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Abstract

Let x ∈ [0, 1) be an irrational number and let x = [a1(x), a2(x), . . .] be its continued fraction expansion with
partial quotients {an(x) : n ≥ 1}. Given a natural number m and a vector (x1, . . . , xm) ∈ [0, 1)m, we derive
the asymptotic behaviour of the shortest distance function

Mn,m(x1, . . . , xm) = max{k ∈ N : ai+j(x1) = · · · = ai+j(xm) for j = 1, . . . , k and some i with 0 ≤ i ≤ n − k},

which represents the run-length of the longest block of the same symbol among the first n partial quotients
of (x1, . . . , xm). We also calculate the Hausdorff dimension of the level sets and exceptional sets arising
from the shortest distance function.

2020 Mathematics subject classification: primary 11A55; secondary 11K50, 11K55.
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1. Introduction

Let T : [0, 1)→ [0, 1) be the Gauss map defined by

T(0) = 0, T(x) =
1
x

(mod 1) for x ∈ (0, 1).

Every irrational number x ∈ [0, 1) can be uniquely expanded into an infinite form

x :=
1

a1(x) +
1

a2(x) +
1

. . . +
1

an + Tn(x)

=
1

a1(x) +
1

a2(x) +
1

a3(x) +
1
. . .

, (1.1)

where an(x) = �1/Tn−1(x)� are called the partial quotients of x. (Here �·� denotes the
greatest integer less than or equal to a real number and T0 denotes the identity map.)

This work is supported by National Natural Science Foundation of China (NSFC), No. 12201476.
© The Author(s), 2023. Published by Cambridge University Press on behalf of Australian Mathematical
Publishing Association Inc.

186

https://doi.org/10.1017/S0004972723000503 Published online by Cambridge University Press

http://dx.doi.org/10.1017/S0004972723000503
https://orcid.org/0000-0003-2529-5397
https://orcid.org/0000-0002-6661-983X
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0004972723000503&domain=pdf
https://doi.org/10.1017/S0004972723000503


[2] Shortest distance in continued fractions 187

For simplicity of notation, we write (1.1) as

x = [a1(x), a2(x), . . . , an(x) + Tn(x)] = [a1(x), a2(x), a3(x), . . .].

It is clear that the Gauss transformation T acts as the shift map on the continued
fraction system. That is, for each x = [a1(x), a2(x), a3(x), . . .] ∈ [0, 1) ∩ Qc,

T(x) = T([a1(x), a2(x), a3(x), . . .]) = [a2(x), a3(x), . . .].

Gauss observed that T is measure-preserving and ergodic with respect to the Gauss
measure μ defined by

dμ =
1

log 2
1

x + 1
dx.

For more information on the continued fraction expansion, see [3].
The metrical theory of continued fractions, which concerns the properties of the

partial quotients for almost all x ∈ [0, 1), is one of the major themes in the study
of continued fractions. Wang and Wu [7] considered the metrical properties of the
maximal run-length function

Rn(x) = max{l ∈ N : ai+1(x) = · · · = ai+l(x) for some i with 0 ≤ i ≤ n − l},
which counts the longest run of the same symbol among the first n partial quotients
of x. They proved that, for μ almost all x ∈ [0, 1),

lim
n→∞

Rn(x)
log n

=
1

2 log((
√

5 + 1)/2)
.

Song and Zhou [6] gave a more subtle characterisation of the function Rn(x). In this
paper, we continue the study by considering the shortest distance function

Mn,m(x1, . . . , xm) = max{k ∈ N : ai+j(x1) = · · · = ai+j(xm) for j = 1, . . . , k,
and some i with 0 ≤ i ≤ n − k}.

This is motivated by the behaviour of the shortest distance between two orbits,

Sn,2(x, y) = min
i=0,...,n−1

(d(Ti(x), Ti(y)))

in the continued fraction system. Shi et al. [5] proved that, for μ2 almost all (x, y) ∈
[0, 1) × [0, 1),

H2 · lim
n→∞

Mn,2(x, y)
log n

= lim
n→∞

− log Sn,2(x, y)
log n

,

where H2 is the Rényi entropy defined by (1.2). Investigating the shortest distance
between two orbits amounts to estimating the longest common substrings between two
sequences of partial quotients. In fact, [5] focused on the asymptotics of the length of
the longest common substrings in two sequences of partial quotients.

For n ≥ 1 and (a1, . . . , an) ∈ Nn, we call

In(a1, . . . , an) = {x ∈ [0, 1) : a1(x) = a1, . . . , an(x) = an}
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an nth cylinder. For m ≥ 2, we define the generalised Rényi entropy with respect to the
Gauss measure μ by

Hm = lim
n→∞

− log
∑

(a1,...,an)∈Nn μ(In(a1, . . . , an))m

(m − 1)n
. (1.2)

The existence of the limit (1.2) for the Gauss measure μ was established in [2].

THEOREM 1.1. For μm-almost all (x1, . . . , xm) ∈ [0, 1)m,

lim
n→∞

Mn,m(x1, . . . , xm)
log n

=
1

(m − 1)Hm
.

Here we use the convention that 1/0 = ∞ and 1/∞ = 0.

It is natural to study the exceptional set in this limit theorem. We define the
exceptional set as

Ẽ =
{
(x1, . . . , xm) ∈ [0, 1)m : lim inf

n→∞

Mn,m(x1, . . . , xm)
log n

< lim sup
n→∞

Mn,m(x1, . . . , xm)
log n

}

and the level set as

E(α) =
{
(x1, . . . , xm) ∈ [0, 1)m : lim

n→∞

Mn,m(x1, . . . , xm)
log n

= α
}
.

Throughout the paper, dimH A denotes the Hausdorff dimension of the set A.

THEOREM 1.2. For any α with 0 ≤ α ≤ ∞, dimH Ẽ = dimH E(α) = m.

In fact, Theorem 1.2 follows immediately from the following more general result.
For any 0 ≤ α ≤ β ≤ ∞, set

E(α, β) =
{
(x1, . . . , xm) ∈ [0, 1)m : lim inf

n→∞

Mn,m(x1, . . . , xm)
log n

= α,

lim sup
n→∞

Mn,m(x1, . . . , xm)
log n

= β
}
.

THEOREM 1.3. For any α, β with 0 ≤ α ≤ β ≤ ∞, dimH E(α, β) = m.

2. Preliminaries

In this section, we fix some notation and recall some basic properties of continued
fraction expansions. A detailed account of continued fractions can be found in
Khintchine’s book [3].

For any irrational number x ∈ [0, 1) with continued fraction expansion (1.1), we
denote by

pn(x)
qn(x)

:= [a1(x), . . . , an(x)]

the nth convergent of x. With the conventions

p−1(x) = 1, q−1(x) = 0, p0(x) = 0, q0(x) = 1,
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we have, for any n ≥ 0,

pn+1(x) = an+1(x)pn(x) + pn−1(x), qn+1(x) = an+1(x)qn(x) + qn−1(x).

Obviously, qn(x) is determined by the first n partial quotients a1(x), . . . , an(x). So we
also write qn(a1(x), . . . , an(x)) in place of qn(x). If no confusion is likely to arise, we
write an and qn in place of an(x) and qn(x), respectively.

PROPOSITION 2.1 [3]. For n ≥ 1 and (a1, . . . , an) ∈ Nn:

(1) qn ≥ 2(n−1)/2 and
n∏

k=1

ak ≤ qn ≤
n∏

k=1

(ak + 1) ≤ 2n
n∏

k=1

ak;

(2) the length of In(a1, . . . , an) satisfies

1
2q2

n
≤ |In(a1, . . . , an)| = 1

(qn + qn−1)qn
≤ 1

q2
n

.

The following ψ-mixing property is essential in proving Theorem 1.1.

LEMMA 2.2 [4]. For any k ≥ 1, let Bk
1 = σ(a1, . . . , ak) and let B∞k = σ(ak, ak+1, . . .)

denote theσ-algebras generated by the random variables (a1, . . . , ak) and (ak, ak+1, . . .)
respectively. Then, for any E ∈ Bk

1 and F ∈ B∞k+n,

μ(E ∩ F) = μ(E) · μ(F)(1 + θρn),

where |θ| ≤ K, ρ < 1 and K, ρ are positive constants independent of E, F, n and k.

To estimate the measure of a limsup set in a probability space, the following lemma
is widely used.

LEMMA 2.3 (Borel–Cantelli lemma). Let (Ω,B, ν) be a finite measure space and let
{An}n≥1 be a sequence of measurable sets. Define A =

⋂∞
N=1
⋃∞

n=N An. Then

ν(A) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if
∞∑

n=1

ν(An) < ∞,

ν(Ω) if
∞∑

n=1

ν(An) = ∞ and {An}n≥1 are pairwise independent.

Let K = {kn}n≥1 be a subsequence of N that is not cofinite. Define a mapping
φK : [0, 1) ∩ Qc → [0, 1) ∩ Qc as follows. For each x = [a1, a2, . . .] ∈ [0, 1) ∩ Qc, put
φK(x) = x = [c1, c2, . . .], where [c1, c2, . . .] is obtained by eliminating all the terms akn

from the sequence a1, a2, . . . . Let {bn}n≥1 be a sequence with bn ∈ N, n ≥ 1. Write

E(K, {bn}) = {x ∈ [0, 1) ∩ Qc : akn (x) = bn for all n ≥ 1}.
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LEMMA 2.4 [6]. Assume that {bn}n≥1 is bounded. If the sequence K is of density zero
in N, that is,

lim
n→∞


{i ≤ n : i ∈ K}
n

= 0,

where 
 denotes the number of elements in a set, then

dimH E(K, {bn}) = dimH φK(E(K, {bn})) = 1.

We close this section by citing Marstrand’s product theorem.

LEMMA 2.5 [1]. If E, F ⊂ Rd for some d, then dimH(E × F) ≥ dimH E + dimH F.

3. Proof of Theorem 1.1

Theorem 1.1 can be proved from the following two propositions.

PROPOSITION 3.1. For μm-almost all (x1, . . . , xm) ∈ [0, 1)m,

lim sup
n→∞

Mn,m(x1, . . . , xm)
log n

≤ 1
(m − 1)Hm

.

PROOF. We can assume that Hm > 0 (the case Hm = 0 is obvious). Fix s1 < s2 <
(m − 1)Hm. By the definition of the Hm,∑

(a1,...,an)∈Nn

μ(In(a1, . . . , an))m < exp
{
− s1 + s2

2
n
}

(3.1)

for sufficiently large n. Set un = �log n/s1�. Note that, for any (x1, . . . , xm) ∈ [0, 1)m

with Mn,m(x1, . . . , xm) = k, there exists i with 0 ≤ i ≤ n − k such that

ai+j(x1) = · · · = ai+j(xm)

for j = 1, . . . , k. We deduce

μm({(x1, . . . , xm) ∈ [0, 1)m : Mn,m(x1, . . . , xm) > un})

=

∞∑
k=un+1

μm({(x1, . . . , xm) ∈ [0, 1)m : Mn,m(x1, . . . , xm) = k})

≤
∞∑

k=un+1

n−k∑
i=0

μm({(x1, . . . , xm) ∈ [0, 1)m : ai+j(x1) = · · · = ai+j(xm), j = 1, . . . , k}).

By the invariance of μ under T , it follows that

μm({(x1, . . . , xm) ∈ [0, 1)m : Mn,m(x1, . . . , xm) > un})

≤ n
∞∑

k=un+1

μm({(x1, . . . , xm) ∈ [0, 1)m : aj(x1) = · · · = aj(xm), j = 1, . . . , k})

https://doi.org/10.1017/S0004972723000503 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972723000503


[6] Shortest distance in continued fractions 191

= n
∞∑

k=un+1

∑
(a1,...,ak)∈Nk

μ(Ik(a1, . . . , ak))m

≤ Cn · exp
{
− s1 + s2

2
(un + 1)

}
(by (3.1))

≤ Cn−(s2−s1)/2s1 ,

where C =
∑∞

k=1 exp{−(s1 + s2)k/2}. Choose an infinite subsequence of integers
{nk}k≥1, where nk = kL and L · (s2 − s1)/2s1 > 1. Then

∞∑
k=1

μm({(x1, . . . , xm) ∈ [0, 1)m : Mnk ,m(x1, . . . , xm) > unk }) < ∞.

From the Borel–Cantelli Lemma 2.3, for almost all (x1, . . . , xm) ∈ [0, 1)m,

Mnk ,m(x1, . . . , xm) ≤ unk

for sufficiently large k. Thus,

lim sup
n→∞

Mn,m(x1, . . . , xm)
log n

≤ lim sup
k→∞

Mnk+1,m(x1, . . . , xm)
log nk

≤ lim sup
k→∞

Mnk+1,m(x1, . . . , xm)
log nk+1

· lim sup
k→∞

nk+1

nk
≤ 1

s1
.

Therefore, by the arbitrariness of s1,

lim sup
n→∞

Mn,m(x1, . . . , xm)
log n

≤ 1
(m − 1)Hm

.

This completes the proof. �

PROPOSITION 3.2. For μm-almost all (x1, . . . , xm) ∈ [0, 1)m,

lim inf
n→∞

Mn,m(x1, . . . , xm)
log n

≥ 1
(m − 1)Hm

.

PROOF. We can assume that Hm < ∞ (the case Hm = ∞ is obvious). For 1 ≤ d < n, set

M[d,n](x1, . . . , xm) = max{k ∈ N : ai+j(x1) = · · · = ai+j(xm) for j = 1, . . . , k,
and for some i with d − 1 ≤ i ≤ n − k}.

We denote {(x1, . . . , xm) ∈ [0, 1)m : Mn,m(x1, . . . , xm) < k} by {Mn,m < k} for brevity.
For any s > (m − 1)Hm, by the definition of the Hm,

∑
(a1,...,an)∈Nn

μ(In(a1, . . . , an))m > exp
{
− s + (m − 1)Hm

2
n
}

(3.2)
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for sufficiently large n. Let un = �log n/s� and ln = �n/u2
n�. Then

{Mn,m < un} ⊂ {M[iu2
n+1,iu2

n+un] < un : 0 ≤ i < ln}

⊂ {Mun,m < un} ∩ (T × · · · × T︸�������︷︷�������︸
m times

)−u2
n{M[iu2

n+1,iμ2
n+un] < un : 0 ≤ i < ln − 1}.

By Lemma 2.2, it follows that

μm({Mn,m < un})

≤ μm({Mun,m < un} ∩ (T × · · · × T︸�������︷︷�������︸
m times

)−u2
n{M[iu2

n+1,iμ2
n+un] < un, 0 ≤ i < ln − 1})

≤ μm({Mun,m < un})ln (1 + θρu2
n−un )m·ln

≤
(
1 −

∑
(a1,...,aun )∈Nun

μ(Iun (a1, . . . , aun ))m
)ln

(1 + θρu2
n−un )m·ln

≤ exp
{
− n

u2
n
· n−(s+(m−1)Hm)/2s

}
· exp

{
θρu2

n−un
m · n

u2
n

}

≤ M exp
{
− n(s−(m−1)Hm)/2s

u2
n

}
,

where the penultimate inequality follows from (3.2) and the two facts (1 − x) <
exp(−x) for 0 < x < 1 and limn→∞(1 + 1/n)n = e, and the last inequality follows
because θρu2

n−un m · n/u2
n → 0 as n→ ∞. Thus,

∞∑
n=1

μm({Mn,m < un}) < ∞.

From the Borel–Cantelli Lemma, for μm-almost all (x1, . . . , xm) ∈ [0, 1)m,

lim inf
n→∞

Mn,m(x1, . . . , xm)
log n

≥ 1
(m − 1)Hm

.

This completes the proof of Proposition 3.2 and of Theorem 1.1. �

4. Proof of Theorem 1.3

This section is devoted to the proof of Theorem 1.3. Our strategy is to construct
Cantor-like subsets with full Hausdorff dimension. The proof is divided into several
cases according to the values of α and β. We give a detailed proof for the case 0 < α <
β < ∞ and a sketch of the proof for the remaining cases.

CASE 1: 0 < α < β < ∞.
Choose two positive integer sequences {nk}k≥1 and {sk}k≥1 such that, for each k ≥ 1,

n1 = 2, nk+1 = �nβ/αk �, sk = � β log nk�. (4.1)
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We readily check that

lim
k→∞

sk

nk+1 − nk
= 0. (4.2)

Without loss of generality, we assume that nk+1 − nk > sk for all k ≥ 1. Otherwise, we
consider only sufficiently large k. Put

nk+1 − nk = sk · ιk + θk,

where

ιk =
⌊nk+1 − nk

sk

⌋
for 0 ≤ θk < sk.

Define a marked set K of positive integers by

K := K({nk}, {sk}) =
⋃
k≥1

{nk, nk + 1, nk + 2, . . . , nk + sk, nk + 2sk, nk + 3sk, . . . , nk + ιksk}.

Now we define m sequences as follows.

• For i = 1,

a(1)
nk
= 1, a(1)

nk+1 = · · · = a(1)
nk+sk−1 = 1, a(1)

nk+sk
= a(1)

nk+2sk
= · · · = a(1)

nk+ιksk
= 1.

• For 2 ≤ i ≤ m,

a(i)
nk
= i, a(i)

nk+1 = · · · = a(i)
nk+sk−1 = 1, a(i)

nk+sk
= a(i)

nk+2sk
= · · · = a(i)

nk+ιksk
= i.

Then, for i = 1, 2, . . . , m, write

E(K, {a(i)
n }n≥1) = {x ∈ [0, 1) ∩ Qc : an(x) = a(i)

n for all n ∈ K}.

Now we prove
∏m

i=1 E(K, {a(i)
n }n≥1) ⊂ E(α, β). Fix (x1, . . . , xm) ∈∏m

i=1 E(K, {a(i)
n }n≥1)

for any n ≥ n1 and let k be the integer such that nk ≤ n < nk+1. From the construction
of the set

∏m
i=1 E(K, {a(i)

n }n≥1), we see that

Mn,m(x1, . . . , xm) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
sk−1 − 1 if nk ≤ n < nk + sk−1,
n − nk if nk + sk−1 ≤ n < nk + sk,
sk − 1 if nk + sk ≤ n < nk+1.

Further, by (4.1), we deduce that

lim inf
n→∞

Mn,m(x1, . . . , xm)
log n

= lim inf
k→∞

min
{Mnk+sk−1−1,m(x1, . . . , xm)

log(nk + sk−1 − 1)
,

Mnk+1−1,m(x1, . . . , xm)
log(nk+1 − 1)

}

= lim inf
k→∞

min
{ sk−1 − 1

log(nk + sk−1 − 1)
,

sk − 1
log(nk+1 − 1)

}

= α
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and

lim sup
n→∞

Mn,m(x1, . . . , xm)
log n

= lim sup
k→∞

max
{Mnk ,m(x1, . . . , xm)

log(nk)
,

Mnk+sk−1,m(x1, . . . , xm)
log(nk + sk − 1)

}

= lim sup
k→∞

max
{sk−1 − 1

log(nk)
,

sk − 1
log(nk + sk − 1)

}

= β.

Hence, (x1, . . . , xm) ∈ E(α, β).
It remains to prove that the density of K ⊂ N is zero. For nk ≤ n < nk+1 with some

k ≥ 1:

• if nk ≤ n < nk + sk, then 
{i ≤ n : i ∈ K} = ∑k−1
j=1 (mj + ιj) + n − nk + 1;

• if nk + lsk ≤ n < nk + (l + 1)sk for some l with 0 < l < ιk, then we see that

{i ≤ n : i ∈ K} = ∑k−1

j=1 (sj + ιj) + sk + l;
• if nk + ιksk ≤ n < nk+1, then 
{i ≤ n : i ∈ K} = ∑k

j=1(sj + ιj).

Consequently,

lim sup
n→∞


{i ≤ n : i ∈ K}
n

≤ lim sup
k→∞

max
0≤l<ιk

{∑k−1
j=1 (sj + ιj) + sk + l

nk + lsk

}

≤ lim sup
k→∞

{∑k−1
j=1 (sj + ιj) + sk + ιk)

nk

}

= 0,

where the last equality follows by the Stolz–Cesàro theorem and (4.2). By Lemmas 2.4
and 2.5,

dimH Eα,β ≥ dimH

( m∏
i=1

E(K, {a(i)
n }n≥1)

)
≥

m∑
i=1

dimH E(K, {a(i)
n }n≥1) = m.

Similar arguments apply to the remaining cases. We only give the constructions for
the proper sequences {nk}k≥1 and {sk}k≥1.

CASE 2: 0 < α = β < ∞. Take nk = 2k and sk = �α log nk� for k ≥ 1.

CASE 3: α = 0 < β < ∞. Take nk = 222k

and sk = � β log nk� for k ≥ 1.

CASE 4: α = 0, β = ∞. Take nk = 222k

and sk = �k log nk� for k ≥ 1.

CASE 5: 0 < α < β = ∞. Take nk = 2k! and sk = �αk log nk� for k ≥ 1.

CASE 6: α = β = 0. Take nk = 2k and sk = �log log nk� for k ≥ 1.

CASE 7: α = β = ∞. Take nk = 2k and sk = �k log nk� for k ≥ 1.
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