A CLASS OF REFLEXIVE SYMMETRIC BK-SPACES
D. J. H. GARLING

1. Introduction. We denote by w the linear space of all sequences of real
or complex numbers. A linear subspace of w is called a sequence space. A
sequence space E is a BK-space (9) if it is equipped with a norm under which:
first, E is a Banach space and second, each of the coordinate maps x — x; is
continuous. Let 2 be the group of all permutations of Zt+ = {1, 2, 3, ...}. If
x € wand ¢ € Z, the sequence x, is defined by (x,); = %,¢». A sequence space
E is symmetric if x, € E whenever x € E and ¢ € 2. Accounts of symmetric
sequence spaces occur in (3;7; 8). The well-known spaces I’ (1 < p < o) are
examples of symmetric BK-spaces which are also reflexive (as Banach spaces);
our aim in this paper is to describe a class of reflexive symmetric BK-spaces
closely related to, but distinct from, the ¥ spaces. Special cases of spaces of this
class occur in the theory of Fourier coefficients (theorems of Paley and of
Hardy and Littlewood, 10, pp. 120-131).

2. Notation and terminology. We shall, in general, use the notation and
terminology of (3); we follow (7), however, by defining the reduced form of a

sequence x in ¢o as the sequence £ = (£, £2, . . .) defined by
i .
£, = 1Inf sup |xy.
JEz+; igJ
|71<n

Thus & = [x], in the notation of (3). If E is a symmetric sequence space,
Ett ={x:x € E,x = %}. If 1 £ p < o0, we denote by ¢ the associate of p;
g=p/(p—1)if 1<p<ow,g=1if p=o0, and ¢ =00 if p = 1. We
denote the unit ball of * by B,, and denote by M, the set (19)*+ M B,. We
denote by e; the sequence with 1 in the 7th position and 0 elsewhere; if x € w,
we denote by P,(x) the sequence Y j_ix; If \ is a sequence space, \¥
denotes the a-dual of \:

= {x:x € w2, |xy < o0, for each y in )\} .
=1

Finally, if (E, F) is a dual pair of vector spaces, the weak topology on E of the
dual pair (E, F) is denoted by ¢(E, F).

3. The space p,,. Suppose that a € ¢+, and thata ¢ 1. If 1= p < 0,
then the space u,, is defined as the space

o 1
{x:x €co Q) £fa; < oo; .
i—1

Received December 10, 1967.

https://doi.org/10.4153/CJM-1969-068-0 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1969-068-0

BK-SPACES 603

Let b; = a;?, and let b = (b;). Then

bap = {x:x € ¢o, sup Z L£ydi < oo} = ug,

VEMq i=1
where B = {(y:b:): y € M,}. Thus ug,, is a linear space and a Banach space
under the norm

3 1/p
[%|]e,p = (; fcfa,) = sup Z XY

y€B i=1

(3, Theorems 6 and 7). Note that if p = 1, then p,, = p,; from now on we
shall assume that p > 1. Itis clear that if x € u,,**, there exists an element y
in pg,,* for which x,;/y; — 0 as < — 0. It therefore follows from (3, Theorem9)
that P,(x) — x for each x in p,,; that is, in the terminology of Zeller (9), u,,p
is an AK-space. In particular, this means that u,,’, the topological dual of
La.p, may be identified with the sequence space p, ,*. Since u, , is a Kothe space
(3, Theorem 6), to show that u,, is reflexive it is enough to show that u,,* is
also an AK-space (6, p. 421, § 30, paragraph 7(5)). This is done in the next
section, by giving an explicit characterization of u4,,~.

4. The space »,,. We now introduce another space »,, which we shall
eventually identify as pq ,~. va, (Where @, b, and p have the same meaning as in
the preceding section) is defined to be the collection of those sequences f in ¢
for which it is possible to find & in M, such that

5

E ki
i=1

PROPOSITION 1. v, , is a linear space, and the function
L A
7
Z kb

15 @ norm on v, ,. Under this norm, v, is a BK-space, and the unit ball of v, , s
compact under the topology of coordinatewise convergence.

sup

[Hlller = I

If f € vq,p, then clearly af € v,,, and ||lef]|ler = l@|-|||f]|]e.s» for any scalar a.
Suppose that f and g belong to »,,,, so that given ¢ > 0 there exist £ and / in
M, for which

gnl Fo= AllAllles + ‘)@1 kibi>
and
3 b5 leliln+ o 35 104).
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for all m. Letm = (|[|flllas + lllglllas + 267 ((Iflllas + & + (llgllle.r + ©D);
m belongs to M,. If h = f + g, then

3 S E A B 8% Ullles + Uellen + 20( 5 ) s
since this is true for any %, f + g € v,,, and since e is arbitrary,

WIf + gllles = [lIflllas + lllglllan-

Thus v, is a normed linear space under ||| |||op. Further, [fi| < f1 £ 64|fl/lam
so that the coordinate functionals are continuous. Thus the unit ball C of »,,
is coordinatewise bounded, and is therefore a relatively compact subset of w
in the topology of coordinatewise convergence. Since w is metrizable in this
topology, if f belongs to the closure of C in w there exists a sequence (f”) in C

such that f — f coordinatewise. Note that

A

fu £ limsup 7,1, for any n.
T

Given e > 0, there exists, for each 7, 2" in M, such that

Z:l P =a+e Z:l k;7b;, for all n.
j= =

Since the unit ball of ¢ is ¢(I%, I?) compact, we can suppose (by taking a
subsequence, if necessary) that k(” converges coordinatewise to an element &
of M,. Then

n

,}::1 s limrsup]};_:1 P =+ elimsupd k70, = (1 + e)jz:i kb,

r j=1

f € C. Thus C is compact under the topology of coordinatewise convergence.
In particular, C is complete under the topology of coordinatewise convergence,
and is also closed in »,, under the topology of coordinatewise convergence.
Thus, C is complete under the norm topology (2, Chapitre 1, Proposition S),
so that »,, is a BK-space.

We denote by m,, the collection of those sequences f in ¢y for which it is
possible to find & in M, such that

> F
i=1
; kb,

PROPOSITION 2. v4p = T, and v, 15 an AK-space under the norm ||| |||a.p-

This holds for all 7, so that f € v,,, and |||f]|/s, £ 1 + e Since e is arbitrary,

—0 asn—o 0.

Proof. Clearly, v4,, 2 m4,5- Suppose that f € v,,,, and that % is an element of
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M, for which

sup ———— < 0.

"D ki
i=1

We consider two cases. If first f € /!, then since b ¢ /7, there exists &’ in M,
such that X 5.1 k/b; = 0. Then
2
—=l 50 asn— 0.
kb

i=1
If secondly f ¢ I!, then > 5.1k, = . Furthermore (3, Theorem 9), there
exists ¥’ in M, such that k,/k;/ — 0. A straightforward argument then shows
that

2, Ji
———0 asn— 0.

2
i1
2. kb,
i=1

Hence f € w5, and v, = m4,p.
Further, given ¢ > 0, there exists #, such that

Z kb,
i=1

Also, since f € ¢y, there exists 7o such that |f;| < #o~'%k1'b1e, for ¢ = 75 Suppose
that 2 = 4y, and let ¢ = f — Pi(f). Then, if n < n,,

= n’ﬂo_lkllblé é 6<Z ki,bi>
= i=1

lIA
s
3
S
v
s

q

-

i=1

and if n = n,,

]

Ges2 fis e<Z ki’bi> !
i=1 i=1 i=1
so that ||[f — Pr(f)||| = ¢, for B = 4y, and »,,, is an AK-space.

PROPOSITION 3. v,,’, the topological dual of v,.,, may be identified isometrically
With pg,p.

Let us denote the dual norm of v, by ||| |||a.s’- Since »,,, is an AK-space
and a Banach space, »,,’ may be identified with »,,5. Further, since b ¢ P,
vep & I}, and therefore »,, 2 I°; thus, since »,,5 is symmetric, v,,° < co
@3, Proposition 6). Suppose that & € vesr. Then clearly h € v,,5, and
hllles’ = (8lleg’- 1 & € 19 (EdD) € vaps and [|(Edlllnp < |E]ly Thus
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oy bbb = ||B)]ley||Ell,. However, as this is true for any k in 9, this
implies that (ﬁibi) € (19 = I? and that

n 1/p
()], = (; hipai> = [1#l]]a.0"-

However, this means that & € pa,, and that |[4]]s, =< [[|A]]]a.,"-

Conversely, suppose that g € pg,p. If f € v,,, and e > 0, let & € M, be such
that

Z; fi= (N e + e)<; kib,-> for all #.
Let s, = Yie1fi ta = Li-1kid,. Then
; Iftgil = 12::1 fzéi

n

= Z si(@i — Zip1) + Suln

i=1

= (Hlfl”ap <; ti(@s — gip1) + tngn)
= (Hlfmap’*‘ € =1§ i

n 1/p n 1/q
< Qfllen + 0 35 270) (3 5)

= (IHfIHam + G)Hglla,p'
Thus g € va,%, and [|[gll|as" = |[g]]a.0-

THEOREM 1. The BK-spaces pq,p and v, , are reflexive, and each is isometrically
isomorphic to the dual of the other.

Proposition 3 shows that u,, may be identified with the dual of », ,. On the
other hand, u,, is an AK-space, so that u,,” may be identified with u,,*. The
unit ball C” of I"'a.p, is U(l‘a.plv ﬂam)'compa—Ctv and hence o'(l“a.p/v l-‘a,p) and the
topology of coordinatewise convergence induce the same topology on C”, and
thus on C, the unit ball of v,,. This implies that C is o (v4,5, pap) compact;
since ugp = v, , this means that v, , is reflexive, and the result follows.

Remark. The proof of Theorem 1 would be much simpler if I could show
directly that

Z fi .
klerzllf 5P T I II 1121 lxifi
q n klb Zllas § =
; i

for any f in co. For this would show that v,,, = ., and, bearing in mind the
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remarks made at the end of § 3, it would then only remain to prove Propo-
sition 2.

5. Another representation of »,,. We now give another representation
of v,.,, which appears to be more natural than that described in the preceding
section, but which seems to be less suitable for determining the properties of

Va,p~
Suppose that f € ug,p, that & € 14, and that ¢ € u,X. Then

n n
Z ledkifs| < Z Cikif
=1 =1

< lells'[1Pa (B[
=Hmygﬁmm

no 1/q o, 1/p
s 1k 5 )" (5 700
< {lel "1 1El ol fa.p-

Thus each element f of u,,, defines a continuous bilinear functional T'(f) on
ws X 19; further, T is a continuous linear map of u,,, into B(us%, 19), the
Banach space of continuous bilinear functionals on u,* X % and ||T]| = 1.
Note also that

[fllas = [1761lp = sup 35 kifbe < sup sup kific) = [ITAI,
kEMq i=1 k€Bq llcllp’S1 | i=1
so that 7 is a norm-preserving map, and (i, || ||2.,») may be identified with a

closed linear subspace of B (u;%, 19). There is a canonical norm-preserving map
J of the projective tensor product p;® ®" ¢ into B’ (u,;X, I%), the topological
dual of B(u;X, 19). Let S be the composite map 7’J from wu;X ®”"1¢ into
Vap = Mayp . Itisreadily verified thatif ¢ € u,* and & € 19, then S(c ® k) = h,
where %; = c;k;. Thus S is a continuous linear mapping of u;* ®" ¢ onto a
dense linear subspace of v,,,. Identifying B (up¥, I9) with (u;¥ ®" 19)’, however,
it is easy to see that .S’ = T It therefore follows, since .S’ is norm-preserving,
that .S maps u;X ®" /¢ onto v, ,,, and that the norm on »,, is the quotient norm
defined by .S (4, Chapitre IV, p. 298, § 2, Théoréme 3, Corollaire 1).

The following theorem therefore follows from the characterization of the
projective tensor product of two Banach spaces (5, Chapitrel, p. 51, Théoréme1).

THEOREM 2. A sequence x belongs to v, if and only if there exist N € I, a
sequence (¢V) in the unit ball of u;~, and a sequence (kP) in the unit ball of 10

such that
(*) x = Z )\ic(i)k(i).
i=1
Further, ||x|| = inf X_%-1 |\, the infimum being taken over all representations o
g

the form (*).
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6. Concluding remarks. We conclude by remarking that in general the
spaces g, and p,,~ are distinct from, and indeed not linearly isomorphic to,
the I? spaces. For example, take a, = 1/r, and suppose, if possible, that T is a
linear isomorphism of u,,* onto /%, for some s. Clearly, 1 <s < 0. Let
x; = T'(e,);since e; — 0 in the weak topology o (g,;%, tep), ¥; — 0 in the weak
topology of I°. Thus, by (1, Chapitre X1I, Théoréme 3), there exists a sub-
sequence (x;) such that

i\Z x = 0.

Since T is an isomorphism, it follows that

n

> el

=

la,p o).

However, if £ € M, and m is any positive integer, then

m m 1/¢ m 1/p m 1/p
S kb < (Z k,-”) <Z F) =\ f) .
i=1 i=1 i=1 i=1

n

> —
P = n 1/p?
—1
2.1
i=1

x

Thus

Z €ir
k=1
from which it easily follows that

Z €ir,

giving the required contradiction.

a,,;éO(nl’)
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