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ON THE CONVERGENCE OF ZETA FUNCTIONS OF
PREHOMOGENEOUS VECTOR SPACES

TOBIAS FINIS and EREZ LAPID

Abstract. We prove a general convergence result for zeta functions of

prehomogeneous vector spaces extending results of H. Saito, F. Sato and Yukie.

Our analysis points to certain subspaces which yield boundary terms. We

study it further in the setup arising from nilpotent orbits. In certain cases

we determine the residue at the rightmost pole of the zeta function.
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§1. Introduction

The theory of prehomogeneous vector spaces (PVSs) and their zeta functions was

initiated by M. Sato and Shintani [41], [47]. (See [23] for history and references.) One

of the early motivations was to study asymptotics of arithmetic invariants [43], an endeavor

followed up by a number of authors (e.g., [9], [24], [51], [53]). For these applications, the

alternative approach of Bhargava using innovative geometry of numbers techniques was

very successful (see [1] and the references therein). Nonetheless, zeta functions of PVSs are

still useful for these applications [5]. Our motivation for the study of the zeta functions

comes from their appearance in Arthur’s trace formula [7], [10], [16], [17], [19], although

this will not play a direct role in the current paper.

The purpose of this paper is to provide a general basic convergence result for zeta

functions of regular PVSs over numbers fields. It generalizes earlier results in this direction
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2 T. FINIS AND E. LAPID

by F. Satō, H. Saito, Yukie, and others. More importantly, we hope that the method will

enhance our understanding of the singularities of the zeta function and ultimately will be

incorporated to Arthur’s trace formula. As a first result in this direction, we determine

the structure of the first pole (at the edge of the domain of absolute convergence) for a

restricted, but natural class of PVSs.

In order to state our main result, let V be a reductive PVS over a number field F, i.e, an

F -rational representation ρ of a reductive group G over F on V with an open orbit X. Let

H =Gv be the generic stabilizer and let χ1, . . . ,χr ∈X∗(G) be the fundamental F -rational

characters of G. Let A be the ring of adeles of F. For any rapidly decreasing continuous

function φ on V (A) let θφ be the automorphic function

θφ(g) =
∑

v∈X(F )

φ(ρ(g)−1v), g ∈G(F )\G(A).

Roughly speaking, the zeta function is the Mellin transform of θφ. In the simplest case, our

result is the following.

Theorem 1.1. Suppose that the connected component H◦ of H is semisimple. Then,

the zeta function

Z(φ,(s1, . . . , sr)) =

∫
G(F )\G(A)

θφ(g) |detρ(g)|−1
r∏

i=1

|χi(g)|−si dg,

converges absolutely for �si > 0, i= 1, . . . , r.

Theorem 1.1 cannot hold as stated for a general PVS. The first issue is that assuming

convergence, as a function of x ∈G(A) the integral∫
G(F )\G(A)1

θφ(gx) dg, (1.1)

is invariant not just under G(A)1 but also under the adelic points of the group G� =HGder.

Therefore, in the case where X∗(H) is infinite (or, equivalently r < dimX∗(G)), we need

to modify the definition of the zeta function as follows:

Z(φ,(s1, . . . , sr)) =

∫
G(A)1G�(A)\G(A)

∫
G(F )\G(A)1

θφ(ga) dg |detρ(a)|−1
r∏

i=1

|χi(a)|−si da.

(1.2)

We will show that this integral converges absolutely for �si > 0, i= 1, . . . , r provided that

H is connected reductive.

In the non-connected case, there is yet a more fundamental difficulty, namely that

already the integral (1.1) may diverge. This happens if vol(Gv(F )\(Gv(A)∩G(A)1)) =∞,

or equivalently, if the group of connected components Gv/G
◦
v acts nontrivially on X∗(G◦

v)

for some v ∈X(F ). We call such elements v isotropic. For instance, this is the case for the

PVS of binary quadratic forms (with respect to the action of GL2) in which the centralizer

(an orthogonal group in dimension 2) may split over F.

To remedy the situation, we modify θφ, and consequently the zeta function, by simply

removing the sum over isotropic v ∈X(F ). Our main result is that the modified zeta function

converges for �si > 0, i= 1, . . . , r provided that H◦ is reductive (see Theorem 4.3 below).
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ZETA FUNCTIONS OF PVSS 3

In fact, using different methods, the convergence of this modified zeta function in some

orthant �si � 0 was proved by H. Saito under the condition that X∗(H) is finite [38].

We also remark that meromorphic continuation to Cr and functional equations for the

zeta function (1.2) were established by F. Satō [39] under the assumptions that H◦ is

reductive, X∗(H) is finite and that there are no isotropic elements in X(F ), extending

the classical work by Sato and Shintani [48]. For the PVS of binary quadratic forms,

meromorphic continuation of (1.2) to C and the functional equation of a modified zeta

function, which includes a contribution from the isotropic elements, were obtained by

Yukie [52] (following the work of Shintani [45]). We will not deal with these questions

here.

The contents of the paper are as follows. We start with recalling general facts, mostly

well known, about PVSs (§2). We review examples of PVSs, especially those arising from

nilpotent orbits, in §3. The main result is stated in §4. In §5, we give a general bound for the

function θφ (Proposition 5.1). The analysis is based on the examination of the support sets

of elements in X(F ) with respect to the weights of a maximal F -split torus of G, an idea

which goes back to Yukie [53], [54]. The linchpin of the argument is a certain nonnegativity

statement pertaining to these support sets (Corollary 5.7). Further analysis is carried out

in §6 where the key notion of special subspaces of a PVS is introduced. In §7, we prove the
main convergence result. An important aspect in the proof is that the existence of isotropic

elements is closely related to the existence of special subspaces with additional properties,

which we call exceptional (Proposition 7.4). The nonexceptional subspaces exhibit a crucial

positivity property (Proposition 7.9), which strengthens Corollary 5.7 supra and guarantees

convergence. In §8, we improve the convergence result for PVSs without nontrivial special

subspaces (under an additional technical condition which is satisfied in the F -irreducible

case) and establish meromorphic continuation to the left of the polar hyperplanes si = 0,

i = 1, . . . , r together with an explicit description of the residues. Finally, in §9, we give a

general construction of special subspaces for regular PVSs coming from nilpotent orbits.

§2. Prehomogeneous vector spaces

We start with basic facts about PVSs. (See [23, Chapter 2] and [39, §1] for more details.)

2.1. General notation.

Throughout the paper F is a field of characteristic 0 with algebraic closure F̄ . (From §4
onward, F will be a number field.)

We denote by Gm the multiplicative group.

Whenever a group G acts on a set A, we denote by AG the set of fixed points of G in A.

We denote by X∗(T ) the lattice of F -rational cocharacters of an F -torus T.

For a linear algebraic group G over F, we use the following notation.

• G◦—the identity component of G.

• Z(G)—the center of G.

• Gder—the derived group of G.

• Gab =G/Gder—the abelianization of G.

• NG—the unipotent radical of G.

• Glev =G/NG—the Levi part of G, so that Gred := (Glev)◦ = (G◦)lev is reductive.

• Gss = (Gred)der—the semisimple part of G◦.
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4 T. FINIS AND E. LAPID

• Gtor = (Gred)ab—the largest toric quotient of G◦.

• Gssu =Ker(G◦ →Gtor)—an extension of Gss by NG.

• g= LieG—the Lie algebra of G (and similarly for other groups).

• Ad = AdG—the adjoint representation of G on g.

• X∗(G) =X∗(Gab) =X∗(Glev)—the finitely generated abelian group of F -rational char-

acters of G.

• ΔG = detAd ∈X∗(G)—the modular character of G.

• TG—the maximal F -split torus of Z(Gred).

• aG =X∗(TG)⊗ZR—the R-vector space generated by X∗(TG).

We often view Glev as an F -subgroup (the Levi subgroup) of G, uniquely defined up to

conjugation by NG(F ) ([27] or [15, Chapter VIII, Theorem 4.3]).

If G is connected, then X∗(G) =X∗(Gtor) is torsion-free, i.e., it is a lattice.

If G is reductive, then Gssu =Gss =Gder.

If T is an F -split torus, then X∗(T ) can be identified with the dual lattice of X∗(T ).

In general, if T ′ is the maximal F -split subtorus of T, then we can identify X∗(T ) with

X∗(T
′), while the restriction map X∗(T )→X∗(T ′) is injective with finite cokernel. Thus,

we have isomorphisms

X∗(T )⊗ZR	X∗(T ′)⊗ZR	 a∗T ′ = a∗T .

The F -split rank of T, i.e. the dimension of T ′, is the rank of X∗(T ) (and X∗(T )).

More generally, if G is connected, then the restriction map X∗(G) =X∗(Gred)→X∗(TG)

is injective with finite cokernel and hence yields an isomorphism

X∗(G)⊗ZR	X∗(TG)⊗R= a∗G.

For any finite subset A of a real vector space we denote by R≥0A the polyhedral cone

generated by A, i.e., the set of linear combinations
∑

a∈Axaa, where xa ≥ 0 for all a ∈ A.

Similarly, we use the notation R>0A, Z≥0A, Z>0A where we require the xa to be strictly

positive (resp., nonnegative integers, strictly positive integers) for all a.

Let G be an algebraic F -group and let H be an F -subgroup of G. We record a few basic

results.

Lemma 2.1. Suppose that G is connected. Then, the following two conditions are

equivalent.

1. The restriction map X∗(G)→X∗(H◦) has finite cokernel.

2. The torus (Z(Hred)∩Gssu)◦ is F-anisotropic.

Proof. We may assume that H is connected. Fix a Levi subgroup L	Hred of H. Then,

the restriction map X∗(H)	X∗(L)→X∗(TL) is injective with finite cokernel. Therefore,

we may rephrase condition 1 by saying that the restriction map X∗(G) = X∗(Gtor) →
X∗(TL) has finite cokernel, or equivalently, that X∗(TL) → X∗(G/Gssu) is injective. In

turn, this is equivalent to the triviality of (TL∩Gssu)◦, which amounts to condition 2.

Lemma 2.2. Suppose that H =G◦ and let Γ=G/H. Then, the kernel of the restriction

map X∗(G)
r−→ X∗(H) is finite and its image is a finite index sublattice of X∗(H)G =

X∗(H)Γ. Thus, the cokernel of r is finite if and only if G acts trivially on X∗(H).
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Proof. The first part follows from the fact that the homomorphism H/[G,H]→Gab has

finite kernel and cokernel. In fact we have (a Gal(F̄ /F )-equivariant) exact sequence

H2(Γ,Z)→H/[G,H]→Gab → Γab → 1,

[18, Corollary VI.8.2]. The second part follows from the first part and the fact that if a

finite group Γ acts nontrivially on a lattice L, then LΓ is of infinite index in L.

We denote the Picard group of a variety X by PicX =H1(X,O∗
X). If X is smooth, then

we can identify PicX with the (Weil) divisor class group ClX of X. (See [14, §II.6] for basic
facts about divisors and the Picard group.)

Lemma 2.3 ([33], Proposition VII.1.5; cf. also the proof of [31], Theorem 4). Suppose

that G is connected. Then, there is an exact sequence

X∗(G)→X∗(H)→ Pic(G/H).

2.2

Recall that a prehomogeneous vector space (PVS) over F is a finite-dimensional

F -representation

ρ :G→GL(V ),

of a connected linear algebraic F -group G on a finite-dimensional F -vector space V, for

which there exists a (necessarily unique) open orbit X. Note that X is defined over F and

X(F ) is G(F )-invariant. If F is algebraically closed, then X(F ) is a G(F )-orbit and the

stabilizers Gv, v ∈ X(F ) are conjugate by G(F ). In general, given u ∈ X(F ), the G(F )-

orbits in X(F ) are in bijection with the elements of the kernel of H1(F,Gu) → H1(F,G)

(a map of pointed sets) [42, I §5.4, Corollary 1 of Proposition 36]. Correspondingly, the

F -groups Gv, v ∈X(F ) are pure inner forms of Gu.

Clearly, a quotient of a PVS by an invariant subspace is also a PVS.

We will write H =Gv (the “generic stabilizer”) when v ∈X(F ) is immaterial, e.g., when

we refer to the group X∗(H) or to properties pertaining to H(F̄ ). Thus, we can identify X

with G/H. The F -subgroup G� =GderH of G is well defined. Note that in general, H may

be disconnected and the groups G◦
v, v ∈X(F ) are not necessarily in the same inner class.

In fact, the lattice X∗(G◦
v) may depend on the choice of v ∈X(F ). For this reason, we will

refrain from using the notation X∗(H◦).

For v ∈X(F ), the linear map

Dv : g→ V, x �→ dρ(x)v, (2.1)

is surjective, since it is the differential of the dominant map G→ V , g �→ ρ(g)v. The kernel gv
of Dv is the Lie algebra of Gv [2, Lemma II.7.4]. We thus get a Gv-equivariant isomorphism

g/gv → V . In particular,

ΔGdetρ−1
∣∣
H
=ΔH . (2.2)

A relative invariant with respect to a character χ ∈ X∗(G) is an F -rational function

f �≡ 0 on V such that f ◦ρ(g) = χ(g)f for all g ∈G. We will write f =RIχ.

https://doi.org/10.1017/nmj.2024.34 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2024.34


6 T. FINIS AND E. LAPID

The following basic properties hold.

1. RIχ, if it exists, is unique up to a nonzero scalar and it is regular and nonvanishing

on X.

2. The sublattice X∗(G/G�), which is the kernel of the restriction map X∗(G)→X∗(H),

consists of the characters with respect to which there exists a relative invariant.

3. Let χ1, . . . ,χr be a basis of X∗(G/G�). Then RIχ1 , . . . ,RIχr are algebraically indepen-

dent.

4. The F -irreducible polynomials that are nowhere vanishing on X (if any) are relative

invariants. They are called the fundamental relative invariants. The corresponding

characters are called fundamental characters. They form a basis for X∗(G/G�). Denote

the set of all fundamental characters by X.

If G is reductive, then the following conditions are equivalent.

1. H◦ is reductive.

2. X is the complement of a hypersurface.

3. X is the complement of the hypersurface defined by RIχ1 · · ·RIχr where X= {χ1, . . . ,χr}.
4. X is an affine variety.

5. V is regular (see [23, Definition 2.14]).

In this case, (detρ)2 ∈X∗(G/G�). (As far as we know, it is unknown whether RIdetρ2 is a

polynomial in general.)

We give some more basic properties of PVSs.

Lemma 2.4. There is a short exact sequence

0→X∗(G/G�)→X∗(G)→X∗(H)→ 0.

Thus, rkX∗(G)− r = rkX∗(H).

Proof. Clearly, X∗(G/G�) is the kernel of the restriction map X∗(G) → X∗(H). The

surjectivity of this map follows from Lemma 2.3 and the vanishing of PicX. More generally,

this is true for any open subvariety X of Y = SpecA where A is a Noetherian UFD since

ClY = 1 and ClY → ClX is onto.

Let a∗G be the subspace X∗(G/G�)⊗R of a∗G. Thus, X forms a basis for a∗G.

For completeness, we also note the following fact, which can also be proved by a

topological argument for F = C.

Lemma 2.5. Suppose that V has no relative invariants. Then H is connected.

Proof. We may assume that F is algebraically closed. The condition on V means that

V \X has codimension > 1 in V. It follows from purity of the branch locus that X is simply

connected [28, Exp. X, Corollaire 3.3], i.e., there is no nontrivial étale covering of X. On

the other hand,

G/H◦ →X,

is an étale covering. Thus, H is connected.

Lemma 2.6. The following conditions on v ∈X(F ) are equivalent.

1. The cokernel of the restriction map X∗(G)→X∗(G◦
v) is infinite.
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2. The cokernel of the restriction map X∗(Gv)→X∗(G◦
v) is infinite.

3. There is a non-trivial F-split torus in Z(Gred
v )∩Gssu.

4. The action of Gv (via the component group Gv/G
◦
v) on X∗(G◦

v) is nontrivial.

Proof. 1⇐⇒ 2: Lemma 2.4.

1⇐⇒ 3: Lemma 2.1.

2⇐⇒ 4: Lemma 2.2.

Definition 2.7. An element v ∈ X(F ) is isotropic if it satisfies the conditions of

Lemma 2.6. Otherwise, v is nonisotropic.

We denote the subset of nonisotropic elements in X(F ) by X(F )niso. It is invariant

under G(F ).

A PVS V is isotropic if it contains isotropic elements. Otherwise, V is nonisotropic.

By Lemma 2.6, if H is connected, then V is nonisotropic.

The basic example of an isotropic PVS is the space V of binary quadratic forms with

respect to the action of GL2. Here, H is an orthogonal group in dimension 2; v ∈ X(F )

is isotropic if and only it is isotropic in the usual sense of quadratic forms. We caution

however, that the PVS of quadratic forms in n > 2 variables (with respect to the GLn-

action) is nonisotropic.

In general, it is possible that all elements of X(F ) are isotropic (for instance, if V is

isotropic and F = F̄ ), although we expect that this is never the case if F is a number field.

Assume now thatG is reductive, so that every representation ofG is completely reducible.

We single out two important classes of PVSs in the opposite extremes.

Definition 2.8. Let V be a reductive PVS. We say that

1. V is basic if for every v ∈X(F ), G◦
v is not contained in any proper parabolic F -subgroup

of G.1

2. V is distinguished if H/Kerρ is finite.2

Note that every basic PVS is regular, since any connected nonreductive F -subgroup of G

is contained in a proper parabolic F -subgroup of G [4]. Moreover, a basic PVS is necessarily

nonisotropic. It is also clear that every subrepresentation of a basic PVS is also basic.

A distinguished PVS is regular and nonisotropic.

§3. PVSs of DK-type, examples

A main source of PVSs are gradations on reductive Lie algebras and nilpotent orbits.

3.1

Let G′ be a reductive group over F and let λ :Gm →G′ be a one-parameter subgroup.

Let h= (dλ)(1) ∈ g′. Decompose

g′ =⊕i∈Zg
′
i, where g′i = {x ∈ g′ |Ad(λ(t))x= tix ∀t ∈Gm}= {x ∈ g′ | [h,x] = ix}.

This is a Z-gradation of g′. (If G′ is semisimple and adjoint, then every gradation of g′ is

of this form.) Let Fi =⊕j≥ig
′
j , i ∈ Z be the corresponding (decreasing) filtration of g′. The

1 This condition depends on v. A strictly stronger condition would be that H◦ is not contained in any
proper parabolic subgroup of G (not necessarily defined over F ).

2 The terminology comes from nilpotent orbits—see §3 below.
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8 T. FINIS AND E. LAPID

stabilizer P of F in G under Ad is the parabolic F -subgroup of G whose Lie algebra is

F0. The Lie algebra of the unipotent radical of P is F1. The centralizer G of λ is a Levi

subgroup of P whose Lie algebra is g′0. For every i �= 0, the vector space g′i, which consists of

nilpotent elements, comprises finitely many (geometric) orbits with respect to the adjoint

action of G [49]. In particular, it is a PVS. In the terminology of [13], these are PVSs of

V-type (for Vinberg). They are not necessarily regular. We also say that F is a filtration

of g′ of V-type. (Note that we may restrict here to the case i = 1, since the general case

follows from it by considering the graded Lie subalgebra ⊕jg
′
ji, which is reductive.)

As a special case, let P be a parabolic subgroup of G′ with Levi factor G and n=LieNP .

Then, V = n/[n,n] is a PVS with respect to the adjoint action of G. In fact, n is a PVS with

respect to the adjoint action of P by a well-known result of Richardson. We say that V is

a PVS of R-type. We denote the nilpotent orbit containing the open orbit of P on n (the

Richardson orbit with respect to P) by Rich(P ). The number of irreducible components of

V is the F -corank of P in G.

Other important special cases, this time of regular PVSs, arise from the Dynkin–Kostant

classification of nilpotent orbits. In more detail, let (e,h,f) be an sl2-triple in [g′,g′]. (By the

Jacobson–Morozov theorem, every nilpotent e ∈ g′ is a part of an sl2-triple.) It corresponds

to an F -homomorphism SL2 → G′der. Let g′ = ⊕ig
′
i be the grading induced by h. The

corresponding (decreasing) filtration Fi =⊕j≥ig
′
j , i ∈ Z of g′ depends only on e and in fact

only on the P -orbit of e, where P = P (e) is the stabilizer of F = (Fi)i∈Z in G′ under the

adjoint action. Recall that P is the parabolic subgroup of G′ with Lie algebra F0. The Lie

algebra of the unipotent radical of P is F1. (That F depends only on e follows from the

fact that two sl2-triples (e,h,f) and (e,h′,f ′) with the same first element e are conjugate

by an element of NP (F )∩G′
e(F ) [3, Lemma VIII.11.1.4].)

Let G be the Levi quotient of P, so that g= F0/F1 	 g′0. Let V = F2/F3 	 g′2 with the

G-action ρ induced by the adjoint representation. Let o be the geometric G′-orbit of e and

let oF = o∩F2.

Theorem 3.1. With the notation above:

1. V is a regular PVS with respect to ρ.

2. oF =X+F3.

3. oF is a P-orbit.

4. For every g ∈G′, Ad(g)oF ∩oF �= ∅ if and only if g ∈ P . In particular, G′
v ⊂ P for any

v ∈ oF .

These are the PVSs of DK-type (Dynkin–Kostant) in the language of [13]. (We quickly

sketch how to derive these assertions from the literature. Note first that o∩g′2 is the open G-

orbit X of V by [3, Proposition VIII.11.3.6]. V is regular by [22], see below. In addition, the

NP -orbit of e is e+F3 [34, Lemma 1]. This shows the second and third assertions. The fourth

assertion easily reduces to the special case G′
e ⊂ P . Let g ∈G′

e. Then (e,Ad(g)h,Ad(g)f) is

an sl2-triple with the same first element as (e,h,f), and therefore conjugate to (e,h,f) by

an element n ∈NP ∩G′
e. Since ng centralizes h, we have ng ∈G, and therefore g ∈ P .)

If we fix in addition to e the sl2-triple (e,h,f), then we can identify G with the centralizer

of h in G′ and V with the subspace g′2 of g′. We have then X = V ∩o. We may identify g′−2

with the dual of V = g′2 via the Killing form. Fixing a vector space isomorphism between

g′−2 and g′2, RI(detρ)2 is given by the determinant of the linear map ad(e)◦ad(e) : g′−2 → g′2,

a polynomial in e ∈ V whose nonzero locus is X [22, Proposition 1.1, 1.2, 2.1].
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Fix a minimal parabolic F -subgroup P ′
0 of G′ and a maximal split F -torus T ′

0 contained

in P ′
0. Then, we may choose (e,h,f) in its G′(F )-orbit so that h ∈ t′0 is dominant and

P = P (e) is standard. This is the canonical parabolic subgroup pertaining to o. G is then

identified with the standard Levi subgroup of P.

An orbit o is called even if g′i = 0 for all odd i (or equivalently, if g′1 = 0). For even

orbits clearly o = Rich(P ). A particular case is given by distinguished orbits, where the

connected stabilizer (G′
e)

◦, e ∈ o is modulo the center of G′ a unipotent group. In this case,

the PVS V is distinguished (and the converse holds for even orbits o). In general, not every

standard parabolic subgroup is the canonical parabolic subgroup of some nilpotent orbit,

let alone an even one. (By [22, Proposition 2.1] and [13, Theorem 2.4], the Richardson

orbit of a standard parabolic subgroup P has P as its canonical parabolic subgroup if and

only if the associated PVS V = n/[n,n] is regular and δn(i)/n(i+1) ∈ a
∗
G for all i ≥ 1, where

n= n(0) ⊃ n(1) ⊃ . . . denotes the descending central series of n.)

Any PVS of DK-type arises from an even nilpotent orbit for the reductive Lie algebra

⊕ig
′
2i. Hence, any PVS of DK-type is also of R-type, although not necessarily with the

same G′.

3.2

Let us give some concrete examples of DK-type arising from even nilpotent orbits. For

each case we provide the following data:

• The numbering in the Sato–Kimura classification (appendix of [23]) in the irreducible

case,

• the group G′,

• the (even) nilpotent orbit o in g′ (either the corresponding partition for classical groups

or the notation in the Bala–Carter classification),

• the canonical Levi G,

• the regular PVS V = n/[n,n],

• the representation ρ of G on V,

• the fundamental relative invariant polynomials (FRIPs),

• the generic stabilizer H.

• If V is basic, distinguished, or isotropic, we indicate that.

For simplicity we only consider split G′.

In the following m,n,k are positive integers (possibly with some restrictions). We denote

by Matm,n the space of m×n matrices and by Matn (resp., Symn, Skewn) the spaces of

square (resp., symmetric, skew-symmetric) n×n-matrices. We denote by Pf the Pfaffian of

a skew-symmetric matrix.

Example 3.2 (#1 for k = 2).

• G′ =GLn1+···+nk
, k > 1, ni = nk+1−i for all i, ni ≤ ni+1 for i≤ l := �k−1

2 �.
• o corresponds to the partition

(

n1︷ ︸︸ ︷
k, . . . ,k,

n2−n1︷ ︸︸ ︷
k−2, . . . ,k−2, . . . ,

nl+1−nl︷ ︸︸ ︷
k−2l ).

• G=GLn1 ×·· ·×GLnk
.

• V =Matn1,n2 ⊕·· ·⊕Matnk−1,nk
.
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• ρ(g1, . . . ,gk)(x1, . . . ,xk−1) = (g1x1g
−1
2 , . . . ,gk−1xk−1g

−1
k ).

• FRIPs:

{
detxi if ni = ni+1

det(xi . . .xk−i) if ni < ni+1

• H =GLn1 ×GLn2−n1 ×·· ·×GLnl+1−nl
embedded as

(g1, . . . ,gl+1) �→ (g1,diag(g1,g2), . . . ,diag(g1, . . . ,gl+1), . . . ,diag(g1,g2),g1).

• Identifying X∗(G) with Zk (and consequently a∗G with Rk) by (λ1, . . . ,λk) �→
∏k

i=1detg
λi
i ,

the subspace a
∗
G is given by the equations λi+1 + · · ·+λk−i = 0 whenever ni < ni+1 or

i= 0.

• V is basic if and only if n1 = · · ·= nk. V is distinguished if and only if n1 = · · ·= nk = 1.

Example 3.3 (#13 for k = 1, up to castling).

• G′ = Sp2(n1+···+nk)+nk+1
, n1 ≤ ·· · ≤ nk+1 even. Set mi = ni−ni−1 (with n0 = 0).

• o corresponds to the partition

(

m1︷ ︸︸ ︷
2k+1, . . . ,2k+1,

m2︷ ︸︸ ︷
2k−1, . . . ,2k−1, . . . , . . . ,

mk+1︷ ︸︸ ︷
1, . . . ,1).

• G=GLn1 ×·· ·×GLnk
×Spnk+1

.

• V =Matn1,n2 ⊕·· ·⊕Matnk,nk+1
.

• ρ(g1, . . . ,gk+1)(x1, . . . ,xk) = (g1x1g
−1
2 , . . . ,gkxkg

−1
k+1).

• FRIPs:

{
detxi if ni = ni+1,

Pf(xi . . .xk+1Jnk+1
xt
k+1 . . .x

t
i) otherwise,

, i = 1, . . . ,k + 1 where Jnk+1
∈

Skewnk+1
defines Spnk+1

.

• H = Spm1
×·· ·×Spmk+1

embedded as

(h1, . . . ,hk+1) �→ (h1, ι2(h1,h2), . . . , ιk+1(h1, . . . ,hk+1))

where ιj is an embedding Spm1
×·· ·×Spmj

↪→ Spnj
.

• V is basic if and only if n1 = · · ·= nk.

Example 3.4 (#2 for k = 1).

• G′ = Sp2(n1+···+nk)
, n1 ≤ ·· · ≤ nk. Set mi = ni−ni−1 (with n0 = 0).

• o corresponds to the partition

(

m1︷ ︸︸ ︷
2k, . . . ,2k,

m2︷ ︸︸ ︷
2k−2, . . . ,2k−2, . . . , . . . ,

mk︷ ︸︸ ︷
2, . . . ,2).

• G=GLn1 ×·· ·×GLnk
.

• V =Matn1,n2 ⊕·· ·⊕Matnk−1,nk
⊕Symnk

.

• ρ(g1, . . . ,gk+1)(x1, . . . ,xk) = (g1x1g
−1
2 , . . . ,gk−1xk−1g

−1
k ,gkxkg

t
k).

• FRIPs:

{
detxi if ni = ni+1 or i= k,

detxi · · ·xkx
t
k−1 · · ·xt

i otherwise,
, i= 1, . . . ,k.

• H =Om1 ×·· ·×Omk
embedded as

(h1, . . . ,hk) �→ (h1, ι2(h1,h2), . . . , ιk(h1, . . . ,hk)),

where ιj is an embedding Om1 ×·· ·×Omj ↪→Onj .
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• V is basic if and only if n1 = · · ·= nk �= 2. V is isotropic if and only if mi = 2 for some i.

V is distinguished if and only if mi = 0 or 1 for all i.

Example 3.5 (#15 for k = 1, up to castling).

• G′ = SO2(n1+···+nk)+nk+1
, n1 ≤ ·· · ≤ nk+1. Set mi = ni−ni−1 (with n0 = 0).

• o corresponds to the partition

(

m1︷ ︸︸ ︷
2k+1, . . . ,2k+1,

m2︷ ︸︸ ︷
2k−1, . . . ,2k−1, . . . , . . . ,

mk+1︷ ︸︸ ︷
1, . . . ,1).

• G=GLn1 ×·· ·×GLnk
×SOnk+1

.

• V =Matn1,n2 ⊕·· ·⊕Matnk,nk+1
.

• ρ(g1, . . . ,gk+1)(x1, . . . ,xk) = (g1x1g
−1
2 , . . . ,gkxkg

−1
k+1).

• FRIPs:

{
detxi if ni = ni+1,

det(xi . . .xk+1Jnk+1
xt
k+1 . . .x

t
i) otherwise,

, i = 1, . . . ,k + 1 where Jnk+1
∈

Symnk+1
defines SOnk+1

.

• H = S(Om1 ×·· ·×Omk+1
) embedded as

(h1, . . . ,hk+1) �→ (h1, ι2(h1,h2), . . . , ιk+1(h1, . . . ,hk+1)),

where ιj is an embedding Om1 ×·· ·×Omj ↪→Onj .

• V is basic if and only if n1 = · · · = nk �= 2 and mk+1 �= 2. V is isotropic if and only if

mi = 2 for some i. V is distinguished if and only if mi = 0 or 1 for all i.

Example 3.6 (#3 for k = 1).

• G′ = SO2(n1+···+nk), n1 ≤ ·· · ≤ nk even. Set mi = ni−ni−1 (with n0 = 0).

• o corresponds to the partition

(

m1︷ ︸︸ ︷
2k, . . . ,2k,

m2︷ ︸︸ ︷
2k−2, . . . ,2k−2, . . . , . . . ,

mk︷ ︸︸ ︷
2, . . . ,2).

• G=GLn1 ×·· ·×GLnk
.

• V =Matn1,n2 ⊕·· ·⊕Matnk−1,nk
⊕Skewnk

.

• ρ(g1, . . . ,gk+1)(x1, . . . ,xk) = (g1x1g
−1
2 , . . . ,gk−1xk−1g

−1
k ,gkxkg

t
k).

• FRIPs:

{
detxi if ni = ni+1,

Pf(xi · · ·xkx
t
k−1 · · ·xt

i) otherwise,
, i= 1, . . . ,k.

• H = Spm1
×·· ·×Spmk

embedded as

(h1, . . . ,hk) �→ (h1, ι2(h1,h2), . . . , ιk(h1, . . . ,hk)),

where ιj is an embedding Spm1
×·· ·×Spmj

↪→ Spnj
.

• V is basic if and only if n1 = · · ·= nk.

Example 3.7 (#4).

• G′ =G2.

• o is the subregular (10-dimensional) orbit.

• G=GL2, with ΔG
0 consisting of the short simple root.

• V is the space of binary cubic forms

• ρ is the symmetric cube representation twisted by det−1.

• FRIP: the discriminant.
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Table 1. Irreducible basic PVSs of DK-type for exceptional groups

# G′ G ρ H◦ H◦ ↪→G

16 F4 GSpin7 spin(8) G2 φ
6 E7 GL7 ∧3 G2 π
10 E7 SL5×GL3 ∧2⊗Std SL2 Sym4×Sym2

27 E7 GE6 27-dim. F4 σ
20 E7 Spin10×GL2 half-spin(16) ⊗Std G2×SL2 ι1

E7 GL2×SL3×SL4 Std⊗Std⊗Std SL2 id×Sym2×Sym3

7 E8 GL8 ∧3 PGL3 adjoint rep.
21 E8 Spin10×GL3 half-spin(16) ⊗Std SO4 ι2
24 E8 GSpin14 half-spin(64) G2×G2 ι3

• H is (an F -form of) the symmetric group S3 (with its faithful two-dimensional

representation).

• V is distinguished.

Example 3.8 (#8).

• G′ = F4, Δ0 = {α1,α2,α3,α4}, α1,α2 long, α3,α4 short.

• o= F4(a3) (40-dimensional)

• G= (GL2×GL3)/{(λ2I2,λ
−1I3)}, ΔG

0 = {α1,α3,α4}.
• V =HomF (F

2,Sym3).

• ρ(g1,g2)(A)(ξ) = g2A(ξg1)g
t
2

• FRIP: the discriminant of the binary cubic form ξ �→ detA(ξ).

• H is (an F -form of) of the symmetric group S4, embedded in G by its faithful three-

dimensional representation on the GL3-factor and by its irreducible two-dimensional

representation (which factors through the surjection S4 → S3) on the GL2-factor.

• V is distinguished.

Example 3.9 (#12).

• G′ = E6.

• o=D4(a1) (58-dimensional)

• G= SL3×SL3×GL2.

• V =HomF (F
2,Mat3).

• ρ(g1,g2,g3)(A)(ξ) = g1A(ξg3)g
−1
2 , ξ ∈ F 2.

• FRIP: the discriminant of the binary cubic form ξ �→ detA(ξ).

• H is the normalizer of a maximal torus in SL3, embedded diagonally into the SL3-

factors and mapped to the GL2-factor via the faithful two-dimensional representation

of its component group S3.

• V is isotropic.

Other examples of basic PVSs of DK-type are summarized in Table 1 which refers to the

numbering in the list in the appendix of [23] whenever ρ is reduced. (See also [21].)

Here, π is the embedding G2 ↪→ SO7 ↪→GL7 and φ is its lifting to an embedding G2 ↪→
Spin7. Also, σ is the embedding of F4 as the fixed point subgroup of the outer involution

of E6. Finally,
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Table 2. PVSs of DK-type pertaining to the Freudenthal–Tits magic square

# G′ G L K ρ ρ′

14 F4 GSp6 GL3 PGL2 14-dim. Sym2

5 E6 GL6 (GL3×GL3)∩SL6 SL3 ∧3 Std⊗Std
23 E7 GSpin12 GL6 Sp6 half-spin(32) ∧2

29 E8 GE7 GE6 F4 56-dim. 27-dim.

ι1(x,y) = (ψ7,3(φ(x),y),y),

ι2(x,y) = (ψ6,4(Sym
3(y),(x,y)),Sym2(y)),

ι3(x,y) = ψ7,7(φ(x),φ(y)),

where ψm,n is the homomorphism Spinm×Spinn → Spinm+n and we identify Spin3 	 SL2,

Spin6 	 SL4, Spin4 	 SL2×SL2, SO4 	 (SL2×SL2)/{±1}.

3.3

Another interesting set of examples of irreducible PVSs of DK-type arises from the

Freudenthal-Tits magic square (see Table 2). In these cases, G is a maximal Levi subgroup

of G′ corresponding to a simple root α which is a leaf in the Dynkin diagram (it is the unique

simple root which is not orthogonal to the highest root α̃ of G′). The highest weight μ of ρ

is α̃−α and its restriction to Gder is the fundamental weight corresponding to the simple

root β adjacent to α (and of the same length) in the Dynkin diagram. Let Q = LN ′ be

the maximal parabolic subgroup of Gder corresponding to β. Then, there exists a nontrivial

element w0 in the normalizer of L in Gder. We have α = w0μ, which is the lowest weight

of V. Clearly, L stabilizes the root spaces Vα and Vμ. Remarkably, any v ∈ Vα+Vμ outside

Vα∪Vμ is regular. We have H◦ = Lder and [H :H◦] = 2 with H containing a representative

of w0. In particular, V is not basic. Since V 	 g/h as a representation of H, we see that

the restriction of ρ to H is IndHH◦(ρ′⊕1) where ρ′ is the representation of L on n′. It turns

out that N ′ is abelian. Therefore, (L,n′,ρ′) is a PVS and in fact it is basic: the generic

stabilizer (whose identity component is denoted by K in the table) is the centralizer of (a

suitable choice of) w0 in L, i.e., the stabilizer of an outer involution of L corresponding to

w0. See drawings below.

The fundamental relative invariant polynomials in these cases (which are of degree 4) are

called Freudenthal quartics (see [12], [20], [37]). They arise by considering ad(x)4, x∈ V ⊂ g′

as a map between the one-dimensional spaces g′−α̃ and g′α̃ (cf. [13, Table II]). The orbit

structure of V is described in [32].

What is more, the Richardson orbit with respect to the maximal parabolic subgroup

corresponding to β is also even. These orbits give rise to the PVSs #8 (Example 3.8), #12

(Example 3.9), #9 and #28, respectively, in the list of the appendix of [23]. They all have

a fundamental relative invariant polynomial of degree 12, obtained as the determinant of

ad(x)6 : g′−6 → g′6, x ∈ V , where g′6 = g′α̃−α⊕g′α̃ is two-dimensional. Alternatively, the PVS

(L,n′,ρ′) mentioned above has a cubic fundamental relative invariant polynomial, and the

PVS V associated to β is the direct sum of n′ and of its isomorphic image under the simple

reflection wα, which enables one to construct the fundamental relative invariant of V as

the discriminant of the cubic form associated to pairs of elements of n′.

https://doi.org/10.1017/nmj.2024.34 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2024.34


14 T. FINIS AND E. LAPID

α• β• • •

• • β• • •

α•
α• β• • • • •

•

• • • • • β• α•

•
Sato and Kimura classified the irreducible PVSs over F̄ up to a suitable notion of

equivalence weaker than isomorphism [46].

There are 29 essential cases of regular PVSs, listed in the appendix of [23].3 All these

examples are either of DK-type or restrictions thereof to suitable subgroups.4 Most of these

examples are non-isotropic. The exceptions are

• The symmetric square representation of GL2 (Example 3.4 for k = 1, n1 = 2).

• Example 3.9.

• The representation GL2×SOk+2 on Mat2,k+2 (Example 3.5 for k = 1, n1 = 2).

• The restriction of the latter to GL2×Spin7 (resp., GL2×G2) for k = 6 (resp., k = 5) via

the Spin representation Spin7 ↪→ SO8 (resp., the 7-dimensional representation G2 ↪→ SO7).

The non-regular irreducible PVSs over F̄ are (up to castling equivalence) mostly of R-

type or restrictions thereof. The notable exception is the representation ρ of SL2×SLn on

HomF (F
2,Skewn) given by ρ(g1,g2)A(ξ) = g2A(ξg1)g

t
2, which is a PVS for odd n but not

of R-type for n > 7. Another curious example is the restriction of the representation of

GL3×Sp2n (of R-type) on Mat3,2n, n > 1 given by ρ(g1,g2)A= g1Ag
−1
2 to the image of the

symmetric square representation of GL2 times Sp2n. This irreducible, non-regular PVS has

a relative invariant.

§4. Statement of main result

From now on assume that F is a number field. Let A = F∞×Afin be the ring of adeles

of F. For any connected F -group G we write

G(A)1 = ∩χ∈X∗(G)Ker |χ| ,

3 The general case is obtained from these by castling transforms, see [23, §7.1]. These preserve irreducibility
and the generic stabilizer but may yield PVSs which are far removed from nilpotent orbits.

4 The examples not of DK-type are # 17, # 18, # 19, # 22, # 25 and # 26. Example # 1 can be of
DK-type or not.
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where |χ| : G(A) → R>0 is the composition G(A)
χ−→ A∗ |·|−→ R>0. The automorphic space

G(F )\G(A)1 is of finite volume.

Let

a∗G,C = a∗G⊗RC=X∗(G)⊗ZC.

Every λ ∈ a∗G,C defines a (topological) quasi-character g �→ gλ of G(A) by

g
∑

ciχi =
∏
i

|χi(g)| ci , χi ∈X∗(G), ci ∈ C.

All quasi-characters of G(A)/G(A)1 are obtained this way. In particular, we get an

isomorphism of topological groups

ia∗G
ExpG−−−→ PD(G(A)/G(A)1), λ �→ (g �→ gλ),

where PD denotes the Pontryagin dual.

The following is a supplement to Lemma 2.1.

Lemma 4.1. Suppose that G is connected and H is an F-subgroup of G. Write H(A)(1) =

H(A)∩G(A)1. Then, the following two conditions are equivalent.5

1. The restriction map X∗(G)
r−→X∗(H◦) has finite cokernel.

2. The volume of the quotient H(F )\H(A)(1) is finite.

Proof. We may assume without loss of generality that H is connected, since [H(F ) :

H◦(F )] is finite and H(A)/H◦(A) is compact. Now, vol(H(F )\H(A)1) < ∞. Therefore,

vol(H(F )\H(A)(1))<∞ if and only if Y =H(A)(1)/H(A)1 is compact. Note that Y is the

kernel of the homomorphism

H(A)/H(A)1 →G(A)/G(A)1.

Passing to the Pontryagin dual, the lemma follows from the commutative diagram

ia∗G = i(X∗(G)⊗R) PD(G(A)/G(A)1)

ia∗H = i(X∗(H)⊗R) PD(H(A)/H(A)1).

r⊗id

ExpG

ExpH

In fact, Y is compact if and only if Y = 1 if and only if the restriction map a∗G → a∗H is

surjective.

Henceforth, (G,V,ρ) is a reductive PVS (i.e., G is reductive). We apply the criterion of

Lemma 4.1 to the stabilizer Gv of a vector v ∈X(F ). Recall Definition 2.7.

Lemma 4.2. Let v ∈X(F ). Then,

1. The group Gv(A)
(1) =Gv(A)∩G(A)1 is unimodular.

2. The volume κv = vol(Gv(F )\Gv(A)
(1)) is finite if and only if v is non-isotropic.

Proof. The first assertion follows from the fact that modular character of Gv is the

restriction of a character of G by (2.2). The second assertion follows from Lemma 4.1 and

Lemma 2.6.

5 Note that both conditions imply that H(A)∩G(A)1 is unimodular.
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We say that a continuous function φ on V (A) is rapidly decreasing, if it is supported in

V (F∞)K for some compact subgroup K of V (Afin) and supv∈V (A) |f(v)|(1+‖v∞‖)N <∞
for every nonnegative integer N, where ‖·‖ denotes a norm on the real vector space V (F∞).

Let Crd(V (A)) be the space of continuous rapidly decreasing functions on V (A). It is a

(strict) LF-space, i.e., the strict (locally convex) inductive limit of Fréchet spaces.

For any φ ∈ Crd(V (A)) we form the theta function

θφ(g) = θVφ (g) =
∑

v∈X(F )

φ(ρ(g)−1v), g ∈G(A).

The sum is locally uniformly absolutely convergent and defines a continuous function on

G(F )\G(A). We would like to study this function and the corresponding zeta function

which is roughly speaking the Mellin transform of θφ.

Let a∗G,C = a
∗
G⊗C=X∗(G/G�)⊗C. Ideally, we would like to study the double integral∫

G(A)1G�(A)\G(A)

∫
G(F )\G(A)1

θφ(ga) dg a−λ |detρ(a)|−1 da, (4.1)

for λ in a suitable region of convergence in a
∗
G,C. Note that the outer integral formally makes

sense, since the inner integral can be written as the sum over the G(F )-orbits in X(F ), and

the contribution of an orbit ρ(G(F ))v is∫
Gv(F )\G(A)1

φ(ρ(ga)−1v) dg = κv

∫
(Gv(A)∩G(A)1)\G(A)1

φ(ρ(ga)−1v) dg,

where κv = vol(Gv(F )\(Gv(A)∩G(A)1)) as above. Note that the images of Gv(A) and

G�(A) in G(A)1\G(A) = aG =X∗(G
ab)⊗R coincide—they are both equal to the image of

X∗(G
�/Gder)⊗R in aG. Therefore, we can write the above as

κv

∫
Gv(A)\G(A)1G�(A)

φ(ρ(ga)−1v) |detρ(g)|−1 dg.

This also explains why the more straightforward integral
∫
G(F )\G(A)

θφ(g)g
−λ dg would not

converge (for any λ) if a∗G �= a∗G (i.e., if rkX∗(H)> 0 by Lemma 2.4).

A necessary condition for the convergence of this orbital integral for all φ is that κv is

finite, which by Lemma 4.2 is equivalent to v being non-isotropic. Define

θnisoφ (g) =
∑

v∈X(F )niso

φ(ρ(g)−1v), g ∈G(A).

Thus, θnisoφ omits the G(F )-orbits in X(F ) whose contributions to (4.1) clearly diverge.

Our main result, which will be ultimately proved in §7, is the following.

Theorem 4.3. Assume that (G,V,ρ) is a regular PVS. Then, the double integral

Z(φ,λ) =

∫
G(A)1G�(A)\G(A)

∫
G(F )\G(A)1

θnisoφ (ga)dg a−λ |detρ(a)|−1 da,

is absolutely convergent and holomorphic for any λ ∈ a
∗
G,C such that �λ ∈R>0X. Moreover,

the integral is continuous in φ ∈ Crd(V (A)).

Roughly speaking, Theorem 4.3 means that the only problematic terms in (4.1) are those

arising from the orbits ρ(G(F ))v where κv =∞.
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The proof of Theorem 4.3 is based on a direct estimation of the theta function θnisoφ using

standard lattice-point counting methods. In fact, this idea has already been used previously

by Yukie [53], [54] to obtain partial results in the direction of Theorem 4.3, mostly via a case-

by-case analysis, for absolutely irreducible representations ρ.6 Our approach is completely

general and avoids any classification result. Also, the possibility to define a zeta function

in the case where a
∗
G �= a∗G does not seem to have been noticed in the literature.

An alternative classification-free method was developed by Sato [40] and H. Saito [38],

among others, using the decomposition of X(F ) into G(F )-orbits (Galois cohomology) and

an analysis of the resulting Euler products. Saito proves Theorem 4.3 under the additional

assumption that H◦ is semisimple and the component group H/H◦ is abelian. Under the

weaker assumption a
∗
G = a∗G, i.e., X

∗(H) finite, he proves convergence for all �λ in some

cone of the form λ0+R>0X.
7

We expect Theorem 4.3 to hold without the regularity assumption on V. In the case

where there are no relative invariants (in which V is called special), the set G(A)X(F )

is open in V (A), and the integral
∫
G(F )\G(A)1

θφ(g) dg converges to a constant multiple of∫
G(A)X(F )

φ(x) dx. (See [29], [30] and the discussion in [17, §2.4]. The set G(A)X(F ) is

described in [36, Proposition 1.7].)

§5. Bounding the theta function

We start with a general bound on θφ(g) (Proposition 5.1 below) which is valid without the

regularity assumption, but is by itself insufficient to prove convergence of the zeta integral

of θnisoφ (g). To state it, we need to set some more notation which will be used throughout

the paper.

5.1

Recall that G is a reductive group over a number field F. Fix a maximal F -split torus

T0 of G and a minimal parabolic F -subgroup P0 of G containing T0. We have a Levi

decomposition P0 =M0�N0 where M0 is the centralizer of T0 in G and N0 =NP0 , which

is a maximal unipotent F -subgroup of G.

If P is a standard parabolic subgroup of G, then we denote by MP its standard Levi

subgroup.

For simplicity we write a0 = aP0 = aM0 	 aT0 . Let

H0 :M0(A)→ a0,

be the group homomorphism defined by

e〈χ,H0(m)〉 = |χ(m)| , m ∈M0(A), χ ∈X∗(M0).

Let Δ0 ⊂X∗(T0) be the set of simple roots of T0 on LieN0.

Fix a maximal compact subgroup K of G(A) which is in good position with respect

to P0.

6 Yukie proved a general qualitative convergence result for distinguished, absolutely irreducible PVSs.
7 Strictly speaking, Saito assumes that there exists v ∈ X(F ) such that X∗(G◦

v) = 1. By Lemma 2.2
and Lemma 2.6 this implies that v ∈X(F )niso and X∗(H) is finite. Conversely, if X∗(H) is finite, then
X(F )niso = {v ∈X(F ) |X∗(G◦

v) = 1}. Also, he considers a more general situation where G is a connected
linear algebraic group and X the complement of a hypersurface.
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For any g ∈ G(A), we write m0(g) ∈ M0(A)/(M0(A)∩K) for the M0(A)-part in the

Iwasawa decomposition G(A) =N0(A)M0(A)K of g.

We extend H0 to a left-N0(A) and right-K -invariant function on G(A). Thus,

H0(g) =H0(m0(g)).

Fix a Siegel set S in G(A) of the form

S= {g ∈G(A) | 〈α,H0(g)〉> c0 ∀α ∈Δ0},

for some fixed constant c0. Thus,

1. S is left P0(F )N0(A)-invariant.

2. For any g ∈G(A), the set {γ ∈ P0(F )\G(F ) | γg ∈S} is finite.

3. There exists a compact subset Ω⊂G(A) such that

S⊂ P0(F )(T0(A)∩S)Ω. (5.1)

4. G(F )S=G(A) provided that c0 is sufficiently negative.

Let δP0 be the modulus function of P0(A).

5.2

Recall that V is a PVS. (For now, we do not assume that V is regular.) The first order

of business is the following result, which will be proved in the rest of this section.

Proposition 5.1. There exists a continuous seminorm ν on Crd(V (A)) such that

|θφ(g)| ≤ δP0(m0(g)) |detρ(g)|ν(φ),

for all φ ∈ Crd(V (A)) and g ∈S.

Note that |detρ| is the modulus function for the action of G(A) on V (A), that is,∫
V (A)

f(ρ(g)−1v) dv = |detρ(g)|
∫
V (A)

f(v) dv,

for any f ∈ L1(V (A)) and g ∈G(A).

5.3

Let ΦG be the set of roots of T0 on G and let ΨV be the set of weights of T0 on V.

The set ΦG is a (not necessarily reduced) root system and the co-roots are in X∗(T0). We

decompose g and V according to the roots and weights:

g=⊕α∈ΦG∪{0}gα, (5.2a)

V =⊕β∈ΨV
Vβ. (5.2b)

The vector spaces gα, α ∈ ΦG, are not necessarily one-dimensional unless G is split.

Moreover, gα is not necessarily a commutative Lie subalgebra (namely, if 2α ∈ ΦG). The

spaces gα and Vβ are invariant under M0. We write

nβ = dimVβ, β ∈ΨV ,
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and

δV = detρ
∣∣
T0

=
∑

β∈ΨV

nββ ∈X∗(T0).

By convention, Vγ = 0 if γ /∈ΨV . Note that

dρ(gα)(Vβ)⊂ Vα+β , α ∈ ΦG,β ∈ΨV , (5.3)

where dρ : g→ gl(V ) is the Lie algebra representation obtained by differentiating ρ.

Let

δ0 =
∑

α∈Φ+
G

(dimgα)α ∈X∗(T0),

where Φ+
G ⊂ ΦG is the subset of positive roots with respect to P0, so that

δP0(m) = e〈δ0,H0(m)〉, m ∈M0(A).

We enumerate the roots ΦG∪{0} (including multiplicities) as αi, i ∈ IG for some index

set IG, and fix a basis BG = (xi)i∈IG
for g such that xi ∈ gαi for all i. Similarly, we enumerate

the weights ΨV including multiplicities as βj , j ∈ JV , and fix a basis BV = (yj)j∈JV
for V

such that yj ∈ Vβj for all j.

Let Γ(V ) be the (finite) set of subspaces of V that are sums of weight subspaces. Thus,

every U ∈ Γ(V ) is of the form

U =⊕β∈ΨU
Vβ,

where ΨU is a subset of ΨV . We will also write

JV/U = {j ∈ JV | βj /∈ΨU}. (5.4)

Lemma 5.2. Let ψ ∈ Z≥0X, so that f =RIψ is a polynomial. Let U ∈ Γ(V ) be such that

f
∣∣
U
�≡ 0. Then,

1. ψ ∈ Z≥0ΨU .

2. There exists U ′ ∈ Γ(V ), U ′ ⊂ U such that f
∣∣
U ′ �≡ 0 and ψ ∈ R>0ΨU ′ .

Proof. Let BV ∗ = (y∗j )j∈JV
be the basis of V ∗ dual to BV and let BF [V ] be the basis of

F [V ] consisting of monomials in BV ∗ . By definition, the weight of a monomial y∗j1 · · ·y∗jk in

BF [V ] is the sum βj1 + · · ·+βjk . We view F [U ] as a subalgebra of F [V ] using the unique

projection V → U with kernel in Γ(V ). The basis BF [V ] contains BF [U ] (defined in the

obvious way).

Let h= f
∣∣
U
. Expand h in the basis BF [U ]. Since f =RIψ, the weight of any basis element

with nonzero coefficient is ψ. The first part follows.

Let U ′ be the smallest subspace in Γ(V ) such that h∈F [U ′] (viewed as a subspace of F [U ]

via the projection U → U ′ with kernel in Γ(V )). Then, ΨU ′ is the union of {βj1 , . . . ,βjk}
as we range over all the monomials y∗j1 . . .y

∗
jk

in BF (U) with nonzero coefficients in the

expansion of h. Once again, since f = RIψ, for any basis element with nonzero coefficient

as above we have βj1 + · · ·+βjk = ψ. Averaging over all these expressions of ψ, we deduce

that ψ ∈ R>0ΨU ′ .
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Consider the set Γreg(V ) of subspaces in Γ(V ) that contain a regular element:

Γreg(V ) = {U ∈ Γ(V ) | U ∩X �= ∅}.

Corollary 5.3. Let U ∈ Γreg(V ). Then,

1. X⊂ Z≥0ΨU .

2. Assume that V is regular. Let ψ ∈ Z>0X. Then there exists U ′ ∈ Γreg(V ), U ′ ⊂ U such

that ψ ∈ R>0ΨU ′ .

Proof. Let ψ ∈Z≥0X and let f =RIψ. Since U ∈ Γreg(V ), the restriction of f to U is not

identically zero. By Lemma 5.2, ψ ∈ Z≥0ΨU , which implies the first part, and there exists

U ′ ⊂ U , U ′ ∈ Γ(V ) such that f
∣∣
U ′ �≡ 0 and ψ ∈ R>0ΨU ′ .

If V is regular and ψ ∈Z>0X, then X = {v ∈ V | f(v) �=0}. Hence, U ′∩X �= ∅. The second
part follows.

A connected algebraic F -subgroup R of G is called T0-saturated if its Lie algebra is of the

form ⊕α∈Sgα for some subset S of ΦG∪{0}. In this case, we write ΦR = S \{0}. Examples

of T0-saturated subgroups are parabolic F -subgroups containing T0 and their unipotent

radicals, and semistandard Levi subgroups. If R is T0-saturated, then we write

IR = {i ∈ IG | gαi ⊂ LieR}. (5.5)

For any subspace U ⊂ V denote by Stab(U) = {g ∈ G | ρ(g)U = U} the stabilizer of U.

The Lie algebra of Stab(U) is {x ∈ g | dρ(x)U ⊂ U} [2, Lemma II.7.4].

Let U ∈Γ(V ) and let R be a T0-saturated subgroup of G. We denote by R�U the smallest

R-stable space in Γ(V ) containing U.

The following is an immediate consequence of (5.3).

Lemma 5.4. Suppose that S is a subset of ΨV containing ΨU such that for all β ∈ S

and α ∈ΦR with β+α ∈ΨV , we have β+α ∈ S. Then, ΨR�U ⊂ S. In particular, for every

β ∈ΨR�U there exist γ ∈ΨU and α1, . . . ,αk ∈ ΦR such that β = γ+α1+ · · ·+αk.

Remark 5.5. It will follow from Lemma 6.9 below that ΨR�U is the smallest subset S of

ΨV containing ΨU with the property that for every β ∈ S and α∈ΦR such that β+α∈ΨV ,

we have β+α ∈ S.

5.4

For any U ∈ Γ(V ) define the gauge

λ(U) = δ0+
∑

β∈ΨV \ΨU

nββ = δ0+ δV −
∑

β∈ΨU

nββ ∈X∗(T0). (5.6)

It will turn out to be a key parameter governing the growth of the subsum of θφ pertaining

to U.

The following combinatorial-geometric lemma is crucial.

Lemma 5.6. Let U ∈ Γreg(V ). Then, there exists a one-to-one function

ι : JV →IG,

such that

βj +αι(j) ∈ΨU ,

for all j ∈ JV .
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Proof. Let v0 ∈ U ∩X. Recall the surjection Dv0 (2.1). Since v0 ∈ U , Dv0gα ⊂ Vα+ΨU

for all α ∈ ΦG∪{0} by (5.3). Writing the matrix of Dv0 with respect to the bases BG and

BV , a nonzero entry at a position (j, i), j ∈ JV , i ∈ IG, can only occur if βj −αi ∈ ΨU . A

non-zero minor of order dimV therefore gives rise to a function ι as required.

Note that we used that G is reductive in the proof, namely that −ΦG =ΦG.

Corollary 5.7. Let U ∈ Γreg(V ). Then, for any J ⊂ JV we have

δ0+
∑
j∈J

βj ∈ R≥0(ΨU ∪Δ0).

In particular, we have

λ(U) ∈ R≥0(ΨU ∪Δ0). (5.7)

Proof. We write

δ0+
∑
j∈J

βj = δ0−
∑
j∈J

αι(j)+
∑
j∈J

(βj +αι(j)),

and observe that δ0−
∑

j∈J αι(j) ∈ R≥0Δ0 since ι is injective.

Taking J = JV/U (cf. (5.4) and (5.6)) we obtain (5.7).

5.5

The proof of Proposition 5.1 is based on a standard bound for lattice sums.

For any ξ ∈ V denote by ξβ ∈ Vβ, β ∈ ΨV the components of ξ with respect to the

decomposition (5.2b).

We write x± =max(0,±x) for the positive and negative parts of a real number x, so that

x= x+−x−.

For simplicity, we write A(·,φ)�rd
N,φ BN (·) if for every N ≥ 0 there exists a continuous

seminorm νN on Crd(V (A)) such that |A(·,φ)| ≤BN (·)νN (φ) for every φ ∈ Crd(V (A)).

Lemma 5.8. Let Ω be a compact subset of G(A). Let U ∈ Γ(V ). Then,∑
ξ∈U :ξβ =0∀β∈ΨU

∣∣φ(ρ(g)−1ξ)
∣∣�rd

N,φ e
∑

β∈ΨU
(nβ〈β,H0(g)〉+−N〈β,H0(g)〉−)

, g ∈ T0(A)Ω.

Equivalently,

e〈λ(U),H0(g)〉 |detρ(g)|−1
∑

ξ∈U :ξβ =0∀β∈ΨU

∣∣φ(ρ(g)−1ξ)
∣∣�rd

N,φ δP0(m0(g))e
−N

∑
β∈ΨU

〈β,H0(g)〉− .

In particular, for U = V

|detρ(g)|−1
∑

ξ∈V :ξβ =0∀β∈ΨV

∣∣φ(ρ(g)−1ξ)
∣∣�rd

N,φ min(1, |detρ(g)|)N .

Proof. The first two statements are clearly equivalent by the definition (5.6) of λ(U).

Since ρ acts continuously on Crd(V (A)), we may assume without loss of generality that

g ∈ T0(A). (In fact, since both sides are left T0(F )-invariant, we may assume that g ∈ T0(R)

where R is viewed as a subring of A= AQ⊗F via x �→ x⊗1.)

Upon replacing φ by
∏

β∈ΨV
(1+ ‖vβ,∞‖)−n1Kβ

(vβ,fin), n � 0 where Kβ is a compact

open subgroup of Vβ(Afin) for every β ∈ ΨV , we may also assume that φ
∣∣
U(A)

factors as a
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product φ(v) =
∏

β∈ΨU
φβ(vβ), v ∈U(A), where each factor φβ ∈Crd(Vβ(A)) is nonnegative

real. Since T0 acts by scalars on each space Vβ, we are reduced to the assertion (for t ∈A×)

∑
ξβ =0

φβ(t
−1ξβ)�rd

N,φβ

{
|t|nβ |t| ≥ 1,

|t|N |t| ≤ 1.

In turn, this immediately reduces to the following elementary statement for ϕ ∈ Crd(A):

∑
ξ∈F×

ϕ(t−1ξ)�rd
N,ϕ

{
|t| |t| ≥ 1

|t|N |t| ≤ 1.

To prove this, note that given a compact subset K of A, we have

#(F×∩ tK)� |t| .

In particular, F×∩ tK = ∅ if |t| is sufficiently small. Thus, given a compact subset Kfin of

Afin,

#{ξ ∈ F× | (t−1ξ)fin ∈Kfin and ‖(t−1ξ)∞‖ ≤R}�R[F :Q] |t| , R≥ 0.

The statement above follows easily from this estimate and the fact that ϕ ∈ Crd(A).

Proof of Proposition 5.1. Define the support of an element ξ ∈ V to be

suppξ = {β ∈ΨV | ξβ �= 0},

so that for any U ∈ Γ(V ), ξ ∈ U ⇐⇒ suppξ ⊂ΨU .

We decompose θφ according to the support of the summands, i.e., we write

θφ(g) =
∑

U∈Γ(V )

ΘU (g) where ΘU (g) =
∑

ξ∈X(F ): suppξ=ΨU

φ(ρ(g)−1ξ). (5.8)

Of course, ΘU is no longer G(F )-invariant or even P0(F )-invariant, but it is T0(F )-invariant.

At any rate, for the proof of Proposition 5.1 we may assume by (5.1) that g ∈ (T0(A)∩
S)Ω, which we will do throughout.

Fix U ∈ Γ(V ). By Lemma 5.8, we have

ΘU (g)�rd
N,φ δP0(m0(g)) |detρ(g)|e−〈λ(U),H0(g)〉−N

∑
β∈ΨU

〈β,H0(g)〉− . (5.9)

Moreover, we may assume that U ∈ Γreg(V ), for otherwise ΘU (g) = 0. By (5.7), we have

λ(U) =
∑

β∈ΨU

cββ+
∑
α∈Δ0

dαα,

with suitable coefficients cβ,dα ≥ 0. Since g ∈ (T0(A)∩S)Ω, we deduce that

ΘU (g)�rd
N,φ δP0(m0(g)) |detρ(g)|e−

∑
β∈ΨU

(cβ〈β,H0(g)〉++N〈β,H0(g)〉−)
.

In particular,

ΘU (g)�rd
φ δP0(m0(g)) |detρ(g)| . (5.10)

The proposition follows.
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§6. Special subspaces

In this section, we provide some geometric prerequisites to analyze further the behavior

of θφ on the Siegel domain. A crucial role will be played by certain subspaces of V that are

PVSs for parabolic subgroups of G (cf. Definition 6.5 below).

6.1

We start with the following elementary fact from convex geometry.

Lemma 6.1. Let W be a finite-dimensional real vector space and let vi, i ∈ I be finitely

many vectors in W. Given λ ∈ R≥0{vi, i ∈ I} we write λ =
∑

i∈I λivi with λi ≥ 0 for all i

and with maximal number of nonzero (i.e., positive) coefficients. Then,

1. I ′ := {i ∈ I | λi > 0} is uniquely determined by λ.

2. Suppose that λ=
∑

i∈I λ
′
ivi with λ′

i ∈R, i∈ I, such that λ′
i ≥ 0 for all i /∈ I ′. Then, λ′

i =0

for all i /∈ I ′.

3. In particular, for any i ∈ I, if vi is in the linear span of {vj}j∈I′ then i ∈ I ′.

In the situation of Lemma 6.1, we will say that vi, i ∈ I ′ is the positive envelope of λ

with respect to vi, i ∈ I.

Fix U ∈ Γreg(V ). Recall that λ(U) ∈ X∗(T0) was defined in (5.6) and that λ(U) ∈
R≥0(Δ0∪ΨU ) by (5.7). Let CU ⊂ a0 be the cone dual to R≥0(Δ0∪ΨU ), that is,

CU = {x ∈ a0,+ | 〈β,x〉 ≥ 0 ∀β ∈ΨU}. (6.1)

Let FU be the face of CU defined by λ(U), i.e.,

FU = {x ∈ CU | 〈λ(U),x〉= 0}.

Roughly speaking, FU describes the directions in T0(F )\(T0(A)∩S) where the bounded

function δ−1
P0

|detρ|−1ΘU (see (5.8)) does not decay. To analyze FU , let A⊂Δ0∪ΨU be the

positive envelope of λ(U) with respect to Δ0∪ΨU . Let I =A∩Δ0 and J =A∩ΨU .

(Note that we do not assume at the outset that Δ0 and ΨU are disjoint.)

Definition 6.2. Let E(U) (the enveloping group of U ) be the standard parabolic

subgroup of G such that I =Δ
E(U)
0 .

Then,

FU = {x ∈ CU | 〈α,x〉= 〈β,x〉= 0 ∀α ∈Δ
E(U)
0 ,β ∈ J}.

Remark 6.3. Let U ∈ Γreg(V ) and let ι be as in Lemma 5.6. Then, the image under ι

of JV/U contains INE(U)
and is contained in IE(U).

Indeed, as in the proof of Corollary 5.7 we write

λ(U) =
∑

j∈JV/U

(βj +αι(j))+ δ0−
∑

j∈JV/U

αι(j).

It follows from the definition of E(U) that δ0−
∑

j∈JV/U
αι(j) can be written as a linear

combination of Δ
E(U)
0 . This precisely means that INE(U)

⊂ ι(JV/U )⊂ IE(U).

6.2

To go further, we need a follow-up of Lemma 5.6. It will play a key role.

https://doi.org/10.1017/nmj.2024.34 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2024.34


24 T. FINIS AND E. LAPID

Proposition 6.4. Let U ∈ Γreg(V ). Assume that P0 stabilizes U, so that the stabilizer

S = Stab(U) of U in G is a standard F-parabolic subgroup of G. Then,

1. There exists a one-to-one function

ι : JV/U →INS
,

such that βj +αι(j) ∈ΨU for all j ∈ JV/U . In particular, dimV/U ≤ dimG/S.

2. S ⊂E(U).

3. The following conditions are equivalent.

(a) dimV/U = dimG/S.

(b) ι is a bijection.

(c) λ(U) =
∑

j∈JV/U
(βj +αι(j))+ δS0 .

(d) For some (or every) v ∈ U ∩X, ρ(S)v is dense in U and G◦
v ⊂ S.

(e) For some (or every) v ∈ U ∩X, the variety

Gv,U = {g ∈G | ρ(g)−1v ∈ U},

is the union of finitely many left cosets of S in G.

4. If the conditions in part 4 are satisfied, then U is a PVS with respect to S with open

orbit U reg = U ∩X. Moreover, Gv,U =GvS for any v ∈ U reg.

On the other hand, if the conditions in part 4 are not satisfied, then E(U) �= S.

Proof. Write s=LieS for the Lie algebra of S. Let N =NS , and let N̄ be the unipotent

radical of the parabolic subgroup of G opposite to S. Denote the corresponding Lie algebras

by n= LieN and n̄= LieN̄ .

Let v0 ∈U ∩X. The composition of the surjection Dv0 (2.1) with the projection V → V/U

factors as a surjective map

D̃v0 : n̄	 g/s→ V/U 	⊕β∈ΨV \ΨU
Vβ.

We have D̃v0(gα)⊂ V(α+ΨU )\ΨU
for all α ∈ΦN̄ =−ΦN . The existence of ι follows as in the

proof of Lemma 5.6. Moreover,

λ(U) =
∑

β∈ΨV \ΨU

nββ+ δ0 =
∑

j∈JV/U

(βj +αι(j))+ δ0−
∑

j∈JV/U

αι(j).

Clearly,

δ0−
∑

j∈JV/U

αι(j) = δ0−
∑

α∈ΦN

(dimgα)α+μ= δS0 +μ,

where μ=
∑

i∈IN\ι(JV/U )αi is a (possibly empty) sum of roots in N. Therefore, S ⊂E(U),

and the inclusion is proper if μ �= 0.

Note that the following statements are equivalent: μ = 0; ι is a bijection; dimV/U =

dimG/S; D̃v0 is an isomorphism of vector spaces.

Observe that the kernel of D̃v0 is D−1
v0

(U)/s and we have a short exact sequence

0→KerDv0/(KerDv0 ∩ s)→KerD̃v0 → U/Dv0(s)→ 0.

Thus, D̃v0 is an isomorphism if and only if KerDv0 ⊂ s and Dv0(s) = U . Since KerDv0 =

LieGv0 , the first condition means that G◦
v0

⊂ S, while the second condition means that the

S -orbit of v0 is dense in U. This proves that conditions (33a)–(33d) are equivalent and that
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the validity of (33d) does not depend on the choice of v ∈ U ∩X. Therefore, under these

conditions, U ∩X is a single S -orbit, since U ∩X is irreducible. Since U ∩X = ρ(Gv0,U )
−1v0,

this also implies that Gv0,U =Gv0S, which is a finite union of left S -cosets since G◦
v0

⊂ S.

Finally, if Gv0,U =
⋃n

i=1 ηiS is the union of finitely many left S -cosets, then

U ∩X = ρ(Gv0,U )
−1v0 =

n⋃
i=1

ρ(S)ρ(ηi)
−1v0,

is the union of finitely many S -orbits, at least one of which must be dense, while G◦
ρ(ηi)−1v0

⊂
S for every i=1, . . . ,n, since Gρ(ηi)−1v0

= η−1
i Gv0ηi ⊂ η−1

i Gv0,U is contained in a finite union

of left S -cosets. Thus, condition (e) is also equivalent to the other ones. This concludes the

proof of the proposition.

As we shall see, the spaces considered in the proposition above deserve special attention.

Definition 6.5. We denote by Γspcl(V ) the set of spaces satisfying the conditions

of Proposition 6.4 part 4. Thus, Γspcl(V ) consists of the subspaces U ∈ Γreg(V ) that are

stabilized by P0 and satisfy dimV/U = dimG/Stab(U).

A subspace in Γspcl(V ) will be called special.

Remark 6.6. Trivially, V ∈ Γspcl(V ). It follows from Proposition 6.4 that if V is basic

(see Definition 2.8), then Γspcl(V ) = {V }.
The converse is not true: V =Matn is a PVS with respect to G=GLn acting by matrix

multiplication. Here H = 1, but it is easy to see that Γspcl(V ) = {V }.
In fact, the four examples in Table 2 of §3.3 provide counterexamples for irreducible PVS

of DK-type. Indeed, by Proposition 6.4, if U ∈ Γspcl(V ), then it is stable under the maximal

standard subgroup parabolic Q of G whose Levi part L satisfies H◦ = Lder. In particular,

U is stable under L. However, V decomposes into four irreducible subrepresentations of

L, V = U1 ⊕U2 ⊕U3 ⊕U4 where U1,U2 are one-dimensional, ΨU1 consists of the highest

weight of V, and dimU3 = dimU4 = dimG/Q. Since every non-trivial P0-stable subspace of

V contains U1, we cannot have dimV/U = dimG/Q. Hence U = V .

Consider the list of reduced, absolutely irreducible PVSs of Sato and Kimura in the

appendix to [23]. Of the 29 regular cases, 23 are of DK-type.8 Among these, we have

Γspcl(V ) �= {V } only in the following eight cases: # 2 (Example 3.4 for k= 1 and n1 = 2), #

4 (Example 3.7), # 8 (Example 3.8), # 9, # 11, # 12 (Example 3.9), # 15 (Example 3.5 for

k = 1 and n1 = 2 or n2−2), # 28. (To verify the assertion Γspcl(V ) �= {V } in the remaining

cases # 9, # 11 and # 28, one may use the construction of §9.)
Remark 6.7. In general, we may have E(U) � Stab(U) even if U ∈ Γspcl(V ). See

Examples 6.15 and 7.8 below.

In principle, using Proposition 6.4 one can enumerate Γspcl(V ), at least in small rank

cases or when H is contained in only a few parabolic subgroups.

Example 6.8. Consider Example 3.4 for k = 1, n1 = 2 and Example 3.7. Write the

simple roots of G′ as {α,β} where α is the short root. Then ΔG
0 = {α} and ΨV = {β,β+

α,β+2α[,β+3α]} where root in square brackets occurs for G′ =G2. It is easy to see that

Γspcl(V ) = {V,U} where ΨU =ΨV \{β}. Stab(U) =E(U) is the Borel subgroup of G.

8 Case # 1 can be of DK-type or not, but it is always basic.

https://doi.org/10.1017/nmj.2024.34 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2024.34


26 T. FINIS AND E. LAPID

6.3

For α ∈ ΦG denote by N(α) the unipotent subgroup of G with Lie algebra gα+ g2α if

2α ∈ ΦG and gα otherwise.

The following general fact about representations is probably well-known.

Lemma 6.9. Let U ∈ Γ(V ) and α ∈ΦG. Suppose that U is stable under N(α). Then, for

every β ∈ΨU such that α+β ∈ΨV we have α+β ∈ΨU .

This follows from the representation theory of SL2. To explain this, we need a standard

consequence of the Jacobson–Morozov Theorem.

Lemma 6.10. Let α ∈ ΦG and let 0 �= e ∈ gα. Then, there exists a unique F-morphism

ϕ : SL2 →G such that dϕ(
(
0 1
0 0

)
) = e, the image of the diagonal torus under ϕ is contained

in T0 and the co-character t �→ ϕ(
(
t
t−1

)
) is α∨.

Proof. This is well-known. For convenience we include the proof.

For the uniqueness of ϕ – see [8, Lemma 3.4.4].

By passing to the subgroup generated by N(α) and N(−α), we may assume that G is

semisimple of F -rank one. We may also assume without loss of generality that α > 0, so

that N(α) ⊂N0.

By the Jacobson–Morozov Theorem, there exists an F -morphism ϕ′ : SL2 →G such that

dϕ′(
(
0 1
0 0

)
) = e. Let a be the restriction of ϕ′ to the diagonal torus, i.e., a(s) = ϕ′(

(s
s−1

)
),

so that Ad(a(s))e = s2e. Let T be the image of a, which is a maximal split torus in G.

By the Bruhat decomposition, for any g /∈ P0 we have gN0g
−1∩N0 = 1. Thus, T ⊂ P0. It

follows that T = nT0n
−1 for some element n of N0(F ).

We claim that n centralizes e. Indeed, for every t ∈ T0, both Ad(t)e and Ad(ntn−1)e are

scalar multiples of e. Fix t ∈ T0 such that its centralizer in N0 is trivial. Write ntn−1 = n′t

where n′ = [n,t] ∈N0. Then, Ad(n′)e is a scalar multiple of e, and hence Ad(n′)e= e since

n′ is unipotent. Note that the centralizer N0,e of e in N0 is invariant under conjugation by

T0 (since Ad(T0) acts by scalars on e). By [2, Proposition III.9.3] the maps N0 →N0 and

N0,e →N0,e given by n �→ n′ are bijective. Since n′ ∈N0,e, we infer that n∈N0,e as claimed.

We can now take ϕ= ϕ′(n−1 ·n).
Proof of Lemma 6.9. For any integer k let Vk ∈ Γ(V ) be such that

ΨVk
= {β ∈ΨV | 〈β,α∨〉= k}.

Fix 0 �= e ∈ gα. Using Lemma 6.10 and basic facts about representation theory of SL2, it

follows that for any integer k, the map

dρ(e) : Vk−1 → Vk+1 is

{
surjective if k ≥ 0,

injective if k ≤ 0,

Thus, for every β ∈ΨV ,

dρ(e) : Vβ → Vβ+α is

{
surjective if 〈β,α∨〉+1≥ 0,

injective if 〈β,α∨〉+1≤ 0.

In particular, dρ(e)(Vβ) �= 0 if Vβ+α �= 0. The lemma follows.

Lemma 6.11. Suppose that U1,U2 ∈ Γspcl(V ) and U1 ∩U2 ∈ Γreg(V ). Then, U1 ∩U2 ∈
Γspcl(V ) and Stab(U1∩U2) = Stab(U1)∩Stab(U2).

https://doi.org/10.1017/nmj.2024.34 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2024.34


ZETA FUNCTIONS OF PVSS 27

Proof. Let U = U1∩U2, S = Stab(U), N =NS , Sk = Stab(Uk), Nk =NSk
, Mk =MSk

,

k = 1,2. Clearly, ΨU = ΨU1 ∩ΨU2 , P0 stabilizes U and S ⊃ S1 ∩S2. In particular, ΦN ⊂
ΦN1 ∪ΦN2 .

By Proposition 6.4, there exists a one-to-one function

ι : JV/U →IN ,

such that βj +αι(j) ∈ΨU for all j ∈ JV/U .

We claim that if βj ∈ ΨV \ΨU1 , then αι(j) ∈ ΦN1 . Indeed, suppose otherwise. Then,

αι(j) ∈ΦM1 (since αι(j) > 0 as αι(j) ∈ΦN ). Therefore, using Lemma 6.9, βj = (βj +αι(j))−
αι(j) ∈ΨU1 since U1 is S1-stable, in contradiction to the assumption that βj /∈ΨU1 .

Thus, the restriction of ι to JV/U1
is a bijection with IN1 (since U1 ∈ Γspcl(V )). Similarly,

the restriction of ι to JV/U2
is a bijection with IN2 .

It follows that ι is onto and ΦN =ΦN1 ∪ΦN2 . Thus, U ∈ Γspcl(V ) and N =N1N2, which

implies that S = S1∩S2.

Lemma 6.12. Let U ∈ Γreg(V ) and Ũ = E(U) � U . Then, Ũ ∈ Γspcl(V ) and E(Ũ) =

Stab(Ũ) =E(U).

Proof. Clearly Ũ ∈ Γreg(V ), since Ũ ⊃ U , and Stab(Ũ) ⊃ E := E(U). In view of

Proposition 6.4, in order to prove the lemma we only need to show that Ẽ := E(Ũ) ⊂ E.

We have ΨŨ ⊃ΨU . Write

λ(Ũ) =
∑

β∈ΨŨ

cββ+
∑

α∈ΔẼ
0

dαα,

with cβ ≥ 0 for all β ∈ΨŨ and dα > 0 for all α ∈ΔẼ
0 . Then,

λ(U) =
∑

β∈ΨU

cββ+
∑

β∈ΨŨ\ΨU

(cβ +nβ)β+
∑

α∈ΔẼ
0

dαα.

Using Lemma 5.4 for each β ∈ΨŨ \ΨU , we can rewrite the above relation as

λ(U) =
∑

β∈ΨU

c′ββ+
∑
α∈Δ0

d′αα,

where c′β ≥ 0 for all β ∈ ΨU , d
′
α ≥ 0 for α ∈Δ0 \ΔE

0 and d′α ≥ dα > 0 for all α ∈ΔẼ
0 \ΔE

0 .

By Lemma 6.1 we deduce that d′α = 0 for all α ∈ Δ0 \ΔE
0 . This implies that Ẽ ⊂ E, as

required.

Corollary 6.13.

1. If U ∈ Γreg(V ) is stable under E(U), then U ∈ Γspcl(V ).

2. If U ∈ Γreg(V ) and E(U)�G, then there exists Ũ ∈ Γspcl(V ), Ũ �= V , containing U.

3. In particular, if Γspcl(V ) = {V }, then E(U) =G for every U ∈ Γreg(V ).

Example 6.14. Consider Example 3.2 with k = 3 and n1 < n2. Then, it is easy to see

that Γspcl(V ) = {V,V1,V2} where

V1 = {(x1,x2) | the first n2−n1 columns of x1 vanish},
V2 = {(x1,x2) | the last n2−n3 rows of x2 vanish}.

The general case of Example 3.2 is far more complicated and will not be considered here.
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Example 6.15. Consider Example 3.8 pertaining to F4. Write for simplicity (i1i2i3i4)

instead of i1α1+ i2α2+ i3α3+ i4α4 ∈X∗(T0).

We explicate ΨV in a way that demonstrates its realization as pairs of 3×3-symmetric

matrices as follows:

ΨV =

(
(0100) (0110) (0111)
(0110) (0120) (0121)
(0111) (0121) (0122)

)
,

(
(1100) (1110) (1111)
(1110) (1120) (1121)
(1111) (1121) (1122)

)
.

Consider the subspaces U1,U2,U3 in Γ(V ) given by

ΨU1 =ΨV \{(0100),(1100)},
ΨU2 =ΨV \{(0100),(0110),(0120)},
ΨU3 =ΨV \{(0100),(0110),(0111)}.

In matrices,

U1 =
(

0 ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

)
,
(

0 ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

)
, U2 =

(
0 0 ∗
0 0 ∗
∗ ∗ ∗

)
,
(∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

)
, U3 =

(
0 0 0
0 ∗ ∗
0 ∗ ∗

)
,
(∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

)
.

Let U4 = U1∩U2, U5 = U2∩U3 so that

U4 =
(

0 0 ∗
0 0 ∗
∗ ∗ ∗

)
,
(

0 ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

)
, U5 =

(
0 0 0
0 0 ∗
0 ∗ ∗

)
,
(∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

)
.

Then, it is not difficult to check that

Γspcl(V ) = {V,U1,U2,U3,U4,U5}.

Moreover,

Stab(U1) =E(U1) = (∗00∗), Stab(U2) =E(U2) = (00∗0), Stab(U3) =E(U3) = (000∗),
Stab(U4) = Stab(U5) =E(U5) = (0000), E(U4) = (00∗0).

§7. Proof of Theorem 4.3

In this section, we prove Theorem 4.3 by providing an estimate on ΘU which is finer than

(5.10) for spaces U ∈ Γreg(V ) containing non-isotropic elements (see Definition 2.7).

7.1

Let C be a closed cone in a finite-dimensional real vector space W.

Let f be a continuous real-valued function onW and let d> 0. We say that f is positively-

d -homogeneous if f(rv) = rdf(v) for all r > 0, v ∈W . (In the cases at hand, d= 1.) In this

case, f is positive on C \{0} if (and of course, only if) it is positive on the intersection of C
with the unit sphere of W with respect to a prescribed norm.

The space of continuous positively-d -homogeneous functions on W is a Banach space

with respect to the supremum norm on the unit ball and the positivity on C \{0} is an open

condition.

By integration using spherical coordinates, it is clear that if f is positively-d -homogeneous

and positive on C \{0}, then the integral of e−f over C converges.

Suppose that f is positively-1-homogeneous and let λj , j ∈ J be a finite set of vectors in

W ∗. Then, the positively-1-homogeneous function f+N
∑

j∈J 〈λj ,v〉− is positive on C \{0}
for N � 0 if and only if f is positive on the subcone {v ∈ C : 〈λj ,v〉 ≥ 0 ∀j ∈ J}\{0}.

These facts yield the following elementary convergence result.
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Lemma 7.1. Let χi, i ∈ I and λj, j ∈ J be finite sets of vectors in a∗0. Let W ⊂ a0 be

a subspace and f a continuous positively-1-homogeneous function on W. Assume that f is

positive on the cone

{x ∈ a0,+∩W | 〈λj ,x〉 ≥ 0 ∀j ∈ J}\{0}.

Then, there exists c > 0 such that for all N � 0 the integral∫
a0,+∩W

e−f(H)−N
∑

j∈J〈λj ,H〉−−
∑

i∈I σi〈χi,H〉 dH,

converges for |σi|< c, i∈ I. Moreover, if χi ∈R≥0{λj}j∈J for all i∈ I, then for all σi >−c,

i ∈ I the integral converges for sufficiently large N (depending on the maximum value of

the σi’s).

7.2

We now turn to the support sets of non-isotropic elements.

Definition 7.2. We denote by Γniso(V ) ⊂ Γreg(V ) the set of subspaces in Γ(V ) that

contain a non-isotropic element.

Definition 7.3. Let U ∈ Γspcl(V ). We say that U is exceptional if there exists U ′ ∈
Γreg(V ), U ′ ⊂ U such that the linear span of X∗(G)∪Δ

Stab(U)
0 ∪ΨU ′ is a proper subspace

of a∗0. In this case, we will also say that (U,U ′) is an exceptional pair.

We denote by Γexcp(V ) the set of exceptional subspaces of V.

Proposition 7.4. Let U ∈ Γspcl(V )∩Γniso(V ). Then U is not exceptional.

Conversely, suppose that V is regular. Then, for any isotropic v ∈X(F ) there exists an

exceptional pair (U,U ′) such that v ∈ ρ(G(F ))U ′.

Thus, if V is regular, then the set of isotropic elements in X(F ) is

∪U∈Γexcp(V )ρ(G(F ))U ∩X(F ) = ∪(U,U ′)ρ(G(F ))U ′∩X(F ),

where (U,U ′) range over the exceptional pairs.

Remark 7.5. The first implication cannot be reversed. There is an example of a regular

PVS V and a non-exceptional U ∈ Γspcl(V ) such that all elements of U ∩X(F ) are isotropic

(see Example 7.8 below).

Proof. For the first part, let U ∈ Γspcl(V ) and S = Stab(U). Assume that there exists

U ′ ∈ Γreg(V ), U ′ ⊂U such that the linear span of X∗(G)∪ΔS
0 ∪ΨU ′ is a proper subspace of

a∗0. Equivalently, there exists a (split) torus 1 �= T ⊂ T0∩Z(MS)∩Gder fixing U ′ pointwise

(namely, the identity component of ∩χ∈X∗(G)∪ΔS
0 ∪ΨU′ Kerχ). We will show that all elements

of U ∩X(F ) are isotropic.

Fix a regular element u in U ′. By Proposition 6.4, we have G◦
u ⊂ S. Since T lies in the

center of MS , [T,Gu∩S]⊂ [Z(MS),S]⊂NS . On the other hand, T ⊂G◦
u (since T stabilizes

all elements of U ′). Therefore, T centralizes (Gu∩S)/(G◦
u∩NS). In particular, the image

of T in G◦
u/(G

◦
u∩NS) is central. Note that G◦

u∩NS is contained in the unipotent radical

of G◦
u.

Now, let v ∈ U ∩X(F ). By Proposition 6.4, v is in the S -orbit (but not necessarily the

S(F )-orbit) of u. Let x∈ S(F̄ ) be such that u= ρ(x)v. Then, x−1Tx is a torus in Gder∩G◦
v.

Moreover, for any σ ∈Gal(F̄ /F ) we have σ(x)x−1 ∈Gu∩S. Let T ′ be the image of x−1Tx in
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G◦
v/(G

◦
v∩NS). Then, T

′ is central. Moreover, T ′ is a split torus. In fact, since T centralizes

σ(x)x−1(G◦
u∩NS) for all σ ∈Gal(F̄ /F ), the map t �→ x−1tx(G◦

v∩NS) is an F -isomorphism

of T with T ′. In particular, the image of T ′ in Gred
v is a non-trivial F -split central torus.

Thus, v is isotropic by Lemma 2.6. This proves the first part.

For the second part, suppose that V is regular and v ∈ X(F ) is isotropic. Let T �= 1

be a split torus contained in Z(G◦
v)∩Gder. The centralizer L = CG(T ) contains G◦

v. Upon

replacing v by an element in its G(F )-orbit, we can assume that T is contained in T0∩Gder

and that L is a standard Levi subgroup of G. Thus, X∗(T )⊂ aL and in the notation of [26,

I.1.10] we have X∗(T )∩a
reg
L �= ∅. Fix an element h ∈X∗(T )∩a

reg
L ⊂ aG0 . Upon conjugating

by an element of the Weyl group of T0, we may assume that 〈α,h〉 is non-negative precisely
for the roots α of the (proper) standard parabolic subgroup Q of G with Levi subgroup

L [26, Lemma I.1.10].

Consider the subspaces U,U ′ ∈ Γ(V ) given by

ΨU = {β ∈ΨV | 〈β,h〉 ≥ 0}, ΨU ′ = {β ∈ΨV | 〈β,h〉= 0} ⊂ΨU .

Clearly U is stable under Q and U ′ ⊂U . Since T stabilizes v, suppv⊂ΨU ′ so that v ∈U ′. In

particular, U ′ ∈ Γreg(V ), and a fortiori U ∈ Γreg(V ). Recall the surjection (2.1). It satisfies

Dv(gα)⊂ Vα+ΨU′ for all α ∈ ΦG∪{0},

by (5.3). In particular, Dv(q) ⊂ U and Dv(n̄)∩U = 0 where q = LieQ and n̄ is the Lie

algebra of the unipotent radical of the parabolic subgroup of G opposite to Q. We claim

that the preimage of U under Dv is q. It suffices to show that D−1
v (U)∩ n̄ = 0. Suppose

that x ∈ n̄ and Dv(x) ∈ U . Then, by the above, Dv(x) = 0. Hence, x is in the Lie algebra of

Gv, which is contained in l, and thus x= 0.

Hence, the induced map D̃v : g/q → V/U is an isomorphism. It follows from Proposi-

tion 6.4 that U ∈ Γspcl(V ) and Stab(U) =Q.

Since the nonzero vector h ∈ aG0 annihilates ΨU ′ ∪ΔQ
0 , we obtain that (U,U ′) is

exceptional.

Finally, the last part follows from the first two parts.

Remark 7.6. We do not know whether the second (and hence also the last) part of

Proposition 7.4 hold without the regularity assumption on V.

Example 7.7. Proposition 7.4 is best illustrated by the case where V is the PVS of

binary quadratic forms with respect to the action of G = GL2, i.e., the symmetric square

representation. (Example 3.4 with k = 1, n1 = 2.) Thus, X is the set of binary quadratic

forms with nonzero discriminant. In this case, ΨV = {β,β+α,β+2α}, where α is the simple

root of G, and β the lowest weight of V. Note that β+α is the determinant character of

G. Apart from V itself, there is a single space U in Γspcl(V ), namely U = Vβ+α+Vβ+2α,

and E(U) = Stab(U) is the standard Borel subgroup of G. The space U is exceptional.

More precisely, (U,U ′) is an exceptional pair where U ′ = Vβ+α. Let v ∈X. Then, Gv is an

orthogonal group so that G◦
v is a one-dimensional torus. Thus, Proposition 7.4 amounts to

the fact that G◦
v is split if and only if v can be represented as xy in suitable coordinates.
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Example 7.8. Let us revisit Example 3.9 pertaining to the simply connected group

G′ = E6.

• • • • •

•
For brevity we will write

(
abcde

f

)
for the linear combinations of simple roots with

coefficients a,b,c,d,e,f .

We will also write standard parabolic subgroups as (∗0∗∗0∗ ) where ∗ indicates that the

simple root is in the Levi subgroup and 0 otherwise.

Let θ be the outer involution of G′ acting on the simple roots as indicated.

Let P be the maximal standard parabolic subgroup (∗∗0∗∗∗ ). The Levi subgroup G has

derived group SL2×SL3×SL3.

The unipotent radical NP , which has dimension 29, has a three-step filtration, the first

filtration step V (the abelianization) has dimension 18. We may write ΨV explicitly to

reflect the realization of V as the space of pairs of 3×3-matrices as follows.

ΨV =

⎛
⎝(111000 ) ,(111100 ) ,(111110 )

(011000 ) ,(011100 ) ,(011110 )

(001000 ) ,(001100 ) ,(001110 )

⎞
⎠ ,

⎛
⎝(111001 ) ,(111101 ) ,(111111 )

(011001 ) ,(011101 ) ,(011111 )

(001001 ) ,(001101 ) ,(001111 )

⎞
⎠ .

We observe that for all proper subspaces U ∈ Γspcl(V ), U ∩X(F ) consists entirely of

isotropic elements. Namely, if U ∈ Γspcl(V ) contains a non-isotropic element x, then G◦
x has

to be contained in Q= Stab(U). But the projection of G◦
x to any of the two SL3 factors of

Gder is an anisotropic maximal torus of this group, which implies that Q contains both SL3

factors. Therefore, either Q = G and U = V or the intersection of Q with the SL2 factor

is the standard Borel subgroup. However, for this maximal parabolic subgroup Q of G the

only non-trivial Q-invariant subspace of V does not intersect X.

Define U1,U2,U3 ∈ Γ(V ) by

ΨU1 =ΨV \{(001000 ) ,(011000 ) ,(001001 ) ,(011001 )},
ΨU2 =ΨV \{(001000 ) ,(011000 ) ,(111000 )},
ΨU3 =ΨV \{(001000 ) ,(011000 ) ,(001100 ) ,(011100 ) ,(001001 ) ,(011001 )}.

In terms of matrices, these spaces are described as follows.

U1 =
(∗∗∗

0∗∗
0∗∗

)
,
(∗∗∗

0∗∗
0∗∗

)
, U2 =

(
0∗∗
0∗∗
0∗∗

)
,
(∗∗∗

∗∗∗
∗∗∗

)
, U3 =

(∗∗∗
00∗
00∗

)
,
(∗∗∗

0∗∗
0∗∗

)
.

Let U ′
i = θ(Ui), i= 1,2,3 and U ′′

i = Ui∩U ′
i so that

U ′
1 =

(∗∗∗
∗∗∗
00∗

)
,
(∗∗∗

∗∗∗
00∗

)
, U ′

2 =
(∗∗∗

∗∗∗
000

)
,
(∗∗∗

∗∗∗
∗∗∗

)
, U ′

3 =
(∗∗∗

00∗
00∗

)
,
(∗∗∗

∗∗∗
00∗

)
,

and

U ′′
1 =

(∗∗∗
0∗∗
00∗

)
,
(∗∗∗

0∗∗
00∗

)
, U ′′

2 =
(

0∗∗
0∗∗
000

)
,
(∗∗∗

∗∗∗
∗∗∗

)
, U ′′

3 =
(∗∗∗

00∗
00∗

)
,
(∗∗∗

0∗∗
00∗

)
.

We write Ui,j =Ui∩Uj , Ui′,j =U ′
i ∩Uj , Ui′,j′ =U ′

i ∩U ′
j , Ui′′,j =U ′′

i ∩Uj and Ui′′,j′ =U ′′
i ∩U ′

j .

Then, a straightforward but tedious computation gives the following Hasse diagram for
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Γspcl(V ):

V

U1 U ′
1 U2 U ′

2

U3 U ′
3 U ′′

1 U1,2 U1′,2 U1,2′ U1′,2′ U ′′
2

U ′′
3 U3′,2 U3,2′ U1′′,2 U1′′,2′

Moreover,

Stab(U1) = (0∗ 0∗
∗ ) , Stab(U2) = (∗∗ 0∗

0 ) , Stab(U3) = (0∗ 00
0 )

Stab(U ′
1) = (∗0 ∗0

∗ ) , Stab(U ′
2) = (∗0 ∗∗

0 ) , Stab(U ′
3) = (00 ∗0

0 )

Stab(U ′′
1 ) = (00 00

∗ ) , Stab(U ′′
2 ) = (∗0 0∗

0 ) , Stab(U ′′
3 ) = (00 00

0 ) .

The stabilizers of the rest of the elements of Γspcl(V ) are given by Lemma 6.11. All spaces

except U2, U
′
2 and V are exceptional.

The spaces U ∈Γspcl(V ) with E(U)=Stab(U) are V,U1,U
′
1,U2,U

′
2,U1,2,U1′,2′ ,U

′′
1 ,U

′′
2 . For

U = U3,U3,2′ ,U1,2′ we have E(U)�U = U1. For U = U ′
3,U3′,2,U1′,2 we have E(U)�U = U ′

1.

For U = U ′′
3 ,U1′′,2,U1′′,2′ we have E(U)�U = U ′′

1 .

7.3

We can now formulate and prove the main geometric statement about λ(U) where U ∈
Γniso(V ).

Consider the natural surjection

q : aG =X∗(G
ab)⊗R−→ aG =X∗(G/G�)⊗R.

The kernel of q is the image of X∗(G
�/Gder)⊗R in aG. The dual space a

∗
G =X∗(G/G�)⊗

R ↪→ a∗G of aG has basis X. Fix a section for q, i.e., a subspace b of aG such that the

restriction of q to b is an isomorphism. In other words, b is a complement of Kerq in aG.

Let

W = (aG0 )⊕b ↪→ (aG0 )⊕aG = a0.

Recall the cone CU defined in (6.1).

Proposition 7.9. Suppose that V is regular. Let U ∈ Γniso(V ). Then, for every μ ∈
R>0X, the restriction of the linear form λ(U)+μ to W is positive on the cone CU ∩W \{0}.

Proof. Suppose that x ∈ CU is such that 〈λ(U)+μ,x〉 ≤ 0. By Corollary 5.3 part 1, we

have 〈χ,x〉 ≥ 0 for all χ ∈ X. By (5.7), we obtain 〈λ(U),x〉= 0 and 〈χ,x〉= 0 for all χ ∈ X.

Also, by the definition of E=E(U), we have 〈α,x〉= 0 for all α ∈ΔE
0 .

Let U ′ ∈ Γreg(V ) be as in Corollary 5.3 part 2. Then, 〈β,x〉= 0 for all β ∈ΨU ′ .

Let Ũ =E(U)�U . By Lemma 6.12, Ũ ∈ Γspcl(V ) and E(Ũ) = Stab(Ũ) =E.
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Since Ũ ⊃ U , and U ∈ Γniso(V ) we may apply Proposition 7.4 to conclude that Ũ is not

exceptional. Thus, the set ΨU ′ ∪ΔE
0 ∪a∗G spans a∗0. Let

p : a∗0 →W ∗,

be the restriction map, which is surjective. We have a∗G =Kerp⊕a
∗
G. Since X spans a∗G, we

infer that p(ΨU ′ ∪ΔE
0 ∪X) spans W ∗. Restricting to x ∈W , we deduce x= 0.

7.4

We can now finish the proof of Theorem 4.3. As we have already noted in the discussion

following (4.1), assuming convergence, the integral

a �→
∫
G(F )\G(A)1

θniso(ha)dh,

is G�(A)-invariant. It therefore remains to prove the convergence of∫
b

∫
G(F )\G(A)1

θniso(ha)dh e−〈δV +μ,a〉 da,

where b is as in Proposition 7.9 and μ ∈ R>0X.

Choose a Siegel set as in §5.1 such that G(F )S=G(A). For any non-negative function

f on G(F )\G(A)1 we have∫
G(F )\G(A)1

f(g) dg ≤
∫
K

∫
aG
0

∫
P0(F )\P0(A)1

f(pexk)δP0(e
x)−1τc0(x) dp dx dk

≤
∫
aG
0

supy∈Ωf(e
xy)δP0(e

x)−1τc0(x) dx,

(7.1)

where τc0 is the characteristic function of {x ∈ aG0 | 〈α,x〉> c0 ∀α ∈Δ0}.
It is therefore enough to show the convergence of∫

W

δP0(e
x)−1supy∈Ω

∣∣θnisoφ (exy)
∣∣ e−〈δV +μ,x〉τc0(x) dx, (7.2)

where W = aG0 ⊕b ↪→ a0 and we extend τc0 trivially on b.

As in the proof of Proposition 5.1 we bound θniso(g) by splitting the sum according to

support sets, i.e., we write

θnisoφ (g) =
∑

U∈Γ(V )

Θniso
U (g),

with

Θniso
U (g) =

∑
ξ∈X(F )niso: suppξ=ΨU

φ(ρ(g)−1ξ).

The integral (7.2) is then majorized by the sum over U ∈ Γ(V ) of∫
W

δP0(e
x)−1supy∈Ω

∣∣Θniso
U (exy)

∣∣ e−〈δV +μ,x〉τc0(x) dx. (7.3)

Moreover, by Lemma 5.8 for any N ≥ 0 we have

Θniso
U (g)�rd

N,φ δP0(m0(g)) |detρ(g)|e−〈λ(U),H0(g)〉−N
∑

β∈ΨU
〈β,H0(g)〉− , g ∈ T0(A)Ω.
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Therefore, (7.3) is majorized by

νN (φ)

∫
W

e−〈λ(U)+μ,x〉e−N
∑

β∈ΨU
〈β,x〉−τc0(x) dx, (7.4)

for suitable seminorms νN on Crd(V (A)). We may assume of course that U ∈ Γniso(V ),

for otherwise Θniso
U ≡ 0. By Proposition 7.9, the restriction of the linear form λ(U)+μ to

W is then positive on the cone CU ∩W \ {0}. Therefore, the integral (7.4) converges by

Lemma 7.1.

This finishes the proof of Theorem 4.3.

§8. PVSs without non-trivial special subspaces

In the section, we analyze the case where a regular PVS V has regular F -irreducible

components and no non-trivial special subspaces. Under these conditions, we obtain a

strengthening of our main result, namely meromorphic continuation of the zeta function to

the left of the point λ= 0 with at most simple poles along the hyperplanes defined by the

fundamental characters.

We continue to assume that G is reductive. In general, a subrepresentation of a regular

PVS is not necessarily regular. We will say that a PVS V is completely factorizable (CF) if

all its F -irreducible subrepresentations are regular. It is clear that every subrepresentation

of a CF PVS is again CF.

For example, every basic PVS (see Definition 2.8) is CF, since any subrepresentation is

basic, hence regular. Examples 3.2–3.6 are CF precisely when n1 = · · ·= nk. (However, nk+1

may be bigger than nk in cases 3.3 and 3.5.)

Note that in general, an F -irreducible representation π of G does not admit a central

character. However, the restriction of π to the torus TG acts by a character, which we denote

by ωπ.

Lemma 8.1 (cf. [35], Proposition 2.13). Let (G,V,ρ) be a CF PVS and let V =

⊕i∈I(Vi,ρi) be a decomposition into irreducible subrepresentations over F. Let χi = ωρi,

i ∈ I. Then,

1. V is regular.

2. X =
∏

i∈IXi, where Xi is the regular part of Vi.

3. The fundamental invariant polynomials of V are those of the Vi’s.

4. The restrictions of the fundamental characters of V to TG are niχi for some positive

integers ni, i ∈ I.

5. The characters χi are linearly independent over Z.

6. The union ΨV = ∪ΨVi is disjoint.

7. The irreducible components Vi are the isotypic components of V.

8. The set Γreg(V ) consists of the direct sums U =⊕i∈IUi with Ui ∈ Γreg(Vi), i ∈ I.

9. The group G�/GderKerρ is F-anisotropic.

Proof. First note that every F -irreducible regular PVS admits a unique fundamental

invariant polynomial (over F ).

Parts 1, 2, and 3 are contained in [35, Proposition 2.13]. (Note that part 3 over F̄

easily implies it over F.) Part 4 immediately follows. Part 5 follows since the fundamental

characters of a PVS are always linearly independent. Parts 6, 7 and 8 are easy consequences

of part 5.

https://doi.org/10.1017/nmj.2024.34 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2024.34


ZETA FUNCTIONS OF PVSS 35

Finally, part 9 is equivalent to the statement that TG∩Kerρ is of finite index in TG∩G�.

Note that TG∩Kerρ is the intersection of Kerχi, i ∈ I and by part 4, this is of finite index

in the common kernel of the restrictions of the characters in X∗(G/G�) to TG. The lemma

follows.

The following easy consequence about the special subspaces of V and its subrepresenta-

tions will be used repeatedly.

Lemma 8.2. Let V be a CF PVS and V ′ a subrepresentation of V (defined over F).

1. Let V ′′ be the (unique) complement to V ′ in V. Then the map U �→ U ⊕V ′′ defines an

injection of Γspcl(V
′) into Γspcl(V ).

2. If Γspcl(V ) = {V }, then Γspcl(V
′) = {V ′}.

Proof. By Lemma 8.1 part 7, the map U �→ U ⊕V ′′ defines an injection of Γreg(V
′) into

Γreg(V ). The first part follows now from the definition of a special subspace. The second

part is clear.

Let S(V (A)) be the space of Schwartz–Bruhat functions on V (A). As a locally convex

topological vector space, S(V (A)) can be identified with S(V (F∞))⊗S(V (Afin)) where

S(V (F∞)) is the usual Schwartz space and S(V (Afin)) is the countable-dimensional space

of locally constant compactly supported functions on V (Afin) with the finite topology. In

other words, S(V (Afin)) = lim−→U with the inductive limit topology, where U ranges over

the finite-dimensional subspaces of S(V (Afin)) with their canonical Hausdorff topology.

Equivalently, S(V (A)) = lim−→S(V (F∞))⊗U with the locally convex inductive limit topology

where U is as before. The space S(V (A)) is Hausdorff, complete and nuclear. The embedding

S(V (A))→ Crd(V (A)) is continuous.

Assume that (G,V,ρ) is CF with irreducible components (ρi,Vi), i ∈ I over F and let

χi = ωρi , i ∈ I. For any J ⊂ I let V J = ⊕j∈JVj and VJ = V/V J = ⊕j /∈Jρj . Let ρJ be the

representation of G on VJ . These are again CF PVSs.

As usual, let AG = TG(R)
◦ be the complement to G(A)1 in G(A) obtained by embedding

R into F∞ = R⊗F via x �→ x⊗ 1, and let AKerρ = AG ∩Kerρ. Since G�/GderKerρ is F -

anisotropic, we have G(A)1G�(A)\G(A)	AKerρ\AG and we can write the zeta function of

φ ∈ S(V (A)) as

Z(φ,λ) =

∫
G(F )AKerρ\G(A)

θnisoφ (g)g−λ |detρ(g)|−1 dg,

for λ ∈ (aG,C/aKerρ,C)
∗ = CX. We know from Theorem 4.3 that the integral converges

absolutely for �λ ∈ R>0X. In the following, we will use the isomorphism AKerρ\AG 	
RI ,a �→ (log |χi(a)|)i∈I and the Lebesgue measure on the vector space RI to normalize the

measure on the quotient G(F )AKerρ\G(A).

For any φ ∈ S(V (A)), let φJ ∈ S(VJ(A)) be given by

φJ(v) =

∫
V J(A)

φ(u+v) du.

For λ=
∑

i∈I λiχi we write λJ =
∑

j /∈J λjχj . We will consider the zeta functions ZVJ (φJ ,λJ)

simultaneously. In the limiting case J = I, where VI = 0, the term ZVI (φI ,λI) is of course

interpreted as the constant vol(G(F )\G(A)1)φ̂(0).

The main result of this section is the following.
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Theorem 8.3. Let (G,V,ρ) be a CF PVS such that Γspcl(V ) = {V }. Then, there exists

c > 0 such that for any φ ∈ S(V (A)) the zeta function Z(φ,λ) admits a meromorphic

continuation to the region

D = {λ=
∑
i∈I

λiχi | �λi >−c},

and Z(φ,λ)
∏

i∈I λi is holomorphic in D. Moreover, with the notation above,

∑
J⊂I

(−1)#J Z
VJ (φJ ,λJ)∏

j∈J λj
, (8.1)

is holomorphic in D.

Theorem 8.3 will be proved in the remainder of this section. Applying it to VJ for every

J ⊂ I and using inclusion–exclusion we obtain

Corollary 8.4. Under the above conditions, for every subset J ⊂ I the function

fJ(λJ) =
∑

K⊂I\J
(−1)#K ZVJ∪K (φJ∪K ,λJ∪K)∏

j∈K λj
,

is holomorphic in {λJ =
∑

j /∈J λjχj | �λj >−c} and we have

Z(φ,λ) =
∑
J⊂I

fJ(λJ)∏
j∈J λj

,

in D.

Theorem 8.3 and its corollary apply in particular to any basic PVS, as well as to the

“magic square” examples of §3.3 – see Remark 6.6. Recall that the basic PVSs obtained

from nilpotent orbits for the classical groups are the following:

1. GLk
n acting on Matk−1

n (Example 3.2).

2. GLk
n×Spn+m acting on Matk−1

n ⊕Matn,n+m for n, m even (Example 3.3).

3. GLk
n acting on Matk−1

n ⊕Symn for n �= 2 (Example 3.4).

4. GLk
n×SOn+m acting on Matk−1

n ⊕Matn,n+m for n, m �= 2 (Example 3.5).

5. GLk
n acting on Matk−1

n ⊕Skewn (Example 3.6).

For F -irreducible V such that Γspcl(V ) = {V }, we obtain that the zeta function

has a simple pole at λ = 0 with residue vol(G(F )\G(A)1)φ̂(0), as in Tate’s thesis (cf.

Proposition 8.5 below). Example 3.7 (treated in [50], building on [44]) and Example 3.8

(treated in [53]) show that without the assumption Γspcl(V ) = {V }, the structure of the

pole of the zeta function at λ= 0 may be more complicated.

Note that the assumption Γspcl(V ) = {V } implies (by Lemma 8.2 and Proposition 7.4)

that all VJ are non-isotropic, i.e. that θnisoφJ
(g) = θφJ

(g). (In our proof below we will simply

work with θφJ
(g) throughout.)

We first consider the case where ρ is irreducible over F. For simplicity we write x≤1 =

min(x,1) and x≥1 =max(1,x) for any x ∈R>0. Denote by 1A the characteristic function of

a set A.

For brevity, we will use the notation A(·,φ)�N,φ BN (·) to mean that for every N ≥ 0

there exists a continuous seminorm νN on S(V (A)) such that |A(·,φ)| ≤ BN (·)νN (φ) for
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every φ∈S(V (A)). Recall that we have already used the notation �rd
N,φ in §5.5 with respect

to the space Crd(V (A)). Clearly �rd
N,φ implies �N,φ.

Proposition 8.5. Suppose that (G,V,ρ) is an F-irreducible PVS such that Γspcl(V ) =

{V } and let χ= ωρ. For any φ ∈ S(V (A)) let

φ(g)ג = |detρ(g)|−1θφ(g)−1R>1(|χ(g)|)φ̂(0), g ∈G(F )\G(A).

Let β0 be the lowest weight of V. Then,

�φ(g)גN,φ δP0(m0(g))e
−〈μ,H0(g)〉−〈β0,H0(g)〉+−N〈χ,H0(g)〉− , g ∈S, (8.2)

for a suitable μ ∈ R>0(Δ0). Therefore, there exists c > 0 such that the integral∫
G(F )AKerρ\G(A)

φ(g)ג |χ(g)|−s dg = Z(φ,sχ)−vol(G(F )\G(A)1)
φ̂(0)

s
, (8.3)

converges absolutely for �s >−c.

Proof. We will estimate φג using the decomposition (5.8) of θφ(g). We write

φ(g)ג = |detρ(g)|−1
∑

U∈Γreg(V ),U =V

ΘU (g)+ |detρ(g)|−1ΘV (g)−1R>1(|χ(g)|)φ̂(0),

and separately bound the summands ΘU , U ∈ Γreg(V ), U �= V and |detρ|−1ΘV −
1R>1(|χ|)φ̂(0) on S.

Consider the contribution from U ∈ Γreg(V ), U �= V . By Lemma 5.8 we have

|detρ(g)|−1ΘU (g)�rd
N,φ δP0(m0(g))e

−〈λ(U),H0(g)〉−N
∑

β∈ΨU
〈β,H0(g)〉− , g ∈S.

Recall that λ(U) = δ0 +
∑

β∈ΨV \ΨU
nββ ∈ R≥0(ΨU ∪Δ0) by (5.6) and (5.7). By Corol-

lary 6.13 part 3 and our assumption on V we have E(U) =G. Thus, the positive envelope

of λ(U) with respect to Δ0∪ΨU (see §6.1) contains Δ0 and we have

λ(U) =
∑

β∈ΨU

cββ+
∑
α∈Δ0

dαα,

with suitable coefficients cβ ≥ 0 and dα > 0. Moreover, by considering 〈λ(U),H〉 for H ∈ aG

we see that
∑

β∈ΨU
cβ =

∑
β∈ΨV \ΨU

nβ ≥ 1 since U �= V . Using that on the Siegel domain

〈β0,H0(g)〉−〈β,H0(g)〉 is bounded from above for all β ∈ ΦV , we obtain

|detρ(g)|−1ΘU (g)�rd
N,φ δP0(m0(g))e

−〈μ,H0(g)〉−〈β0,H0(g)〉+−N
∑

β∈ΨU
〈β,H0(g)〉− , g ∈S.

By Corollary 5.3 part 1, χ �= 0 is a non-negative linear combination of ΨU . Therefore, we

can replace here
∑

β∈ΨU
〈β,H0(g)〉− by a suitable positive multiple of 〈χ,H0(g)〉−, proving

the required bound for the contribution of any U �= V .

As for U = V , we claim that

|detρ(g)|−1ΘV (g)−1R>1(|χ(g)|)φ̂(0)�N,φ e−〈β0,H0(g)〉+−N〈χ,H0(g)〉− , g ∈S. (8.4)

We may assume that g ∈ T0(A)∩S, or even that g ∈ T0(R)∩S. We split into cases according

to the size of 〈β0,H0(g)〉. Fix a constant c1.

If 〈β0,H0(g)〉 ≤ c1, then (8.4) holds because |detρ(g)|−1ΘV (g) �rd
N,φ e−N〈χ,H0(g)〉− by

Lemma 5.8.
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Assume that 〈β0,H0(g)〉> c1. Then 〈β,H0(g)〉 is bounded away from 0 for every β ∈ΨV ,

since g ∈S. By a standard argument, e.g., using the Poisson summation formula, we have

|detρ(g)|−1
∑

v∈V (F )

φ(ρ(g)−1v)− φ̂(0)�φ e−〈β0,H0(g)〉. (8.5)

(Here we cannot replace �φ by �rd
φ .) On the other hand,∣∣∣∣∣∣ΘV (g)−

∑
v∈V (F )

φ(ρ(g)−1v)

∣∣∣∣∣∣≤
∑

v∈V (F )|P (v)=0

∣∣φ(ρ(g)−1v)
∣∣ ,

for some non-zero polynomial P on V. (For instance, we can take the relative invariant

times the product over β ∈ΨV of arbitrary nonzero linear forms on Vβ.) It follows from [11,

Lemma 6.4] that

|detρ(g)|−1(ΘV (g)−
∑

v∈V (F )

φ(ρ(g)−1v))�φ e−〈β0,H0(g)〉. (8.6)

(In fact, the argument gives the stronger assertion with �rd
φ .)

Since 〈χ,H0(g)〉− 〈β0,H0(g)〉 is bounded from below for g ∈S, we may choose c1 such

that |χ(g)|> 1 whenever 〈β0,H0(g)〉> c1. Thus, (8.4) for 〈β0,H0(g)〉> c1 follows from (8.5)

and (8.6). This finishes the proof of (8.2).

The convergence of ∫
P0(F )AKerρ\S

|φ(g)ג| |χ(g)|−σ dg,

for σ >−c for a suitable c > 0 follows from (8.2) and Lemma 7.1, since for any complement

W of aKerρ in a0 the positively-1-homogeneous function 〈μ,x〉+ 〈β0,x〉+ on W is positive

on the cone {x ∈ a0,+∩W | 〈χ,x〉 ≥ 0}\{0}.
This implies the absolute convergence of (8.3) for �s >−c.

Proof of Theorem 8.3. By induction on the cardinality of I \J , starting with the trivial

case J = I (and, if we like, Proposition 8.5 for #(I \J) = 1), we may assume holomorphic

continuation of the functions ZVJ (φJ ,λJ)
∏

j /∈J λj to {λJ =
∑

j /∈J λjχj | �λj > −c} for all

J �= ∅. To prove the theorem, we need to show that (8.1) is holomorphic on D.

For every i ∈ I let βi be the lowest weight of Vi. For any J ⊂ I let χJ =
∏

j /∈J χj and let

GJ be the subset of G(A) defined by the conditions |χj(g)|> 1 for all j ∈ J .

Consider

�φ(g) =
∑
J⊂I

(−1)#J |detρJ(g)|−1θVJ

φJ
(g)1GJ (g).

We claim that there exists μ ∈ R>0Δ0 such that

�φ(g)�N,φ δP0(m0(g))e
−〈μ,H0(g)〉−

∑
i∈I〈βi,H0(g)〉+−N

∑
i∈I〈χi,H0(g)〉− , g ∈S. (8.7)

We may identify S(V (A)) with the completed tensor product ⊗̂i∈IS(Vi(A)) with respect

to, say, the projective tensor product topology (the spaces S(Vi(A)) are nuclear). Therefore,

it is enough to prove (8.7) for φ of the form φ=⊗ψi where ψi ∈ S(Vi(A)). We then have

�φ(g) =
∏
i∈I

(
|detρi(g)|−1θVi

ψi
(g)−1R>1(|χi(g)|)ψ̂i(0)

)
.
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If we simply apply (8.2) to each factor, the bound that we get will not be good enough.

This is not surprising since we have not yet used that V itself is a PVS, only the individual

factors. Instead, we write for each i ∈ I

θVi

ψi
=ΘVi,fs

ψi
+ΘVi,nfs

ψi
,

where

ΘVi,fs
ψi

=
∑

ξ∈Xi(F ): suppξ=ΨVi

φ(ρi(g)
−1ξ),

is the summand corresponding to U = Vi (full support) in the decomposition (5.8) for θVi

ψi
.

Then, we can decompose

�φ =
∑
J⊂I

∏
j∈J

|detρj |−1Θ
Vj ,nfs
ψj

∏
j /∈J

(
|detρj |−1Θ

Vj ,fs
ψj

−1R>1(|χj |)ψ̂j(0)
)
. (8.8)

For any subset J ⊂ I let φJ =⊗j∈Jψj . Then,∏
j∈J

Θ
Vj ,nfs
ψj

=
∑

U∈Γreg(V J),U ⊃Vj ∀j∈J

ΘV J

φJ ;U , (8.9)

is the contribution to ΘV J

φJ with respect to the decomposition (5.8) of the subspaces U not

containing any Vj , j ∈ J . As in the proof of Proposition 8.5, there exists μ ∈R>0Δ0 (which

we may take to be independent of J ) such that∏
j∈J

|detρj(g)|−1Θ
Vj ,nfs
ψj

(g)�N,φJ δP0(m0(g))e
−〈μ,H0(g)〉−

∑
j∈J〈βj ,H0(g)〉+−N

∑
j∈J〈χj ,H0(g)〉− ,

(8.10)

on S. Indeed, this estimate holds for each individual contribution ΘV J

φJ ;U to (8.9). Since

E(U) = G by Lemma 8.2 and Corollary 6.13 part 3, the positive envelope of λ(U) with

respect to ΨU ∪Δ0 contains Δ0. Writing

λ(U) =
∑

β∈ΨU

cββ+
∑
α∈Δ0

dαα,

with cβ ≥ 0 and dα > 0, and considering 〈λ(U),H〉 for H ∈ aG, we obtain∑
j∈J

∑
β∈ΨU∩ΨVj

cβχj =
∑
j∈J

∑
β∈ΨVj

\ΨU

nβχj ,

and therefore
∑

β∈ΨU∩ΨVj
cβ =

∑
β∈ΨVj

\ΨU
nβ ≥ 1 for all j ∈ J , since the χj are linearly

independent over Z and U �⊃ Vj for all j ∈ J .

Using Lemma 5.8 together with Corollary 5.3 part 1 and the fact that 〈βj ,H0(g)〉 −
〈β,H0(g)〉 is bounded from above for any β ∈ ΦVj and g ∈S, we conclude (8.10) as in the

irreducible case.

Combining (8.10) with the estimate (8.4) for every j /∈ J and using the decomposition

(8.8) we obtain the required estimate (8.7).

Note that the expression (8.1) is equal to the integral∫
AKerρG(F )\G(A)

�φ(g)e
−〈λ,H0(g)〉 dg.
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Therefore, Theorem 8.3 follows from (8.7) and Lemma 7.1 by noting that for any

complement W of aKerρ in a0, the positively-1-homogeneous function 〈μ,x〉+
∑

i∈I 〈βi,x〉+
on W is positive on the cone {x ∈ a0,+∩W | 〈χi,x〉 ≥ 0 ∀i ∈ I}\{0}.

Remark 8.6. Let V be a regular PVS with Γspcl(V ) = {V }. The example of V =Matn
with G=GLn acting by matrix multiplication shows that V is not necessarily CF. One may

ask whether disjointness of the sets of weights ΨVi of the irreducible components Vi of V is

sufficient to imply that V is CF. This would follow if one could show that an F -irreducible

PVS V such that Γspcl(V ) = {V } is necessarily regular.9

In the case of PVSs V of DK-type, the construction of §9 below shows that the condition

Γspcl(V ) = {V } implies that V is CF.

§9. A construction of special subspaces for PVSs of DK-type

We finish the paper by providing a general construction of special subspaces for regular

PVSs coming from nilpotent orbits (see §3).
Let G′ be a reductive group over F. Recall that any nilpotent e ∈ g′ gives rise to a

filtration F(e) = (Fi(e))i∈Z of g′ whose stabilizer Stab(F(e)) in G′ is a parabolic subgroup

of G′ with Lie algebra F0(e).

Clearly, F(Ad(g)e) = Ad(g)F(e) for all g ∈ G′. In particular, e and Ad(g)e define the

same filtration if and only if g ∈ Stab(F(e)).

If o is the nilpotent orbit of e, then we say that F(e) is an o-filtration. Thus, the variety

of o-filtrations is a G′-orbit whose stabilizer is the canonical parabolic subgroup pertaining

to o.

9.1

We recall the notion of induction of nilpotent orbits [25].

Let Q be a parabolic F -subgroup of G′ with Lie algebra q. Let L be the Levi quotient of

Q, with Lie algebra l. Let prQ :Q→ L (resp., prq : q→ l) be the canonical projections. Let

oL be a nilpotent orbit in l and let õL be its inverse image under prq. It is an irreducible

subvariety of q⊂ g′ consisting of nilpotent elements. By definition, the induced orbit IndQ oL

is the nilpotent orbit in g′ intersecting õL in an open subset. In fact, it depends only on L

(and oL), and not on Q, but it will be important for us to keep track of Q.

Definition 9.1. Suppose that o = IndQ oL where Q is a parabolic F -subgroup of G′

with Levi quotient L and oL is a nilpotent orbit of l. Let FL be an oL-filtration of l. We

then say that the triple d= (Q,oL,FL) is an induced filtration data (IFD) for o.

For instance, (G′,o,F) is a (trivial) IFD for any o-filtration F of g′.

The variety D = Do of IFDs for o comprises finitely many G′-orbits. (If Do is a single

orbit, i.e., if o is not induced non-trivially, then o is called rigid.)

Lemma 9.2. Let d= (Q,oL,FL) ∈D. Define inductively

F̃i =

{
pr−1

q (FL
i ), i= 0,1,2,

[F̃1, F̃i−1]+ [F̃2, F̃i−2], i > 2,

9 This can be easily checked when F is algebraically closed by classification.
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and

F̃i = {x ∈ g′ | [x, F̃−i]⊂ F̃0}, i < 0.

Then F̃ = (F̃i)i is a filtration of g′ of V-type.

Note that prq(F̃i) =FL
i for all i but that the preimage pr−1

q (FL
i ) strictly contains F̃i for

i > 2.

Proof. Without loss of generality, we may assume that Q is a standard parabolic

subgroup of G′ and FL the standard oL-filtration defined by a dominant element hL ∈ aL0 ,

i.e. FL
i =

⊕
α∈ΦL∪{0}:〈α,hL〉≥i g

′
α.

Let h = hL + hL ∈ aG
′

0 be the unique vector with hL ∈ aG
′

L and 〈α,h〉 = 2 for all α ∈
ΔG′

0 \ΔQ
0 . We claim that the inductively defined spaces F̃i coincide with the filtration

obtained from the gradation of g′ defined by h: F̃i =
⊕

α∈ΦG′∪{0}:〈α,h〉≥i g
′
α.

To see this, note that we have 〈α,h〉 =
〈
α,hL

〉
∈ {0,1,2} for α ∈ ΔQ

0 (and therefore

〈α,h〉 ∈ {0,1,2} for all α ∈ΔG′

0 ). This implies the claim for i= 0, 1, 2. The claim for i≥ 3

follows, since any positive root α ∈ ΦG′ with 〈α,h〉 ≥ 3 can be written as α = β+ γ with

positive roots β and γ and 〈β,h〉 ∈ {1,2}.
The relation between F̃i and F̃−i holds for any filtration obtained from a gradation.

Definition 9.3. We call the filtration (F̃i)i of Lemma 9.2 the I-filtration associated

to d.

We say that a filtration F̃ of g′ is an I-filtration compatible with o if it arises from some

d ∈D by this construction.

The stabilizer Stab(d) of d = (Q,oL,FL) ∈ D is the parabolic subgroup of Q whose

image in L is StabL(FL). It is also the stabilizer of the associated I-filtration F̃ . Its Lie

algebra is F̃0.

o-filtrations are I-filtrations compatible with o, but in general there will be others. For

example, if o = Rich(Q), there is an I-filtration compatible with o with F̃2 = nQ, which is

an o-filtration only if o is even and Q is conjugate to the canonical parabolic subgroup of

o. On the other hand, different IFDs may give rise to the same I-filtration.

Lemma 9.4. Let d = (Q,oL,FL) be an IFD for o. Let P ′ = Stab(d) and (F̃i)i be the

associated I-filtration. Then,

1. oF̃ = o∩F̃2 is open in F̃2.

2. prq(oF̃) = oL∩FL
2 .

3. oF̃ is a P ′-orbit.

4. Let v ∈ oF̃ . Then,

{g ∈G′ |Ad(g)−1v ∈ oF̃}=G′
vP

′,

and (G′
v)

◦ ⊂ P ′.

Proof. For simplicity, we sometimes write ¯ for the image under prQ or prq.

The first part follows since pr−1
q (u)∩o is open in pr−1

q (u) for every u ∈ oL and oL∩FL
2

is open in FL
2 .

For the second part, suppose that u∈ q with ū∈FL
2 \oL. Then, ū lies in a nilpotent orbit

o′ �= oL of l in the closure of oL and u lies in the closure of IndQ o′. The latter has smaller

dimension than o. Thus, u /∈ o.
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For the last part, suppose that u = Ad(g)−1v ∈ oF̃ . Then, by the second part ū ∈ oL.

By [25, Theorem 1.3(d)], g ∈G′
vQ. Write g = hq where h ∈G′

v, q ∈Q. Then, ū=Ad(q̄)−1v̄.

Hence, Ad(q̄)−1v̄ ∈ oL ∩FL
2 . By Theorem 3.1 part 4 (applied to oL), we infer that q̄ ∈

prQ(P
′), so that q ∈ P ′. Hence g ∈G′

vP
′.

Also, (G′
v)

◦ ⊂ Q again by [25, Theorem 1.3(d)], since v̄ ∈ oL by the second part. Thus,

(G′
v)

◦ =Q◦
v. Since prQ(Qv)⊂ Lv̄ ⊂ prQ(P

′), by Theorem 3.1 we deduce that (G′
v)

◦ ⊂ P ′.

Finally, the third part follows from the last part.

9.2

We fix P ′
0, T

′
0 as in §3. The following standard fact is an easy consequence of the Bruhat

decomposition.

Remark 9.5. Let P be a standard parabolic F -subgroup of G′ with standard Levi

subgroup M. Then, for any parabolic F -subgroup Q of G′ there exists a unique parabolic

subgroup Q′ of the form Q′ = Qp, p ∈ P (F ) such that Q′ ∩M is a standard parabolic

subgroup of M.

Namely, if Q is conjugate to the standard parabolic F -subgroup Q′′ of G, then we can

write Q = (Q′′)np with n ∈ NG′(F )(T
′
0) and p ∈ P (F ) by the Bruhat decomposition, and

moreover the Weyl group element n̄ ∈W =NG′(F )(T
′
0)/T

′
0(F ) defined by n can be taken of

minimal length in its (WQ′′ ,WP )-double coset. Then Q′ = (Q′′)n works by [6, Proposition

2.8.9], and uniqueness follows from [6, Proposition 2.3.3, 2.8.1].

Now let o be a nilpotent orbit in g′ and let (G,V,ρ) be the regular PVS of DK-type

attached to o (cf. §3). Thus, G is the standard Levi subgroup of the (standard) canonical

parabolic subgroup P of o. We write oF = o∩F2, where F is the standard o-filtration (i.e.,

with Stab(F) = P ).

Denote by [F] the (finite) set of G′-orbits of I-filtrations compatible with o. The elements

of [F] give rise to special subspaces of V. More precisely,

Proposition 9.6. For any G′-orbit C ∈ [F] there exists a unique I-filtration F̃ ∈ C such

that Stab(F̃)∩G is a standard parabolic subgroup of G and o∩F2 ∩ F̃2 �= ∅. Moreover,

U := F̃2∩V ∈ Γspcl(V ) and Stab(U) = Stab(F̃)∩G.

Proof. We first show that the set

C′ = {F̃ ∈ C | o∩F2∩F̃2 �= ∅},

is a P -orbit. Clearly, C′ is stable under P, and it is non-empty since o∩F̃2 �= ∅ for all F̃ ∈ C.

Assume that F̃ ∈ C′ and Ad(g)F̃ ∈ C′ for some g ∈ G′. We need to show that g ∈ PP ′ for

P ′ =Stab(F̃). By assumption, oF̃ intersects both oF and Ad(g)−1oF . Since oF̃ is a P ′-orbit

by Lemma 9.4 part 3, there exists p′ ∈ P ′ such that

Ad(p′)(oF )∩Ad(g)−1(oF) �= ∅.

By Theorem 3.1 we conclude that gp′ ∈ P , as required.

The first assertion follows now from Remark 9.5. Let F̃ = (F̃i)i ∈ C′ be the unique I-

filtration provided by this construction. As before, let P ′ = Stab(F̃). Since P ′ contains T ′
0,

we have

F̃2∩F2 = (F̃2∩V )+(F̃2∩F3).
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Since oF =X+F3 by Theorem 3.1, we conclude that

oF̃ ∩oF = o∩F̃2∩F2 = (oF̃ ∩X)+(F̃2∩F3).

In particular, oF̃ ∩X �= ∅, so that U ∈ Γreg(V ).

Clearly, Stab(U) contains the standard parabolic subgroup P ′∩G of G. Let v0 ∈ o∩U .

It follows from Lemma 9.4 part 4 that there exist η1, . . . ,ηk ∈G′ such that

{g ∈G |Ad(g)−1v0 ∈ U}= {g ∈G |Ad(g)−1v0 ∈ oF̃}=
⋃

1≤i≤k

ηiP
′∩G.

Each non-empty intersection ηiP
′∩G is a left coset of P ′∩G in G. The second assertion of

the proposition now follows from Proposition 6.4 part 4.

For instance, if o = Rich(Q), where Q is a parabolic F -subgroup of G′, then Proposi-

tion 9.6 says that there is a unique G(F )-conjugate Q′ of Q such that nQ′ ∩ oF �= ∅ and

Q′∩G is a standard parabolic subgroup of G. In general, Q′∩P is not a parabolic subgroup

of G′. In other words, if Q is standard, it is not necessary that Q′ =Q.

Consider the following examples.

1. Rank two cases (see Example 6.8).

We may write the subregular orbit o as Rich(Q) where ΔQ
0 = {β}. This IFD gives rise

to U = V ∩nQ, the unique non-trivial special subspace.

2. Example 6.14 (= Example 3.2 with k = 3 and n1 < n2).

We have o = Rich(Q1) = Rich(Q2) where Q1 and Q2 are the standard parabolic

subgroups of type (n2,n1,n1) and (n1,n1,n2). These IFDs give rise to the spaces

Vi = V ∩nQi in Γspcl(V ).

On the other hand, if k=5 and n1 <n2 <n3 and Q is the standard parabolic subgroup

of type (n3,n2,n2,n1,n1), then o=Rich(Q) but V ∩nQ /∈ Γreg(V ).

3. Example 6.15 (= Example 3.8). In the following two examples, for standard parabolic

subgroups Q1 ⊃Q2 we will use the notation RichQ1(Q2) for the Richardson orbit of the

standard parabolic subgroup L1∩Q2 inside the standard Levi subgroup L1 of Q1.

We have o = Rich((∗∗0∗)) = Rich((0∗∗0)). This will give rise to the subspaces U1

and U2, respectively. Using induction by stages, we may also write o = IndQ o′ where

Q= (0∗∗∗) and o′ =RichQ((0∗∗0)).

The weighted Dynkin diagram of o′ is
0• 1• 0•. The standard o′-filtration

satisfies ΦF ′
2
= {(0120),(0121),(0122)}, and the associated I-filtration ΦF̃2

= Φ+
G′ \

{(0100),(0010),(0001),(0110),(0011),(0111)}. Therefore, this IFD gives rise to the

space U3.

Note that writing o = Ind(∗∗∗0) o
′′ where o′′ = Rich(∗∗∗0)((0∗∗0)) will give rise to U2

again, since the weighted Dynkin diagram of o′′ is
2• 0• 0• and therefore F̃2 =

n(0∗∗0) again.
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4. Example 7.8 (= Example 3.9)

We have o = Rich(Q′
1) = Rich(Q′

2), where Q′
1 = (0∗∗0∗∗ ), Q′

2 = (∗∗∗0∗0 ) (which are

associate). These give rise to U1 and U2, respectively.

They also give three presentations o= IndQi o
′
i, i= 1,2,3 where

Q1 = (∗∗∗0∗∗ ) , o′1 =RichQ1(Q′
1) = RichQ1(Q′

2),

Q2 = (∗∗∗∗∗0 ) , o′2 =RichQ2(Q′
2),

Q3 = (0∗∗∗∗∗ ) , o′3 =RichQ3(Q′
1).

Note that Lder
1 =SL5×SL2 and o′1 is the minimal orbit of the SL5-factor. The weighted

Dynkin diagram is (100 0
1 ). We have ΦF ′

2
= {(111001 )}. We get the space U1∩U2.

The weighted Dynkin diagram of o′2 is (01010) and

ΦF ′
2
= {(011100 ) ,(111100 ) ,(011110 ) ,(111110 )}.

We get the space U ′′
2 .

The weighted Dynkin diagram of o′3 is ( 0020
0 ), and we get U1 again.

Of course, we can apply the involution θ to all of the above, obtaining in addition U ′
1,

U ′
2 and U ′

1∩U ′
2.

Finally, we also have o = IndQ o′ where Q = (0∗∗∗0∗ ) and o′ is the minimal orbit of

the Levi subgroup of Q (whose derived group is Spin8). The weighted Dynkin diagram

of o′ is ( 010
0 ) and ΦF ′

2
= {(012101 )}. Here, F̃2∩ oF = ∅ for the standard I-filtration F̃ .

However, it is easy to see that if w is the simple reflection with respect to (001000 ) (the

simple root defining G), then Stab(wF̃)∩G is the standard Borel subgroup of G and

wF̃2∩oF �= ∅. The intersection wF̃2∩V is U ′′
3 .

Note that U3 is not obtained from this construction (either directly or by intersection).
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