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Abstract

Main aim: To electrophysiologically determine the impact of moderate to severe chronic hypo-
xia (H) resulting from a wide array of CHD (HCHD) conditions on the integrity of brainstem
function.Materials and methods: Applying brainstem auditory-evoked response methodology,
30 chronically afflicted HCHD patients, who already had undergone heart surgery, were com-
pared to 28 healthy control children (1–15 yo) matched by age, gender and socioeconomic con-
dition. Blood oxygen saturation was clinically determined and again immediately before
brainstem auditory-evoked response testing. Results: Among HCHD children, auditory wave
latencies (I, III and V) were significantly longer (medians: I, 2.02 ms; III, 4.12 ms, and; V,
6.30 ms) compared to control (medians: I, 1.67ms; III, 3.72 ms, and; V, 5.65 ms), as well as inter-
peak intervals (HCHDmedians: I-V, 4.25 ms, and; III-V, 2.25ms; control medians: I-V, 3.90 ms
and, III-V, 1.80 ms) without significant differences in wave amplitudes between groups. A sta-
tistically significant and inverse correlation between average blood oxygen saturation of each
group (control, 94%; HCHD, 78%) and their respective wave latencies and interpeak intervals
was found.Conclusions:As determined by brainstem auditory-evoked responses, youngHCHD
patients manifestly show severely altered neuronal conductivity in the auditory pathway
strongly correlated with their hypoxic condition. These observations are strongly supported
by different brainstem neurological and image studies showing that alterations, either in micro-
structure or function, result from the condition of chronic hypoxia in CHD. The non-altered
wave amplitudes are indicative of relatively well-preserved neuronal relay nuclei.

Presently, the broadly diverse pathological spectrum of CHD constitutes the most common dis-
order at birth, estimated at 1% of live parturitions.1 CHD includes dissimilar types of cardiac and
great vessel pathologies. Although in the last decades the survival rate of afflicted children has
increased significantly due to improvements in medical knowledge and technical expertise pres-
ently, however, the neurological co-morbidities typically associated with moderate and severe
CHD conditions remain high.2–4 Critically, this is due to the prevailing condition of generalised
hypoxia among CHD patients (HCHD). In this sense, the low percentage of blood oxygen sat-
uration has been highlighted as a determinant factor leading to developmental brain abnormal-
ities and psychophysiological delays. Diverse neuroimaging studies, regardless of them having
been carried out before or after surgical management, demonstrate a high incidence of neuro-
logical abnormalities,4 including alterations in brain function, microstructure, and metabolism.
As it is well-known among HCHD patients, the existence of moderate to severe deficiencies in
oxygen supply5–9 is a direct consequence of an altered systemic circulation, present this either
along foetal or post-natal development and frequently continuously throughout.

This study was completed applying the electrophysiological technique of brainstem audi-
tory-evoked responses under the hypothesis that the main contributing factor to developmental
brain injury under HCHD and long-lasting abnormalities results directly from the major con-
dition of chronically low blood oxygen saturation5,7,10–20. In this respect, one of themain features
of HCHD is a severe and generalised decrease of metabolic activity8,18,21–23 among patients well
mirrored as an anomalous development of brain structure and function.

Materials and methods

Study subjects

The study included 30 paediatric patients (16 females/14 males) aged 1–15 years (average age,
8 years old) presenting severe HCHD (group HCHD) who attended the Paediatric Cardiology
practice of Hospital for the Mother and Child (IMIEM), in Toluca City, State of Mexico. See
Table 1 for the listing of cardiovascular pathologies and the number of cases of each. Before
their inclusion in this study, all cases were diagnosed by clinical examination, including chest
X-ray assessment, electrocardiogram, Doppler echocardiography, and angiotomography.
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A peer control group of 28 healthy children (1–15 years old; aver-
age age, 9 years old; 14 females /14 males) was collected from the
same Hospital for the Mother and Child, matching group HCHD
by gender and socioeconomic conditions. The Hospital for the
Child, from where the sample of participating children was col-
lected, only receives for attention children of ages between 0
and 17 years old belonging to low-income families without any
other kind of social security protection. Social services from this
hospital verify and certify that this condition is fulfilled to register
any patient. Children participating in the control group were gath-
ered from the Healthy Child Service who regularly attend the hos-
pital for developmental follow-up. The inclusion criteria applied
for both groups were born at term, not presenting a peri- or
post-natal history of risk or actual damage to the CNS. This latter
condition presented neither personally nor in the family clinical
history record. Finally, no additional risk was imposed on partici-
pating children from attending these studies. All HCHD patients
who attended this study had previously undergone palliative sur-
gical treatment.

Electrophysiological procedures
Brainstem auditory-evoked responses were recorded with Ag/AgCl
disc electrodes with the active one placed at Cz (þ), that is, the ver-
tex and the reference one at the mastoid apophysis. A ground elec-
trode was placed mid-frontally at Fpz. Two channels were used for
ipsilateral and contralateral recording with the impedance of all
electrodes always kept at <5.0 kOhms. For every participant (con-
trol/HCHD), blood oxygen saturation was digitally determined
(index finger) immediately before brainstem auditory-evoked
response recording.

For those children of age under 4 years, the study was carried
out in a state of physiological sleep, and for older children, inatten-
tive wakefulness was required. Auditory stimulation was delivered
through earphones under TDH 49 sound specifications which pro-
vided air rarefaction “click” sounds at a rate of 11 Hz for a duration
of 0.1 ms and an intensity range (high/low) of 100-20 dB (HL). For
brainstem auditory-evoked response recording, low (100 Hz) and
high (3000 Hz) pass filters were used, each with 12,000X gain. To
ensure the replicability of electrophysiological signals, at least
2 trials of 2000 stimuli each were performed.

Statistical analysis
The latencies and amplitudes of the wave components I, III, and V
were determined, as well as the length of their interpeak intervals
(I-V and III-V). Wave latencies, wave amplitudes, and interpeak
intervals were then compared between groups, HCHD versus con-
trol, using the median non-parametric test (median test). A
Spearman correlation test was further applied to estimate the pos-
sible relationship between blood oxygen saturation and the brain-
stem auditory-evoked response variables determined.

Results

As clinically determined beforehand and as expected prior to
brainstem auditory-evoked response recording, the blood oxygen
saturation percentage median obtained for group HCHD was sig-
nificantly lower than that of control participants (control, 94%;
HCHD, 78%). Initially, the amplitudes of waves I, III, and V were
compared between groups, and no significant differences were
found. The latencies of these waves, however, were significantly
longer among HCHD children compared to their peers in group
control (Fig 1). Likewise, the comparison of interpeak intervals
(I-V and III-V) between control and HCHD groups showed highly
significant differences with those of HCHD participants substan-
tially longer (see Table 2).

Investigating the possible correlation between the blood oxygen
saturation mean of each group and their brainstem auditory-
evoked response variables, a very significant and negative correla-
tion was found both with the wave’s latencies and their interpeak
intervals (Table 3).

Discussion

Current advances in the diagnosis, surgical management, and post-
operative care of children with HCHD have allowed the vast
majority of them to reach adulthood.1 Regrettably, however, in
parallel to survival HCHD children are at high risk and typically
suffer from neurodevelopmental disorders such as inattention,
cognitive performance, and executive functions.5,24,25 Due to the

Table 1. Clinical diagnosis of CHD cases conforming group HCHD

Diagnosis n

Tetralogy of Fallot 2

Patent ductus arteriosus, ventricular septal defect, overriding aorta 2

Truncus arteriosus 2

Pulmonary atresia, tricuspid atresia 5

Double outlet of right ventricle 4

Ventricular septal defect, pulmonary atresia 5

Pulmonary atresia 2

Hypoplastic right ventricle 3

Pulmonary hypertension, ventricular septal defect 3

Complete atrioventricular canal, unique atrium-ventricle valve 1

Common atrium, pulmonary hypertension, unique atrium-ventricle
valve

1

N = number of cases; HCHD=hypoxic CHD.

Table 2. Interpeak latencies significant differences between groups (median
test)

Ctrls HCDCs

25%
(50%)
median 75% 25%

(50%)
median 75% P<

I-V 3.70 3.90 4.09 4.01 4.25 4.38 0.003

III-V 1.46 1.80 2.17 2.20 2.25 2.71 0.005

HCHC = hypoxic CHD; Ctrls = Controls.

Table 3. Spearman’s correlation coefficient between blood oxygen saturation
(SO2) levels (%) and waves latencies (ms) and interpeak (Ip) intervals (ms)
among HCHD cases

Wave I
latency

Wave III
latency

Wave V
latency

Ip I-V
interval

Ip III-V
interval

SO2

correlation
–.847 –.612 –.859 –.593 –.538

p <0.000 <0.002 <0.000 <0.002 <0.007

HCHD = hypoxic CHD; Ip = interpeak interval.
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underlying and pervasive condition of hypoxia, brain injuries con-
tinue developing with survival. Another observation made among
HCHD newborns is that of a reduction in brain size. Taking the
negative neurodevelopmental outcomes altogether, all of them
have been strongly correlated to the condition of chronic and per-
sistent hypoxia with this last condition resulting from a wide array
of simple and complex cardiovascular pathologies. Among those,
the foetal and post-natal systemic alterations are key in this
respect.6,10,14,26 The reduced body tissue oxygenation fundamen-
tally alters basal metabolism concurrently leading to a general
reduction of metabolic energy production. Following this argu-
ment, myelination as an end result of lipid synthesis is a biochemi-
cal event fundamentally dependent on the existence of adequate
metabolic energy reserves. Thus, it is highly likely that the neuro-
transmission defects determined in this work among HCHD chil-
dren in essence are the consequence of hypoxia26 and the
manifestation of altered myelination. In this respect, white matter
injury is a common issue among preterm neonates and children
stricken by HCHD. Histopathologically, in both instances, the
lesions are strongly reminiscent of periventricular leukomala-
cia.17,27 Using brainstem auditory-evoked responses as a clinical
evaluation tool among children with hypoxic-ischaemic encepha-
lopathy, Romero28 assessed their neurodevelopmental status and
neurophysiological profile at the ages of 6 months and later at
2 years. The brainstem auditory-evoked responses of those chil-
dren showed extended latencies and decrements in amplitude indi-
cating the presence of more extended neurological damage when
comparing their results to ours. Jiang et al.29 inform about evident
brainstem auditory-evoked response abnormalities in 15 (40.5%)
out of 37 children with neurodevelopmental deficits resulting from
perinatal asphyxia. Both works28,29 are in agreement in relation to
the usefulness of brainstem auditory-evoked responses as a prog-
nostic instrument of the neurodevelopmental outcome.

In the work presented here, the risk posed to cerebral functional
integrity by HCHD was assessed through brainstem auditory-
evoked responses. The children studied were compromised by a
wide variety of severe cardiovascular conditions with all of them
showing in common a severe reduction of blood oxygen saturation.

There are different kinds of electrophysiological techniques based
on the determination of evoked-response potentials and as brain-
stem auditory-evoked responses themselves; all of them are non-
invasive instruments of great value in the assessment of sensory
and neural function under normal or pathological conditions.30

For instance, brainstem auditory-evoked responses have proved
to be a valuable tool in the assessment not only of auditory function
integrity but also in the prognosis of neurodevelopmental outcome
after perinatal asphyxia,29 also as a successful diagnostic and prog-
nostic method in medical instances as dissimilar as the study of
metabolic anomalies,31 type-2 diabetes mellitus,32 multiple sclero-
sis,33 and others.

Brain stem myelination disturbances were determined among
children who either died at birth or in the course of the first three
years of life from severe chronic diseases, including congenital
heart failure.34 Among them, the rate of brain stem myelination
indicated a disturbed process of maturation. Among those patients
with CHD, it is highly likely that chronic hypoxia led to an altered
synthesis of myelin sheaths, an event considered to arise independ-
ently of neuronal loss or damage. In the study presented here, the
results and our point of view are in coincidence with those obser-
vations. That is, brainstem auditory-evoked responses of HCHD
children showed significantly longer wave latencies and interpeak
intervals compared to the control group indicative of altered elec-
trical conduction in the auditory pathway between relay nuclei. As
no significant differences in wave amplitudes were determined, this
strongly suggests a considerable degree of neuronal cell body pres-
ervation. From an electrophysiological point of view, HCHD chil-
dren present alterations of nerve conductance but not of signal
processing; that is, there are defects along the auditory transmis-
sion pathway without evidence of gross damage in nuclei relay
points, a fact strongly indicative of myelination defects. It is also
well-known that neuronal integrity importantly depends on the
trophic relationships between neurons and oligodendroglia, there-
fore if in parallel there is axonal damage this is highly likely to arise
in parallel to myelin-forming cell impairment.34–37

Okutan and colleagues38 investigated through brainstem audi-
tory-evoked responses the impact of HCHD on brainstem
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Figure 1. Independent samples median test. Comparison of wave latencies (I, III, V) between groups, hypoxic congenital heart disease (HCHD) and control (Ctrl). The horizontal
blue line indicates the grandmedian while the thick black stripe within each box is indicative of each wave latency's median. Below each graph the stadigraph data are presented.
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maturation among 23 hypoxic and 22 non-hypoxic children of
ages 2 months to 15 years and determined that neural activity
was not altered among hypoxic patients compared to their healthy
peers. In contrast, hypoxic patients under one year of age had a
prolonged I–V interpeak latency, confirming that adequate oxy-
genation is critical for optimal development. At no other age did
they find differences between groups; this is in contrast to our
work. In the study presented here, HCHD children presenting
severe hypoxia (median blood oxygen saturation, 76%) showed
longer latencies of waves I, III, and V, and also longer intervals
I-V and III-V at all ages. Sunaga et al.39 reported similar findings
working with hypoxic children of ages 1 to 4 years old. The works
of Okutan et al.,38 Sunaga et al.,39 and this one all determined a sta-
tistically significant negative correlation between blood oxygen sat-
uration average level with wave intervals and interpeak latencies
(Table 3). In conclusion, chronic hypoxaemia among infants is a
leading cause of brainstem alterations most likely related to a pro-
gressively altered process of myelination. This leads us to hypothe-
sise that under generalised chronic hypoxia, the detrimental
conditions may prevail in areas of the brain where an active
post-natal development and myelination are taking place, for
instance, in the cerebellum.40
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