disorder
(MDD). Because there are conflicting results regarding the exact role of BDNF polymorphisms
in MDD still, we set out to systematically review the current evidence regarding BDNF-related
mutations in MDD. Methods: We conducted a keyword-guided search of the PubMed and
Embase databases, using ‘BDNF’ or ‘brain-derived neurotrophic factor’ and ‘major depressive
disorder’ and ’single-nucleotide polymorphism’. We included all publications in line with our
exclusion and inclusion criteria that focused on BDNF-related mutations in the context of
MDD. Results: Our search yielded 427 records in total. After screening and application of
our eligibility criteria, 71 studies were included in final analysis. According to present overall
scientific data, there is a possiblymajor pathophysiological role for BDNF neurotrophic systems
to play in MDD. However, on the one hand, the synthesis of evidence makes clear that likely
no overall association of BDNF-related mutations with MDD exists. On the other hand, it
can be appreciated that solidifying evidence emerged on specific significant sub-conditions
and stratifications based on various demographic, clinico-phenotypical and neuromorpho-
logical variables. Conclusions: Further research should elucidate specific BDNF-MDD
associations based on demographic, clinico-phenotypical and neuromorphological varia-
bles. Furthermore, biomarker approaches, specifically combinatory ones, involving
BDNF should be further investigated.

Summations

• No overall association of BDNF-related mutations with MDD can be sustained by current
evidence.

• Nevertheless, BDNF-related mutations could play an important role in stratifying MDD
patients, as they appear related to brain morphology and clinico-phenotypical variables.

• An inter-relation or combination of BDNF SNPs with other parameters such as plasma/
serum BDNF levels, methylation status and neuromorphology changes warrants further
investigation as a combined MDD biomarker approach.

Considerations

• Only papers identified through PubMed and Embase search were included.
• There was substantial heterogeneity among included studies.

Introduction

Brain-derived neurotrophic factor (BDNF) is the major neurotrophic factor in the human brain
(Thoenen, 1995) and associated with the survival, development and differentiation of neurons
by influencing activity-dependent synaptic plasticity, such as long-term depression, long-term
potentiation and memory (Vicario-Abejón et al., 2002; Kojima and Mizui, 2017). Therefore,
BDNF massively influences crucial processes of morphological, functional and neurodevelop-
mental change (Michaelsen et al., 2010; Nestler et al., 2015; Sasi et al., 2017; Numakawa et al.,
2018) and contributes to a balanced, healthy neuronal environment and functionality (Chen
et al., 2017a). As a central regulator of neuroplastic changes in the brain, BDNF was readily
imagined and successively shown to have associations with different neuropsychiatric disorders,
including major depressive disorder (MDD) (Autry and Monteggia, 2012; Numakawa
et al., 2018).
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Increased knowledge of fundamental cellular and molecular
mechanisms as well as genetic abnormalities of BDNF-related
neurotrophic pathways in MDD may aid in finding novel bio-
markers and treatment targets. State-of-the-art pharmacological,
psychotherapeutic and somatic treatment of MDD is adequate,
but unfortunately limited (Pampallona et al., 2004; Chen et al.,
2017b; Cipriani et al., 2018) and treatment resistance is a growing
issue (Otte et al., 2016). On the one hand, some existing treatment
modalities are postulated to exert their effects via modulation
of neurotrophic systems, as partially evidenced for electroconvul-
sive therapy (ECT) and various chemical antidepressants already
in 1995, and ketamine more recently (Nibuya et al., 1995;
Wilkinson and Sanacora, 2016). Furthermore, serum BDNF levels
of MDD patients seem to be positively modified by the adminis-
tration of commonly used chemical antidepressants [e.g. selective
serotonin reuptake inhibitors (SSRIs)], at least in some patients
(Gonul et al., 2005; Huang et al., 2008; Polyakova et al., 2015;
Shi et al., 2020).

On the other hand, modifications of BDNF (serum, genetic,
etc.), potentially amenable to treatment, led to the question of
whether BDNF in some form is a possible biomarker for MDD
(Polyakova et al., 2015; Björkholm and Monteggia, 2016), consid-
ering that MDD subjects may have lower central BDNF levels in
various brain regions (Dwivedi et al., 2003; Youssef et al., 2018).
Genetically, multiple single-nucleotide polymorphisms (SNPs)
and other mutations in the BDNF and BDNF receptor genes, as
well as methylation status of BDNF promoters, were linked with
MDD. This indicates that certain SNP profiles and methylation
states may be used as biomarkers for MDD (Dwivedi et al., 2003;
Gonul et al., 2005; Huang et al., 2008; Januar et al., 2015; Polyakova
et al., 2015; Shi et al., 2020). Analyses of mutations in the BDNF
gene (Czira et al., 2012; Youssef et al., 2018; Zhao et al., 2018; De
Oliveira et al., 2019), methylation states (Fuchikami et al., 2011;
Januar et al., 2015; Hsieh et al., 2019) and serum levels (Gonul
et al., 2005; Huang et al., 2008; Shi et al., 2020) in mostly small,
lower-quality studies found that there is an association between
certain BDNF profiles (both genetic and serum) and the presence
of MDD. Additionally, BDNF SNPs could mediate the severity of
depression, irrespective of peripheral levels of classically implicated
neurotransmitters (Czira et al., 2012).

rs6265 (Val66Met) is the most well-known and common
human SNP in the BDNF gene (De Oliveira et al., 2019; NCBI,
2020). Val66Met has been associated with lower serum BDNF lev-
els, identified as a possible risk factor to developMDD and could be
the mediating factor between stress and depression (Youssef et al.,
2018; Zhao et al., 2018).

Various BDNF SNPs (Val66Met, rs7103411 and rs908867)
have been correlated with both promotor I and IVmethylation sta-
tus, where in a small study, a consistent association between
methylation status and MDD appeared (Januar et al., 2015).
Both BDNF promotor I and IV showed stronger methylation in
subjects with MDD, which raised the question of whether
BDNF methylation status could be used as a biomarker in MDD
(Fuchikami et al., 2011; Song et al., 2014; Januar et al., 2015).
Some hints to the neurobiological underpinnings of promotor
IV correlations in animal models already exist (Hing et al.,
2012). In a brief review of various meta-analyses, BDNF
Val66Met was not associated with an increased risk to develop
MDD, though associated with treatment response (Kishi et al.,
2018). Plasma and serum levels of BDNF ostensibly decrease in
patients with acute MDD versus controls, whereas antidepressants

and ECT can increase BDNF levels, strengthening evidence of a
BDNF biomarker for treatment response and acute presence of
MDD, rather than understanding as a risk factor (Sen et al.,
2008; Kishi et al., 2018; Ai et al., 2019). However, the exact role
of genetic modifications of BDNF in MDD and specifically the rel-
evance of BDNF-related mutations in MDD remains to be eluci-
dated in detail.

While some reviews already evaluated different aspects of
BDNF in MDD (e.g. serum levels), the conflicting results and lack
of a comprehensive data summary regarding the exact role of
BDNF-related polymorphisms in MDD primed us to systemati-
cally review the current evidence in detail. We aimed to correlate
these data with pre-investigated BDNF aspects (serum levels, etc.)
and elucidate whether there is an overall correlation of BDNF-
related mutations with MDD, or whether merely sub-aspects mat-
ter. To this end, we focused on paramount factors in MDD man-
agement, such as overall correlation (disease risk), treatment
response, remission and diagnostic modalities and tried to identify
significant factors.

Method

In this systematic review, we adhered to the PRISMA statement
guidelines (Moher et al., 2009). We classified studies according
to the Oxford Centre for Evidence-Based Medicine levels of evi-
dence (OCEBM, 2009), as the more recent OECBM evidence clas-
sification from 2011 (OCEBM, 2011) considers a more generalised,
less sub-classified approach to evidence hierarchy. Hereby, we
intended to display the differences in sub-levels of evidence with
enhanced clarity. Simpler rules for evidence classification may
be useful in clinical heuristics, but could potentially oversimplify
(Howick et al., 2011) in the setting of this review.

Search strategy

We conducted a MeSH (Medical Subject Headings)-guided search
of the PubMed database. The exact search phrases were as follows:
((brain derived neurotrophic factor[MeSH Terms]) AND (major
depressive disorder[MeSH Terms])) AND (single nucleotide
polymorphism[MeSH Terms]); ((bdnf[MeSH Terms]) AND
(snps[MeSH Terms])) AND (major depressive disorder[MeSH
Terms]); ((bdnf[MeSH Terms]) AND (major depressive
disorder[MeSH Terms])) AND (single nucleotide
polymorphism[MeSH Terms]); ((bdnf[MeSH Terms]) AND (major
depressive disorder[MeSH Terms])) AND (single nucleotide
polymorphisms[MeSH Terms])), ((bdnf receptor[MeSH Terms])
AND (major depressive disorder[MeSH Terms])) AND (single
nucleotide polymorphism[MeSH Terms])). An inquiry using the
abbreviations did not result in an increased number of, or different,
studies. AMeSHmajor topics search yielded fewer results. Further,
we searched the Embase database utilising the following search
phrases: (‘brain derived neurotrophic factor’ AND ‘major depres-
sive disorder’ AND ‘single nucleotide polymorphism’) and (‘bdnf’
AND ‘major depressive disorder’AND ‘single nucleotide polymor-
phism’) in order to identify additional records. The date of first
search was July 2019. The most recent search was conducted on
June 23, 2022. No restrictions on years of dissemination were
placed. Considered publications include studies from 2005 until
June 23, 2022. No forward or backward citation search beyond a
general screening for discussion purposes was executed.
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Eligibility criteria

We included any publications that focused on evaluating BDNF-
related SNPs in the context of MDD. After screening of records,
published comments, editorials, author replies, letters to the editor,
meta-analyses, reviews and book chapters were excluded. Non-
human studies (animal models, in vitro studies, etc.) and any human
studies that included participants diagnosed with neurodevelopmen-
tal disorders, major neurocognitive disorders, Parkinson’s disease and
brain injury of any kind were excluded. Studies with non-rigorous
methodology (i.e. systematic errors), bipolar disorder (BD), mixed
depression cases or undifferentiated psychiatric diagnosis were
excluded as well. Studies that did not focus on BDNF SNPs in the set-
ting of MDDwere excluded due to lacking relevance in the context of
this review. Any foreign, non-english studies, conference papers or
unpublished preprints were not considered in the setting of this sys-
tematic review. One author (J.H) performed the literature search.
Studies were screened and eligibility discussed by both authors
(J.H. and B.N.). Any disagreements were resolved by discussion until
a consensus was reached.

Bias assessment

In order to assess for risk of bias in individual studies included and
give an overall summary of potential bias in the latter, we utilised
the ROBINS-I paradigm for assessment (Sterne et al., 2016) and
the novel robvis tool for easy visualisation of the conducted bias
assessment (McGuinness & Higgins, 2021). robvis is an open-
source tool that allows for plastic and instant visualisation of
potential bias sources identified by means of colour-coding.
Various paramount aspects of study quality andmethodology were
assessed as stringently as possible with the ROBINS-I paradigm for
bias due to confounding, bias in selection of participants in the
study, bias in classification of interventions, bias due to missing
data, bias in measurement of outcomes and bias in selection of
reported results. Furthermore, a judgement of overall bias is given.

Results

Our search yielded 427 records in total. After removing duplicates,
screening and application of our eligibility criteria, 71 studies were
included in the analysis (Fig. 1).

Of the 71 studies included, 20 were clinical trials, 17 were
cohorts and 34 were case–control studies.

Clinical trials

Treatment response in MDD
Dong et al. (2009) looked at various sequence variations in
genes deemed potentially important in the neurobiology of
MDD after re-sequencing in 272 Mexican-American MDD
patients and 264 healthy controls. Afterwards, in a double-blind
RCT setting, after a single-blind placebo lead in phase, patients
were randomised to either receive 10-40mg of fluoxetine/day
or desipramine 50-200mg/day. One hundred and forty-two
MDD patients who enrolled in the pharmacogenetic trial com-
pleted 8-week antidepressant treatment (68 treated with desipr-
amine and 74 treated with fluoxetine). Re-sequencing various
genes, including neurotrophic receptor tyrosine kinase type 2
(NTRK2, TrkB), resulted in 204 novel SNPs. Two common
3’ UTR polymorphisms in NTRK2 (rs7020204 and rs2013566) were
significantly associated with the diagnosis of MDD. Furthermore,
regression analyses found that a relative reduction of HAM-D21

scores was associated with six NTRK2 SNPs. Among the SNPs, only
two NTRK2 SNPs, rs2289657 and rs56142442, remained statistically
significant after correcting for multiple testing in the sample of
patients treated with desipramine. Desipramine-treated patients
who are homozygous for C allele of rs2289657 or rs56142442
had a 27% higher reduction in Hamilton Depression Rating
Scale (HAM-D) scores. Lastly, two haplotypes in NTRK2 (TCG
and CAG) in block 3 for desipramine-treated patients were
asscoited with remission status.

While BDNF has already been genetically associated with vari-
ous neurological and psychiatric disorders, Licinio et al. (2009) did
a deep sequencing analysis of the BDNF gene with the aim of find-
ing new polymorphisms. Two hundred seventy-two Mexican-
American MDD patients and 264 healthy controls were enrolled
in this antidepressant treatment trial. Here, 83 novel SNPs were
identified: 4 in coding sequences, 30 in untranslated regions, 37
in introns and 12 laying in upstream regions. Three of four rare
novel coding SNPs were found to be non-identical. There was a
significant association of six NPs with MDD (rs12273539,
rs11030103, rs6265, rs28722151, rs41282918 and rs11030101)
and two haplotypes in different blocks (one including Val66 and
another near exon VIIIh) were significantly linked with MDD,
too. Furthermore, an untranslated region SNP (rs61888800) was
associated with antidepressant response even after adjusting for
a variety of factors including: sex, medication, age as well as base-
line scores on the HAM-D scale.

Zou et al. (2010a) ran a controlled clinical trial including 294
MDD patients, providing relatively high-quality evidence on the
association of BDNF Val66Met polymorphism with depression
severity as well as the efficacy and side effects of fluoxetine
treatment. The Chinese cohort showed no association between
the efficacy of the SSRI fluoxetine and the BDNF Val66Met poly-
morphism, but a marginally positive result in favour of remission
in heterozygous patients with the Val/Met genotype, in compari-
son with the Val/Val genotype, where the Val/Met genotype had a
significantly higher rate of remission at Week 6. A non-significant
trend towards a higher reduction in HAM-D total score and a
higher rate of response after 6 weeks of medication in patients car-
rying the BDNFVal/Met genotype in comparison with the Val/Val
homozygotes was observed.

A Taiwanese group (Chi et al., 2010) looked at the association of
BDNF Val66Met with MDD in 117 patients and 106 healthy con-
trols and then investigated short-term antidepressant response of
these patients to either fluoxetine or venlafaxine in a randomized
controlled trial (RCT). While they only found a trend for better
treatment response to fluoxetine in Val homozygotes, in the ven-
lafaxine-treated group, Val homozygotes had a significantly higher
chance to respond as measured by the HAM-D score.

Domschke et al. (2010) performed a controlled clinical trial
involving 268 (256 for pharmacogenetic analysis) German patients
diagnosed with MDD as well as 424 healthy controls. The associ-
ation of three BDNF polymorphisms including rs7103411,
Val66Met (rs6265) and rs7124442 with MDD and antidepressant
treatment response was evaluated. Additionally, 10 BDNFmarkers
and their influence on outcome in the context of citalopram treat-
ment in the STAR*D trial sample was analysed by the team. In this
context, BDNF was not associated with a diagnosis of MDD, and
Domschke et al. reported no support of an (overall) association
between genetic variation in BDNF and antidepressant treatment
response or remission. However, the BDNF rs7124442 TT geno-
type was significantly related to worse treatment outcome over a
6-week period in MDD, particularly in anxious depression in this
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sample of Germans. BDNF SNPs rs7103411 and rs6265 both
predicted worse treatment response over 6 weeks in one clinical
subtype of depression, namely melancholic depression. All SNPs
had major effects on antidepressant treatment response in
ANOVA models (with remaining SNPs as covariate variables).
The STAR*D analyses did not yield significant data on any of
the 10 BDNF markers. Conclusively, there was preliminary sup-
port for a potential minor role that genetic variation in BDNF
may play in antidepressant treatment outcomes, specifically in
the melancholic and anxious depression subtypes.

A small clinical sample of 60 Japanese MDD patients treated
with paroxetine were evaluated by Tsuchimine et al. (2012) con-
cerning the association of dopamine receptor D3 (DRD3) and
BDNF Val66Met genotype with treatment response to paroxetine.
No significant differences in Montgomery–Åsberg Depression
Rating Scale (MADRS) scores or clinical improvement related to
the BDNF Val66Met polymorphism were found.

Laje et al. (2012) report on another small clinical MDD sample
(n= 62) treated with intravenous ketamine infusion (0.5mg/kg

over 40 minutes) and the effect of BDNF Val66Met on treatment
response to ketamine. Twenty-eight per cent of the variance in ket-
amine response was attributed to genotype in this sample. Mean
baseline and end point HAM-D scores for Met carriers were
22.9 and 17.8, respectively. Mean baseline and end point scores
for Val carriers were 20.8 and 12.2, respectively. The mean percent
change in scores (improvement) was 24% for the Met carriers and
41% for the Val carriers. In the Caucasian group only (n= 58), the
mean change was 20% for theMet carriers (n= 18) and 40% for the
Val carriers (n= 40).

Brunoni et al. (2013) re-evaluated a patient cohort from a RCT
named SELECT-TDCS. They focused on the impact that BDNF
(Val66Met) and 5-HTTLPR polymorphisms have on MDD
and treatment with sertraline versus transcranial direct current
stimulation (tDCS). One hundred and twenty MDD patients
[moderate-to-severe major depressive episode (MDE)], anti-
depressant-free, from the previous trials which evaluated the
efficacy of sertraline versus tDCS versus placebo (in different
combinations) were included. The Val66Met SNP was not

*Published comments (n=5), book chapters (n=6), meta-analyses/reviews (n=96), editorials (n=12),

conference abstracts (n=25), author replies (n=1) and letters to the editor (n=4)
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Fig. 1. The PRISMA flow diagram.
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significantly associated with response to treatment. However,
the serotonin transporter length polymorphic region (5-
HTTLPR) polymorphism predicted the tDCS effects as long/
long homozygotes showed more improvement when comparing
the active versus sham tDCS. The short-allele carriers did not
display this effect.

Another trial looking at the influence of BDNF polymorphisms
[as well as glial cell line-derived neurotrophic factor (GDNF)] on
SSRI treatment response in MDD was conducted by Wang et al.
(2014). This clinical trial involved 298 Chinese MDD patients
who were clinically assessed, genotyped and administered 20 mg
of paroxetine and followed up after 6 weeks (including plasma
paroxetine-level assessment). At the 6-week follow-up, 219 of
the 298 patients (73.5%) were responders and 79 patients
(26.5%) were non-responders to paroxetine treatment. The allele
types for the SNPs rs6265, rs2973049 and rs2216711 demonstrated
significant associations with paroxetine treatment remission at
Week 6. In addition, the lower threshold concentration of parox-
etine for response was 50 ng/mL, where a linear relationship was
detected between paroxetine plasma concentration and clinical
response.

Fabbri et al. (2014) analysed the relationship between several
SNPs and treatment response and remission at 4 weeks in sev-
eral samples of treatment-resistant MDD patients (N = 4414)
and found evidence for the involvement of rs11030101 and rs
11030104.

Pooling the data from two RCTs, a Japanese group (Kato et al.,
2015) looked at 168 MDD patients treated with either paroxetine
(n= 81), fluvoxamine (n= 42) or milnacipran (n= 45) and
searched for significant associations with various SNPs, as consid-
ered relevant according to genomic meta-analyses. They found no
significant effect of BDNF Val66Met on treatment response.

In a naturalistic, open-label, non-randomised trial, Kreinin
et al. (2015) looked at 51 MDD patients and 38 controls in order
to clarify the association between serum BDNF level, severity of
depression and the BDNF Val66Met SNP. They found a gender-
specific positive correlation between serum BDNF level and severe
depression amongst untreated women. However, they found no
effect of the BDNF Val66Met SNP on severity, duration of illness,
age or BDNF serum levels.

A European group of Maciukiewicz and associates
(Maciukiewicz et al., 2015), in double-blind RCT, looked at the
effect of various SNPs in inflammatory genes and BDNF
Val66Met on treatment response to duloxetine (60mg) in 215
MDD patients versus placebo (235 MDD patients). They found
no significant association of BDNF Val66Met with treatment
response to duloxetine in this European, mostly Caucasian
sample.

In a nested analysis from the STAR*D trial, looking at 220
almost exclusively Caucasian patients with treatment-resistant
major depressive disorder (trMDD), Fabbri et al. (2017) showed
that the Val allele of Val66Met was associated with remission to
venlafaxine. In plus, they found that the BDNF rs11030104 SNP
A allele was associated with remission to venlafaxine.

An Italian group (Maffioletti et al., 2019) looked at the influence
of baseline serum BDNF level and Val66Met status on treatment
response to ECT in trMDD patients (n= 74, 73% female). They
found no significant influence of either one on outcome to ECT
treatment in trMDD patients.

In a recent paper, Brunoni et al. (2020) reported on an ancillary
study to the ELECT-TDCS trial which looked for associations
between various SNPs [including BDNF, serotonin receptor type

2a (HTR2A), tryptophan hydroxylase 1 (TPH1), 5-HTTLPR and
catechol-O-methyl-transferase (COMT)] with outcomes of tDCS
and escitalopram (a SSRI) versus placebo. Patients (n= 195
available) were randomised to receive escitalopram/tDCS-sham
(n= 75), tDCS/placebo-pill (n= 75) or placebo-pill/sham-tDCS
(n= 45). Group comparisons (tDCS vs. placebo, tDCS vs. escita-
lopram and escitalopram vs. placebo) did not find that any alleles
associated with depression improvement. Additionally, explora-
tory analyses also did not identify any SNP unequivocally associ-
ated with improvement of depression in any treatment group.

In a recent RCT, Peters et al. (2021) looked at the effects of the
Val66Met SNP on resilience scores, and whether this link could
explain variations in response to cognitive therapy. They enrolled
106 MDD patients, which were psychometrically evaluated and
underwent molecular analysis from blood samples. It was shown
that Met carriers had higher baseline resilience scores than Val
homozygotes. Furthermore, there was a statistically significant
interactive effect of Val66Met with sex to predict an increase in
total resilience scores during cognitive treatment. This meant that
female Met allele carriers had higher resilience scores in response
to cognitive therapy.

In a recent nested genome-wide association study (GWAS) in
the context of a clinical trial on subanaesthetic ketamine infusions for
trMDD,Chen et al. (2021a) analysed over 600.000 SNPs in 65 trMDD
patients from their clinical trial. Twelve candidate genes were selected
for the study, including BDNF, NTRK2 and multiple other signalling
pathway genes, where 388 SNPs weremapped onto those genes. They
found statistically significant associations for multiple SNPs in the
BDNF-TrkB cascade, as well as glutamatergic and GABAergic path-
ways in association with treatment response to low-dose ketamine
infusions.

Suicidality in MDD
Perroud et al. (2009) aimed to elucidate whether there are genetic
predictors of suicidality in MDD patients in the context of anti-
depressant treatment. Seven hundred ninety-six adult MDD
patients were treated with an adjustable dosage of escitalopram
or nortriptyline in the context of the GENDEP trial. Nine candi-
date genes were included based on previous research on the genet-
ics of suicidality and suicidal ideation. Using logistic regression
models, 123 SNPs of the 9 candidate genes were compared between
subjects, which showed increased suicidal ideation, and those with-
out any increase in suicidal ideation. BDNF polymorphisms were
shown to be significantly associated with increased suicidal idea-
tion. The strongest association was observed for rs962369 in
BDNF. Also, there was a significant interaction between variants
in BDNF and NTRK2.

Schosser et al. (2017) performed a clinical trial in the context of
a European multi-centre study on resistant depression, which
included 250 patients with MDD, adequately treated with an anti-
depressant for at least 4 weeks. The patients were then being evalu-
ated using psychometric scaling on depression and suicidality to
analyse an association between BDNF polymorphisms and suici-
dality in MDD. On this cohort, genotyping was performed for
the BDNF Val66Met polymorphism as well as seven additional
BDNF SNPs (rs11030096, rs925946, rs10501087, rs12273363,
rs908867, rs1491850 and rs1491851). None of the BDNF polymor-
phisms and neither haplotypes were associated with suicide risk
and lifetime history of suicide attempts. However, the Val66Met
as well as rs10501087 polymorphism (genotypic þ haplotypic
association) were significantly associated with suicide risk in remit-
ting MDD cases (13,6 %).
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Cohort studies

Treatment response in MDD
Kocabas et al. (2011) set out to analyse treatment response in asso-
ciation with BDNF polymorphisms in a naturalistic setting. Eight
SNPs (rs11030096, rs925946, rs10501087, rs6265, rs12273363,
rs908867, rs1491850 and rs1491851) including Val66Met were
analysed in 206 MDD patients as well as 76 control patients.
Neither Val66Met nor any of the other seven SNPs were signifi-
cantly associated with MDD after permutation correction. An
association for rs10501087 &Val66Met with non-response to anti-
depressant treatment was found. Combined SNP analysis yielded a
three-marker combination, which showed significance in the
mediation of treatment response (rs10501087, Val66Met and
rs1491850).

One hundred fifty-nine Chinese Han MDD patients (78 men
and 81 women) were included in a naturalistic, prospective cohort
by Xu et al. (2012) in an effort to elucidate the effect that the BDNF
Val66Met polymorphism may have on antidepressant [SSRIs vs.
serotonin and norepinephrine reuptake inhibitors (SNRIs)] treat-
ment response. The change of depression scoring at week 4 in the
SSRI group [total n = 104, with fluoxetine (n= 6), fluvoxamine
(n= 3), citalopram (n= 51), paroxetine (n= 17) and sertraline
(n= 27)] was significantly different between respective genotype
groups. More specifically, changes have been significantly higher
among Met carriers versus Val/Val homozygotes. In addition,
the rate of response in Met/Met genotype was marginally higher
(though reaching statistical significance) than that in Val/Met car-
riers and Val/Val carriers (89.7 vs. 70.8 and 63%). The adjusted
odds ratio (OR) for response was 4.85 in Met allele carriers com-
pared with Val/Val genotype carriers (adjusted for age at onset,
number of previous depressive episodes, initial severity of the
depression and gender). However, no significant difference in
improvement was found between BDNF genotype groups in the
SSRI-treated group at week 6. On the other hand, for the venlafax-
ine-treated group (n= 55), the changes of depression scores after 4
weeks and 6 weeks of antidepressant treatment were not signifi-
cantly different according to BDNF genotype.

A Finnish group around Illi et al. (2013) conducted a prospec-
tive treatment study involving 106 Finnish MDD patients and 386
healthy controls. The endeavour was initiated in order to examine
the role of two BDNF gene polymorphisms (rs11030101 and
rs61888800) in relation to the response to SSRIs (citalopram, fluox-
etine or paroxetine). Patients were clinically evaluated, genotyped
as well as prescribed SSRI antidepressants and re-evaluated at 3
and 6 weeks post-treatment initiation. Three hundred eighty-six
control DNA samples were genotyped. No significant differences
in the distribution of the two BDNF polymorphisms in the patient
population were found, neither in relation to remission nor in rela-
tion to response to treatment with an SSRI. Additionally, there
were no significant differences between the patient group and
the controls.

In a naturalistic treatment study by Colle et al. (2015b) on
BDNF-related mutations in MDD, their group evaluated the
remission of Caucasian MDD patients in association with the
Val66Met polymorphism. Three hundred forty-five Caucasian
MDD subjects were included, genotyped and administered either
an SSRI or an SNRI/tricyclic antidepressant (TCA). Response as
well as remission were explained by Val66Met genotype. SSRI-
treated patients with Val/Val genotype had a higher response rate
at 3-month post-treatment, than Met carriers (68.1% vs. 44%;
adjusted-OR: 3.04). In the SNRI/TCA group, Val/Val patients

had a lower remission rate 6 months post-treatment versus Met
carriers (33.3% vs. 60.9%, adjusted OR: 0.27, CI (95%) [0.09; 0.76]).

Kautzky et al. (2015) used computer algorithms and machine
learning in order to find an association of 12 prominent SNPs (pre-
viously associated with MDD and including BDNF Val66Met)
with treatment response in a sample of 225 trMDD patients within
the European Group for The Study of Resistant Depression
(GSRD). In this study, it was shown that in 62% of patients the
allelic combination of GG-GG-TT for rs6265 (BDNF), rs7430
[protein kinase C gamma type (PPP3CC)] and rs6313 (HTR2A)
for the respective genes and without the clinical feature of melan-
cholia showed a significant prediction of treatment response
(HAM-D decline under 17; compared to about 34% of the whole
study sample). With a random forests prediction model, 25% of
responders could be correctly identified.

In another naturalistic study from Deflesselle et al. (2017), 569
MDD patients were genotyped for eight NTRK2 SNPs (rs1187352,
rs1439050, rs1778933 rs2289656, rs2289657, rs2289658, rs3824519
and rs56142442) and prospectively assessed response and remission
after 6 months of antidepressant treatment. No effects of the NTRK2
SNPs on 6-month response or remission were found.

In a Turkish cohort consisting of 133 MDD patients, Oz et al.
(2020) investigated the frequency of sexual dysfunction in the con-
text of SSRI (either sertraline or citalopram) treatment with rela-
tion to serotonin and BDNF pathway polymorphisms. While there
were some positive associations for serotonin-related SNPs, no
association with BDNF polymorphisms was found.

Ramesh et al. (2021) analysed a cohort of 50 Indian MDD
patients with moderate to severe illness regarding both serum
biomarker levels and BDNF polymorphisms in association with
treatment response to SSRIs. Treatment responders showed sig-
nificantly increased serum BDNF and decreased high-sensitivity
c-reactive protein (hsCRP) levels versus non-responders.
Furthermore, Val homozygous patients showed greater reduc-
tion in HAM-D scores than Met carriers did.

Treatment resistance, recurrence and remission in MDD
Concerning remission from aMDE and the BDNFVal66Met poly-
morphism, Taylor et al. (2011) evaluated the association of
Val66Met genotype, white matter lesions and clinical depression
assessment in a prospective cohort of 229 elderly Caucasian sub-
jects. At the 3-month evaluation, the BDNF Val66Met genotype
was not associated with remission. When multiple comparisons
were not controlled for, Met carriers were more likely to experience
remission at 6 months with an OR of 1.82. Even when controlling
for lesion volume and social support, this effect remained. Alas,
elderly MDD subjects, which are Met carriers, had higher odds
of remission than Val homozygotes.

A multi-centre, longitudinal study conducted by Li et al. (2013)
provided data on the role of BDNF gene, the BDNF receptor gene
(NTRK2) and their interaction in the development of trMDD.
Nine hundred forty-eight MDD patients were recruited for the
12-week longitudinal study. Patients were clinically evaluated, gen-
otyped and followed over the course of 12 weeks. There was a sig-
nificant association between NTRK2 allele rs1565445 and trMDD
with an excess of the T allele in the trMDD group, compared to
non-trMDD group (OR= 1.43). Furthermore, patients with geno-
type C/C and T/C in NTRK2 rs1565445 were less likely to develop
trMDD than those carrying T/T (OR= 0.52; OR = 0.72, respec-
tively). The haplotype T-T (NTRK2 SNPs rs1565445 and
rs1387923) had 1.41x increased risk of trMDD. Lastly, there were
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significant four-locus (rs1387923-rs1565445-rs2769605-rs6265)
gene-gene interactions as being detected by the multifactor-
dimensionality reduction method. In conclusion, BDNF and
NTRK2 polymorphismsmay significantly interact in and influence
the development of treatment resistance in MDD.

As treatment resistance to SSRIs in MDD is not rare and pre-
dictive factors are lacking until now, Zhang et al. (2020b) took sev-
eral tagSNPs and used a support vector machine (SVM) learning
classifier on 857 patients with recurrent MDD to find potential
predictive SNPs. They found multiple accurately predictive mod-
els, and that adding the combined BDNF (BDNF: rs18035210 and
rs7124442) þ cAMP response element-binding protein (CREB1)
SNPs (CREB1: rs2551645 and rs4675690) into the SVM prediction
model significantly increased classification accuracy.

Suicidality in MDD
Schenkel et al. (2010) performed a retrospective cohort study on
120 patients who were admitted to the Emergency Hospital of
Porto Alegre, Brazil, due to a suicide attempt. Though BD was
allowed for in this cohort, the regression model excluded both
BD and alcohol abuse as variates; hence, we included this study
in our review. Nonetheless, the following results have to be inter-
preted with utmost caution: initial univariate analyses showed that
sex, BDNF genotype, intent and method of suicide attempt were all
risk factors for high lethality in suicide attempts. After logistic
regression analysis, male sex (OR= 3.03) and the Met allele
(OR= 2.62) were significantly and independently associated with
the high lethality in suicide attempts. This showed that a Met
carrier state is an independent predictor of high lethality in suicide
attempts of depressed (alas MDD, since neuropsychiatric
comorbidities showed no regression model-associated relevance)
patients.

A retrospective cohort study byYoussef et al. (2018) looked at the
association of the BDNF Val66Met polymorphism, cerebral BDNF
levels with MDD, suicide and early-life adversity (ELA). For this
purpose, post-mortem brain tissue from 37 suicide decedents and
53 non-suicide decedents was analysed. BDNF levels were deter-
mined by Western blot in various limbic and non-limbic structures
implicated in mood control and associated with MDD: (A) dorso-
lateral prefrontal cortex (dlPFC), (B) anterior cingulate cortex
(ACC), (C) caudal brainstem, and (D) rostral brainstem. Overall,
subjects with the Met allele had an increased risk for depression.
MDD patients (N= 45) had lower BDNF levels in the ACC and
caudal brainstem than non-depressed subjects (N= 45). No associ-
ation of history of suicide death or ELAwith genotype was observed.
Subjects who had been exposed to ELA and/or died by suicide were
shown to have lower BDNF levels in the ACC when compared to
non-suicide decedents and subjects with no reported ELA.

Neuroimaging and BDNF in MDD
Taylor et al. (2013) set out to investigate the relationship between
magnetic resonance imaging (MRI)-detected white matter hyper-
intensities, BDNF Val66Met, the angiotensin II receptor type 1
(AGTR1) A1166C polymorphism and depression. They conducted
a retrospective cohort study including 54 depressed and 37 non-
depressed elderly subjects. High-resolution MRI as well as geno-
typing (only 62 Caucasian subjects of 91 subjects were genotyped:
29 depressed subjectsþ 33 non-depressed elderly subjects) was
performed. The depressed cohort exhibited a significantly greater
lesion ratio only in the left upper cingulum near the cingulate
gyrus, supporting past work implicating cingulate dysfunction
in the pathogenesis of depression. BDNF Met allele carriers

exhibited greater lesion ratios only in the frontal corpus callosum.
AGTR1 C1166 carriers exhibited greater lesion ratios across multi-
ple tracts including the anterior thalamic radiation and inferior
fronto-occipital fasciculus. Hence, different fibre tract lesions
may relate to genetic status as well as vascular processes in late-life
depression.

A Japanese prospective cohort by Ide et al. (2015) set out to
investigate the relationship between Val66Met genotype and
voxel-based morphology (VBM) findings [similar to Cardoner
et al. (2013)] for 38 first episode and generally antidepressant/
drug-naïve MDD patients and 42 matched, healthy controls.
The entirety of the cohort was stratified according to BDNF geno-
type, and subsequently the effects of diagnosis and genotype, as
well as the genotype–diagnosis interaction in relation to brainmor-
phology, were assessed. Met carriers with MDD had a significantly
smaller middle frontal gyrus on VBM analysis versus healthy con-
trols. Ergo, the BDNF polymorphism was linked with PFC atrophy
in MDD patients. There was a significant difference in overall grey
matter volume in MDD subjects versus healthy controls.

Lisiecka et al. (2015) demonstrated another neurophysiological
alteration in genotype-stratified subgroups from 37 MDD patients
and 39 healthy controls in a small prospective cohort. They
assessed respective functional MRI (fMRI) patterns in response
to an emotional stimulus (emotional scene/visual) and com-
pared the results according to the respective genotype. Met car-
riers with MDD had increased activation in subcortical regions
responsible for visceral reaction to emotional stimuli. Val/Val
homozygotes with MDD were associated with having decreased
neural activation in areas responsible for cognitive appraisal of
emotional scenes. During a MDE Met carriers displayed higher
levels of activation in brain areas associated with cognitive
appraisal of emotional information in comparison to Val/Val
homozygous individuals with a current MDE. It follows that
allelic variations of Val66Met may lead to specific neural acti-
vation patterns, correlating with MDD. Hence, different mech-
anisms of MDD in the two allelic groups regarding neural circuit
activation/inhibition may exist, which could become a useful
tool in MDD screening.

Insulin resistance and MDD treatment
Martin et al. (2019) looked at the influence of BDNF Val66Met
genotype on insulin resistance in MDD patients (n= 148). Met
carriers had a higher risk of insulin resistance after antidepressant
treatment, indicating the need for insulin resistance screening in
antidepressant-treated MDD patients, specifically Met carriers.

Case–control and cross-sectional studies

Overall association of BDNF with MDD (disease risk)
Ribeiro et al. (2007) conducted a case–control study reporting on
278 Mexican-American MDD patients and 320 controls of the
same ethnicity, which were assessed clinically by HAM-D rating
as well as genotyping. BDNF Val66Met SNP showed a significant
association with the diagnosis of MDD for a single-marker associ-
ation test between MDD and the control group. Here, Val/Val
homozygous individuals were 70% more likely to be depressed,
supporting an association of BDNF Val66Met with MDD in this
ethnic group.

Liu et al. (2009) ran a case-only cross-sectional study on 105
Chinese trios (grandparents, parents and children; N= 315) in
order to elucidate the involvement of various BDNF polymorphisms
inMDD.They did a single-marker, pairedmarker aswell as haplotype
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analysis of three BDNF SNPs: Val66Met, rs10835210 and rs2030324.
There were no significant associations of the three SNPs with MDD.
Pairwise analysis revealed substantial linkage disequilibrium among
three SNPs. Multiple-marker transmission-disequilibrium testing
(TDT) indicated that there was no association of the haplotypes
and MDD. As statistical power was adequate, it was concluded that
SNPs rs6265, rs10835210 and rs2030324 of the BDNF gene are
unlikely to play a critical role in the pathogenesis of MDD in
Chinese Han patients.

As gene–gene interactions of singularly pre-identified risk
genes were considered likely to play a role in the mediation of
an association with MDD, Zhang et al. (2010) looked at whether
BDNF and BDNF signalling cascade polymorphisms [glycogen
synthase kinase-3 beta (GSK3B) and protein kinase B alpha
(AKT1)] may have an association with MDD. Four hundred
forty-seven Chinese Han patients with MDD and 432 age-
and gender-matched control subjects were recruited, and asso-
ciation analyses were conducted. Five SNPs were utilised. An
allelic association between the GSK3B SNP rs6782799 and
MDD was found in the sample with an OR of 1.25. There was a
significant effect of a two-locus BDNF/GSK3B interaction with
MDD (GSK3B rs6782799 and BDNF rs7124442), as well as
three-locus interaction (GSK3B rs6782799, BDNF rs6265 and
BDNF rs7124442). Combination of two risk alleles showed an
OR of 4.00, while combination of three risk alleles gave an OR
of 4.46. It was concluded that indeed GSK3B alleles are a significant
susceptibility factor in Chinese Han patients suffering fromMDD.

On a Polish population of 116 in-patients with recurrent MDD
and 218 healthy subjects, Suchanek et al. (2011) performed a case–
control study in order to evaluate whether there is an association
between the BDNF Val66Met and BDNF rs28383487 SNP and
MDD. The entire sample was genotyped. Whole-group, group-
stratified as well as sex-stratified analyses were conducted. This
study failed to find an association between C-281A polymorphism
with recurrent MDD. There was a significant association between
Val66Met and MDD however. The Val/Val genotype was more
frequent in MDD patients compared to the control group (regard-
ing both total analysis and after sex-based stratification). The Val
allele is connected to a higher risk of recurrent MDD development
in men than in women. Correspondence analysis has shown that
the co-presence of genotypes Val/Val and C/C is connected with a
higher risk of recurrent MDD development compared to other
genotype combinations.

In a study on Taiwanese population conducted by Chi et al.
(2011), there were no significant differences between MDD
patients (N= 198) and controls (N= 106) regarding the BDNF
rs6265 polymorphism, but when the researchers compared the
allele distribution in their control group with other populations
from the HapMap database, namely the Han Chinese in Beijing,
US residents with European ancestry, Japanese in Tokyo, and
Yoruba in Ibadan, they found significant differences.

A Slovak study conducted by Evinova et al. (2012) on 134 inpa-
tients diagnosed with MDD and 143 healthy controls showed that
there is no significant difference in between these groups concern-
ing the BDNF G196A polymorphism.

As a complex interplay between genes and environmental fac-
tors likely contributes to the development of MDD, a Chinese
group (Yang et al., 2016) looked at the interactive effects of the
BDNF gene, PRKCG gene and negative life events in 406
Chinese MDD patients and 391 controls. They found that there
was a significant gene × environment interaction of negative life
events score, BDNF Val66Met and the PRKCG rs3745406 SNP.

Furthermore, in a subanalysis, both the Val and Met allele of
the BDNF SNP significantly influenced the risk of MDD in inter-
action with higher levels of negative life events and the C allele
of PRKCG.

Serotonin transporter as well as BDNF polymorphisms were
investigated by Sun et al. (2016) in a Chinese Han population.
Four hundred fifty-nine MDD patients as well as 412 healthy con-
trols were selected and genotyped for the 5-HTTLPR and
Val66Met polymorphisms. BDNF Val66Met showed no correla-
tion with MDD. When interaction with BDNF was modelled,
for individuals with BDNF (rs6265), genotype GG, cases in the
heterozygous group had even higher odds of MDD than those
in the combined homozygous group of 5-HTTLPR polymorphism,
suggesting that there may be significant interactions between the
5-HTT and BDNF gene in relation to MDD.

One of the more recent case–control studies by Aldoghachi
et al. (2019) evaluated three BDNF polymorphisms (though all
but Val66Met were excluded from further analysis due to mono-
morphism) and plasma BDNF levels in 300 Malaysian MDD
patients (where most were on pharmacotherapy: only 7,4% had
either no medications or unknown status) versus 300 matched
controls. High-resolution melting (HRM) and statistical analysis
showed that BDNF Val66Met in the Malaysian population
increases the odds of developing MDD by 2.05-fold. Two hundred
and six randomly selected cases as well as 206 randomly selected
controls underwent plasma BDNF assessment and a significant
decrease in plasma BDNF levels of MDD cases as versus controls
was observed. Nonetheless, there was no evidence of the effect of
the Val66Met genotype on the plasma BDNF level. Hence, another
type of variable may be the mediator of effect in lower plasma
BDNF levels in MDD versus healthy subjects without MDD.

Looking at 138 MDD patients (only 41 male) and 94 controls
(27 male), Losenkov et al. (2020) found no significant association
of Val66Met genotype with diagnosis; however they found an asso-
ciation with depression severity as measured by HAMD-17.
Additionally, the group did not find an association of plasma
BDNF level with either diagnosis or severity of MDD.

In a cohort of 259 young Chinese Han people (105 MDD
patients and 154 healthy controls), Zhang et al. (2020a) found
no significant associations of geno- or haplotype frequencies with
MDD after targeted sequencing (and false discovery rate correc-
tion) of the BDNF gene.

In a recent study, a Romanian group looked at various genetic
polymorphisms, including Val66Met in the context of MDD
(Costache et al., 2021). Their study included a small sample of
82 MDD subjects and 286 healthy controls. No significant allelic,
recessive or dominant association could be demonstrated for
Val66Met or other investigated SNPs.

A group around Schröter and colleagues looked at allelic and
genotype frequencies of BDNF Val66Met in 49 MDD patients
and 57 controls (as well as BD patients). They found no statistically
significant difference in neither genotype nor allelic frequency
between any of the three groups.

Treatment resistance, recurrence and remission in MDD
In an effort to elucidate the hypothesis of stress having neurotoxic
effects and influencing neurotrophic signalling pathways, Xiao et al.
(2011) analysed whether CRHR1 (corticotropin-releasing hormone
receptor 1) polymorphisms (rs1876828, rs242939 and rs242941)
and the BDNF Val66Met polymorphism influence susceptibility to
recurrent depression. One hundred and eighty-one patients with
recurrent MDD as well as 186 controls were clinically evaluated
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and genotyped. Here, CRHR1 (rs1876828 and rs242941) and BDNF
(rs6265) alleles were found to have no association with the risk of
recurrent MDD, while an allelic association between CRHR1
rs242939 and recurrent MDD was found with an OR of 0.454.

Suicidality in MDD
Voegeli et al. (2016) took a prospective sample of 78MDD patients
and 312 controls in order to elucidate the effect of various SNPs on
antidepressant-worsening suicidal ideation (AWSI), a worrisome,
clinically relevant phenomenon, which occurs with antidepressant
treatment in some patients. Patients were taken from the GENESE
sample. They looked at various BDNF as well as NTRK2 SNPs and
found one SNP of the latter (NTRK2 rs1439050), which remained
significantly associated with AWSI after correction for potential
confounders.

In a nested analysis from theMETADAP study, Deflesselle et al.
(2018) were interested in the influence of TrkB-related SNPs on
suicide risk in 624 patients with MDD with a current MDE.
Indeed, the TRKB rs2289656 CC genotype was associated with a
2.2-fold higher risk of acute suicide attempt in their study.

Neuroimaging and BDNF in MDD
Jessen et al. (2009), building on work of Frodl et al. (2007) who
ostensibly first reported on the association of the BDNF
Val66Met polymorphism with hippocampal volume in MDD,
did a replication case–control study in a German sample.
Seventy-nineMDD patients and 84 healthy controls were recruited
and genotyping for the BDNF Val66Met polymorphism, as well as
high-resolution MRI was performed. Hippocampal volumes of
MDD patients were significantly smaller than those of the controls,
confirming previous reports. After adjusting for genotype, how-
ever, there was no Val66Met effect on hippocampal volume in
either group.

Kanellopoulos et al. (2011) did a covariance analysis of 33
elderly MDD patients as well as 23 controls without psychiatric
disease, based on structural MRI-based data of the hippocampal
volumes (right and left), Val66Met genotype (Val/Val andMet car-
rier) and diagnosis (depressed and non-depressed). Additionally,
age, gender, education, as well as whole brain volume were
included as covariates. Elderly BDNF Val/Val homozygotes with
MDD had significantly higher right hippocampal volumes com-
pared with non-depressed Val homozygous controls. There was
no difference between the depressed and non-depressed Met car-
riers. Depressed Met carriers had an earlier age of onset (AOO) of
depressive illness than depressed Val/Val homozygotes. It was con-
cluded that Val/Val homozygosity may mediate a BDNF-based
neuroprotective role against pathophysiological processes in adults
with late-onset depression.

Cole et al. (2011) analysed whether the 5-HTTLPR and/or
BDNF Val66Met polymorphisms may influence the hippocampal
morphology of patients withMDD in a case–control study. Parallel
samples of 84 MDD patients and 111 healthy individuals were col-
lected, and MRI-based (3D) hippocampal shape mapping was per-
formed as well as genotyping conducted. There was no significant
difference between 5-HTTLPR short-allele carriers and long/long
homozygotes or between BDNF Met allele carriers and Val/Val
homozygotes in the group of healthy individuals. Moreover, there
was no significant difference in normalised hippocampal volumes
between 5-HTTLPR di-allelic and tri-allelic classifications or
between the BDNF Val66Met genotypes in MDD patients.

Carballedo et al. (2012) performed a MRI-based association
study on 37 MDD patients as well as 42 healthy controls in order

to elucidate the connection between white matter tract lesions in
limbic and frontal areas as well as BDNF Val66Met genotype. A
significant interaction was found in the uncinate fasciculus
between BDNF Val66Met alleles and diagnosis. Here, Met allele
had smaller fractional anisotropy (FA) in the uncinate fasciculus
compared to those patients homozygous for Val allele and com-
pared to healthy subjects carrying the Met allele. A significant
three-way interaction was detected between the cingulum (dorsal,
rostral and parahippocampal regions), brain hemisphere and
BDNF genotype. Larger FA was detectable in the left rostral cing-
ulum for Met allele carriers when compared to Val/Val homozy-
gotes. The Met allele of the BDNF polymorphism seems to render
subjects more vulnerable to neurophysiological circuitry dysfunc-
tions associated with the uncinate fasciculus, a tract known to be
related to negative emotional-cognitive processing bias, declarative
memory problems and self-awareness.

Murphy et al. (2012) were one of the few groups, which ana-
lysed the BDNF receptor gene (NTRK2) as well as the BDNF
Val66Met genotype in the context brain morpho-functional analy-
ses and genetic background. In a case–control setting, they per-
formed MR imaging as well as genotyping on a group of 45
MDD patients and 45 age- and gender-matched controls. High-
angular-resolution diffusion images were obtained and analysed
via tract-based spatial statistics, which yielded an interactive effect
between NTRK2 and depression diagnosis maximally affecting the
cingulum. MDD patients homozygous for the A allele of NTRK2
showed significantly reduced FA compared with depressed
patients with at least one copy of the G allele or control subjects
with either the A/A or G carrier genotypes in the following regions:
left and right corona radiata, left uncinate fasciculus, left inferior
fronto-occipital fasciculus, left cerebral peduncle, posterior tha-
lamic radiation, and middle cerebral peduncle. Significantly
smaller grey matter volume was seen in frontal lobe regions in
patients homozygous for the A allele. Additionally, there was no
significant effect of BDNF Val66Met polymorphism or ELA on
white matter diffusion.

Cardoner et al. (2013) analysed cerebral morphological
differences according to BDNF Val66Met genotype in 37 in-
patients with MDD and presence of melancholic features. On
MRI (þ VBM), a grey matter volume reduction in the left hippo-
campus was observed in Met carriers, while there was a volume
increase in the right orbitofrontal cortex. This decrease was
inversely correlated to days to remission, while a significant neg-
ative correlation between left hippocampal volume and days to
remission was found in valine homozygotes.

In another study, Carballedo et al. (2013) studied the interac-
tion between BDNF Val66Met polymorphism and hippocampal
volume in 62 patients with MDD and 71 matched healthy controls
from Dublin and Munich. They found no association between
BDNF genotype andMDD but showed thatMet allele carriers with
a history of ELA had significantly lower hippocampal volumes
when compared with Met allele carriers without history of ELA.
Subjects homozygous for the Val allele did not develop lower
hippocampal volumes if they had a history of ELA. These results
were found in both MDD patients and healthy controls. However,
Met allele carriers without history of ELA had larger hippocampal
volumes than participants homozygous for the Val allele without
history of ELA. Taken together, these results suggest that Met allele
might not be the only factor involved in developing smaller hippo-
campal volumes.

Lan et al. (2014) wanted to elucidate the influence of the BDNF
cascade on the serotonergic system. They recruited 50 healthy
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volunteers and 50 acutely depressed, unmedicated patients with
MDD in a case–control study. The entire sample underwent posi-
tron emission tomography (PET) scanning with the 5-HT1A recep-
tor ligand, [11C]WAY-100635 and a metabolite-corrected arterial
input function. Additionally, subjects were genotyped for the
BDNFVal66Met polymorphism. A linear mixed effects (covariate)
model compared 5-HT1A receptor binding potential (BP(F)), pro-
portional to the number of available receptors, in 13 brain regions
of interest between Met carriers and Val/Val homozygotes using
sex and C-1019G genotype of the 5-HT1A receptor promoter func-
tional polymorphism as covariates. There was an interaction
between diagnosis and allele, such that Met allele carriers had
17.4% lower BP(F) than non-met carriers in the control group,
but not in the MDD group. Their data are consistent with a model
where the Met allele of the Val66met polymorphism causes less
proliferation of serotonin synapses, and therefore fewer 5-HT1A

receptors. In MDD, however, the effect of the BDNF Val66Met
polymorphism is not detectable, which may be possibly due to a
ceiling effect of over-expression of 5-HT1A receptors in mood
disorders.

Frodl et al. (2014) looked at the interaction between childhood
adversity, BDNF Val66met genotype and the formation/morphol-
ogy of hippocampal subfields. Thirty-eight MDD patients and 44
matched healthy controls underwent high-resolution MRI.
Patients with MDD had significantly smaller cornu ammonis
4/dentate gyrus (CA4/DG) and cornu ammonis 2/3 (CA2/3) vol-
umes compared to healthy controls. Furthermore, there was a sig-
nificant interactive effect of BDNF allele and childhood adversity
on CA2/3 and CA4/DG volumes. Met carriers without childhood
adversity had larger and with childhood adversity smaller CA4/DG
and CA2/3 volumes than Val/Val homozygotes. This highlighted
that stress is relevant for gene interaction effects on hippocampal
volume reductions, in particular, for the subfield CA2/3 and
the DG.

Another neuromorphology association study was performed by
Legge et al. (2015). This group looked at the association of brain
morphology modifications in extended prefrontal and associated
regions in correlation with the BDNF Val66Met polymorphism,
more specifically amygdala, anterior cingulate, middle frontal
and orbitofrontal regions. MR imaging of 79 subjects with MDD
and 74 healthy controls was obtained. Genotyping of the entire
sample was performed. It was found that Met carriers showed sig-
nificantly reduced caudal middle frontal thickness in both groups.
Significant interactions were found in the anterior cingulate and
rostral middle frontal regions, where in the MDD group Met car-
riers showed the greatest reduction in surface area.

Phillips et al. (2015) set out to investigate a set of monoaminer-
gic-related genes, which are hypothesised and partially evidenced
to be involved in MDD. Twenty-six outpatients with trMDD and
27 matched healthy controls were included in the study. Both
groups underwent genotyping for a set of six SNPs in monoami-
nergic-related genes (serotonin transporter (SLC6A4), norepi-
nephrine transporter (SLC6A2), serotonin 1A and 2A receptors
(HTR1A and HTR2A), COMT, and BDNF) as well as MRI (and
algorithmic determination of hippocampal volumes) in order to
elucidate possible influences of monoaminergic-related gene poly-
morphisms on MDD. There was some evidence for norepineph-
rine and serotonin-related genes being involved in MDD;
however, there was no association between the 5-HT2A, COMT,
and BDNF SNPs and hippocampal volume.

Kostic et al. (2016) expanded the available literature on the
effect of BDNF polymorphisms on brain structure in MDD by

not only analysing BDNF SNPs, but rather looking at the cumu-
lative effect various SNPs of candidate genes on MDD and brain
morphology/structural integrity. In a case–control setting, the
effect of accumulation of SERT, BDNF and COMT gene SNPs
on brain morphology was analysed. Seventy-seven MDD patients
and 66 healthy controls underwent a clinical psychiatric assess-
ment, genetic testing and MRI scanning. They showed that com-
pared with controls, patients were more BDNF-Val homozygotes,
COMT-Met carriers and SERT-L carriers. Subsequently, subjects
were split into three groups: 1. high-frequency susceptibility poly-
morphism group (hfSP, subjects with all three susceptibility poly-
morphisms (SPs)); 2. intermediate-frequency SP group (ifSP, two
SPs); and 3. low-frequency SP group (lfSP, one/no SP). Upon MR
imaging, cortical thickness, volume of the hippocampi, amygdala
and subcortical structures as well as white matter tract integrity
were assessed. Compared to controls, hfSP patients showed thin-
ning of the middle frontal cortex bilaterally, left frontal pole and
right lateral occipital cortex and smaller hippocampal volume
bilaterally. Both hfSP and lfSP groups showed thinning of the left
inferior parietal cortex and reduced WM integrity of the corpus
callosum. Compared to patients, hfSP controls showed greater
integrity of the fronto-occipital cortices and corpus callosum.
Conclusively, it was affirmed that cortical prefrontal and occipital
damage inMDD patients is modulated by polymorphism accumu-
lation, while damage to the parietal cortex and corpus callosum
seems to be independent of genetic accumulation.

In a case–control study, Shen et al. (2020) investigated the effect
of the Val66Met SNP on cortical thickness in 105 first-episode,
drug-naïve MDD patients and 111 healthy controls. They found
a main effect for MDD diagnosis in the left rostral ACC, right
inferior temporal and right lateral orbitofrontal, while main geno-
type effects were observed in the left posterior cingulate cortex. A
diagnosis-by-genotype interaction effect was located in the left ros-
tral ACC. Here, MDD Met carriers showed thinner left rACC
structures than healthy control Met carriers. However, neither
symptom severity nor illness duration correlated significantly with
cortical thickness.

Inflammation and MDD
An analysis of association between inflammation, BDNF polymor-
phisms and serum BDNF levels was concocted by Caldieraro et al.
(2018) in 73 MDD patients. This group found that the Met allele
was significantly associated with higher BDNF and lower tumour
necrosis factor-alpha (TNF-alpha) levels, even after correction and
considering possible confounders. Respectively, a low BDNF and
high level of inflammatory markers may be affected by the
Val66Met polymorphism and the neurotrophic and inflammatory
signalling systemsmay interact, which has to be analysed in further
studies.

Diet in MDD
Dietary quality, BDNF Val66Met polymorphism as well as plasma
BDNF levels were recently assessed by Froud et al. (2019) in 187
MDD patients as well as 55 healthy controls. The control group
had a significantly higher dietary quality than the participants with
MDD. A logistic regression model (age, sex, serum BDNF levels,
dietary quality and depression) concluded that lower dietary qual-
ity, and surprisingly, higher BDNF levels, were associated with
increased depression risk. Neither seasonality (at time of patient
and control recruitment) nor the BDNF Val66Met polymorphism
was associated with BDNF levels. Additionally, no evidence of
interaction between the Val66Met polymorphism, serum BDNF,
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dietary quality and depression was demonstrated. Higher dietary
quality was associated with decreased depression incidence and
severity, plus Val66Met appeared not to predict serum BDNF lev-
els, depression incidence or modify the relationship between
dietary quality and BDNF.

Neurocognitive performance and MDD
Ferrer et al. (2019) looked at the effect of BDNF variants and
methylation status on cognition in MDD. In a case–control study,
their sample included 64 MDD patients and 70 healthy controls.
Significant associations between neurocognitive performance
and two BDNF SNPs (including rs908867 and rs925946) were
found. This effect was significantly mediated bymethylation values
at (specific) promoter I sites. Furthermore, significant associations
between neurocognitive test results and methylation status as well
as its interactions with a diagnosis of MDD, sex and Childhood
Trauma Questionnaire (CTQ) scores were found.

Childhood and adolescent MDD
AHungarian group around Rimay et al. (2015) performed a retro-
spective cohort study analysing the influence of Val66Met in a spe-
cific subgroup of patients rarely analysed separately: children. Five
hundred eighty-three depressed individuals were involved in this
study [162 with melancholic subtype; childhood-onset melan
cholic depression (COMD)] in an effort to elucidate a possible
association between the BDNF Val66Met polymorphism and
COMD. Furthermore, it aimed to examine the effect of stressful
life events (SLEs) and the Val66Met polymorphism on the risk
of COMD. Results showed that 27.8% of the participants fulfilled
the criteria for melancholy and the proportion of females amongst
them was higher (53.1%). Genotype and allele frequency showed
no significant differences when comparing the melancholic with
the non-melancholic subtype MDD group (27,8% vs. 72,2%).
Additionally, it was ascertained that the Val66Met SNP and SLE
interaction was not significantly associated with melancholy as
an outcome.

Plasma BDNF level
In a second study by their group, Colle et al. (2017) tried to eluci-
date the connection between the BDNF pathway, its components
and the inter-relation to clinical features of MDD in 328 MDD
patients with a current MDE. They analysed plasma BDNF levels,
BDNF genotype for Val66Met polymorphism and performed an
extensive clinical psychiatric assessment of the MDD patients.
Here, it was shown that plasma BDNF levels were significantly
and linearly associated with respective BDNFVal66Met genotypes,
where the Met/Met genotype carriers had lower plasma BDNF lev-
els than the Val/Met and Val/Val carriers. Additionally, three clini-
cal characteristics namely AOO, MDD duration and number of
previous episodes were associated with Val66Met genotype for
plasma BDNF levels. In Met carriers (Met/Met genotype þ Met/
Val genotype), plasma BDNF levels were negatively correlated with
AOO and positively correlated withMDD duration and number of
previous MDE (not so for Val/Val genotype).

As numerous variables have been investigated in studies on
BDNF-related mutations in MDD, with correspondingly different
levels of evidence, Table 1 summarises the evidence for and against
associations between specific subgroups and sub-stratifications in
MDD according to BDNF polymorphisms.

Bias assessment

A sample-size weighted bar graph of percentages displays the frac-
tions of respectively biased studies per evaluated domain (Fig. 2).
Additionally, we provide a traffic light plot (Supplementary Figure 1)
on the specific outcomes of the ROBINS-I-based bias assessment in
the Supplementary Materials. The traffic light plot is ordered by
descending quality of evidence; hence, studies with higher level of evi-
dence are situated towards the top of the table.With thismethodology
of displaying risk of (though not publication) bias in association with
evidence quality, we hope to circumvent classical pitfalls of Funnel
plots, involving, for example, lack of study precision and poor inter-
pretability by researchers (Terrin et al., 2005; Lau et al., 2006).

Discussion

According to the overall scientific data, there is a possibly major
pathophysiological role for BDNF, neurotrophic systems, and
hence neuroplastic changes to play in MDD. However, both
pre-existing scepticism on the rectilinearity of BDNF involvement
in MDD (Groves, 2007) and inconsistent present evidence already
point towards a manifold complexity of BDNF in MDD that has
only been partially appreciated until now (Castrén, 2005; Groves,
2007). Our inter-comparison and chronological synthesis of evi-
dence on the role of BDNF-related mutations in particular shows
that likely no overall association of BDNF-related mutations with
MDD can be sustained based on accumulated evidence. On the one
hand, it can be appreciated that over time evidence emerged on
specific significant sub-conditions, stratifications and variables.
Somehow counterintuitively tough, it becomes increasingly certain
that there is no overall association of BDNF-relatedmutations with
MDD, especially considering higher-quality clinical trials (i.e.
RCTs) and meta-analyses (Gratacòs et al., 2007, 2008; Chen et al.,
2008; López-León et al., 2008; Sullivan et al., 2009; Verhagen et al.,
2010; Domschke et al., 2010; Lewis et al., 2010; Gyekis et al., 2013;
Kishi et al., 2018). This may explain the equivocatory nature of results
of even higher-quality studies, reflecting no overall association with
MDD, but associations with specific subgroups or variables in
MDD, and why the neurotrophin hypothesis of depression as a
clear-cut, neurobiological pathway dysfunction is insufficient
(Groves, 2007). Specifically, a) when considering treatment
response and remission (Licinio et al., 2009; Zou et al., 2010b;
Kocabas et al., 2011; Xu et al., 2012) and specific patient subgroups,
such as gender- (Verhagen et al., 2010; Suchanek et al., 2011) or
ethnicity-stratified groups (Ribeiro et al., 2007; Wang et al.,
2014; Zou et al., 2010a, 2010b; Colle et al., 2015b), potentially rel-
evant interactions appear. Furthermore, b) in brain morphological
studies or functional neurophysiological analyses for detection of
depression, BDNF polymorphismsmay play a role in identification
and/or (sub-) stratification of MDD patients (Kanellopoulos et al.,
2011; Carballedo et al., 2012; Murphy et al., 2012; Cardoner et al.,
2013; Taylor et al., 2013; Frodl et al., 2014; Legge et al., 2015; Ide
et al., 2015; Kostic et al., 2016). Lastly, c) an inter-relation or com-
bination with other parameters such as plasma/serum BDNF levels
(Sen et al., 2008; Colle et al., 2017; Caldieraro et al., 2018) or
methylation status (Carlberg et al., 2014; Ferrer et al., 2019), rep-
resenting a potential future combinatory biomarker approach,
warrants further investigation as well. Especially, sincemethylation
status could potentially differentiate, not only against healthy con-
trols, but BD patients as well (Carlberg et al., 2014).

Though results are ambiguous in nature (Elfving et al., 2012;
Halaris et al., 2015; Froud et al., 2019), peripheral BDNF levels
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Table 1. Variable-dependent associations of BDNF-related mutations with MDD

Outcome variable and association
with BDNF polymorphisms

Pro-effect studies (Oxford Evidence
Level); (þ) = marginal/partial positive
results; ? = questionable Anti-effect studies (Oxford Evidence Level)

General association of MDD and BDNF
polymorphisms

Ribeiro et al. (2007) (3b);
Dong et al., (2009) (1b);
→ TrkB SNPs;
Licinio et al., (2009) (2b);
Zhang et al., (2010) (3b)
→ (þ) GSK3B interaction;
Suchanek et al., (2011) (3b);
Youssef et al., (2018) (2b);
Aldoghachi et al. (2019) (3b)

→ Malaysians

Liu et al. (2009) (3b);
Domschke et al., (2010) (2b);
Kocabas et al., (2011) (2b);
Evinova et al., (2012) (3b);
Sun et al., (2016) (3b);
Froud et al., (2019) (3b);
Zhang et al., (2020a) (3b)
→ Young Chinese patients;
Losenkov et al., (2020) (3b);
Zhang et al., (2020a) (3b);
Costache et al., (2021) (3b);
Schröter et al. (2020) (3b)

Treatment response (rate) Licinio et al. (2009) (2b);
Dong et al., (2009) (3b)
→ TRKB SNPs;
Chi et al., (2010) (1b)
→ SNRI (Val/Val↑);
(þ) Chi et al. (2010) (1b)
→ SSRI (Val/Val↑trend);
(þ) Domschke et al. (2010) (2b)
→ Melancholic depression;
Kocabas et al., (2011) (2b);
Xu et al., (2012) (2b);
Laje et al., (2012) (2b)
→ Ketamine for trMDD;
(þ) Fabbri et al. (2014) (2b);
Kautzky et al., (2015) (2b)
→ In trMDD;
Colle et al., (2015b) (2b);
Ramesh et al., (2b) (2021)
→ Val > Met;
Chen et al., (2021a) (1b)
→ Ketamine for trMDD

Domschke et al. (2010) (2b);
Tsuchimine et al., (2012) (2b);
Illi et al., (2013) (2b);
Brunoni et al., (2013) (1b);
Kato et al., (2015) (1b)
→ Paroxetine, fluvoxamine and milnacipran in

Japanese;
Maciukiewicz et al., (2015) (1b)
→ Duloxetine in Caucasians;
Deflesselle et al., (2017) (2b)
→ 8 TRKB SNPs;
Maffioletti et al., (2019) (2b)
→ ECT in trMDD;
Brunoni et al., (2020) (1b)

Remission (rate) (þ) Zou et al. (2010a) (2b);
(þ) Taylor et al. (2011) (2b);
Wang et al., (2014) (2b)
Asian → Paroxetine;
Colle et al., (2015b) (2b)
Caucasian → SSRI (Val/Val↑)
Caucasian → SNRI/TCA (Val/Val↓);
Fabbri et al., 2017 (1b)
Caucasians → Venlafaxine (Val↑), (rs11030104A↑)

Domschke et al. (2010) (2b);
Illi et al., (2013) (2b)

Ethnicity stratification Ribeiro et al. (2007) (3b)
→ Mexican-Americans?;
Chi et al., (2011) (3b)
→ HapMap vs. Taiwanese
(þ) Laje et al. (2012) (2b)
→ Ketamine effect

Gender stratification Suchanek et al., (2010) (3b)
→ Recurrence risk in men (Val↑);

No studies included

Suicide risk in MDD Perroud et al. (2009) (1b);
Schenkel et al., (2010) (2b)?;
Voegeli et al., (2016) (3b)
→ NTRK2-Antidepressant associated
(þ) Schosser et al. (2017) (2b)
→ In remitting MDD;
Deflesselle et al., (2018) (3b)
→ TRKB rs2289656 CC genotype (↑2.2x)

Schosser et al. (2017) (2b);
Youssef et al., (2018) (2b)

Early-life adversity/childhood trauma (þ) Ferrer et al., (2019) (3b)
→ Methylation status

Youssef et al. (2018) (2b)

Age of onset (AOO) Kanellopoulos et al. (2011) (3b)
→ Met carriers ↓;
Colle et al., (2017) (3b)
→ In association with plasma BDNF level

No studies included

(Continued)
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Table 1. (Continued )

Outcome variable and association
with BDNF polymorphisms

Pro-effect studies (Oxford Evidence
Level); (þ) = marginal/partial positive
results; ? = questionable Anti-effect studies (Oxford Evidence Level)

Association with inflammatory markers Caldieraro et al. (2018) (3b) No studies included

Plasma or serum BDNF level Colle et al. (2017) (3b);
Caldieraro et al., (2018) (3b)

Kreinin et al. (2015) (2b);
Aldoghachi et al., (2019) (3b);
Froud et al., (2019) (3b)

Post-mortem cerebral BDNF level Youssef et al. (2018) (2b) No studies included

Brain morphology changes on imaging Kanellopoulos et al. (2011) (3b);
Carballedo et al. (2012) (3b);
(þ) Murphy et al. (2012) (3b)
→ NTRK2;
Taylor et al., (2013) (2b);
Cardoner et al., (2013) (3b);
Carballedo et al., (2013) (3b);
Frodl et al., (2014) (3b);
Ide et al., (2015) (2b);
Legge et al., (2015) (3b);
Kostic et al., (2016) (3b);
Shen et al., (2020) (3b)
→ rACC

Jessen et al. (2009) (3b);
Cole et al., (2011) (3b);
(þ) Murphy et al. (2012) (3b)
→ Val66Met;
Phillips et al., (2015) (3b)

Brain functional changes on imaging (þ) Lan et al. (2014) (3b)
→ serotonergic receptor density tracing;
Lisiecka et al., (2015) (2b)
→ fMRI

No studies included

(Specific) clinical features No studies included Rimay et al. (2015) (3b)
→ Melancholy

Depression psychometric scores
(e.g. HAM-D)

(þ) Xu et al. (2012) (2b)
→ SSRI (Met carriers)
Ramesh et al., (2021) (2b)
→ Val > Met;
Losenkov et al., (2020) (3b)
→ Val66Met

Zou et al. (2010a) (2b);
Xu et al. (2012) (2b)
→ SNRI

Treatment outcome Domschke et al. (2010) (2b) No studies included

Treatment resistance Li et al. (2013) (2b) No studies included

Recurrence (þ) Suchanek et al. (2011) (3b)
→ Two-genotype interaction (Val/Val þ C/C of C-

281A)
Zhang et al., (2020b) (2b)
→ Multiple SNPs for prediction of recurrence

Xiao et al. (2011) (3b);
Suchanek et al., (2011) (3b)

Duration and number of previous episodes
(severity)

Colle et al. (2017) (3b)
→ In association with plasma BDNF

Kreinin et al. (2015) (2b)

Medication efficacy No studies included Zou et al. (2010a) (2b)

Cognitive performance Ferrer et al., (2019) (3b) No studies included

Insulin resistance Martin et al. (2019) (2b)
→ Val66Met – Met carriers

No studies included

Dietary quality No studies included Froud et al. (2019) (3b)

Stress/HPA axis Xiao et al. (2011) (3b)?;
Frodl et al., (2014) (3b)
→ ELA-neuromorphology effect
Yang et al., (2016) (3b)
→ GxE for Val66Met

Rimay et al. (2015) (3b)
→ SLE-melancholy interaction

Chemical antidepressant side effects Zou et al. (2010a) (2b)
→ Fluoxetine (Val66Met)

Oz et al. (2020) (2b)

Resilience Peters et al. (2021) (2b)
→ Met carriers – higher baseline res.
→ Female Met carriers better response to cognitive

therapy

BDNF, brain-derived neurotrophic factor; ELA, early-life adversity; fMRI, functional magnetic resonance imaging; GSK3B, glycogen synthase kinase type 3 beta; GxE, gene–environment
interaction; HAM-D, Hamilton Rating Scale for Depression; HPA, hypothalamic–pituitary–adrenal axis; MDD, major depressive disorder; NTRK2, neurotrophic receptor tyrosine kinase type 2;
rACC, rostral anterior cingulate cortex; SLE, stressful life events; SNRI, serotonin norepinephrine reuptake inhibitor; SSRI, selective serotonin reuptake inhibitor; TCA, tricyclic antidepressant.
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on their own seem unlikely to predict depression accurately in a
differentiated manner (Terracciano et al., 2013; Molendijk et al.,
2014). Hence, we hypothesise that combined BDNF diagnostics
could increase accuracy and precision of sub-stratifying MDD
patient groups, differentiating amongst polarity, severity and ver-
sus healthy controls, plus identifying treatment resistance [con-
sider Shi et al. (2020)]. A recent study on BDNF in MDD has
shown that novel biomarker directions could yield promising
results. Preliminarily, Lin and colleagues demonstrate that a
novel-specific mature BDNF (mBDNF) enzyme-linked immuno-
sorbent assay (ELISA) kit yields good diagnostic sensitivity and
specificity for both MDD and BD (Lin et al., 2021). Ergo, combi-
nation with methylation and/or polymorphism status could
increase power to differentiate of pre-existing peripheral BDNF
assessment approaches (Halaris et al., 2015; Zhao et al., 2017;
Lin et al., 2021). To the best of our knowledge, there have only been
some additional relevant reviews and meta-analyses on the influ-
ence of BDNF-related mutations in MDD (Yan et al., 2014; Colle
et al., 2015a; Zhao et al., 2018; Kim et al., 2019), but none that
includes all the aspects evaluated to date. Colle et al. (2015a) looked
at the influence of BDNFþ BDNF receptor polymorphisms on
antidepressant efficacy inMDD. They found 5 GWAS and 30 asso-
ciation studies, most evaluated the Val66Met SNP. Therein, the
presence of a Met carrier state was associated with a higher anti-
depressant efficacy, but only in Asian patients, partially confirming
previous ethnicity-stratified studies and warranting further
research into this direction. An earlier meta-analysis confirmed
the effects of the BDNFVal66Met polymorphism on SSRI response
in Asians (Yan et al., 2014). Hence, ethnicity stratifications are of
utmost importance when considering further trials on BDNF-
related mutations in MDD, especially when looking at clinical
response. In this case, precedent data on population-related spec-
ificities of BDNF polymorphisms should be taken into account
(Cargill et al., 1999; Tsai et al., 2003; Itoh et al., 2004; Shimizu
et al., 2004; Choi et al., 2006; Pivac et al., 2009; Yeebo, 2015).
Pharmacological action of antidepressant drugs may result in dif-
fering treatment (Gratacòs et al., 2008) and side effects (Zou et al.,
2010a) due to BDNF polymorphisms. Ketamine as a novel, rapidly
acting glutamatergic antidepressant, seems to work better in Val
than Met carriers acutely (Laje et al., 2012; Chen et al., 2019,
2021a, 2021b); however, Met carriers show similar effects after
repeated drug exposure (Salvadore et al., 2015).

Commonly used SSRIs could be more efficacious in Asian Met
carriers (Choi et al., 2006; Xu et al., 2012; Yan et al., 2014; Wang
et al., 2014; Colle et al., 2015a; Ramesh et al., 2021), though having

higher efficacy in Caucasian Val/Val homozygotes (Colle et al.,
2015b). On the contrary, SNRIs and TCAs seem less efficacious
in Caucasian Val/Val homozygotes (Colle et al., 2015b), and hence
antidepressant class could potentially be selected according to eth-
nicity and Val66Met genotype, though there are some contradic-
tory results (Tsai et al., 2003; Rajewska-Rager et al., 2008;
Alexopoulos et al., 2010; Chi et al., 2010). Indeed, treatment effect
correlations are most well elucidated in Asian populations (Yan
et al., 2014; Colle et al., 2015a; Kang et al., 2016). Interestingly,
treatment effect–genotype interactions also appear as correlations
with a distinct influence on peripheral BDNF levels by different
chemical antidepressants (Matrisciano et al., 2009; Deuschle
et al., 2012), though ECT and exercise do not seem to have such
an effect (Krogh et al., 2014; Ryan et al., 2018).

The presence of the Met allele significantly modulated the asso-
ciation between stress and depression in further trials (Hosang
et al., 2014; Bîlc et al., 2018), specifically life stress. Less so, but
childhood adversity appears to modulate these associations as well
(Hosang et al., 2014; Rahman et al., 2017; Bîlc et al., 2018) and
interactions of Val66Met with resilience may play a role therein
(Peters et al., 2021). Here, correlations with the hypothalamic–
pituitary–adrenal (HPA) axis (Schule et al., 2006) and neuroin-
flammation-related pathways (Anisman and Hayley, 2012;
Dowlati et al., 2010; Liu et al., 2012), which are a potentially major
factor in MDD pathogenesis relating to stress (van Praag, 2004;
Troubat et al., 2021), have to be considered. These strongly imply
alterations of hippocampal neuromorphology in MDD (Hariri
et al., 2003; Videbech, 2004; Neto et al., 2011), though hippocampal
alterations solely due to Val66Met seem increasingly unlikely
(Harrisberger et al., 2014, 2015). Further evidence on neuromor-
phological changes in the PFC, hippocampus, amygdala and spe-
cifically the rostral ACC (Kim et al., 2019; Shen et al., 2020) in
MDD, affected by BDNF-related mutations (including BDNF
Val66Met) (Youssef et al., 2018), strengthen the need for meta-
analysis. Larger trials and correlation of neuroimaging and neuro-
genetic data with specific patient and phenotypical factors are
required (Legge et al., 2015; Kim et al., 2019; Shen et al., 2020).

In late-onset depression, Met carrier state of Val66Met may
contribute to the development of depression (Hwang et al.,
2006; Czira et al., 2012) or Val homozygosity delay or prevent
the onset of geriatric depression (Kanellopoulos et al., 2011).
Potential other factors specific to the elderly may be at play, hence
implicating probable age-related specificities, especially since
BDNF-related SNPs seem to play little role in adolescent, young
adult (here Chinese Han) patients (Zhang et al., 2020a).

Fig. 2. Bias assessment – percentage of bias per domain.
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Furthermore, gender-stratified analyses hint towards increased
gender-specific relevance of BDNF Val66Met in men with MDD
(Verhagen et al., 2010; Suchanek et al., 2011; Czira et al., 2012).

This study has several limitations. For one, PubMed and
Embase were the only databases which were searched. Although
PubMed and Embase are comprehensive and widely used, includ-
ing the vast majority of papers, some studies (e.g. Cochrane data-
base or ScienceDirect) might not have been identified by our search
strategy. Secondly, some studies were excluded based on depressive
episodes appearing in the context of BD. While we considered this
a necessary measure, polarity of depression did not affect associa-
tions of BDNF with depression in some studies (Ryan et al., 2018)
and BD patients were in the minority in most mixed MDD/BD tri-
als (Sarchiapone et al., 2008; Hennings et al., 2019). Alas, bipolar
depression may share similar BDNF-related characteristics with
MDD. However, comparative reviews on the influence of BDNF
polymorphisms in MDD versus BDmight bring valuable informa-
tion regarding separate modes of pathogenesis, diagnosis (Zhao
et al., 2017) and neuromorphology changes, especially with respect
to manic or psychotic symptoms and severity of depression (Post,
2007; Pae et al., 2012). Post-mortem data hints towards both
shared and differential BDNF cascade protein and volumetric
changes in MDD versus BD in limbic structures (Dunham et al.,
2009; Cao et al., 2016). Also, increased BDNF promotor I methyla-
tion appears to differentiate MDD against both BD and healthy
controls (Carlberg et al., 2014) and furthermore be affected by anti-
depressant therapy inMDD (Kim et al., 2010; Carlberg et al., 2014).
Apart from associations with diagnosis (Fuchikami et al., 2011;
Song et al., 2014; Januar et al., 2015; Hsieh et al., 2019; Ferrer
et al., 2019) and disease risk (Kim et al., 2015), promotor methyla-
tion status could influence neurocognitive performance and inter-
act with biological sex and childhood trauma in MDD (Ferrer
et al., 2019).

To summarise, BDNF polymorphisms most probably exert
manifold, phenotypical neurobiological changes on a molecular
level, depending on the respective individual genetic and epigenetic
make-up, gene–gene interactions (GxGs) and adversity-associated
gene–environment interactions (GxEs), for example, due to stress,
ELA, etc. (van Velzen et al., 2016; Bîlc et al., 2018; Zhao et al, 2018).
Pathomechanistically, MDD endophenotype could be influenced
by reciprocally interactive BDNF-related SNPs (Zhang et al.,
2010) predisposing to neuromorphological changes (of e.g. classi-
cally implicated limbic structures) (Hajek et al., 2012) by means of
altered signalling cascades (Zhang et al., 2010; Juhasz et al., 2011;
Pulay and Réthelyi, 2016). These changes in turn could contribute
to depressive symptomatology, by for example, cognitive altera-
tions (Juhasz et al., 2011), resulting in phenotypically manifest
MDD. Such data can add to an explanation of MDD as a ‘major
depressive spectrum disorder’ (Angst andMerikangas, 1997; Caruso
et al., 2017), rather than a homogenous psychiatric disorder. This is
in line with clinical experience in psychiatry and accumulating
understanding of many common psychiatric diseases as spectrum
disorders (Angst andMerikangas, 1997; Akiskal and Benazzi, 2006;
Benazzi, 2006; Berrocal et al., 2008). While a BDNF-related bio-
marker approach for MDD seems feasible, it most likely will have
to combine serum, genetic, and potentially, neuroimagingmarkers.
Importantly, further research into extra-promotor regions of the
BDNF gene (Hing et al., 2018) and detailed elucidation of uncer-
tainties regarding genotypic specificities of BDNF genetic variants
in different populations (Hong et al., 2003; Ferreira Fratelli et al.,
2021) and relating to neuromorphology (Devlin et al., 2021) are
required to improve knowledge of potential genetic candidates

for such an endeavour. Here, deep sequencing approaches and sub-
sequent analysis could aid significantly, as already suggested else-
where (Licinio et al., 2009).

Conclusions

Although no overall association of BDNF-related mutations
with MDD can be sustained, based on currently available evi-
dence, future research should elucidate specific BDNF-MDD
associations based on demographic, clinico-phenotypical and
neuromorphological variables. The evidence-related inconsis-
tencies are likely explained by relevance of specific aspects ver-
sus overall association of BDNF-related polymorphisms in
MDD and genetic specificities differing amongst populations,
implicating pre-described stratification effects. Additionally,
biomarker approaches, especially combinatory paradigms (uti-
lising genetic, serum and neuroimaging markers) involving
BDNF seem promising and should be further investigated.
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