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We study Lp-Sobolev regularity estimates for the restricted X-ray transforms
generated by nondegenerate curves. Making use of the inductive strategy in the
recent work by the authors, we establish the sharp Lp-regularity estimates for the
restricted X-ray transforms in Rd+1, d � 3. This extends the result due to Pramanik
and Seeger in R3.
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1. Introduction

Let γ be a smooth curve from I = [−1, 1] to R
d. We consider

Rf(x, s) = ψ(s)
∫
f(x+ tγ(s), t)χ(t) dt, f ∈ S(Rd+1),

where ψ and χ are smooth functions supported in the interiors of the intervals I
and [1, 2], respectively. The operator Rf is referred to as the restriction of X-ray
transform to the line complex generated by the directions (γ(s), 1), s ∈ suppψ. We
say γ is nondegenerate if

det(γ′(s), . . . , γ(d)(s)) �= 0, ∀s ∈ I. (1.1)

The operator Rf is a model case of the general class of restricted X-ray transforms
(see [12, 16–19]). Especially in R

3, under the nondegeneracy assumption (1.1), Rf
is a typical example of Fourier integral operators with one-sided fold singularity [13].
Regularity properties of Rf have been studied in terms of Lp improving and Lp

Sobolev regularity estimates. The Lp improving property of R is well understood
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by now [14, 15, 24, 25]. The problem was, in fact, considered in a more general
framework: Lp − Lq(Lr) estimates for R were studied by some authors (see, e.g. [7,
11, 34]) and the estimates on the optimal range of p, q, r were established except
for some endpoint cases. (See also [8–10, 20, 33] for related results.)
L2 − L2

1/(2d) bound on R is easy to obtain via TT ∗ argument and van der Corput’s
lemma [16] (see also [13, 19] for the sharp L2 Sobolev estimates for general class of
operators). Interpolation between this and the trivial L∞ estimate shows that R is
bounded from Lp to Lp

1/(pd) for p � 2. This is optimal in that Lp − Lp
α estimate fails

if α > 1/(pd) (see Proposition 5.1). However, when p < 2, the sharp Lp regularity
estimate is less straightforward. Such an estimate has not known until recently.
When d = 2, the optimal Lp − Lp

1/p′ estimate was established for 1 < p < 4/3 by
Pramanik and Seeger’s conditional result [31] and the sharp decoupling inequality
for the cone ⊂ R

3 due to Bourgain and Demeter [5]. Those estimates and inter-
polation give the sharp Lp − Lp

1/(2d+) estimate for 4/3 � p < 2, but the endpoint
Lp − Lp

1/(2d) estimate remains open. (See Conjecture 1.1.) In R
3 the result has been

extended to more general operators. In fact, Pramanik and Seeger [30] obtained
the sharp Lp regularity estimates for the Fourier integral operator with folding
canonical relation. Bentsen [4] (also see [3]) extended the result to a class of radon
transforms with fold and blowdown singularities.

However, in higher dimensions (d � 3) the sharp Lp regularity estimates for R
have remained open for 1 < p < 2. Set pd = 2d/(2d− 1) and

α(p) =

{
1 − 1

p , 1 � p < pd,
1
2d , pd � p � 2.

It is natural to conjecture the following.

Conjecture 1.1. Let d � 3 and 1 < p < 2. Suppose γ is a smooth nondegenerate
curve. Then, R boundedly maps Lp to Lp

α for α � α(p).

Failure of Lp − Lp
α boundedness for α > α(p) can be shown by a slight modifica-

tion of the examples in [31]. (See Proposition 5.1.) The following is our main result
which verifies the conjecture except for some endpoint cases in every dimension
d � 3.

Theorem 1.2. Let d � 3 and 1 � p < pd. Suppose γ is nondegenerate. Then,

‖Rf‖Lp
α

� C‖f‖p (1.2)

holds if and only if α � 1 − 1/p.

When p ∈ [pd, 2), interpolation with the L2 − L2
1/(2d) estimate yields (1.2) for

α < α(p) but estimate (1.2) with the endpoint regularity α = α(p), which looks to
be a subtle problem, remains open. By a standard scaling argument [29, 31] the
result in Theorem 1.2 can be extended to the curves of finite type.

A curve γ : I �→ R
d is said to be of finite type if there is an L = L(s) such that

span{γ(1)(s), . . . , γ(L)(s)} = R
d for each s ∈ I, and the smallest of such L(s) is
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called the type at s. The supremum of the type over s ∈ I is called the maximal
type of γ (see, e.g. [21, 29]).

Corollary 1.3. Let d � 3, 1 � p < 2 and L > d. Suppose γ is a curve of maximal
type L. Then, Rf is bounded from Lp to Lp

α for α � min(α(p), 1/(Lp)) if p �= (L+
1)/L when L � 2d− 1, and if p ∈ (1, pd) ∪ (2d/L, 2) when d < L < 2d− 1.

For p ∈ [2,∞], it is easy to show the sharp Lp − Lp
1/(Lp) estimate, which can be

shown by using the L2 − L2
1/(2L) estimate and interpolation in a similar manner

as above. Corollary 1.3 and Proposition 5.1 give the optimal Sobolev regularity
estimate for R if L � 2d− 1 when p �= (L+ 1)/L. However, some endpoint cases
remain open not to mention such estimates for the nondegenerate curves.

In this paper, we make use of the inductive strategy in the recent work of the
authors [23], where smoothing properties of the (convolution) averaging operator
over curves were studied (see [2, 22, 26, 27, 32] for previous works). Exploiting sim-
ilarity between R∗f and the averaging operator, we adapt our previous argument.
The main new feature of the current paper is use of the decoupling inequality associ-
ated with the conical sets generated by curves (see Definition 2.5 and Theorem 3.1).
Compared with our previous work where the averaging operator was decoupled by a
class of symbols adjusted to short subcurves, our new decoupling inequality allows
us to dispense with some technicalities related to the symbols. The decoupling
inequality can also be used to simplify the argument in [23].

Organization. In § 2, we reduce the proof of Theorem 1.2 to obtain Proposi-
tion 2.4. We prove a decoupling inequality associated with a nondegenerate curve
(Theorem 3.1) in § 3 which is crucial for the proof of Proposition 2.4. The proofs of
Proposition 2.4 and Theorem 1.2 are given in § 4 and § 5, respectively. We discuss
the sharpness of the smoothing order α in § 5.

Notation. For positive constants A,D, we denote A � D if there exists a (inde-
pendent) constant C such that A � CD, where the constant C may vary from line
to line depending on the context.

2. Estimates with localized frequency

In this section, we reduce the proof of Theorem 1.2 to show an inductive statement
(see Proposition 2.4). Afterwards, we obtain some preliminary results which are
needed to prove Proposition 2.4.

Let us consider the operator

Rf(x, t) = χ(t)
∫
f(x− tγ(s), s)ψ(s) ds,

which is the dual operator of R. By duality estimate (1.2) is equivalent to

‖Rf‖Lp(Rd+1) � ‖f‖Lp
−1/p

, 2d < p <∞. (2.1)

For the purpose, we closely follow the line of arguments in our previous paper [23].
So, there is a significant overlap between the current paper and [23]. This can be
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avoided by omitting some shared details. However, we decide to include them so
that the paper is self-contained and more easily accessible.

2.1. Frequency localized estimate

We begin with defining a class of curves in order to prove (2.1) in an inductive
manner. For an integer 1 � L � d, by Vol(v1, . . . , vL) we denote the L-dimensional
volume of the parallelepiped generated by vectors v1, . . . , vL ∈ R

d.

Definition 2.1. Let B � 1. We say γ ∈ Vd(L,B) if γ ∈ C3d+1(I) satisfies

max
s∈I

|γ(j)(s)| � B, 0 � j � 3d+ 1, (2.2)

min
s∈I

Vol
(
γ(1)(s), . . . , γ(L)(s)

)
� B−1. (2.3)

For a smooth function a(s, t, ξ) on I × [1, 2] × R
d, we define

R[a]f(x, t) = (2π)−d

∫∫
ei(x−tγ(s))·ξa(s, t, ξ)Fxf(ξ, s) dsdξ.

Here, Fx denotes Fourier transform in x. Note that Rf = R[a]f if a(s, t, ξ) =
ψ(s)χ(t). We prove estimate (2.1) by induction on L for γ ∈ Vd(L,B) under the
localized nondegeneracy assumption:

L∑
�=1

|〈γ(�)(s), ξ〉| � B−1|ξ| (2.4)

which holds if (s, t, ξ) ∈ supp a for some t. When L < d, (2.4) cannot be true in
general even if γ is nondegenerate. However, an appropriate decomposition in the
frequency domain makes it possible that (2.4) holds. To do this, we consider a class
of symbols a.

Definition 2.2. Let Ak = {ξ ∈ R
d : 2k−1 � |ξ| � 2k+1} for k � 0, and IL =

{(j, α) : 0 � j � 2L, |α| � d+ L+ 2}. We say a symbol a ∈ Cd+L+2(Rd+2) is of
type (2k, L,B) if supp a ⊂ I × [2−1, 22] × Ak

|∂j
t ∂

α
ξ a(s, t, ξ)| � B|ξ|−|α|, (j, α) ∈ IL,

and (2.4) holds on supps,ξ a. Here, as in [23], we denote supps,ξ a = ∪t supp a(·, t, ·).
We simply say a statement S(s, ξ), depending on s, ξ, holds on supp a if S(s, ξ) holds
for s, ξ ∈ suppa,ξ a. We also use the same convention with other variables.

Estimate (2.1) (and hence Theorem 1.2) follows from the next theorem via a
standard argument using Fefferman–Stein #-function (e.g. see [28]). See § 5.1 for
details.

Theorem 2.3. Suppose that γ ∈ Vd(L,B) and a is a symbol of type (2k, L,B).
Then, for p > 2L

‖R[a]f‖p � C2−k/p‖f‖p. (2.5)
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As mentioned above, we prove Theorem 2.3 by induction on L. Theorem 2.3 with
L = 1 is easy to prove. Indeed, setting R̃f = Fx(R[a]F−1

x f), we note that

R̃∗R̃f(ξ, s) =
∫

K(s, s′, ξ)f(ξ, s′) ds′,

where

K(s, s′, ξ) =
∫

eit(γ(s)−γ(s′))·ξa(s, t, ξ)a(s′, t, ξ) dt.

Since (2.4) holds with L = 1 on supp a, integration by parts gives |K(s, s′, ξ)| �
C(1 + 2k|s− s′|)−2. By Young’s convolution inequality it follows that ‖R̃∗R̃f‖2 �
2−k‖f‖2. Thus, we get ‖R[a]f‖2 � 2−k/2‖f‖2 by Plancherel’s theorem. Interpola-
tion with the trivial estimate ‖R[a]f‖∞ � ‖f‖∞ gives (2.5) with L = 1.

Consequently, Theorem 2.3 for L � 2 follows from the next proposition (cf. [23,
Proposition 2.3]).

Proposition 2.4. Let 2 � N � d. Suppose Theorem 2.3 holds with L = N − 1.
Then, Theorem 2.3 holds with L = N .

We prove the proposition through the rest of this section, § 3 and § 4. Fixing 2 �
N � d, we assume that Theorem 2.3 holds with L = N − 1. Additionally, assuming
that γ ∈ Vd(N,B) and a is of type (2k, N,B), we prove (2.5) for p > 2N . For the
purpose, composing the symbol a, we may further assume that

|γ(N)(s) · ξ| � (2B)−1|ξ| (2.6)

holds on supp a. Otherwise, (2.4) holds with L = N − 1, so the hypothesis
(Theorem 2.3 with L = N − 1) yields (2.5) for p > 2(N − 1).

We prove Proposition 2.4 in § 4 using the associated decoupling inequality which
is obtained in § 3. The rest of the section is devoted to proving two lemmas (2.6
and 2.8) which play crucial roles in proving Proposition 2.4.

2.2. Symbols adapted to γ

We define a class of symbols adapted to the curve γ. From now on, we assume
that δ satisfies

2−k/N � δ � (22B)−N . (2.7)

Let γ satisfy (2.3) with L = N − 1. For s ∈ I, set Vγ,�
s = span{γ(j)(s) : j = 1,

. . . , 
}. Consider a linear map L̃δ
s : R

d �→ R
d given as follows:

(L̃δ
s)

ᵀγ(j)(s) = δN−jγ(j)(s), j = 1, . . . , N − 1,

(L̃δ
s)

ᵀv = v, v ∈
(
Vγ,N−1

s

)⊥
.

We also consider a linear map Lδ
s : R

d+1 �→ R
d+1 given by

Lδ
s(τ, ξ) =

(
δNτ − γ(s) · L̃δ

sξ, L̃δ
sξ

)
, (τ, ξ) ∈ R × R

d.
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Denoting G(s) = (1, γ(s)), we set

Λk(δ, s) =
⋂

0�j�N−1

{
(τ, ξ) ∈ R × Ak : |〈G(j)(s), (τ, ξ)〉| � B2k+5δN−j

}
,

which roughly corresponds to the Fourier support of the operator R[a]f with supps a
included in an interval centred at s of length about δ. We define a class of symbols
associated with Λk(δ, s).

Definition 2.5. Let s◦ ∈ (−1, 1) and 0 < δ � 1 such that I(s◦, δ) := [s◦ − δ, s◦ +
δ] ⊂ I. We denote by Ak(δ, s◦) = Ak(δ, s◦, d,N,B, γ) the set of smooth functions a
on R

d+3 which satisfies the following :

supp a ⊂ I(s◦, δ) × [1, 2] × Λk(δ, s◦), (2.8)∣∣∣∂j
t ∂

α
τ,ξa

(
s, t,Lδ

s◦(τ, ξ)
)∣∣∣ � B|(τ, ξ)|−|α|, (j, α) ∈ IN . (2.9)

It should be noted that there is no s-differentiation in (2.9). Here, IN is given in
Definition 2.2. We set

F(T [a]f)(ξ, τ) =
∫∫

e−it′(τ+γ(s)·ξ)a(s, t′, τ, ξ) dt′ Fxf(ξ, s) ds. (2.10)

Clearly, R[a]f = T [a]f if a = a(s, t, ξ). The following is an analogue of [23, Lemma
2.7].

Lemma 2.6. Let χ̃ ∈ C∞
0 ((2−2, 22)) such that χ̃ = 1 on [3−1, 3]. Let a be a smooth

function which satisfies (2.8) and (2.9) with j � 2 and |α| � d+ 3. Then, we have

‖T [a]f‖p � Cδ1−1/p‖f‖p (2.11)

for p � 2, and

‖(1 − χ̃(t))T [a]f‖p � Cδ1−1/p−N2−k‖f‖p, p > 1. (2.12)

Proof. Note that T [a]f(x, t) =
∫
K[a](s, t, ·) ∗ f(·, s)(x) ds where

K[a](s, t, x) =
1

(2π)d+1

∫∫∫
ei(t−t′)τ+i(x−t′γ(s))·ξa(s, t′, τ, ξ) dξ dτ dt′.

It is easy to show that |(Lδ
s◦)

−1Lδ
s(τ, ξ)| ∼ |(τ, ξ)| provided |s− s◦| � δ (cf. [23,

Lemma 2.6]). Since (2.8) and (2.9) hold with j = 0 and |α| � d+ 3, it fol-
lows that supp a(s, t, 2kLδ

s·) ⊂ {(τ, ξ) : |(τ, ξ)| � 1} and |∂α
τ,ξ(a(s, t, 2kLδ

s(τ, ξ)))| �
1, |α| � d+ 3. By changing variables (τ, ξ) → 2kLδ

s(τ, ξ) followed by repeated
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integration by parts, we have

|K[a](s, t, x)| � δN(N+1)/22k(d+1)

∫ 2

1

(
1 + 2k|(δN (t− t′), (L̃δ

s)
ᵀ(x− tγ(s)))|

)−d−3 dt′.

This gives ‖K[a](s, t, ·)‖L1
x

� 1. From (2.8), note T [a]f(x, t) =
∫

I(s◦,δ)
K[a](s, t, ·) ∗

f(·, s)(x) ds. Thus, we get

‖T [a]f‖∞ � Cδ‖f‖∞.

Recall (2.10). By Plancherel’s theorem, integration by parts in t′, and Hölder’s
inequality, we get

‖T [a]f‖2
2 � δ

∫
I(s◦,δ)

‖Fxf(·, s)‖2
2 ds � δ‖f‖2

2.

Thus, interpolation gives (2.11). To show (2.12), we note from the above estimate for
K[a](s, t, x) that ‖(1 − χ̃(t))K[a](s, t, ·)‖L1

x
� K(t) =: 2−kδ−N |t− 1|−1(1 − χ̃(t)).

By (2.8), using Hölder’s and Young’s convolution inequalities, as before, we see
that ‖(1 − χ̃)T [a]f‖p

p is bounded above by constant times

δp−1

∫
Kp(t)

∫
I(s◦,δ)

‖f(·, s)‖p
Lp

x
dsdt � Cδp−1−pN2−pk‖f‖p

p.

This gives (2.12). �

2.3. Rescaling

Let I(s◦, δ) ⊂ I. For γ ∈ Vd(N,B) we consider a rescaled curve

γδ
s◦(s) := δ−N (L̃δ

s◦)
ᵀ (γ(δs+ s◦) − γ(s◦)) .

Lemma 2.7. Let γ ∈ Vd(N,B). If 0 < δ < δ∗ for a δ∗ small enough, γδ
s◦ ∈

Vd(N, 3B) and γδ
s◦ ∈ Vd(N − 1, B′) for some B′.

Proof. Taylor series expansion of γ(j)(δs+ s◦) at s = 0 yields:

(γδ
s◦)

(�)(s) =
∑

0�j�N−1−�

γ(�+j)(s◦)
sj

j!
+ (L̃δ

s◦)
ᵀγ(N)(s◦)

sN−�

(N − 
)!
+O(Bδ)

for 1 � 
 � N − 1 and (γδ
s◦)

(N)(s) = (L̃δ
s◦)

ᵀγ(N)(s◦) +O(Bδ). Writing γ(N)(s◦) =
v1 + v2 ∈ Vγ,N−1

s◦ ⊕ (Vγ,N−1
s◦ )⊥, we have (L̃δ

s◦)
ᵀγ(N)(s◦) = (L̃δ

s◦)
ᵀv1 + v2 = v2 +

O(Bδ). Since γ ∈ Vd(N,B), we see γδ
s◦ ∈ Vd(N, 3B) if 0 < δ < δ∗ for a sufficiently

small δ∗ > 0. Consequently, γδ
s◦ ∈ Vd(N − 1, B′) for some B′. �

The following lemma, which is an analogue of [23, Lemma 2.8], is important for
our inductive argument. Let us set

R[γδ
s◦ , a]f(x, t) = (2π)−d

∫∫
ei(x−tγδ

s◦ (s))·ξa(s, t, ξ)Fxf(ξ, s) dsdξ.
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Lemma 2.8. Let s◦ ∈ (−1, 1), a ∈ Ak(δ, s◦), and γ ∈ Vd(N,B). Suppose

N−1∑
j=1

δj |〈γ(j)(s), ξ〉| � B−12kδN (2.13)

for (s, ξ) ∈ I(s◦, δ) × suppξ a. Then, there exist constants C, B̃, δ∗ = δ∗(B,N, d),
and f̃ and a symbol ã such that

‖χ̃(t)T [a]f‖p = δ1−1/p‖R[γδ
s0
, ã]f̃‖p (2.14)

for 0 < δ < δ∗, ‖f̃‖p = ‖f‖p, |∂j
t ∂

α
ξ ã(s, t, ξ)| � B̃|ξ|−|α| for (j, α) ∈ IN−1, and

supp ã ⊂ I × [2−2, 22] × {ξ ∈ R
d : C−1δN2k � |ξ| � CδN2k}. (2.15)

Proof. Let aδ(s, t, τ, ξ) = a(δs+ s◦, t, τ, ξ). By Fourier inversion and (2.10), chang-
ing variables s→ δs+ s◦, (τ, ξ) → (τ − γ(s◦) · ξ, ξ) gives

T [a]f(x, t) = (2π)−dδ

∫∫
ei〈x−tγ(s◦),ξ〉b(s, t, ξ)Fxf(ξ, δs+ s◦) dsdξ, (2.16)

where

b(s, t, ξ) =
1
2π

∫∫
eitτ e−it′(τ+〈γ(δs+s◦)−γ(s◦),ξ〉)aδ (s, t′, τ − γ(s◦) · ξ, ξ) dt′ dτ.

We observe that

χ̃(t)b(s, t, δ−N L̃δ
s◦ξ) = e−itγδ

s◦ (s)·ξ ã(s, t, ξ),

where

ã(s, t, ξ) =
1
2π

∫∫
e−it′(τ+γδ

s◦ (s)·ξ)χ̃(t)aδ(s, t′ + t, δ−NLδ
s◦(τ, ξ)) dt′ dτ. (2.17)

It is clear that (2.15) holds for some C � 1. Since a ∈ Ak(δ, s◦), it is not difficult to
see |∂j

t ∂
α
ξ ã(s, t, ξ)| � B̃|ξ|−|α| for (j, α) ∈ IN−1 (see (2.25) in [23]).

Set Cp = Cp(δ) := δ1/p|det δ−N L̃δ
s◦ |1−1/p. Let f̃ be given by Fxf̃(ξ, s) =

CpFxf(δ−N L̃δ
s◦ξ, δs+ s◦), thus ‖f̃‖p = ‖f‖p. Recalling (2.16) and changing vari-

ables ξ → δ−N L̃δ
s◦ξ, we now have

χ̃(t)T [a]f(x, t) =
Cp′

(2π)d

∫∫
ei〈x−tγ(s◦),δ−N L̃δ

s◦ξ〉 e−itγδ
s◦ (s)·ξ ã(s, t, ξ)Fxf̃(ξ, s) dsdξ.

This gives χ̃(t)T [a]f(x, t) = Cp′R[γδ
s◦ , ã]f̃(y, t) where y = δ−N (L̃δ

s◦)
ᵀ(x− tγ(s◦)).

Therefore, changing variable x→ δN (L̃δ
s◦)

−ᵀx+ tγ(s◦), we obtain (2.14). �

Combining Lemma 2.8 and the hypothesis (Theorem 2.3 with L = N − 1), we
obtain the following.
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Corollary 2.9. Suppose that Theorem 2.3 holds with L = N − 1, and a, γ and δ∗
are the same as in Lemma 2.8. Then, if p > 2(N − 1), for 0 < δ < δ∗ we have

‖T [a]f‖p � 2−k/pδ1−(N+1)/p‖f‖p.

Proof. By (2.14) and dyadic decomposition (of ã in the Fourier side), we have

‖χ̃T [a]f‖p � Cδ1−1/p
∑

0���C

∥∥R[γδ
s◦ , a�]f�

∥∥
p
, (2.18)

for some constant C where ‖f�‖p = ‖f‖p, and a� are symbols of type (2j , N − 1, B̃)
with C−12kδN � 2j � C2kδN . Once we have this, the proof is straightforward. By
Lemma 2.7, γδ

s◦ ∈ Vd(N − 1, B′) for some B′ > 0. Since ‖fl‖p = ‖f‖p, applying
Theorem 2.3 with L = N − 1, we have

‖χ̃T [a]f‖p � C
∑

l

δ1−1/p(2kδN )−1/p‖fl‖p � 2−k/pδ1−(N+1)/p‖f‖p

for p > 2(N − 1). Recalling (2.7), we combine this and (2.12) to get the desired
bound.

It remains to show (2.18). In fact, after applying Lemma 2.8 we only need to
adjust the support of the consequent symbol ã via by moderate decomposition and
scaling. We omit details. (See the proof of [23, Lemma 2.8].) �

3. Decoupling inequalities for curves

In this section, we prove the decoupling inequality, which is to be used to decompose
the operator T [a]f . In our earlier work [23], the averaging operator was decoupled
by making use of decomposition based on a class of symbols that are adjusted to
short subcurves. The same approach also works to prove Proposition 2.4. However,
instead of following the previous strategy, we directly obtain a decoupling inequality
associated with the conic sets:

Λk(δ, sl), 1 � l � L,

while {s1, . . . , sL} ⊂ I is a collection of δ-separated points contained in I. More
precisely, we have the following.

Theorem 3.1. Let 0 < δ � 1 and S := {s1, . . . , sL} ⊂ I be a collection of δ-
separated points. Then, if 2 � p � N(N + 1), for any ε > 0 there is a constant
Cε = Cε(B), independent of S, such that∥∥ ∑

1�l�L

fl

∥∥
Lp(Rd+1)

� Cεδ
−ε

( ∑
1�l�L

‖fl‖2
Lp(Rd+1)

)1/2 (3.1)

holds whenever supp f̂l ⊂ Λk(δ, sl).
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Hölder’s inequality gives
∥∥ ∑

1�l�L fl

∥∥
p

� Cεδ
−εδ1/p−1/2(

∑
1�l�L ‖fl‖p

p)
1/p.

Interpolation with the trivial L∞ − 
∞L∞ estimate yields the inequality:∥∥ ∑
1�l�L

fl

∥∥
Lp(Rd+1)

� Cεδ
−1+(N+1)/p+ε

( ∑
1�l�L

‖fl‖p
Lp(Rd+1)

)1/p (3.2)

for p > 2N whenever supp f̂l ⊂ Λk(δ, sl).

3.1. Decoupling inequalities for curves

Fixing N � 2, we now consider the slabs given by an anisotropic neighbourhood
of the moment curve

γ◦(s) :=
(
s, s2/2!, . . . , sN+1/(N + 1)!

)
.

Definition 3.2. Let 0 < δ � 1 and B � 1. For s ∈ I, let S(s, δ, B) denote the set
of (τ, ξ) ∈ R × R

N such that

B−1 � |〈γ(N+1)
◦ (s), (τ, ξ)〉| � B; |〈γ(j)

◦ (s), (τ, ξ)〉| � δN+1−j , j = 1, . . . , N.

We now recall the decoupling inequality for such slabs as above which was shown
in [1, 6] (see also [23, Corollary 2.15]).

Theorem 3.3. Let 0 < δ � 1 and {s1, . . . , sL} ⊂ I be a collection of δ-separated
points contained in I. Denote Sl = S(sl, δ, B). Then, if 2 � p � N(N + 1), for any
ε > 0 there is a constant Cε = Cε(B) such that∥∥ ∑

1�l�L

Fl

∥∥
Lp(RN+1)

� Cεδ
−ε

( ∑
1�l�L

‖Fl‖2
Lp(RN+1)

)1/2

holds whenever supp F̂l ⊂ Sl.

To show Theorem 3.1, we apply the decoupling inequality after projecting the
sets Λ0(δ, sl) to the subspace Vμ which is spanned by {G(0)(μ), . . . , G(N)(μ)}. To
do so, for μ ∈ I we consider a coordinate system yμ = yμ(τ, ξ) given by

yμ = (y0
μ, · · · , yN

μ ) = (〈G(0)(μ), (τ, ξ)〉, . . . , 〈G(N)(μ), (τ, ξ)〉). (3.3)

Recall that γ ∈ Vd(N,B), so Vol(〈G(0)(μ), . . . , G(N)(μ)) � 1/B. Let δ, δ′ be positive
numbers satisfying

0 < δ < δ′ � δN/(N+1) � 1. (3.4)

Then, it is easy to see that

(δ′)�+1 � δ�, 
 = 1, . . . , N. (3.5)

The following lemma shows that the projections of the sets Λ0(δ, sl) form a reverse
δ/δ′-adapted cover after a proper linear change of variables (cf. [23, Lemma 3.3])
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if sl are contained in an interval of length δ′. Let Dδ denote the (N + 1) × (N + 1)
diagonal matrix given by

Dδ = (δ−Ne1, δ
−N+1e2, . . . , δ

0eN+1).

Lemma 3.4. Let δ, δ′ be positive numbers satisfying (3.4) and s′ ∈ [μ− δ′, μ+ δ′].
Suppose (τ, ξ) ∈ Λ0(δ, s′). Then, we have

(4B)−1 � |〈Dδ′yμ, γ
(N+1)
◦ 〉| � 4B, (3.6)∣∣∣∣〈Dδ′yμ, γ

(j)
◦

(
s′ − μ

δ′

)〉∣∣∣∣ � B (δ/δ′)N+1−j
, 1 � j � N. (3.7)

Proof. Note that (3.6) is clear from (2.6). To prove (3.7), we first note that
〈yμ, γ

(j)
◦ (s)〉 = (δ′)N+1−j〈Dδ′yμ, γ

(j)
◦ (s/δ′)〉. Thus, it is sufficient to show that

|〈yμ, γ
(j)
◦ (s′ − μ)〉| � BδN+1−j (3.8)

for 1 � j � N . Recalling (3.3), we observe

〈yμ, γ
(j)
◦ (s′ − μ)〉 =

〈
N∑

�=j−1

G(�)(μ)
(s′ − μ)�−j+1

(
− j + 1)!
, (τ, ξ)

〉
.

Taylor’s theorem gives

∣∣∣∣∣∣G(j−1)(s′) −
N∑

�=j−1

G(�)(μ)
(s′ − μ)�−j+1

(
− j + 1)!

∣∣∣∣∣∣ � B|s′ − μ|N−j+2

for j = 1, . . . , N . Since |s′ − μ| � δ′ and (τ, ξ) ∈ Λ0(δ, s′), (3.8) follows by (3.5). �

By Lemma 3.4 and Theorem 3.3, we can show that (3.1) holds if a δ-separated
set {s1, . . . , sL} is contained in an interval of length � δN/(N+1). More precisely, we
have the following.

Lemma 3.5. Let 0 < δ � 1 and δ � δ′ � δN/(N+1). Let {s1, . . . , sL} ⊂ [μ− δ′, μ+
δ′] be a collection of δ-separated points. Then, if 2 � p � N(N + 1), for any ε > 0
there is a constant Cε = Cε(B) such that (3.1) holds whenever supp f̂l ⊂ Λk(δ, sl).

Proof. Set Vμ = span{γ′(μ), . . . , γ(N)(μ)} and let {vN+1, . . . , vd} be an orthonor-
mal basis of V⊥

μ . Recalling that (2.3) holds with L = N , we write ξ = ξ +
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j=N+1 yj(ξ)vj for ξ ∈ Vμ. Changing variables

(τ, ξ) → Yμ(τ, ξ) := (yμ(τ, ξ), yN+1(ξ), . . . , yd(ξ))

(see (3.3)), we may work with the coordinate system given by {yμ, yN+1, . . . , yd}
instead of (τ, ξ). We consider the linear map

Yδ′
μ (τ, ξ) = (Dδ′yμ(τ, ξ), yN+1(ξ), . . . , yd(ξ)).

Since {s1, . . . , sL} ⊂ [μ− δ′, μ+ δ′] and δ′ � δN/(N+1), by Lemma 3.4 it follows
that

Yδ′
μ (Λ0(δ, sl)) ⊂ Sl × R

d−N := S
(
sl − μ

δ′
, C

δ

δ′
, 4B

)
× R

d−N (3.9)

for some C > 0 depending only on B. Applying Theorem 3.3 with δ replaced by
Cδ/δ′ and slabs Sl, 1 � l � L, and then using a trivial extension via Minkowski’s
inequality, we have ∥∥ ∑

1�l�L

fl

∥∥
p

� Cεδ
−ε

( ∑
1�l�L

‖fl‖2
p

)1/2

for 2 � p � N(N + 1) whenever supp f̂l ⊂ Sl × R
d−N . Since the decoupling inequal-

ity is invariant under affine changes of variables, by undoing the change of vari-
ables (τ, ξ) → Yμ(τ, ξ) and rescaling (τ, ξ) → 2−k(τ, ξ), we obtain (3.1) whenever
supp f̂l ⊂ Λk(δ, sl). �

3.2. Proof of Theorem 3.1

We now prove Theorem 3.1. Let 2 � p � N(N + 1). For the purpose, for some
α > 0 we assume that∥∥ ∑

1�l�L

fl

∥∥
Lp(Rd+1)

� Cδ−α
( ∑
1�l�L

‖fl‖2
Lp(Rd+1)

)1/2
D(α) (3.1)

holds for 0 < δ � δ0 := (22B)−N−1 with a constant C, independent of S, when-
ever supp f̂l ⊂ Λk(δ, sl), 1 � l � L. Of course, (D(α)) holds true if α � 1/2 by
Minkowski’s and Hölder’s inequalities. We set

δ′ = δN/(N+1).

Let us denote Iν , 1 � ν � M , be disjoint intervals of length ρ ∈ (2−3δ′, 2−2δ′] which
partition I. Let s′ν be a point contained in Iν such that s′1, . . . , s

′
M are separated at

least by 2−4δ′. We now claim that

Λk(δ, sl) ⊂ Λk(δ′, s′ν) (3.10)

if sl ∈ Iν . Indeed, by scaling it is sufficient to show Λ0(δ, sl) ⊂ Λ0(δ′, s′ν). Let (τ, ξ) ∈
Λ0(δ, sl). Then, it follows that |〈G(�)(sl), (τ, ξ)〉| � 25Bδ1/(N+1)(δ′)N−�. By Taylor’s
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theorem we have

〈G(j)(s′ν), (τ, ξ)〉 =
N−1∑
�=j

〈G(�)(sl), (τ, ξ)〉
(s′ν − sl)�−j

(
− j)!
+ E ,

where |E| � 2B|s′ν − sl|N−j . Therefore, we see that (τ, ξ) ∈ Λ0(δ′, s′ν).
Let supp f̂l ⊂ Λk(δ, sl), 1 � l � L. We write

∑
1�l�L fl =

∑
1�ν�M

∑
sl∈Iν

fl. By
(3.10), the Fourier support of

∑
sl∈Iν

fl is included in Λk(δ′, s′ν). Since s′ν are
separated by 2−4δ′, (D(α)) implies

∥∥ ∑
1�l�L

fl

∥∥
Lp(Rd+1)

� Cδ−Nα/(N+1)
( ∑
1�ν�M

‖
∑

sl∈Iν

fl‖2
Lp(Rd+1)

)1/2

for a constant C. Since the length of interval Iν is less than δN/(N+1), by Lemma 3.5
we have ‖

∑
sl∈Iν

fl‖p � Cεδ
−ε(

∑
sl∈Iν

‖fl‖2
p)

1/2. Therefore, combining this and the
above inequality, we obtain

∥∥ ∑
1�l�L

fl

∥∥
Lp(Rd+1)

� Cεδ
−Nα/(N+1)−ε

( ∑
1�l�L

‖fl‖2
Lp(Rd+1)

)1/2

for a constant Cε. This establishes the implication D(α) → D(ε+Nα/(N + 1)).
Iteration of this implication suppresses α arbitrarily small.

4. Proof of Proposition 2.4

In this section, we prove Proposition 2.4 by making use of the decoupling inequality
(3.2). As mentioned in § 2.1 (below Proposition 2.4), in order to prove Proposi-
tion 2.4, it suffices to show Theorem 2.3 with L = N . We first reduce the matter
to obtaining estimates for T [a0] with a suitable a0.

4.1. Reduction

We begin by recalling γ ∈ Vd(N,B) and a is of type (2k, N,B). Let δ∗ be the
small number given in Lemma 2.8 and set

δ◦ = min{δ∗, (22B)−N}. (4.1)

Let β0 ∈ C∞
0 ([−1, 1]) such that β0 = 1 on [−1/2, 1/2]. We set

aN (s, t, ξ) = a(s, t, ξ)
∏

1�j�N−1

β0

(
100 dB2−kδ−N

◦ 〈γ(j)(s), ξ〉
)
.

Clearly, (2.4) holds on supp(a− aN ) with L = N − 1 and B replaced by 100 dBδ−N
◦ .

Since a is of type (2k, N,B), it is easy to see (a− aN ) is a symbol of type (2k, N −
1, B′) for some B′. Thus, the hypothesis (Theorem 2.3 with L = N − 1 and B = B′)
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gives the estimate

‖R[a− aN ]f‖p � 2−(k/p)‖f‖p

for p > 2(N − 1). So, we need only to consider R[aN ] instead of R[a]. Furthermore,
by a moderate decomposition of aN , we assume

supps aN ⊂ [s◦ − δ◦, s◦ + δ◦]

for some s◦ ∈ (−1, 1). We may assume that s◦ = δ◦ν for ν ∈ Z.
It is not difficult to see that the contribution of the frequency part {(τ, ξ) : |τ +

γ(s) · ξ| � 2k+1δN
◦ , ∀s ∈ I} is not significant. To see this, let us set

a0(s, t, τ, ξ) = aN (s, t, ξ)β0

(
δ−2N
◦ 2−2k|τ + γ(s) · ξ|2

)
and a1 = a0 − aN . Recalling (2.10), by Fourier inversion we have

R[aN ]f = T [a0]f + T [a1]f.

The operator T [a1] is easy to handle. Let us set a = −i2kδN
◦ (τ + 〈γ(s), ξ〉)−1∂ta1.

Then, by integration by parts in t′ and (2.10) we see T [a1] = (2kδN
◦ )−1T [a]. Note

that |τ + γ(s) · ξ| � 2kδN
◦ on supp a1 and so on supp a. It is clear that a satisfies

(2.8) and (2.9) with δ = δ◦ and B = C1δ
−C
◦ for some large C,C1. Thus, Lemma 2.6

gives ‖T [a1]f‖p � 2−k‖f‖p for p � 2.
Therefore, the proof of Theorem 2.3 with L = N is now reduced to show that

‖T [a0]f‖p � C2−(k/p)‖f‖p, p > 2N. (4.2)

4.2. Decomposition

For n � 0, let us set δn = 2n2−k/N and

Jn = δnZ ∩ I. (4.3)

We consider

GN (s, τ, ξ) =
∑

0�j�N−1

(2−k|〈G(j)(s), (τ, ξ)〉|)2N !/(N−j),

by which we can decompose a0 into the symbols contained in Ak(δn, s) for s ∈ Jn.
Set β∗ = β0 − β0(22N !·). Note that β0 +

∑
n�1 β∗(2

−2N !n·) = 1. Let ζ ∈
C∞

0 ([−1, 1]) such that
∑

ν∈Z
ζ(· − ν) = 1. We set

an
ν = a0 ×

{
β0(δ−2N !

0 GN ) ζ(δ−1
0 s− ν), ν ∈ J0, n = 0,

β∗(δ−2N !
n GN ) ζ(δ−1

n s− ν), ν ∈ Jn, n � 1.

Then, it follows that

a0(s, t, τ, ξ) =
∑
n�0

∑
ν∈Jn

an
ν (s, t, τ, ξ). (4.4)

Since δ◦ is the fixed constant, it is clear that C−1a0 ∈ Ak(δ◦, s◦) for a large constant
C > 0. So, supp a0 ⊂ Λk(δ◦, s◦) and GN � 1 for (τ, ξ) ∈ supp an

ν . Obviously, we may
assume δn � 1 since an

ν = 0 otherwise.
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The following tells that an
ν is contained in a proper symbol class.

Lemma 4.1 (cf. [23, Lemma 3.2]). For n � 0, there exists a constant C such that
C−1an

ν ∈ Ak(δn, δnν).

Proof. Condition (2.8) trivially holds for a = an
ν . So, we only need to show (2.9) for

δ = δn and s = δnν.
It is not difficult to see that a0 satisfies (2.9) (see [23, (3.35)]). So it suffices to

show (2.9) for βN (δ−2N !
n GN (s, τ, ξ)). By Leibniz’s rule, it is enough to prove that∣∣∇τ,ξδ

−(N−j)
n 2−k

〈
G(j)(s),Lδn

δnν(τ, ξ)
〉∣∣ �2−k, (4.5)

for j = 0, . . . , d− 1. Note that if |δnν − s| � δn, then

|(Lδn
s )−1Lδn

δnν(τ, ξ)| ∼ |(τ, ξ)| (4.6)

(see [23, Lemma 2.6]). Note that ∇τ,ξ〈G(j)(s),Lδn

δnν(τ, ξ)〉 = (Lδn

δnν)ᵀG(j)(s). Thus,
by (4.6) we get (4.5). �

4.3. Proof of Proposition 2.4

By the reduction in § 4.1, it suffices to prove (4.2). Recalling (4.4) and applying
the Minkowski inequality, we have

‖T [a0]f‖p �
∑

2−k/N �δn�1

∥∥ ∑
ν∈Jn

T [an
ν ]f

∥∥
p
.

Using Lemma 4.1, one can easily see that supp an
ν ⊂ Λk(δn, δnν). Thus, we may use

the decoupling inequality (3.2). Combining this and the above inequalities gives

‖T [a0]f‖p � Cε

∑
2−k/N �δn�1

δn
−1+(N+1)/p+ε

( ∑
ν∈Jn

∥∥T [an
ν ]f‖p

p

)1/p

for 2N < p <∞. Hence, for estimate (4.2) it suffice to show that

‖T [an
ν ]f‖p � δ1−(N+1)/p

n 2−k/p‖f‖p, p > 2N. (4.7)

Indeed, let fν(x, s) = ζ̃(δ−1
n s− ν)f(x, s) where ζ̃ ∈ C∞

0 ([−2, 2]) such that ζ̃ = 1 on
supp ζ. From (2.10) we see T [an

ν ]f = T [an
ν ]fν . Combining this and (4.7), we have( ∑

ν∈Jn

∥∥T [an
ν ]f‖p

p

)1/p � δ1−(N+1)/p
n 2−k/p

( ∑
ν∈Jn

∥∥fν‖p
p

)1/p

� δ1−(N+1)/p
n 2−k/p‖f‖p.

Therefore, taking the sum over n, we get (4.2), which proves Proposition 2.4.
It remains to prove (4.7). By Lemma 4.1, we have C−1an

ν ∈ Ak(δn, δnν) for a
constant C > 0. For n = 0, it is easy to show (4.7). Since δ0 = 2−k/N , applying
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Lemma 2.6, we get

‖T [a0
ν ]f‖p � δ

1−1/p
0 ‖f‖p = δ

1−(N+1)/p
0 2−k/p‖f‖p, 2 � p � ∞.

For n � 1, we need to decompose an
ν further. Let us set

an
ν,1(s, t, τ, ξ) = an

ν (s, t, τ, ξ)(1 − β0)
(
10δ−2N !

n |〈2−kG(s), (τ, ξ)〉|2(N−1)!
)

and an
ν,0 = an

ν − an
ν,1, so we have an

ν = an
ν,1 + an

ν,0. We note that C−1an
ν,i ∈

Ak(δn, δnν), i = 0, 1 for some C > 0. This can be shown by following the proof
of Lemma 4.1. So, we omit the detail.

We now decompose T [an
ν ]f = T [an

ν,1]f + T [an
ν,0]f. For (4.7), it suffices to show

‖T [an
ν,i]f‖p � Cδ1−(N+1)/p

n 2−k/p‖f‖p, i = 0, 1, (4.8)

for p > 2N − 2. It is clear that (2.13) holds with δ = δn, s◦ = δnν, and some large B
on supp an

ν,1. By Corollary 2.9, we have (4.8) for i = 1 if p > 2N − 2. The operator
T [an

ν,0] can be handled in the same manner as T [a1] since

|τ + 〈γ(s), ξ〉| � δN
n 2k (4.9)

holds on supp an
ν,0. We set a = −i2kδN

n (τ + 〈γ(s), ξ〉)−1∂ta
n
ν,0. Integration by parts

in t′ and (2.10) yields T [an
ν,0] = (2kδN

n )−1T [a]. Using (4.9) and the fact that
C−1an

ν,0 ∈ Ak(δn, δnν) for some C > 0, one can easily verify that (2.8) and (2.9)
hold for a with δ = δn, s◦ = δnν. Thus, by Lemma 2.6, we have

‖T [an
ν,0]f‖p � δ1−1/p

n (δN
n 2k)−1‖f‖p � δ1−(N+1)/p

n 2−k/p‖f‖p

for p � 2, which gives (4.8) for i = 0. For the second inequality we use the fact that
δn � 2−k/N . �

5. Proof of Theorem 1.2

We first prove the sufficiency part, that is to say, estimate (1.2) with α = 1 − 1/p
for 1 � p < pd by making use of Theorem 2.3.

5.1. Proof of estimate (1.2) with α = 1 − 1/p

We make use of the argument in [28, 31]. As mentioned before, it suffices to
prove (2.1) by duality. Let Pk denote the (Littlewood–Paley projection) operator
defined by

F(Pkg)(ξ, τ) = β(2−k|(ξ, τ)|)ĝ(ξ, τ), k � 1

for β ∈ C∞
0 ([1/2, 2]). Recall that β0 ∈ C∞

0 ([−1, 1]) such that β0 = 1 on [−1/2, 1/2]
and set β∗(t) = β0(C−1

0 2−6t) − β0(C026t). Here, C0 = 1 + 2 sup{|γ(s)| + |γ′(s)| :
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s ∈ suppψ}. Let fk be given by

f̂k(ξ, u) = β∗(2−k|(ξ, u)|)f̂(ξ, u).

We claim that∥∥(∑
k�1

|PkRf |2
)1/2∥∥

p
�

∥∥(∑
k�1

2−2k/p|fk|2
)1/2∥∥

p
+ ‖f‖Lp

−M
(5.1)

for p > 2d and M � 1. Then, (2.1) follows by the Littlewood–Paley inequality.
Let β̃ = β0(2−3 ·) − β0(C023 ·) Considering an operator Rk given by

Fx(Rkf)(ξ, t) = β̃(|ξ|/2k)Fx(Rf)(ξ, t),

we decompose

PkRf = PkRkfk + PkRk(f − fk) + Pk(R−Rk)f. (5.2)

In what follows, we show that the contributions from the second and third terms
are negligible. In fact, for any M � 1 if p � 1, we have∥∥(∑

k

|PkRk(f − fk)|2
)1/2∥∥

p
� ‖f‖Lp

−M
(5.3)

and (5.4).
To see (5.3), note Fx(Rkg)(ξ, t′) =

∫
m(ξ, t′, u)ĝ(ξ, u) du where

m(ξ, t′, u) = (2π)−1χ(t′)β̃(|ξ|/2k)
∫

ei(su−t′γ(s)·ξ)ψ(s) ds.

Set g = f − fk. Since |(ξ, u)| � C02k+5 or |(ξ, u)| � C−1
0 2k−5 on suppF(f − fk), we

have |u| � C0|ξ| if C−1
0 2k−4 � |ξ| � 2k+3. Therefore, integration by parts gives

|∂α
ξ,um(ξ, t′, u)| � 2−kN (1 + |(ξ, u)|)−N , (ξ, u) ∈ supp ĝ

for any α and N � 1. Note that PkRkg(x, t) =
∫
K(x, y, t, s′)g(y, s′) dyds′ where

K(x, y, t, s′) =
1

(2π)d+1

∫
ei(x−y,t−t′)·(ξ,τ) e−is′uβ

(
|(ξ, τ)|

2k

)
m(ξ, t′, u) dξ dτ du dt′.

Therefore, |∂α
ξ,um(ξ, t′, u)| � 2−kN2−jN for (ξ, u) ∈ supp ĝ and integration by parts

shows

|K(x, y, t, s′)| � 2−kN2−jN (1 + |x− y| + |s′|)−N (1 + |t|)−N .

Decomposing Rk(f − fk) =
∑

j RkPj(f − fk), we get (5.3) for any M � 1 and p �
1.
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We now show ∥∥(∑
k

|Pk(R−Rk)f |2
)1/2∥∥

p
� ‖f‖Lp

−M
(5.4)

for p � 1 and M � 1. We write F(Rf −Rkf)(ξ, τ) =
∫
b(s, ξ, τ)Fxf(ξ, s) ds where

b(s, ξ, τ) =
1
2π

∫
eit′(γ(s)·ξ−τ)

(
1 − β̃(|ξ|/2k)

)
χ(t′) dt′ψ(s).

Since |ξ| � C−1
0 2k−2 or |ξ| � 2k+2 on suppFx(Rf −Rkf), we have |τ | � C0|ξ| if

2k−1 � |(ξ, τ)| � 2k+1. Integration by parts gives |∂α
ξ b(s, ξ, τ)| � 2−kN for any α

and N . Hence,

‖Pk(R−Rk)f‖p � 2−kN‖f‖p, p � 1 (5.5)

for all N � 1. Since |ξ| � C−1
0 2k−2 on suppF(Pk(R−Rk)f), similarly as in the

proof of (5.3), we have ‖Pk(R−Rk)Pjf‖p � 2−jN‖Pjf‖p for j � k + C ′ for some
C ′ � 1. Estimate (5.5) gives ‖Pk(R−Rk)Pjf‖p � 2−kN‖Pjf‖p for j � k + C ′.
Combining those estimates, we get (5.4).

Therefore, estimate (5.1) follows if we show∥∥(∑
k

|PkRkfk|2
)1/2∥∥

p
�

∥∥(∑
k�1

2−2k/p|fk|2
)1/2∥∥

p
(5.6)

for p > 2d. This can be done by using [28, Theorem 1] and (2.5) (also see [1, 29,
31]). Indeed, let β̃ ∈ C∞

c ((1/4, 4)) such that β̃β = β. Consider the operator P̃k given
by F(P̃kg)(ξ, τ) = β̃(2−k|(ξ, τ)|)ĝ(ξ, τ). Note that PkRkfk = PkP̃kRkfk.

Let us denote the centre of a cube Q by (xQ, tQ) and set

EQ = {(y, s) : dist (y − xQ, tQγ(I)) � 10diam(Q), s ∈ I}.

Since Tk = P̃kRk and EQ satisfy the assumptions in [28, Theorem 1], by using (2.5)
we obtain (5.6). We omit the details.

5.2. Sharpness of smoothing order

In this section, we show upper bounds on the smoothing order α for which Lp −
Lp

α estimate for Rf holds when γ is of maximal type L. In [31], those bounds were
obtained for d = 2. Modifying the examples in [31], we show the following.

Proposition 5.1. Let d � 3, L � d and 1 � p � ∞. Let ψ and χ be nontrivial,
nonnegative continuous functions supported in the interiors of I and [1, 2], respec-
tively. Suppose there is an s◦ such that ψ(s◦) �= 0 and γ is of type L at s◦. Then,
Rf maps Lp boundedly to Lp

α only if

(i) α � 1 − p−1, (ii) α � (2d)−1, (iii) α � (Lp)−1.

In particular, the upper bound (i) provides the necessity part of Theorem 1.2,
thus, the proof Theorem 1.2 is completed. We prove the upper bounds (i), (ii) and
(iii), separately.
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Proof of (i). Let t0 ∈ (1, 2) such that χ(t0) > 0. We choose ζ ∈ S(Rd) such that
ζ � 1 on [−1, 1]d, supp ζ̂ ⊂ [1/2, 4]d, and ζ̂ = 1 on [1, 2]d. Let ψ0 ∈ C∞

c ((−1, 1))
satisfy ψ0 = 1 on [−1/2, 1/2]. We take

f(x, t) = ζ(λx)ψ0(λr0|t− t0|),

where r0 = 1 + sups∈I |γ(s)|. Note Rf(x, s) � λ−1 if |x+ t0γ(s)| � cλ−1 and |s−
s◦| < c for a small constant c > 0. Thus, ‖Rf‖p � λ−1−d/p. Since

Fx(Rf(·, s))(ξ) = λ−dψ(s)
∫
ζ̂(λ−1ξ) eitγ(s)·ξψ0(λ|t− t0|)χ(t) dt,

it follows that suppξ Fx(Rf) is included in {ξ : |ξ| ∼ λ}. Hence, ‖Rf(·, s)‖Lp
α(Rd;dx)

� λα−1−d/p, so we have ‖Rf‖Lp
α(Rd+1) � λα−1−d/p. Since ‖f‖p � λ−(d+1)/p, we get

α � 1 − 1/p. �

Proof of (ii). Let Ĩ ⊂ (−1, 1) be a nonempty compact interval such that (1.1)
holds for s ∈ Ĩ. Also, we fix a constant ρ� 1 to be chosen later. Let {s�} ⊂ Ĩ
be a collection of ρλ−1/d-separated points which are as many as Cρ−1λ1/d. Since
G(s�), G′(s�), . . . , G(d−1)(s�) are linearly independent in R

d+1, there is a unit vector
Ξ� ∈ (span{G(j)(s�) : j = 0, 1, . . . , d− 1})⊥.

Let φ ∈ S(Rd+1) such that φ � 1 on [−3r0, 3r0]d+1 and φ̂ is supported in
[−1, 1]d+1 where r0 = 1 + sups∈I |γ(s)|. Let ε� ∈ {±1} be independent random
variables. We consider

f(x, t) =
∑

�

ε�f�(x, t) :=
∑

�

ε�φ(x, t)eiλΞ�·(t,x).

Since 〈Ξ�, G
(j)(s�)〉 = 0 for j = 0, . . . , d− 1, by Taylor’s theorem we have

〈Ξ�, G(s)〉 = 〈Ξ�, G
(d)(s�)〉(s− s�)d/d! +O(|s− s�|d+1). (5.7)

Thus, |t〈Ξ�, G(s)〉| � 2−2λ−1 whenever s ∈ I� := {s ∈ Ĩ : |s− s�| � cλ−1/d} for a
c > 0 small enough. Noting that

Rf�(x, s) = eiλΞ�·(0,x)ψ(s)
∫
φ(x+ tγ(s), t)eiλtΞ�·G(s)χ(t) dt, (5.8)

we see |Rf�(x, s)| � 1 if (x, s) ∈ B� := [−c, c]d × I�. Thus,
∑

� ‖Rf�‖p
Lp(B�)

� ρ−1.

Meanwhile, by (5.8), (5.7) and integration by parts in t we have |Rfm(x, s)| �
(1 + λ|s� − sm|d)−N for any N � 1 if m �= 
 and s ∈ I�. Since {s�} are ρλ−(1/d)-
separated, it is easy to see∑

�

∥∥ ∑
m 
=�

|Rfm|
∥∥p

Lp(B�)
�

∑
�

∑
m 
=�

(1 + λ|s� − sm|d)−pNλ−1/d � ρ−pdN−1.

Therefore, taking ρ,N sufficiently large, we have ‖Rf‖p
p � ρ−1 for any choice of ε�.

By our choice of φ it follows that Fx(Rf) is supported on {ξ : C1λ � |ξ| � C2λ}
for some positive constant C1, C2. Thus, ‖Rf‖Lp

α
� λα‖Rf‖p. Combining this with

the Lp − Lp
α estimate gives λα � C‖f‖p for any choice of ε�. By Khintchine’s
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inequality we have E(‖f‖p
p) ∼

∫
(
∑

� |f�|2)p/2 dxdt ∼ Cρλ
p/2d. Therefore, we see

λα � λ1/2d and then α � 1/(2d) taking λ→ ∞. �

Proof of (iii). Since γ is of type L at s◦, by an affine transformation and taking ψ
supported near s◦, we may assume

γ(s+ s◦) = γ(s◦) + (sa1ϕ1(s), . . . , sadϕd(s))

for 1 � a1 < · · · < ad = L and smooth functions ϕj , j = 1, . . . , d, where ‖ϕj −
1/aj !‖Cad+1(I) � c for a small constant c > 0. We may also assume s◦ = 0 and
furthermore γ(0) = 0 by replacing f(x, t) by f(x− tγ(0), t).

Let φ1 ∈ S(R) such that φ1 � 1 on [−1, 1], and supp φ̂1 ⊂ [1/2, 4] with φ̂1 = 1 on
[1, 2]. Let ψ0 ∈ C∞

c ((−1, 1)) with ψ0 = 1 on [−1/2, 1/2]. We consider

f(x, t) =
d−1∏
j=1

ψ0(λaj/Lxj)φ1(λxd)χ(t).

Denoting ‖a‖ =
∑d

j=1 aj , we have ‖f‖p � λ−‖a‖/(Lp). Set Eλ = {(x, s) ∈ R
d × I :

|xj | � cλ−aj/L, j = 1, . . . , d, |s| � cλ−1/L} for a sufficiently small c > 0. Since
γ(s) = (sa1ϕ1(s), . . . , sadϕd(s)), |〈x+ tγ(s), ej〉| � 2−1λ−aj/L, j = 1, . . . , d, for
(x, s) ∈ Eλ and t ∈ [1, 2]. So, Rf(x, s) � 1 for (x, s) ∈ Eλ. This gives ‖Rf‖p �
λ−(‖a‖+1)/(Lp). Since suppFxd

(Rf) ⊂ {ξd : |ξd| ∼ λ}, ‖Rf‖Lp
α

� λα−(‖a‖+1)/(Lp).
Therefore, we obtain α � 1/(Lp). �
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