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Abstract

Using L2-methods, we prove a vanishing theorem for tame harmonic bundles over
quasi-compact Kähler manifolds in a very general setting. As a special case, we give
a completely new proof of the Kodaira-type vanishing theorems for Higgs bundles due
to Arapura. To prove our vanishing theorem, we construct a fine resolution of the
Dolbeault complex for tame harmonic bundles via the complex of sheaves of L2-forms,
and we establish the Hörmander L2-estimate and solve (∂̄E + θ)-equations for Higgs
bundles (E, θ).

1. Introduction

1.1 Main result
Let (X, ω) be a compact Kähler manifold and let D be a simple normal crossing divisor on X.
Let (E, θ, h) be a tame harmonic bundle over X − D such that θ has nilpotent residues on D
(see § 2.1 for the precise definition), and let �E be the subsheaf of ι∗E consisting of sections
whose norms with respect to h have sub-polynomial growth (see § 4.2), where ι : X − D ↪→ X is
the inclusion. By Simpson–Mochizuki, �E is a locally free coherent sheaf, and (E, θ) extends to
a logarithmic Higgs bundle

θ : �E → �E ⊗ Ω1
X(log D)

such that

θ ∧ θ = 0.

We refer to § 4.2 for more details.
In this paper, we prove the following vanishing theorem.

Theorem A (Theorem 4.20). Let (X, ω) be a compact Kähler manifold of dimension n, and
let D be a simple normal crossing divisor on X. Let (E, θ) be a tame harmonic bundle on X − D
such that θ has nilpotent residues on D, and let (�E, θ) be the extension of (E, θ) on X as
introduced above. Let L be a holomorphic line bundle on X equipped with a smooth Hermitian
metric hL such that its curvature

√−1R(hL) ≥ 0 and has at least n − k positive eigenvalues at
every point on X as a real (1, 1)-form. Let B be a nef line bundle on X. Then for the following
(Dolbeault) complex of sheaves

Dol(�E, θ) := �E ∧θ−→ �E ⊗ Ω1
X(log D) ∧θ−→ · · · ∧θ−→ �E ⊗ Ωn

X(log D), (1)
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Vanishing theorem for tame harmonic bundles

the hypercohomology

H
i
(
X, Dol(�E, θ) ⊗ L ⊗ B

)
= 0

for any i > n + k.

Theorem A seems new even if the tame harmonic bundle (E, θ, h) comes from
a complex variation of polarized Hodge structures over X − D. It indeed interpolates
the Kodaira–Akizuki–Nakano-type vanishing theorems for nilpotent Higgs bundles [Ara19,
Theorem 1] by Arapura (in the case that L is ample, see Corollary 4.22), and the log Gir-
bau vanishing theorem by Huang, Liu, Wan and Yang [HLWY23, Corollary 1.2] (in the case that
(E, θ) = (OX−D, 0), see Remark 4.21). We stress here that our proof of Theorem A is essentially
self-contained (in particular, we do not apply the deep Simpson–Mochizuki correspondence) and
is purely in characteristic 0 (since we are working on Kähler manifolds), comparing with the
celebrated vanishing theorem by Arapura [Ara19] whose proof is in characteristic p (see § 1.3 for
more details). The main technique in the proof of Theorem A is a new application of L2-methods
to tame harmonic bundles, and we hope that it can bring some new input in the study of L2-
cohomology for Higgs bundles. Let us also mention a few byproducts of our proof: we construct
explicitly complexes of sheaves of L2-forms for tame Higgs bundles which are quasi-isomorphic
to the Dolbeault complexes (1) (see Theorem 4.18) in a similar manner (but using different
metric) as [Zuc79] in which Zucker did this for variation of polarized Hodge structures over a
quasi-projective curve; we also establish the Hörmander L2-estimate and solvability criteria for
(∂̄E + θ)-equations for Higgs bundles (E, θ) (see Theorem 3.6 and Corollary 3.7).

If we apply the Simpson–Mochizuki correspondence [Sim90, Moc06] for parabolic Higgs bun-
dles on projective manifolds to Theorem A, we can obtain a vanishing theorem for parabolic
Higgs bundles. We refer the readers to Corollary 4.22 for the precise statement.

1.2 Idea of the proof
Let us briefly explain the main idea of our proof of Theorem A. We first construct a complex of
L2 fine sheaves for the tame harmonic bundle (E, θ, h) whose Higgs field θ has nilpotent residues
on D, which is quasi-isomorphic to the Dolbeault complex

(2)

For the given Kähler metric ω on X (we denote the restricted Kähler form ω|X−D again by
ω over X − D) and a smooth Hermitian metric g for E over X − D, we let Lm

(2)(X, E)g,ω be
the sheaf on X of germs of E-valued m-forms σ with measurable coefficients such that |σ|2g,ω

is locally integrable and (∂̄ + θ)(σ) exists weakly as a locally L2, E-valued (m + 1)-form. Here
the L2 norms |σ|2g,ω are induced by ω on differential forms and by g on elements in E. Since
(∂̄ + θ)2 = 0, it thus gives rise to a complex of fine sheaves

L0
(2)(X, E)g,ω

∂̄+θ→ · · · ∂̄+θ→ L2n
(2)(X, E)g,ω. (3)

As the harmonic metric h is a canonical metric on E, it is quite natural to make the choice
that g is the harmonic metric h. In addition, we replace the Kähler form ω by a Poincaré-type
metric ωP over X − D as [Zuc79, CKS87, KK87]. However, even for the case when (E, θ) comes
from a variation of polarized Hodge structures over X − D, it turns out to be a quite difficult
problem that (L•

(2)(X, E)h,ωP
, ∂̄ + θ) is quasi-isomorphic to Dol(�E, θ), and one essentially cannot

avoid the delicate norm estimate for Hodge metrics near D in [Sch73, Kas85, CKS86] (see, e.g.,
[Zuc79, JYZ07]). In this paper, we make a slight perturbation ha,N of the harmonic metric h (see
Lemma 4.11 for more details) as [Moc02, § 4.5.3] such that ha,N will degenerate mildly, albeit the
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norm of harmonic metric h for �E is of sub-polynomial growth. In addition, we slightly perturb
the Kähler metric ω on X − D into a complete Kähler metric ωa,N (see Lemma 4.10), which
is mutually bounded with the Poincaré metric ωP near the divisor D. This construction indeed
brings us several advantages (among others): we can prove that (L•

(2)(X, E)ha,N ,ωa,N
, ∂̄ + θ) is

indeed quasi-isomorphic to Dol(�E, θ), and the negative contribution of the curvature (E, θ, ha,N )
is small enough to be absorbed completely by the curvature

√−1R(hL) of any (partially) positive
metrized line bundle (L, hL).

Thus, we have the following L2 fine resolution of Dol(�E, θ) ⊗ L

(L•
(2)(X − D, E ⊗ L|X−D)ha,N ·hL,ωa,N

, D′′), (4)

where D′′ := ∂̄E⊗L + θ ⊗ 1L satisfying D′′2 = 0 (we assume B = OX here for simplicity). We
then reduce the proof of Theorem A to the vanishing of ith cohomology of the complex of global
sections of (4) for i > dim X + k. To prove this, we first generalize the L2-estimate by Hörmander,
Andreotti-Vesentini, Skoda, Demailly and others to Higgs bundles. Roughly speaking, we prove
that under certain curvature conditions for Higgs bundles (E, θ) over X − D, we can solve the
D′′-equation as the ∂̄-equation in a similar way (see Theorem 3.6 and Corollary 3.7). We then
choose the perturbation ha,N of h carefully such that such required curvature condition can be
fulfilled and it enables us to prove the vanishing result for the L2-cohomology of (4). This idea
of solving D′′-equation for Higgs bundles using L2-method seems a new ingredient as we are
aware of.

1.3 Previous results
For X a complex projective manifold with a simple normal crossing divisor D, Arapura [Ara19]
gives a vanishing theorem for semistable Higgs bundles (E, θ) over X − D with trivial parabolic
structure, trivial Chern classes and nilpotent Higgs field θ. In the spirit of the algebraic proof of
the Kodaira vanishing theorem by Deligne and Illusie [DI87], the proof of Arapura’s vanishing
theorem is reduced to the mod p-setting and boils down to a periodic sequence of Higgs bundles
(Ei, θi) := Bi(E, θ) through an operator B raised from the absolute Frobenius morphism, which
is due to Lan, Sheng, Yang and Zuo [LSZ19, LSYZ13] and Langer [Lan15]. The dimension of
the cohomology H

i(X, Dol(Ei, θi) ⊗ Lpi
) is non-decreasing for {(Ei, θi)} and ample line bundle

L, then Arapura’s vanishing theorem follows from Serre’s vanishing theorem. With his vanishing
theorem, Arapura reproves the Saito’s vanishing theorem (see, e.g., Popa [Pop16]) for variation of
polarized Hodge structures with unipotent monodromy on the complement of a normal crossing
divisor on any complex projective manifold. In the follow-up article [AHL19], Arapura’s vanish-
ing theorem for Higgs bundles is generalized to parabolic Higgs bundles. As applications, the
vanishing theorem for parabolic Higgs bundle recovers the Saito’s vanishing theorem coming from
complex variation of Hodge structures over X − D. Our main result, Theorem A, is more general
compared with the main results in [Ara19] and [AHL19] in the sense that Theorem A applies to
general compact Kähler manifolds together with partially ample line bundles. Another new out-
put of this article is that we establish the Hörmander L2-estimate and solve (∂̄E + θ)-equations
for Higgs bundles (E, θ), as an important byproduct of the proof of our main theorem.

Notation and conventions

– A couple (E, h) is a Hermitian vector bundle on a complex manifold X if E is a holomorphic
vector bundle on X equipped with a smooth hermitian metric h. Here ∂̄E denotes the complex
structure of E and we sometimes simply write ∂̄ if no confusion arises.
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– Two hermitian metrics h and h̃ of a holomorphic vector bundle on X are mutually bounded
if C−1h ≤ h̃ ≤ Ch for some constant C > 0, and we shall denote this by h ∼ h′.

– For a hermitian vector bundle (E, h) on a complex manifold, R(E, h) or simply R(h) denotes
its Chern curvature.

– We use Δ to denote the unit disk in C.
– The complex manifold X in this paper are always assumed to be connected and of

dimension n.
– Throughout the paper we always work over the complex number field C.

2. Technical preliminaries

2.1 Higgs bundle and tame harmonic bundle
In this section we recall the definition of Higgs bundles and tame harmonic bundles. We refer
the reader to [Sim88, Sim90, Sim92, Moc02, Moc07] for further details.

Definition 2.1. Let X be a complex manifold. A Higgs bundle on X is a pair (E, θ) where E is a
holomorphic vector bundle with ∂̄E its complex structure, and θ : E → E ⊗ Ω1

X is a holomorphic
one form with value in End(E), say Higgs field, satisfying θ ∧ θ = 0.

Let (E, θ) be a Higgs bundle over a complex manifold X. Write D′′ := ∂̄E + θ. Then D′′2 = 0.
Suppose h is a smooth hermitian metric of E. Denote by ∂h + ∂̄E the Chern connection with
respect to h, and θ∗h be the adjoint of θ with respect to h. Write D′

h := ∂h + θ∗h. The metric h is
harmonic if the operator Dh := D′

h + D′′ is integrable, that is, if D2
h = 0.

Definition 2.2 (Harmonic bundle). A harmonic bundle on a complex manifold X is a Higgs
bundle (E, θ) endowed with a harmonic metric h.

Let X be an n-dimensional complex manifold, and let D be a simple normal crossing divisor
on X.

Definition 2.3 (Admissible coordinate). Let p be a point of X, and assume that {Dj}j=1,...,� are
components of D containing p. An admissible coordinate around p is the tuple (U ; z1, . . . , zn; ϕ)
(or simply (U ; z1, . . . , zn) if no confusion arises) where

– U is an open subset of X containing p;
– there is a holomorphic isomorphism ϕ : U → Δn such that ϕ(Dj) = (zj = 0) for any j =

1, . . . , 	.

We shall write U∗ := U − D, U(r) := {z ∈ U | |zi| < r, ∀i = 1, . . . , n} and U∗(r) := U(r) ∩ U∗.

For any harmonic bundle (E, θ, h), let p be any point of X, and (U ; z1, . . . , zn) be an
admissible coordinate around p. On U , we have the description

θ =
�∑

j=1

fjd log zj +
n∑

k=�+1

gk dzk, (5)

where fj and gk are holomorphic sections of End(E) on U∗.

Definition 2.4 (Tameness). Let t be a formal variable. We have the polynomials det(fj − t),
and det(gk − t), whose coefficients are holomorphic functions defined over U∗. When the functions
can be extended to the holomorphic functions over U , the harmonic bundle is called tame at p.
A harmonic bundle is tame if it is tame at each point.
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Definition 2.5 (Nilpotent residues). Let (E, θ) be a Higgs bundle on X − D. We say that
θ has nilpotent residues on D if for each component Dj of D and any point p ∈ Dj one has
det(fj − t)|U∩Dj = (−t)rankE .

Remark 2.6. One should note that the above definition introduced in [Moc02, p. 435] is more
general than that in [Ara19, Theorem 1], where the nilpotency of Higgs field θ is defined to be
the local matrix of θ is nilpotent. We refer the reader to [Ara19] for more details.

Recall that the Poincaré metric ωP on (Δ∗)� × Δn−� is described as

ωP =
�∑

j=1

√−1dzj ∧ dz̄j

|zj |2(log |zj |2)2 +
n∑

k=�+1

√−1dzk ∧ dz̄k

(1 − |zk|2)2 .

Note that

ωP = −√−1∂∂ log
( �∏

j=1

(− log |zj |2) ·
n∏

k=�+1

(1 − |zk|2)
)

.

For a tame harmonic bundle such that the Higgs field has nilpotent residues, we have the
following crucial norm estimate for Higgs field θ. The one-dimensional case is due to Simpson
[Sim90, Theorem 1] and Mochizuki [Moc02, Proposition 4.1] in general.

Theorem 2.7. Let (E, θ, h) be a tame harmonic bundle on X − D such that θ has nilpotent
residues on D. Let fj , gk be the matrix-valued holomorphic functions as in Definition 2.4. Then
there exists a positive constant C > 0 satisfying that

|fj |h ≤ C

− log |zj |2 , for j = 1, . . . , 	;

|gk|h ≤ C, for k = 	 + 1, n.

In other words, the norm

|θ|h,ωP
≤ C

holds over U∗(r) for some constant C > 0 and 0 < r < 1.

2.2 Curvature property of Higgs bundles
Suppose now (E, θ) is a Higgs bundle of rank r equipped with a Hermitian metric h over a Kähler
manifold (X, ω) of dimension n.

We make the following assumption for (E, θ, h) throughout this section.

Assumption 2.8. We assume ∂̄Eθ∗h = 0.

We note that Assumption 2.8 is valid for (E, θ, h) ⊗ (F, hF ) where F is a holomorphic line
bundle endowed with a hermitian metric hF and (E, θ, h) is a harmonic bundle.

Consider the connection Dh := D′
h + D′′ (see the paragraph after Definition 2.1).

Assumption 2.8 is equivalent to that ∂hθ = 0. Hence, one has the curvature

F (h) := D2
h = [D′

h, D′′] = R(h) + [θ, θ∗] ∈ A1,1(X, End(E)), (6)

where R(h) := (∂h + ∂̄E)2. Moreover, one can easily see that (
√−1F (h))∗ =

√−1F (h). In
other words,

√−1F (h) is a (1, 1)-form with Herm(E)-value, where Herm(E) is the hermitian
endomorphism of (E, h).
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By Simpson [Sim88], one has the following Kähler identities:
√−1[Λω, D′′] = (D′

h)∗, (7)
√−1[Λω, D′

h] = −(D′′)∗, (8)

where (D′
h)∗ and (D′′)∗ are the formally adjoint operators of D′

h and D′′ with respect to h and
ω, and Λω is the adjoint operator of ∧ω with respect to the Hodge inner product on differential
forms. Define the Laplacians

Δ′ = D′
hD′∗

h + (D′
h)∗D′

h,

Δ′′ = D′′(D′′)∗ + (D′′)∗D′′.

A standard computation gives the following identity.

Lemma 2.9 (Bochner–Kodaira–Nakano identity for Higgs bundles). Let (E, θ) be a Higgs bundle
endowed with a smooth Hermitian metric h, which satisfies Assumption 2.8. Then

Δ′′ = Δ′ + [
√−1F (h), Λω]. (9)

Proof. By (8), one has

Δ′′ = D′′(D′′)∗ + (D′′)∗D′′ = −√−1[D′′, [Λω, D′
h]].

By the Jacobi identity, one has

Δ′′ =
√−1[D′

h, [Λω, D′′]] −√−1[Λω, [D′
h, D′′]]

(7)
= [D′

h, (D′
h)∗] + [

√−1[D′
h, D′′], Λω]

(6)
= Δ′ + [

√−1F (h), Λω],

which is the desired equality. �

2.3 Notions of positivity
Let us recall the definitions of Nakano positivity and Griffiths negativity for vector bundles
in [Dem12, Chapter VII § 6]. Let E be a holomorphic vector bundle endowed with a smooth
Hermitian metric h. For any x ∈ X, let e1, . . . , er be a frame of E at x, and let e1, . . . , er be its
dual in E∗. Let z1, . . . , zn be a local coordinate centered at x. Its curvature tensor is written as

R(h) = Rβ

jk̄α
dzj ∧ dz̄k ⊗ eα ⊗ eβ

Set Rjk̄αβ̄ := hγβ̄Rγ

jk̄α
, where hγβ̄ = h(eγ , eβ). We call (E, h) Nakano semi-positive at x if

∑
j,k,α,β

Rjk̄αβ̄ujαukβ ≥ 0

for any u =
∑

j,α ujα(∂/∂zj) ⊗ eα ∈ (T 1,0
X ⊗ E)x. We call (E, h) Griffiths semi-negative at x if

∑
j,k,α,β

Rjk̄αβ̄ξjζαξkζβ ≤ 0

for any ξ =
∑

j ξj(∂/∂zj) ∈ T 1,0
X,x and any ζ =

∑
α ζαeα ∈ Ex.
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We write
R(h) ≥Nak λ(ω ⊗ 1E) for λ ∈ R

if ∑
j,k,α,β

(Rjk̄αβ̄ − λωjk̄hαβ̄)(x)ujαukβ ≥ 0

for any x ∈ X and any u =
∑

j,α ujα(∂/∂zj) ⊗ eα ∈ (T 1,0
X ⊗ E)x. We use the notation

R(h) ≤Gri λ(ω ⊗ 1E)

if ∑
j,k,α,β

(Rjk̄αβ̄ − λωjk̄hαβ̄)(x)ξjζαξkζβ ≤ 0

for any x ∈ X, any ξ =
∑

j ξj(∂/∂zj) ∈ T 1,0
X,x and any ζ =

∑
α ζαeα ∈ Ex. Note that Nakano

semi-positivity (respectively, semi-negativity) implies Griffiths semi-positivity (respectively,
semi-negativity).

Lemma 2.10. Let (E, h) be a hermitian vector bundle on a Kähler manifold (X, ω). If there is
a positive constant C such that |R(h)(x)|h,ω ≤ C for any x ∈ X, then

Cω ⊗ 1E ≥Nak R(h) ≥Nak −Cω ⊗ 1E .

Proof. For any x ∈ X, let z1, . . . , zn be a local coordinate centered at x such that

ωx =
√−1

n∑
�=1

dz� ∧ dz̄�.

Let e1, . . . , er be a local holomorphic frame of E which is orthonormal at x. Write

R(h) = Rβ

jk̄α
dzj ∧ dz̄k ⊗ eα ⊗ eβ .

Then Rjk̄αβ̄(x) = Rβ

jk̄α
(x), and we have

∑
j,k,α,β

|Rjk̄αβ̄(x)|2 = |R(h)(x)|2h,ω ≤ C2.

Hence, for any u =
∑

j,α ujα(∂/∂zj) ⊗ eα ∈ (T 1,0
X ⊗ E)x, by using the Cauchy–Schwarz inequality

twice, one has∣∣∣∣
∑

j,k,α,β

Rjk̄αβ̄(x)ujαukβ

∣∣∣∣
2

≤
( ∑

k,β

∣∣∣∣
∑
j,α

Rjk̄αβ̄(x)ujα

∣∣∣∣
2)( ∑

k,β

|ukβ|2
)

≤
( ∑

k,β

( ∑
j,α

|Rjk̄αβ̄(x)|2
)( ∑

j,α

|ujα|2
))( ∑

k,β

|ukβ|2
)

= |u|4h,ω ·
∑

j,k,α,β

|Rjk̄αβ̄(x)|2 ≤ |u|4h,ω · C2.

Hence, one has

−C|u|2h,ω ≤
∑

j,k,α,β

Rjk̄αβ̄(x)ujαukβ ≤ C|u|2h,ω.

The lemma is proved. �
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The following easy fact will be useful in this paper.

Lemma 2.11. Let (E1, h1) and (E2, h2) be two hermitian vector bundles over a Kähler mani-
fold (X, ω) such that |R(h1)(x)|h1,ω ≤ C1 and |R(h2)(x)|h2,ω ≤ C2 for all x ∈ X. Then for the
hermitian vector bundle (E1 ⊗ E2, h1h2), one has

|R(h1h2)(x)|h1h2,ω ≤
√

2r2C2
1 + 2r1C2

2

for all x ∈ X. Here ri := rankEi.

3. L2-method for Higgs bundles

3.1 A quick tour for the simplest case
In this subsection, we assume that (E, θ, h) is a harmonic bundle over a projective manifold X.
We will show how to apply Bochner technique to give a simple and quick proof of Theorem A
in the case that D = ∅ and L is ample. The main goal of this subsection is to show the general
strategy and we will discuss how to generalize these ideas to prove Theorem A.

For a Higgs bundle (E, θ) over a projective manifold X of dimension n, one has the following
holomorphic Dolbeault complex :

Dol(E, θ) := E
θ−→ E ⊗ Ω1

X
θ−→ · · · θ−→ E ⊗ Ωn

X . (10)

By Simpson [Sim92], the complex of C∞ sections of E

A 0(E) D′′−−→ A 1(E) D′′−−→ · · · D′′−−→ A 2n(E) (11)

gives a fine resolution of the above holomorphic Dolbeault complex. Indeed, it can be proven
easily from the Dolbeault lemma. Here A m(E) is the sheaf of germs of smooth m-forms with
value in E. Hence, the cohomology of the complex of its global sections (A•(E), D′′) computes
the hypercohomology H

•(X, Dol(E, θ)).
Suppose now (Ẽ, θ̃) is a stable Higgs bundle with vanishing Chern classes. By the Simpson

correspondence (see [Sim92]), there is a unique (up to a constant rescaling) hermitian metric h̃
over Ẽ such that the curvature F (Ẽ, h̃) = 0. For the ample line bundle L on X, we choose a
smooth Hermitian metric hL such that its curvature tensor

√−1R(L, hL) is a Kähler form ω.
Let us define a new Higgs bundle (E, θ) := (Ẽ ⊗ L, θ̃ ⊗ 1). We introduce a hermitian metric

h on E defined by h := h̃ ⊗ hL. One can easily check that (E, θ, h) satisfies Assumption 2.8 and
the curvature

√−1F (E, h) :=
√−1R(E, h) +

√−1[θ, θ∗] =
√−1R(L, hL) ⊗ 1E = ω ⊗ 1E . (12)

By the Hodge theory, for each i ∈ Z�0, we know that the space of harmonic forms

H i := {α ∈ Ai(E) | Δ′′α = 0}
is isomorphic to the cohomology H i(A•(E), D′′) � H

i(X, Dol(E, θ)).

Theorem 3.1 (Theorem A in the case that D = ∅ and L is ample). With the notation in this
subsection, H

i(X, Dol(Ẽ, θ̃) ⊗ L) = H
i(X, Dol(E, θ)) = 0 for i > n.

Proof. Note that Dol(E, θ) = Dol(Ẽ, θ̃) ⊗ L. It suffices to prove that H i = 0 for i > n. We will
prove by contradiction. Let us take the Kähler form ω :=

√−1R(L, hL). Assume that there exists
a non-zero α ∈ H i. Then by Lemma 2.9, one has

0 = Δ′′α = Δ′α + [
√−1F (E, h), Λω]α. (13)
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An integration by parts yields

〈Δ′α, α〉h,ω = ‖D′
hα‖2

h,ω + ‖(D′
h)∗α‖2

h,ω ≥ 0.

Hence,

0 ≥
∫

X
〈[√−1F (E, h), Λω]α, α〉h,ωdVolω

(12)
=

∫
X
〈[ω ⊗ 1, Λω]α, α〉h,ωdVolω

=
∫

X
(i − n)|α|h,ωdVolω > 0

for i > n. Here dVolω := ωn/n! denotes the volume form of (X, ω). Hence, the contradiction. �

The proof of Theorem 3.1 indicates that, to prove Theorem A in full generality, we shall
find a ‘proper’ complex of fine sheaves which is quasi-isomorphic to Dol(E, θ), such that its
cohomology of global sections can be computed explicitly. Inspired by the work [Zuc79, DPS01,
HLWY23], we will consider the L2-complex as the candidate for this complex of fine sheaves.
However, instead of solving ∂̄-equation for vector bundles to prove the vanishing theorem, we
shall consider L2-estimate and solvability criteria of (∂̄E + θ)-equations for Higgs bundles (E, θ).
This is the main content of next subsection.

3.2 Hörmander L2-estimate for Higgs bundles
Solvability criteria for ∂̄-equations on complex manifolds are often described as cohomology
vanishing theorems. It is essentially based on the abstract theory of functional analysis. Since
the Kähler identities (7) and (8) hold for Higgs bundles, it indicates that the following principle
should hold.

Principle. The package of L2-estimate by Hörmander, Andreotti-Venssetti, Bombieri, Skoda,
Demailly et al. should hold without modification for Higgs bundles, provided that D′′ = ∂̄ + θ is
used in place of ∂̄ and that m-forms are used instead of (p, q)-forms.

In this subsection, we work for a very general setup. Let (E, ∂̄E , θ, h) be a Higgs bundle
together with a Hermitian metric h over a complete Kähler manifold (M, ωM ) (not necessarily
compact). Denote again D′′ := ∂̄E + θ. Under a certain curvature condition of (E, ∂̄E , θ, h), one
can solve the D′′-equation in the same vein as [Dem12, Chapter VIII, Theorem 4.5]. We follow
the standard method of L2 estimate as that in [Dem12, Chapter VIII], and we provide full details
for completeness sake. The results in this section will be applied more specifically to modified
complete Kähler metrics over complements of simple normal crossing divisors on compact Kähler
manifolds in § 4.5.

Let us denote by Am(M, E) (respectively, Ap,q(M, E)) the set of smooth E-valued m-forms
(respectively, (p, q)-forms) on M , and denote by Am

0 (M, E) (respectively, Ap,q
0 (M, E)) the set

of smooth E-valued m-forms (respectively, (p, q)-forms) on M with compact support over the
Kähler manifold (M, ωM ). The pointwise length of u ∈ Am(M, E) with respect to the fiber metric
induced by h and ωM , is denoted by |u|h,ωM

. The pointwise inner product of u and v is denoted
by 〈u, v〉h,ωM

, or simply by 〈u, v〉. Then the L2-norm of u, denoted by ‖u‖h,ωM
, or simply by

‖u‖, is defined as the square root of the integral

‖u‖2 :=
∫

M
|u|2h,ωM

dVolωM ,
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where dVolωM := ωn
M/n!, which is finite if u ∈ Am

0 (M, E). The inner product of u and v associated
to this norm is defined by

〈〈u, v〉〉h,ωM
:=

∫
M
〈u, v〉h,ωM

dVolωM ,

which is simply denoted by 〈〈u, v〉〉. Note that the Hodge decomposition Am
0 (M, E) =

⊕p+q=mAp,q
0 (M, E) is orthogonal with respect to this inner product 〈〈•, •〉〉.

We shall denote by Lm
(2), loc

(M, E) (respectively, Lp,q
(2), loc

(M, E)) E-valued m-forms (respec-
tively, (p, q)-forms) with locally integrable coefficients. One has a natural decomposition:

Lm
(2), loc

(M, E) = ⊕p+q=mLp,q
(2), loc

(M, E).

Moreover, the operators D′′ (and D′
h, ∂̄E , respectively) act on Lm

(2), loc
(M, E) in the sense of

distribution, or precisely speaking, E-valued currents. Note that the definition of those objects
is independent of the choice of the metrics ωM and h. A section s ∈ Lm

(2), loc
(M, E) is said to be

in the domain of definition of D′′, denoted by Dom loc D′′, if D′′s ∈ Lm+1
(2), loc

(M, E).
Let Lm

(2)(M, E)h,ωM
(respectively, Lp,q

(2)(M, E)h,ωM
) be the completion of the pre-Hilbert space

Am
0 (M, E) (respectively, Ap,q

0 (M, E)) with respect to the above inner product 〈〈•, •〉〉. We simply
write Lm

(2)(M, E) (respectively, Lp,q
(2)(M, E)) if no confusion happens. By the Lebesgue’s theory

of integration, Lm
(2)(M, E) (respectively, Lp,q

(2)(M, E)) is a subset of Lm
(2), loc

(M, E) (respectively,
Lp,q

(2), loc
(M, E)). The natural decomposition

Lm
(2)(M, E) =

⊕
p+q=m

Lp,q
(2)(M, E)

is orthogonal with respect to the inner product 〈〈•, •〉〉.
Hence, D′′ (and D′

h, ∂̄E , respectively) act on them respectively, and these operators are
unbounded, densely defined linear operators

Lm
(2)(M, E) → Lm+1

(2) (M, E).

The domain of definition of D′′ denoted by Dom D′′ are defined by

{u ∈ Lm
(2)(M, E) | D′′u ∈ Lm+1

(2) (M, E)},
for which one has Dom D′′ ⊂ Dom loc D′′. Note that Dom D′′ depends on the choice of the metric
ωM and h, up to mutual boundedness. Namely, if ω̃M ∼ ωM and h̃ ∼ h, Dom D′′ remains the
same in terms of the new metrics ω̃M and h̃.

By the argument in [Dem12, Chapter VIII, Theorem 1.1], this extended operator D′′ (the
so-called weak extension in the literature) is closed, namely its graph is closed. We define Dom D′

h

in exactly the same manner.
The following result in [Dem12, Chapter VIII, Theorem 3.2.(a)] is crucial in applying the L2-

estimate. Roughly speaking, it gives a condition when the weak extension of D′′ is the strong one,
in terms of the graph norm, and it enables us to apply the integration by parts for L2-sections
as in Lemma 3.4.

Theorem 3.2. Let (M, ωM ) be a complete Kähler manifold and (E, ∂̄E , θ, h) is a Higgs bundle
on M satisfying Assumption 2.8. Then Am

0 (M, E) is dense in Dom D′′, Dom D′′∗ and Dom D′′ ∩
Dom D′′∗, respectively, for the graph norm

u �→ ‖u‖ + ‖D′′u‖, u �→ ‖u‖ + ‖(D′′)∗u‖, u �→ ‖u‖ + ‖D′′u‖ + ‖(D′′)∗u‖.
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We recall the following lemma of functional analysis by Von Neumann and Hömander (see,
e.g., [Dem12, Chapter VIII, § 1]), which is crucial in obtaining the L2-estimate for Higgs bundles.
First we recall the following notation of the adjoint operator T ∗ and Dom T ∗: y ∈ Dom T ∗ if the
linear form

Dom T � x �→ 〈〈Tx, y〉〉2
is bounded in H1-norm. Since Dom T is dense, there exists for every y in Dom T ∗ a unique element
T ∗y in H1 such that 〈〈x, T ∗y〉〉1 = 〈〈Tx, y〉〉2 for all x ∈ Dom T .

Lemma 3.3. If T : H1 → H2 is a closed and densely defined operator, then its adjoint T ∗ is also
closed and densely defined and (T ∗)∗ = T . Furthermore, we have the relation kerT ∗ = (Im T )⊥

and its dual (ker T )⊥ = Im T ∗. In particular, kerT ⊕ Im T ∗ = H1.

Note that Am := [
√−1F (h), ΛωM ] acts on ∧mT ∗

M ⊗ E as a hermitian operator. As Am is
smooth, for any u ∈ Lm

(2), loc
(M, E), Am(u) ∈ Lm

(2), loc
(M, E). If Am is semi-positively definite,

A
1/2
m exists as a densely defined hermitian operator from Lm

(2)(M, E) to itself. The following
result is exactly the same vein as the Kodaira–Nakano inequality (see [Dem82, Lemme 4.4]).

Lemma 3.4. Let (M, ωM ) be a complete Kähler manifold and (E, ∂̄E , θ, h) is a Higgs bundle
on M satisfying Assumption 2.8. Assume that Am is semi-positively definite. Then for every
u ∈ Dom D′′ ∩ Dom D′′∗, one has

‖D′′u‖2 + ‖D′′∗u‖2 ≥ 〈〈Amu, u〉〉 :=
∫

M
〈Amu, u〉h,ωM

dVolωM . (14)

Proof. Since (M, ωM ) is complete, by the proof of [Dem12, Chapter VIII, Theorem 3.2.(a)],
there exists an exhaustive sequence {Kν}ν∈N of compact subsets of M and functions ρν such
that ρν = 1 in a neighborhood of Kν , Supp(ρν) ⊂ Kν+1, 0 ≤ ρν ≤ 1, and |dρν |ωM ≤ 2−ν . One
can show that ρνu → u in the graph norm u �→ ‖u‖ + ‖D′′u‖ + ‖D′′∗u‖. Since Am is supposed
to be semi-positively definite, hence by the monotone convergence theorem

lim
ν→+∞

∫
M
〈Am(ρνu), ρνu〉h,ωM

dVolωM =
∫

M
〈Am(u), u〉h,ωM

dVolωM ,

which might be +∞ in general. Hence, it suffices to prove (14) under the assumption that u has
compact support.

By the convolution arguments in [Dem12, Chapter VIII, Theorem 3.2.(a)], there exists u� ∈
Am

0 (M, E) such that u� tends to u as 	 → ∞ with respect to the graph norm ‖u‖ + ‖D′′u‖ +
‖D′′∗u‖, and there is a uniform compact set K such that Supp(u�) ⊂ K for all 	. By Lemma 2.9,
one has

〈〈Δ′′u�, u�〉〉 = 〈〈Δ′u�, u�〉〉 + 〈〈Amu�, u�〉〉.
As u� has compact support, one applies integration by parts to obtain

〈〈Δ′′u�, u�〉〉 = ‖D′′u�‖2 + ‖D′′∗u�‖2

and
〈〈Δ′u�, u�〉〉 = ‖D′

hu�‖2 + ‖D′∗u�‖2 ≥ 0,

which gives rise to
‖D′′u�‖2 + ‖D′′∗u�‖2 ≥ 〈〈Amu�, u�〉〉.

Inequality (14) follows from the above inequality when 	 tends to infinity. The lemma is proved.
�
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Remark 3.5. Suppose that Am is a semi-positively definite hermitian operator on ∧mT ∗
M ⊗ E. For

some v ∈ Lm
(2)(M, E), assume that for almost all x ∈ M , there exists a measurable and integrable

non-negative function α(x) such that

|〈v, f〉h,ωM
|2 ≤ α(x)〈f, Am(x)f〉h,ωM

for any f ∈ Am
0 (M, E)x, then the minimum of α(x) is

|A−1/2
m (x)v|2h,ωM

= 〈Am(x)−1v, v〉h,ωM

if the operator Am(x) is invertible. Hence, we shall always formally write it in this way even
when Am(x) is no longer invertible, following [Dem12, Chapter VIII, § 4].

Now we are able to state our main result on L2-estimate for Higgs bundles.

Theorem 3.6 (Solving the D′′-equation for a Higgs bundle). Let (M, ωM ) be a complete Kähler
manifold and let (E, ∂̄E , θ, h) be a Higgs bundle on M satisfying Assumption 2.8. Assume that
Am is semi-positively definite on ∧mT ∗

M ⊗ E at every x ∈ M . Then for any v ∈ Lm
(2)(M, E) such

that D′′v = 0 and ∫
M
〈A−1

m v, v〉dVolωM < +∞,

there exists u ∈ Lm−1
(2) (M, E) such that D′′u = v and

‖u‖2 ≤
∫

M
〈A−1

m v, v〉 dVolωM .

Proof. Consider now two closed and densely defined operators

H1 = Lm−1
(2) (M, E) T=D′′−−−−→ H2 = Lm

(2)(M, E) S=D′′−−−−→ H3 = Lm+1
(2) (M, E).

For any f ∈ Dom S ∩ Dom T ∗, one has

|〈〈f, v〉〉|2 = |
∫

M
〈f, v〉dVolωM |2 ≤ |

∫
M
〈A−1

m v, v〉1/2 · 〈Amf, f〉1/2dVolωM |2

≤
∫

M
〈A−1

m v, v〉dVolωM ·
∫

M
〈Amf, f〉dVolωM

by Cauchy–Schwarz inequality. By (14) one has

|〈〈f, v〉〉|2 ≤ C(‖Sf‖2 + ‖T ∗f‖2), (15)

where C :=
∫
M 〈A−1

m v, v〉 dVolωM > 0.
Note that T ∗ ◦ S∗ = 0 by S ◦ T = 0. For any f ∈ Dom T ∗, there is an orthogonal decompo-

sition f = f1 + f2, where f1 ∈ kerS and f2 ∈ (ker S)⊥ = Im S∗ ⊂ kerT ∗ by Lemma 3.3. Since
v ∈ ker S, by (15) we then have

|〈〈f, v〉〉|2 = |〈〈f1, v〉〉|2 � C(‖Sf1‖2 + ‖T ∗f1‖2) = C‖T ∗f1‖2 = C‖T ∗f‖2.

By the Hahn–Banach theorem, we conclude that there is u ∈ Dom T such that Tu = v with
‖u‖2 ≤ C1/2. The theorem is proved. �

A direct consequence is the following result which can be seen as a Higgs bundle version of
Girbau vanishing theorem (see [Dem12, Chapter VII, Theorem 4.2]) in the log setting [HLWY23,
Theorem 4.1].
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Corollary 3.7. Let (M, ωM ) be a complete Kähler manifold, and (Ẽ, θ̃, h̃) be any harmonic
bundle on M . Let L be a line bundle on M equipped with a Hermitian metric hL. Assume that

〈[√−1R(hL), ΛωM ]f, f〉hL,ωM
≥ ε|f |2hL,ωM

(16)

for any x ∈ M and f ∈ (Λp,qT ∗
M ⊗ L)x with p + q = m. Set (E, θ, h) := (Ẽ ⊗ L, θ̃ ⊗ 1L, h̃hL).

Then for any v ∈ Lm
(2)(M, E) such that D′′v = 0, there exists u ∈ Lm−1

(2) (M, E) such that D′′u = v
and

‖u‖2 ≤ ‖v‖2

ε
.

Proof. Note that since (Ẽ, θ̃, h̃) is a harmonic bundle, both (Ẽ, θ̃, h̃) and (E, θ, h) satisfy
Assumption 2.8. Hence,

√−1F (h) =
√−1

(
R(h) + [θ, θ∗h]

)

=
√−1R(h̃) ⊗ 1L +

√−1R(hL) ⊗ 1E + [θ̃ ⊗ 1L, θ̃∗
h̃
⊗ 1L]

=
√−1F (h̃) ⊗ 1L +

√−1R(hL) ⊗ 1E

=
√−1R(hL) ⊗ 1E , (17)

where the last equality follows from that F (h̃) = 0 since (Ẽ, θ̃, h̃) is a harmonic bundle. In this
case, it is easy to see that for any f ∈ (ΛmT ∗

M ⊗ E)x, decomposing f =
∑

p+q=m fp,q with fp,q

its (p, q)-component, one has

〈Amf, f〉h,ωM
=

∑
p+q=m

〈[√−1R(hL), ΛωM ] ⊗ 1E(fp,q), fp,q〉hL,ωM

≥
∑

p+q=m

ε|fp,q|2h,ωM
= ε|f |2h,ωM

.

Hence, 〈A−1
m f, f〉h,ωM

≤ ε−1|f |2h,ωM
. Applying Theorem 3.6, we conclude that there is u ∈

Lm−1
(2) (M, E) such that D′′u = v and

‖u‖2 ≤
∫

M
〈A−1

m v, v〉h,ωM
dVolωM ≤ ‖v‖2

ε
. �

4. Vanishing theorem for tame harmonic bundles

4.1 Parabolic Higgs bundle
In this section, we recall the notions of parabolic Higgs bundles. For more details, refer to [AHL19,
§§ 1, 3, 4, 5] and [MY92, § 1]. Let X be a complex manifold, D =

∑�
i=1 Di be a reduced simple

normal crossing divisor, U = X − D be the complement of D and j : U → X be the inclusion.

Definition 4.1. A parabolic sheaf (E, aE) on (X, D) is a torsion-free OU -module E, together
with an R

l-indexed filtration aE (parabolic structure) by coherent subsheaves of j∗E such that

(i) a ∈ R
l and aE|U = E;

(ii) for 1 ≤ i ≤ l, a+1iE = aE ⊗OX(Di), where 1i = (0, . . . , 0, 1, 0, . . . , 0) with 1 in the ith
component;

(iii) a+εE = aE for any vector ε = (ε, . . . , ε) with 0 < ε � 1;
(iv) the set of weights {a — aE/a−εE �= 0 for any vector ε = (ε, . . . , ε) with 0 < ε � 1} is

discrete in R
l.
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A weight is normalized if it lies in [0, 1)l. Denote 0E by �E, where 0 = (0, . . . , 0). Note that
the parabolic structure of (E, aE) is uniquely determined by the filtration for weights lying
in [0, 1)l. A parabolic bundle on (X, D) consists of a vector bundle E on X with a parabolic
structure, such that the filtered subsheaves aE are vector bundles. As pointed out by one of the
referees, by the work of Borne and Vistoli the parabolic structure of a parabolic bundle is locally
abelian, i.e. it admits a local frame compatible with the filtration (see, e.g., [IS07] and [BV12]).

Definition 4.2. A parabolic Higgs bundle on (X, D) is a parabolic bundle (E, aE, θ) together
with OX linear map

θ : �E → Ω1
X(log D) ⊗ �E

such that
θ ∧ θ = 0

and
θ(aE) ⊆ Ω1

X(log D) ⊗ aE,

for a ∈ [0, 1)l.

A natural class of parabolic Higgs bundles comes from extensions of tame harmonic bundles,
as discussed in the following section.

4.2 Extension by an increased order
By a celebrated theorem of Simpson and Mochizuki, there is a natural parabolic Higgs bundle
induced by tame harmonic bundle (E, θ, h).

We recall some notions from [Moc07, § 2.2.1]. Let (X, D) be the pair in § 4.1. Let E be a
holomorphic vector bundle with a C∞ hermitian metric h over X − D.

Let U be an open subset of X with an admissible coordinate (U ; z1, . . . , zn) with respect to
D. For any section σ ∈ Γ(U − D, E|U−D), let |σ|h denote the norm function of σ with respect
to the metric h. We use the notation |σ|h ∈ O(

∏�
i=1 |zi|−bi) if there exists a positive number C

such that |σ|h ≤ C · ∏�
i=1 |zi|−bi . For any b ∈ R

�, say −ord(σ) ≤ b means the following:

|σ|h = O
( �∏

i=1

|zi|−bi−ε

)

for any real number ε > 0 and 0 < |zi| � 1. For any b, the sheaf bE is defined as follows:

Γ(U, bE) := {σ ∈ Γ(U − D, E|U−D) | −ord(σ) ≤ b}. (18)

The sheaf bE is called the extension of E by an increasing order b. In particular, we use the
notation �E in the case b = (0, . . . , 0).

According to Simpson [Sim90, Theorem 2] and Mochizuki [Moc07, Theorem 8.58], the above
extension gives a parabolic Higgs bundle, in particular, θ preserves the filtration.

Theorem 4.3 (Simpson and Mochizuki). Let (X, D) be a complex manifold X with a simple
normal crossing divisor D. If (E, θ, h) is a tame harmonic bundle on X − D, then the corre-
sponding filtration bE according to the increasing order in the extension of E defines a parabolic
bundle (E, bE, θ) on (X, D).

Here we also recall the following definition in [Moc07, Definition 2.7].

Definition 4.4 (Acceptable bundle). Let (E, ∂̄E , h) be a hermitian vector bundle over X − D.
We say that (E, ∂̄E , h) is acceptable at p ∈ D, if the following holds: there is an admissible
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coordinate (U ; z1, . . . , zn) around p, such that the norm |R(E, h)|h,ωP
≤ C for some C > 0. When

(E,∂̄E , h) is acceptable at any point p of D, it is called acceptable.

The following deep result by Mochizuki [Moc07, Proposition 8.18] will play an important
role throughout this paper.

Theorem 4.5 (Mochizuki). Let X be a complex manifold and let D be a simple normal cross-
ing divisor on X. Assume that (E, θ, h) is a tame harmonic bundle on X − D. Then (E, h) is
acceptable.

4.3 Modification of the metric
In this subsection, we work with the following modification of acceptable metric defined in
[Moc02, § 4.5.3]. Let us consider the case X = Δn, and D =

∑�
i=1 Di with Di = (zi = 0). Let

(E, ∂̄E , h) be an acceptable bundle over X − D. For any a ∈ R
�
≥0 and N ∈ Z, we define

χ(a, N) := −
�∑

j=1

aj log |zj |2 − N

( �∑
j=1

log(− log |zj |2) +
n∑

k=�+1

log(1 − |zk|2)
)

. (19)

Set h(a, N) := h · e−χ(a,N). Then

R(h(a, N)) = R(h) +
√−1∂∂χ(a, N) = R(h) + NωP .

Note that ΩX∗ =
⊕n

i=1 Li where Li is the trivial line bundle defined by Li := p∗i ΩΔ∗ for i =
1, . . . , 	 and Lk = p∗kΩΔ for k = 	 + 1, . . . , n where pi is the projection of (Δ∗)� × Δn−� to its ith
factor. For any p = 1, . . . , n, set hp to be the hermitian metric on Ωp

X∗ induced by ωP . Then there
is a positive constant C(p, 	) > 0 depending only on p and 	 such that |R(hp)|hp,ωP

≤ C(p, 	).
Set C0 := supp=0,...,n;�=1,...,n C(p, 	).

Proposition 4.6. Let (E, ∂̄E , h) be an acceptable bundle over X − D, where X is a compact
complex manifold and D is a simple normal crossing divisor. Then there is a constant N0 > 0
such that, for any x ∈ D, one has an admissible coordinate (U ; z1, . . . , zn) around p (which can
be made arbitrary small) satisfying the following property.

For vector bundles Ep := T p
U∗ ⊗ E and Fp := Ωp

U∗ ⊗ E, which are all equipped with the C∞-
metric hEp and hFp induced by h(a, N) and ωP , one has the following estimate:

√−1R(hEp) �Nak ωP ⊗ 1Ep ;
√−1R(hFp) �Gri 2NωP ⊗ 1Fp (20)

over U∗ for any N � N0. Such N0 does not depend on the choice of a.

Proof. As (E, h) is assumed to be acceptable, for any x ∈ D, one can find an admissible coor-
dinate (U ; z1, . . . , zn; ϕ) around x such that |R(h)|h,ωP

≤ C. By the above argument, one has
|R(hp)|hp,ωP

≤ C0 for the Hermitian metric hp on Ωp
U∗ . By Lemma 2.11, we conclude that there

is a constant C1 > 0 which depends only on C0 and C such that

|R(h−1
p h)|h−1

p h,ωP
≤ C1, |R(hph)|hph,ωP

≤ C1

for any p = 0, . . . , n, where h−1
p h is the metric for Ep and hph is the metric for Fp. By Lemma 2.10,

one has √−1R(h−1
p h) ≥Nak −C1ωP ⊗ 1Ep ,

√−1R(hph) ≤Nak C1ωP ⊗ 1Fp .

As hEp = h−1
p h(a, N) and hFp = hph(a, N), we then have

√−1R(hEp) ≥Nak (N − C1)ωP ⊗ 1Ep ,
√−1R(hFp) ≤Nak (N + C1)ωP ⊗ 1Fp .

If we take Nx = C1 + 1, then the desired estimate (20) follows for any N ≥ Nx.
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Now we will prove that for points near x, the above estimate Nx holds uniformly. As C1

depends only on C, one has to prove that there is a constant C such that for any point z near
x, there is an admissible coordinate with respect to z such that |R(h)|h,ωP

≤ C.

Claim 4.7. Let φ : Δ → Δ∗ defined by φ(t) = t/4 + 1
2 . Then

φ∗
√−1dz ∧ dz̄

|z|2(log |z|2)2 =
√−1dt ∧ dt̄

16|φ(t)|2(log |φ(t)|2)2 ≤ C2

√−1dt ∧ dt̄ ≤ C2

√−1dt ∧ dt̄

(1 − |t|2)2 ,

where C2 = 4(log 3
4)−2.

For any z ∈ U , we first assume that z1 = · · · = z� = 0, namely the components of D passing to
z are the same as x. Take isomorphisms of unit disk {φj ∈ Aut(Δ)}j=�+1,...,n such that φj(zj) =
xj . Note that x1 = · · · = x� = 0. Hence, (1Δ, . . . ,1Δ, φ�+1, . . . , φn) ◦ ϕ : U → Δn gives rise to the
admissible coordinate for z, and the Poincaré metric ωP is invariant under this transformation.
Hence, one can take Nz = Nx.

Now we can assume that z1 = · · · = zm = 0, and that any of {zm+1, . . . , z�} is not
equal to zero, for m < l. We first take automorphisms {ηi}i=m+1,...,� ⊂ Aut(Δ∗) such that
ηi(1

2) = zi. Set φi = ηi ◦ φ : Δ → Δ∗ for i = m + 1, . . . , 	. Take isomorphisms of unit disk {φj ∈
Aut(Δ)}j=�+1,...,n such that φj(zj) = xj . Then ϕ−1 ◦ (1Δ, . . . ,1Δ, φm+1, . . . , φn) : Δn → X will
give rise to the desired admissible coordinate for such z. By the above claim, one has |R(h)|h,ωP

≤
C2C. Hence, the above estimate Nx can be made uniformly in U . As X and D is compact, one
can cover D by finite such open sets, and the desired N0 in the theorem can be achieved.

We now show that these admissible coordinates can be made arbitrarily small. For 0 < ε < 1,
set

φε : Δn
ε

∼→ Δn

(z1, . . . , zn) → (ε−1z1, . . . , ε
−1zn),

where Δε = {z ∈ Δ | |z| < ε}. For any admissible coordinate (U ; z1, . . . , zn; ϕ) around x such
that |R(h)|h,ωP

≤ C, one can introduce a new one (U(ε); w1, . . . , wn; ϕε) around x with

ϕε : U(ε) ∼→ Δn

x → φε ◦ ϕ(x).

When ε � 1, this admissible coordinate will be arbitrarily small. Note that φ∗
εωP ≥ ωP |Δn

ε
.

Hence, in the new admissible coordinate (U(ε); w1, . . . , wn; ϕε), one still has |R(h)|h,ωP
≤ C.

The constant Nx is thus unchanged. The proposition is proved. �
This result will be important for us to construct a fine resolution of parabolic Higgs bundles

in § 4.5.

4.4 From L2-integrability to C 0-estimate
Note that in order to show the quasi-isomorphism between some complex of sheaves of L2-forms
and (1), one has to deduce some norm estimate of sections from the L2-integrability condition.
In the case that (E, θ) is a line bundle with trivial Higgs field, this has been carried out in
[DPS01, § 2.4.2] and [HLWY23, Theorem 3.1]. This subsection is devoted to showing this using
mean value inequality following [Moc06, Lemma 7.12].

We first recall the following well-known lemma and we provide the proof for the sake of
completeness.
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Lemma 4.8. Let (E, h) be a Hermitian vector bundle over a complex manifold X. Suppose that
R(h) is Griffiths semi-negative. Then for any holomorphic section s ∈ H0(X, E), one has

√−1∂∂ log |s|2h ≥ 0.

Proof. Outside the zero locus (s = 0), one has

√−1∂∂ log |s|2h =
√−1

{∂hs, ∂hs}h

|s|2h
−√−1

{∂hs, s}h ∧ {s, ∂hs}h

|s|4h
− {√−1R(h)s, s}h

|s|2h
≥ −{√−1R(h)s, s}h

|s|2h
≥ 0,

where the first inequality is due to Cauchy–Schwarz inequality and the second follows from the
assumption that R(h) is Griffiths semi-negative. As log |s|2h is locally bounded from above, it is
thus a global plurisubharmonic function on X. �
Proposition 4.9. With the same setting as Lemma 4.6, for any x ∈ D, we take an admissible
coordinate (U ; z1, . . . , zn) around x and pick N ≥ N0 as in Lemma 4.6. Then for any section
s ∈ H0(U∗, Ωp

U∗ ⊗ E|U∗), when 0 < r � 1, one has

|s|h,ωP
(z) ≤ C‖s‖h(a,N),ωP

·
( �∏

i=1

|zi|−ai−δ

)
(21)

for any δ > 0 and any z ∈ U∗(r).

Proof. By Lemma 4.6, for the hermitian vector bundle (Ωp
U∗ ⊗ E, hph(a,−N)) one thus has

R(hph(a,−N)) = R(hph(a, N)) − 2NωP ⊗ 1Ωp
U∗⊗E ≤Gri 0

over U∗ for N ≥ N0. For any section s ∈ H0(U∗, Ωp
U∗ ⊗ E), by Lemma 4.8 one has

√−1∂∂ log |s(z)|2h(a,−N),ωP
≥ 0,

where we omit hp in the subscript for simplicity. For any z ∈ U∗(r) where 0 < r � 1, one has
log |s(z)|2h(a,−N),ωP

< 0, and

log |s(z)|2h(a,−N),ωP
≤ 4n

πn
∏�

i=1 |zi|2
∫

Ωz

log |s(w)|2h(a,−N),ωP
dvolg

≤ log
(

4n

πn
∏�

i=1 |zi|2
·
∫

Ωz

|s(w)|2h(a,−N),ωP
dvolg

)

≤ log
(

C

∫
Ωz

1∏�
i=1 |wi|2

|s(w)|2h(a,−N),ωP
dvolg

)

≤ log C1 + log
∫

Ωz

|s(w)|2h(a,−N),ωP
·
∣∣∣∣

�∏
i=1

(log |wi|2)2
∣∣∣∣

n∏
j=�+1

(1 − |wj |2)2dvolωP

≤ log C1 + log
∫

Ωz

|s(w)|2h(a,N),ωP
dvolωP

≤ log C1 + log‖s‖2
h(a,N),ωP

,

where Ωz := {w ∈ U∗ | |wi − zi| ≤ |zi|/2 for i ≤ 	; |wi − zi| ≤ 1
2 for i > 	} and g is the Euclidean

metric. The first inequality is due to mean value inequality, and the second is Jensen inequality.
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Hence,

|s(z)|h,ωP
= |s(z)|h(a,−N),ωP

·
(
−

�∏
i=1

log |zi|2
)N/2

·
( �∏

i=1

|zi|−ai

)

≤ eC1/2‖s‖h(a,N),ωP
·
(
−

�∏
i=1

log |zi|2
)N/2

·
( �∏

i=1

|zi|−ai

)

≤ Cδ‖s‖h(a,N),ωP
·
( �∏

i=1

|zi|−ai−δ

)

for any δ > 0 and some positive constant Cδ depending on δ. �

4.5 A fine resolution for Dolbeault complex of Higgs bundles
Let (E, θ, h) be a tame harmonic bundle on X − D, where (X, ω) is a compact Kähler manifold
and D =

∑�
i=1 Di is a simple normal crossing divisor on X.

Let L be a line bundle on X equipped with a smooth Hermitian metric hL such that√−1R(hL) ≥ 0 and has at least n − k positive eigenvalues. Such a metrized line bundle (L, hL)
is indeed called k-positive in [SS85]. Let B be a nef line bundle on X. Let σi be the section
H0(X, OX(Di)) defining Di, and we fix some smooth Hermitian metric hi for the line bun-
dle OX(Di) such that |σi|hi(z) < 1 for any z ∈ X. Write σD :=

∏�
i=1 σi ∈ H0(X, OX(D)) and

hD :=
∏�

i=1 hi the smooth metric for OX(D). Pick a positive constant N greater than N0, where
N0 is the constant in Lemma 4.6 such that (20) and Proposition 4.9 hold for (E, θ, h).

Given a smooth metric hB on B, note that for a = (a1, . . . , a�) ∈ R
� and L := L ⊗ B|X∗

equipped with the metric

hL (a) := hLhB

�∏
i=1

|σi|2ai
hi

·
(
−

�∏
i=1

log |σi|2hi

)N

, (22)

its curvature

√−1R(hL (a)) =
√−1R(hL) +

√−1R(hB) +
�∑

i=1

2
√−1aiR(hi)

+
√−1N

�∑
i=1

∂ log|σi|2hi
∧ ∂̄ log|σi|2hi

(log|σi|2hi
)2

− N
�∑

i=1

√−1R(hi)
(log|σi|2hi

)2
(23)

Here R(hi) is the curvature of (OX(Di), hi).
Let 0 ≤ γ1(x) ≤ · · · ≤ γn(x) be eigenvalues of

√−1R(hL) with respect to ω. Set

ε0 := inf
X

γk+1(x),

which is strictly positive by our assumption on
√−1R(hL).

Lemma 4.10. There exists a smooth hermitian metric hB of B, such that upon rescaling hi, for
a ∈ R

�
>0 sufficiently small, we achieve the following.

(i) One has √−1R(hL (a)) ≥ √−1R(hL) − ε1ω ≥ −ε1ω (24)

for ε1 = ε0/100n2.
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(ii) The metric

ωa,N := ε2ω +
√−1R(hL (a)) (25)

is a Kähler metric when restricted on X∗ = X − D for ε2 = ε0/10n.
(iii) One has �E=aE.

Proof. Let us explain how to achieve part (i). The possible negative contribution for√−1R(hL (a)) can only come from

√−1R(hB) +
�∑

i=1

2
√−1aiR(hi) − N

�∑
i=1

√−1R(hi)
(log|σi|2hi

)2
.

As B is nef, one can take hB such that
√−1R(hB) ≥ −1

2ε1ω. As N is fixed, we can
replace hi by c · hi for 0 < c � 1 and let ai be small enough, such that

∑�
i=1 2

√−1aiR(hi) −
N

∑�
i=1(

√−1R(hi)/(log|σi|2hi
)2) ≥ −1

2ε1ω. This proves part (i). Part (ii) follows directly from
part (i).

By Theorem 4.3, �E is a parabolic Higgs bundle. By Definition 4.1 (iii), one has �E=aE if a
is chosen small enough. This proves part (iii). �

We know that ωa,N is a complete Kähler metric. Indeed, write hi
loc= e−ϕi in terms of the

trivialization Di ∩ U = (zi = 0) of any admissible coordinate (U ; z1, . . . , zn), one has

ωa,N =
(

ε2ω +
�∑

i=1

2
√−1aiR(hi) +

√−1R(hM )
)

+ N
�∑

i=1

1
(log |z|2i + ϕi)2

(
dzi

zi
+ ∂ϕi

)
∧

(
dz̄i

z̄i
+ ∂̄ϕi

)

− N
�∑

i=1

√−1∂∂ϕi

log |z|2i + ϕi
.

From this local expression one can also see that ωa,N ∼ ωP on any U∗(r) for 0 < r < 1.
We also can show the following.

Lemma 4.11. For the smooth metric ha,N := h · ∏�
i=1 |σi|2ai

hi
· (−∏�

i=1 log |σi|2hi
)N of E, it is

mutually bounded with h(a, N) defined in § 4.3 on any U∗(r) for 0 < r < 1.

Let us prove that such construction satisfies the positivity condition in Corollary 3.7.

Proposition 4.12. With the above notation, for any p + q > n + k, one has

〈[√−1R(hL (a)), Λωa,N ]f, f〉ωa,N ≥ ε

2
|f |2ωa,N

(26)

for any f ∈ Λp,qT ∗
X∗,x and any x ∈ X∗.

Proof. For any point x ∈ X∗, one can choose local coordinate (z1, . . . , zn) around x such that ω =√−1
∑n

i=1 dzi ∧ dz̄i and
√−1R(hL (a)) =

√−1
∑n

i=1 γ̃idzi ∧ dz̄i at x, where γ̃1 ≤ · · · ≤ γ̃n are
eigenvalues of

√−1R(hL (a)) with respect to ω. By (24) one has γ̃i ≥ γi − ε1. Let λ1 ≤ · · · ≤ λn

be eigenvalues of
√−1R(hL (a)) with respect to ωa,N . Then λi = γ̃i/(ε2 + γ̃i) by Lemma 4.10(ii),

and, thus, at each point x ∈ X∗, one has:

– −ε1/(ε2 − ε1) ≤ λi ≤ 1 for i = 1, . . . , n;
– λi ≥ 1 − ε2/(ε0 − ε1) for i = k + 1, . . . , n.
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We can assume that p ≥ q. Then

〈[√−1R(hL (a)), Λωa,N ]f, f〉ωa,N ≥
( p∑

i=1

λi +
q∑

j=1

λj − λ1 − · · · − λn

)
|f |2ωa,N

≥
(

(p − k)
(

1 − ε2

ε0 − ε1

)
− kε1

ε2 − ε1
− (n − q)

)
|f |2ωa,N

≥
(

1 − n

(
ε2

ε0 − ε1
+

ε1

ε2 − ε1

))
|f |2ωa,N

≥ 1
2
|f |2ωa,N

. �

Remark 4.13. Let us mention that Lemma 4.10 and Proposition 4.12 are indeed inspired by the
proof of Girbau vanishing theorem in [Dem12, Chapter VII, Theorem 4.2] and its logarithmic
generalization in [HLWY23, Theorem 4.1].

We equip E with the metric ha,N and X∗ with the complete Kähler metric ωa,N having the
same growth as ωP near D. Let Lm

(2)(E)ha,N ,ωa,N
be the sheaf on X (rather than on X∗) of germs

of L2, E-valued m-form u, for which D′′(u) exists weakly as L2-form. Namely, for any open set
U ⊂ X, we define

Lm
(2)(E)(U) := {u ∈ Lm

(2)(U − D, E) | D′′u ∈ Lm+1
(2) (U − D, E)}. (27)

Here we write Lm
(2)(E) instead of Lm

(2)(E)ha,N ,ωa,N
for short.

We also define L
p,q
(2)(E) to be the sheaf on X of germs of L2, E-valued (p, q)-form, for which

∂̄E(u) exists weakly as locally L2-form. Namely, for any open set U ⊂ X, one has

L
p,q
(2)(E)(U) := {u ∈ Lp,q

(2)(U − D, E) | ∂̄Eu ∈ Lp,q+1
(2) (U − D, E)}. (28)

Note that for any admissible coordinate (U ; z1, . . . , zn), as ωa,N ∼ ωP and ha,N ∼ h(a, N) on any
U∗(r) for 0 < r < 1, we have that Lm

(2)(U
∗(r), E)h(a,N),ωP

(in (27)) and Lp,q
(2)(U

∗(r), E)h(a,N),ωP

(in (28)) are the same as those in § 3.2.
The following lemma is a consequence of Theorem 2.7.

Lemma 4.14. Let (E, θ, h) be a tame harmonic bundle over X − D. Suppose θ has nilpotent
residues on D. We have that

Lm
(2)(E) =

⊕
p+q=m

L
p,q
(2)(E)

and

θ(Lp,q
(2)(E)) ⊂ L

p+1,q
(2) (E).

Proof. Since θ is one-form with value in End(E), its norm remains unchanged if we replace the
metric h by h(a, N) := h · e−χ(a,N). One thus has

|θ|h(a,N),ωP
= |θ|h,ωP

≤ C

for some C > 0, where the last inequality follows from Theorem 2.7. (Let us stress here that this
is the only place where we use the condition that θ has nilpotent residues on D.) Hence, θ is a
bounded linear operator between Hilbert spaces

Lp,q
(2)(U − D, E) → Lp+1,q

(2) (U − D, E).

The theorem follows from that D′′ = ∂̄E + θ and ∂̄Eθ = 0. �
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Proposition 4.15. Let (E, θ, h) be a tame harmonic bundle over X − D. For x ∈ D and any
admissible coordinate (U ; z1, . . . , zn) centered at x, one has

Γ(U∗(r), Ωm
U∗(r) ⊗ E|U∗(r)) ∩ L

m,0
(2) (E)(U(r)) =

(
Ωm

X(log D) ⊗ �E
)
(U(r)) (29)

if 0 < r � 1. In particular,

Ωm
X(log D) ⊗ �E ⊂ L

m,0
(2) (E). (30)

Proof. Assume that D ∩ U = (z1 . . . z� = 0). Write wi = log zi for i = 1, . . . , 	 and wj = zj for
j = 	 + 1, n. For the basis dwI of Ωm

X(log D), on U∗(r) with 0 < r < 1, one has

|dwI |ωP ≤ C1

�∏
i=1

(− log |zi|2),

for some constant C1.
First, we prove ‘⊇’ of (29). Pick any section s ∈ (Ωm

X(log D) ⊗ �E)(U(r)). One can write

s =
∑

I

dwI ⊗ eI

with eI ∈ �E(U(r)). Then

|eI |h ≤ C2

�∏
i=1

|zi|−ε

for any ε > 0 by the definition of �E. Therefore, one has

|dwI ⊗ eI |h(a,N),ωP
≤ |dwI ⊗ eI |h,ωP

· e−χ(a,N) = O

( �∏
i=1

(|zi|ai−ε)
)

for any I, ε > 0. This proves that∫
U∗(r)

|dwI ⊗ eα|2h(a,N),ωP
ωn

P = O(1)

and, thus,

Γ(U∗(r), Ωm
U∗(r) ⊗ E|U∗(r)) ∩ L

m,0
(2) (E)(U(r)) ⊇ (

Ωm
X(log D) ⊗ �E

)
(U(r)).

Now we prove ‘⊆’ of (29). For any section s ∈ Γ(U∗(r), Ωm
U∗(r) ⊗ E|U∗(r)), we write

s =
∑

I

dwI ⊗ eI

with eI ∈ E(U∗(r)). If s ∈ L
m,0
(2) (E)(U(r)), it follows from Proposition 4.9 that

|s|h,ωP
(z) ≤ C

( �∏
i=1

|zi|−ai−δ

)

for any δ > 0. Hence,

C

( �∏
i=1

|zi|−ai−δ

)
≥ |s|h,ωP

=
∑

I

|dwI |ωP |eI |h ≥
∑

I

|eI |h

for any δ > 0 and 0 < r � 1. Therefore, one has

eI ∈ aE(U(r)).
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Since a is chosen properly such that aE = �E, one concludes that

s ∈ (
Ωm

X(log D) ⊗ �E
)
(U(r)).

This proves that

Γ(U∗(r), Ωm
U∗(r) ⊗ E|U∗(r)) ∩ L

m,0
(2) (E)(U(r)) ⊆ (

Ωm
X(log D) ⊗ �E

)
(U(r)).

Equation (29) follows. Equation (30) is a consequence of (29). �
Note that in Theorem 4.15, one does not need to assume that θ has nilpotent residues on D,

which is essentially required in Lemma 4.14. For the remainder of § 4.5, we present this nilpotency
assumption. Recall that one has D′′2 = 0. Let (L•

(2)(E), D′′) be a complex of fine sheaves over X
defined by

L0
(2)(E) D′′−−→ L1

(2)(E) D′′−−→ · · · D′′−−→ Lm
(2)(E). (31)

By (30) and Lemma 4.14, there is a natural inclusion

(32)

and we are going to show that this morphism between two complexes is a quasi-isomorphism.
We now recall a celebrated theorem (in a weaker form) by Demailly [Dem82, Théorème 4.1],

which enables us to solve the ∂̄-equation on weakly pseudo-convex Kähler manifold (might not
be complete). When the metric is complete, it is due to Andreotti and Vesentini [AV65].

Theorem 4.16 (Demailly). Let (X, ω) be a Kähler manifold (ω might not be complete), where
X possesses a complete Kähler metric (e.g. X is weakly pseudo-convex). Let E be a vector bundle
on X equipped with a smooth hermitian metric h such that

√−1R(E, h) ≥Nak εω ⊗ 1E ,

where ε > 0 is a positive constant. Assume that g ∈ Ln,q
(2)(X, E) such that ∂̄g = 0. Then there

exists f ∈ Ln,q−1
(2) (X, E) such that ∂̄f = g and

‖f‖2
h,ω � ε−1‖g‖2

h,ω.

This theorem by Demailly is used to solve the ∂̄-equation locally. We first recall the notation
used in the following proposition and theorem. Let (X, ω) be a compact Kähler manifold and let
D =

∑�
i=1 Di be a simple normal crossing divisor on X. Let (E, θ, h) be a tame harmonic bundle

on X − D. With the modified Hermitian metric ha,N for E and the complete Kähler metric ωa,N

defined in Lemmas 4.10 and 4.11, we have the sheaves of L2 E-valued forms L
p,q
(2)(E)ha,N ,ωa,N

defined in (28). We write L
p,q
(2)(E) instead of L

p,q
(2)(E)ha,N ,ωa,N

for short.

Proposition 4.17. For any x ∈ X, there is an open set U ⊂ X (can be made arbitrary small)
containing x such that for any g ∈ L

p,q
(2)(E)(U) with q ≥ 1 and ∂̄E(g) = 0, there exists a section

f ∈ L
p,q−1
(2) (E)(U) such that ∂̄Ef = g.

Proof. If x /∈ D, then we can take an open set U ⊂ X − D containing x which is biholomorphic
to a polydisk, and the theorem follows from the usual L2-Dolbeault lemma. Assume x ∈ D. Let
(Ũ ; z1, . . . , zn) be an admissible coordinate around x. By Lemma 4.6, Ep := T p

Ũ∗ ⊗ E equipped
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with the C∞-metric hEp = h−1
p h(a, N) induced by h(a, N) and ωP , satisfying

√−1R(hEp) ≥Nak ωP ⊗ 1Ep

for any p = 0, . . . , n. Note that ωP |Ũ∗( 1
2
) ∼ ωa,N |Ũ∗( 1

2
) and h(a, N)|Ũ∗( 1

2
) ∼ ha,N |Ũ∗( 1

2
). Hence,

one has

Ln,q
(2)(Ũ

∗(1
2), En−p)hEn−p

,ωP
= Lp,q

(2)(Ũ
∗(1

2), E)ha,N ,ωa,N
(33)

for any p = 0, . . . , n. For any g ∈ Ln,q
(2)(Ũ

∗(1
2), En−p)hEn−p

,ωP
with ∂̄(g) = 0, if q ≥ 1, by

Theorem 4.16, there is f ∈ Ln,q−1
(2) (Ũ∗(1

2), En−p)hEn−p
,ωP

such that ∂̄f = g. The proposition then

follows from (33), and Ũ∗(1
2) is the desired open set U in the proposition. �

Now we are ready to prove that the L2-complex is the desired fine resolution for our tame
harmonic bundle.

Theorem 4.18. The morphism between two complexes in (32) is a quasi-isomorphism.

Proof. Pick any m ∈ {0, . . . , n}. We are going to show that ι : ker θ/ Im θ → kerD′′/ Im D′′ at
�E ⊗ Ωm

X(log D) is an isomorphism. For any x ∈ D, we pick an open set U � x as in Propo-
sition 4.17 and set U∗ = U − D. Indeed, U∗ = Ũ∗(1

2) where (Ũ ; z1, . . . , zn) is an admissible
coordinate around x and, thus, ha,N ∼ h(a, N) and ωa,N ∼ ωP on U∗. Pick any g ∈ Lm

(2)(E)(U)
such that D′′g = 0. By Lemma 4.14, we can write g =

∑
p+q=m gp,q where gp,q ∈ L

p,q
(2)(E)(U), and

let q0 be the largest integer for q such that gp,q �= 0. By Lemma 4.14, we can decompose D′′g
into bidegrees, such that ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂̄Egm−q0,q0 = 0
θgm−q0,q0 + ∂̄Egm−q0+1,q0−1 = 0
...
θgp0−1,m−p0+1 + ∂̄Egp0,m−p0 = 0
θgp0,m−p0 = 0

for which the operators act in the sense of distribution. Hence, gm−q0,q0 ∈ L
m−q0,q0

(2) (E)(U) with

∂̄Egm−q0,q0 = 0. Applying Proposition 4.17, there is a section fm−q0,q0−1 ∈ L
m−q0,q0−1
(2) (E)(U) such

that ∂̄Efm−q0,q0−1 = −gm−q0,q0 . By Lemma 4.14, D′′fm−q0,q0−1 ∈ Lm
(2)(E)(U), and we define g′ :=

D′′fm−q0,q0−1 + g ∈ Lm
(2)(E)(U). One thus has D′′g′ = 0. Write g′ =

∑
p+q=m g′p,q where g′p,q ∈

L
p,q
(2)(E)(U). Note that

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

g′m−q0,q0
= ∂̄Efm−q0,q0−1 + gm−q0,q0 = 0,

g′m−q0+1,q0−1 = θfm−q0,q0−1 + gm−q0+1,q0−1,

g′m−q0+2,q0−2 = gm−q0+2,q0−2,
...
g′p0,m−p0

= gp0,m−p0 .

We can use the same method to find f ∈ Lm−1
(2) (E)(U) such that g0 = g + D′′f ∈ L

m,0
(2) (E)(U)

such that D′′g0 = 0. Decomposing D′′g0 into bidegrees we get

∂̄(g0) = 0, θ(g0) = 0.
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By the elliptic regularity of ∂̄ one concludes that

g0 ∈ Γ(U∗, Ωm
U∗ ⊗ E|U∗).

By (29), g0 ∈ Γ(U, Ωm
X(log D) ⊗ �E|U ), which shows the surjectivity of ι.

Now we prove the injectivity of ι. Let g ∈ Γ(U, Ωm
X(log D) ⊗ �E|U ) ⊂ Lm

(2)(E)(U) such that
g = D′′f . Write f =

∑
p+q=m−1 fp,q where fp,q ∈ L

p,q
(2)(E)(U). Then g = D′′(fm−1,0) = θ(fm−1,0)

thanks to the bidegree condition. Hence,

fm−1,0 ∈ Γ(U∗, Ωm−1
U∗ ⊗ E|U∗) ∩ L

m−1,0
(2) (E)(U).

By (29) again, fm−1,0 ∈ Γ(U, Ωm−1
X (log D) ⊗ �E|U ). The injectivity of ι follows.

When m > n, the exactness of D′′ can be proven in the same way. Let g ∈ Lm
(2)(E)(U)

such that D′′g = 0. Applying Proposition 4.17 once again as in the case of m ≤ n, we can
find f ∈ Lm−1

(2) (E)(U) such that D′′f + g ∈ L
n,m−n
(2) (E)(U). As θ(D′′f + g) = 0, this implies that

∂̄E(D′′f + g) = 0, and by Proposition 4.17 again one can find h ∈ L
n,m−n−1
(2) (E)(U) such that

D′′h = ∂̄Eh = D′′f + g. This shows the exactness of D′′ when m > n. This completes the proof
of the theorem. �
Remark 4.19. To summarize, let us explain our choice of the perturbation of the metric h by
ha,N := h · ∏�

i=1 |σi|2ai
hi

· (−∏�
i=1 log |σi|2hi

)N .
The input of the factor

∏�
i=1 |σi|2ai

hi
is to ensure that the sections of �E are L2-integrable, which

does not seem to be true for the harmonic metric h. However, ai have to be small enough since
holomorphic sections of E which are also L2-integrable with respect to ha,N only lie on aE. Due
to the semicontinuity of the parabolic structures by Mochizuki (cf. Definition 4.1 (iii) together
with Theorem 4.3), aE = �E if ai are small enough. This is the main context of Theorem 4.15.

The input of (−∏�
i=1 log |σi|2hi

)N is to add enough local positivity near D such that one can
apply the Hörmander–Demailly L2-estimate to obtain the L2-Dolbeault lemma locally around
D. This is Proposition 4.17. Let us stress here that the fact that (E, h) is acceptable due to
Mochizuki is essential to perform such modification of metrics.

4.6 Proof of the main theorem
In this subsection, we will prove the following vanishing theorem for a tame harmonic bundle.

Theorem 4.20. Let (X, ω) be a compact Kähler manifold of dimension n and let D be a simple
normal crossing divisor on X. Let (E, aE, θ) be the parabolic Higgs bundle on X induced by
a tame harmonic bundle (E, θ, h) on X∗ = X − D whose Higgs field has nilpotent residues on
D. Let L be a line bundle on X equipped with a smooth Hermitian metric hL such that its
curvature

√−1R(hL) ≥ 0 and has at least n − k positive eigenvalues at every point on X as a
real (1,1)-form. Let B be a nef line bundle on X. Then

H
m

(
X, (�E ⊗ Ω•

X(log D), θ) ⊗ L ⊗ B
)

= 0

for any m > n + k.

Proof. We will use the notation in § 4.5. Recall that (X∗, ωa,N ) is a complete Kähler manifold.
Write L := L ⊗ B|X∗ and we equip it with the metric g = hLhB where hB is properly chosen
as Lemma 4.10. Then g is the restriction to X∗ of a smooth metric on X. We introduce a
new Higgs bundle (Ẽ, θ̃, h̃) := (E ⊗ L , θ ⊗ 1L , ha,N · g). We still use the notation D′′ := ∂̄Ẽ + θ̃

abusively, and D′′∗ denotes its adjoint with respect to h̃. We will apply Corollary 3.7 to solve
the D′′-equation for this new Higgs bundle.
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Note that ha,Ng = hhL (a) by (22) and Lemma 4.11. By Proposition 4.12, the metrized
line bundle (L , hL (a)) satisfies the condition in Corollary 3.7 when m > n + k. Hence, by
Corollary 3.7 for any section g∈Lm

(2)(X
∗, Ẽ)h̃,ωa,N

, if D′′g = 0 and m > n + k, there exists

f ∈ Lm−1
(2) (X∗, Ẽ)h̃,ωa,N

such that

D′′f = g.

Let Lm
(2)(Ẽ)h̃,ωa,N

be the sheaf on X (rather than on X∗) of germs of locally L2, Ẽ-valued
m-forms, for which both D′′(u) (as a distribution) exist weakly as locally L2-forms. Namely,
for any open set U ⊂ X, one has

Lm
(2)(Ẽ)(U) := {u ∈ Lm

(2)(U − D, Ẽ)h̃,ωa,N
| D′′u ∈ Lm+1

(2) (U − D, E)h̃,ωa,N
}. (34)

Then the above argument proves that the cohomology H i of the complex of global sections of
the sheaves (L•

(2)(Ẽ)h̃,ωa,N
, D′′) vanishes for m > n + k.

As g is smooth over the whole X, the metric h̃ ∼ h(a, N) near D (fix any trivialization of
L ⊗ B). Hence, the natural inclusion

(35)

is thus also a quasi-isomorphism by Theorem 4.18.
As the complex (L•

(2)(Ẽ)h̃,ωa,N
, D′′) is a fine sheaf, its cohomology computes the hypercoho-

mology of the complex (�E ⊗ L ⊗ B ⊗ Ω•
X(log D), θ̃). We thus conclude that H

m(X, (�E ⊗ L ⊗
B ⊗ Ω•

X(log D), θ̃)) = 0 for m > n + k. The theorem is proved. �

Remark 4.21. Let us show how to derive the log Girbau vanishing theorem in [HLWY23,
Corollary 1.2] from Theorem A. In this remark we use the same notation as that in [HLWY23,
Corollary 1.2]. With the same setting as Theorem A, let (E, θ, h) := (OX−D, 0, h) where h is the
canonical metric on the trivial line bundle OX−D. According to the extension of (E, θ, h) defined
in § 4.2, one has (�E, θ) = (OX , 0). Hence, the Dolbeault complex in (1)

Dol(�E, θ) = OX
0−→ Ω1

X(log D) 0−→ · · · 0−→ Ωn
X(log D),

which is a direct sum of sheaves of logarithmic p-forms shifting p places to the right:

Dol(�E, θ) = ⊕n
p=0Ω

p
X(log D)[p],

where Ωp
X(log D)[p] is obtained by shifting the single degree complex Ωp

X(log D) in degree p.
Hence, if m > n + k, by Theorem 4.20 one has

0 = H
m

(
X, Dol(�E, θ) ⊗ N ⊗ L

)
= ⊕n

p=0H
m(X, Ωp

X(log D) ⊗ N ⊗ L[p])

= ⊕n
p=0H

m−p(X, Ωp
X(log D) ⊗ N ⊗ L).

We thus conclude that

Hq(X, Ωp
X(log D) ⊗ N ⊗ L)

if p + q > n + k. This is the log Girbau vanishing theorem by Huang, Liu, Wan and Yang.
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4.7 Vanishing theorem for parabolic Higgs bundles
Let X be a complex projective manifold and let D be a simple normal crossing divisor on X.
For a parabolic Higgs bundle (E, aE, θ) on (X, D), its parabolic Chern classes, denoted by para-
ci(E), are the usual Chern class of �E with a modification along the boundary divisor D (see,
e.g., [AHL19, § 3] for more details). With a polarization, i.e. an ample line bundle H on X, the
parabolic degree para-deg(E) of (E, aE, θ) is defined to be para-c1(E) · Hn−1. We say (E, aE, θ)
slope stable if for any coherent torsion-free subsheaf V of �E, with 0 < rankV < rank�E = rankE
and θ(V ) ⊆ V ⊗ Ω1

X(log D), the condition

para-deg(V )
rank(V )

<
para-deg(E)

rank(E)

is satisfied, where V carries the induced the parabolic structure from (E, aE, θ), i.e. aV :=
V ∩ aE. A parabolic Higgs bundle (E, aE, θ) is poly-stable if it is a direct sum of slope stable
parabolic Higgs bundles. By [IS07], (E, aE, θ) is called locally abelian if in a Zariski neighborhood
of any point x ∈ X there is an isomorphism between the underlying parabolic vector bundle
(E, aE) and a direct sum of parabolic line bundles.

By the celebrated Simpson–Mochizuki correspondence [Moc06, Theorem 9.4], a parabolic
Higgs bundle (E, aE, θ) on (X, D) is poly-stable with trivial parabolic Chern classes and locally
abelian if and only if it is induced by a tame harmonic bundle over X − D defined in § 4.2. Based
on this deep theorem, our theorem can thus be restated as follows.

Corollary 4.22. Let (E, aE, θ) be a locally abelian poly-stable parabolic Higgs bundle on a
projective log pair (X, D) with trivial parabolic Chern classes such that the Higgs field θ has
nilpotent residues on D. Let L be a line bundle on X equipped with a smooth metric hL such
that its curvature

√−1R(hL) ≥ 0 and has at least n − k positive eigenvalues. Let B be a nef line
bundle on X. Then for the weight-zero filtration �E of (E, aE, θ), one has

H
m

(
X, (�E ⊗ Ω•

X(log D), θ) ⊗ L ⊗ B
)

= 0

for any m > dim X + k.

Remark 4.23. The above corollary essentially generalizes the main theorem [Ara19,
Theorem 1] in which he assumed that θ is nilpotent (see Remark 2.6) and that L is
ample.
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