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ABSTRACT. Four topics are discussed. First, measurements of the autocorrelation function of the op-
tical extragalactic sky background check the possibility that there is an appreciable contribution from 
young galaxies or from stars well outside normal galaxies. Second, large-scale fluctuations in the mass 
distribution are probed by the anisotropics of the X-ray and 2.7 Κ backgrounds. Third, scattering by 
plasma in young galaxies could affect the primeval anisotropy of the 2.7 Κ background radiation. 
Fourth, production of the heavy elements is expected to yield background radiation with a characteristic 
and perhaps detectable angular distribution. 

1. INTRODUCTION 

Angular structures in the radiation backgrounds play a central role in the observational basis 
for cosmology, from the detection of individual objects to the measurement of the statistics of 
their distributions. I have selected for discussion examples that are timely because they are 
relevant to current debates in cosmology and because they seem to be good prospects for 
further research. I have attempted only to present the motivation from cosmology and explana-
tions of the orders of magnitude, leaving details for the research papers. 

I assume the standard general relativity Friedmann-Lemaftre cosmology. For simplicity I 
take the cosmological constant A to be negligibly small, but where possible the scaling with 
the density parameter, Ω, is indicated. (Ω is the ratio of the present mean mass density to the 
density in the Einstein-de Sitter model with A = 0, zero space curvature, and the observed 
Hubble constant.) In this set of models, the angle θ subtended by an object with proper physi-
cal diameter d at high redshift ζ is 

Q = sm(l+2). (1) 
2c 

Hubble's constant will be written as 
Η = 100A km s"1 Mpc" 1 , h ~ 0.67 ± 0.08 . 

The estimate of the dimensionless parameter h is from van den Bergh (1989). 
I use only the simplest measure of background fluctuations, the autocorrelation function 

(or second central moment). If the sources of the background are clustered like galaxies, the 
second moment is determined by the galaxy two-point spatial correlation function, ξ(Γ), which 
is defined by the joint probability of finding galaxies in both of the volume elements dVx and 
dV2 at separation r 12: 

dP = n2dVldV2[l + $(rl2)l (2) 

At small separations, ξ is well approximated as a power law (Groth and Peebles 1986 and 
references therein), 

ξ = ( r » ï , r < 10/Γ 1 Mpc , (3) 

ra = 5.4 ± ΙΑ"1 Mpc , γ = 1.77 . 
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A useful measure of clustering is the variance of the galaxy count in a randomly placed sphere 
of radius r. The variance divided by the square of the mean value of the count in the sphere 
is 

Ν 

where 

7 3 ( r ) = (r2dr^ry (5) 
4 ο 

The last equation follows if the mean number Ν is large and ξ is small or close to flat at 
r 1 2 ~ r . The integral J-$ is estimated to be (Clutton-Brock and Peebles 1981; Davis and Pee-
bles 1983) 

J3(30h"1 Mpc) ~ δΟΟ**02 Λ"3 Mpc 3. (6) 

If the galaxy two-point correlation function were negligibly small at larger separations, then we 
see from equations (4) and (6) that the rms fluctuations in galaxy counts averaged over the 
Hubble length clH and one tenth the Hubble length are 

= 0.0003at r = 3000/Γ 1 Mpc, (7) 
Ν 

= 0.01 at r = 300/Γ 1 Mpc. 

2. FLUCTUATIONS IN THE OPTICAL BACKGROUND 

The known source of the extragalactic optical background radiation is the population of ordi-
nary galaxies. Because the spectra of galaxies fall off to the blue, the cosmological redshift 
limits the dominant contribution to the background at wavelength λ ~ 5000 Â to galaxies at 
redshifts ζ ~ 0.5 or less, so only modest extrapolations are needed to relate the fluctuations in 
sky brightness due to galaxies to the observed spatial clustering of galaxies at low redshifts. 
There may be an appreciable contribution to the optical background from young blue galaxies 
in the phase of heavy element production, if this occurs at redshifts ζ < 4. (At ζ ~ 4 the light 
from massive stars, which peaks at λ ~ 1000 Â, would be redshifted to the middle of the opti-
cal band. Energy density released at redshift ζ is reduced by the factor (1 + z ) 4 ; as discussed 
in section 5 below, if ζ ~ 4, that would make the present background from element production 
comparable with that produced by normal galaxies.) There may also be a significant contribu-
tion from stars between the known galaxies. This is suggested by the fact that, if Newtonian 
mechanics is adequate for systems of galaxies, most of the mass in the universe is outside the 
bright central parts. If this dark mass is a population of low mass stars, it could contribute to 
the optical sky brightness. This and the light from young galaxies could be detected as an 
excess in the mean sky brightness, as discussed by Mattila (1989, this volume), or as a 
suppression in the fluctuations in surface brightness across the sky from that expected from the 
known clustering of sources in ordinary galaxies. 

If the optical sky brightness is in fact dominated by starlight from low redshift galaxies, 
we can compute the autocorrelation function of the sky brightness from the galaxy two-point 
correlation function. The sky surface brightness i v at frequency ν (energy flux per steradian 
and frequency interval) is a line integral of the luminosity density: 

ί ν = I e * — 5 Γ (8) 
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(13) 

It appears that the best measurement of the autocorrelation function of the optical back-
ground is that of Shectman (1974), who used stacked photographic plates. His results are con-
sistent with the conventional estimates of the mean luminosity per unit volume due to galaxies 
and of the galaxy clustering length rQ. That is, there is no evidence either for galaxy cluster-
ing on large scales beyond that in equation (7) or for an appreciable contribution to the optical 
background from sources other than ordinary galaxies. A similar conclusion for the UV 
1400-1900 Â background is reported by Martin and Bowyer (1989) and Bowyer (1989, this 
volume). Boughn, Saulson, and Uson (1986) obtained bounds on the fluctuations in the 
infrared sky brightness at 2.2 μιη that usefully constrain the light from young galaxies and 
approach the level needed to detect the fluctuations in light from normal galaxies. 

where the angular coherence length is 

This time integral is well behaved at t —> t o i and because the spectrum L v decreases with 
increasing ν in typical bright galaxies, the integral is strongly suppressed beyond redshift 
ζ - 0 . 5 . The approximation of the time integral is discussed in Peebles (1980); the order of 
magnitude result is 

(12) 

where x(t) is the coordinate distance to a galaxy seen at epoch t. This integral diverges at 
t —» tot where xat0 - t, which means the shot noise is dominated by the nearest galaxies. 
The coefficient of the extended part of equation (10) is 

(11) 

The coefficient of the shot noise part arising from the light concentration within individual 
galaxies is 

(10) 

The first term approximates the mean convolution of the luminosity distribution within a 
galaxy. On using this expression in equation (8), with the power law approximation for ξ in 
equation (3), one finds that the autocorrelation fonction of the sky brightness is of the form 

with autocorrelation function 

The redshift factor is 1 + ζ = a0/a(t), where a(t) is the expansion factor at world time t, and 
a0 is the present value, at time tQ. The last factor in equation (8) takes account of the dilution 
of monochromatic surface brightness by the expansion of the universe. The luminosity density 
y v (rate of energy release per unit volume and frequency interval) of galaxies can be approxi-
mated as a sum of pointlike terms, 

(9) 
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More detailed measurements of the fluctuations in the optical extragalactic background 
using the panoramic photon detectors now available would appear to be feasible. It would be 
of considerable interest to know how the fluctuation spectrum varies with wavelength, as a test 
for the presence of sources other than ordinary galaxies, and to have improved measures of the 
fluctuation spectrum as a function of angular scale, as a probe of the character of the galaxy 
space distribution. 

3. BOUNDS ON LARGE-SCALE MASS FLUCTUATIONS 

Galaxies cluster strongly on small scales, and the observed motions of galaxies in groups and 
clusters tell us there are roughly comparable small-scale fluctuations in the mass distribution. 
The relation between this clustering and the primeval seeds out of which it grew is complicated 
by the extreme nonlinearity. Mass fluctuations on larger scales, where the contrast δΛί IM is 
small, are more easily interpreted, but the observational measures are considerably poorer. As 
reviewed here, there are several ways by which measurements of anisotropics in the radiation 
backgrounds constrain large-scale mass fluctuations and theories of galaxy formation. For 
other discussions see Rees (1980), Bond (1988a), and references therein. 

3.1. The Aether Drift 

As Strukov describes (1989), the 3K cosmic fireball background radiation (the CBR) has a 
dipole anisotropy consistent with a motion of the Local Group of galaxies at 600 km s"1 rela-
tive to the rest frame defined by the CBR. Another possible interpretation is that the dipole is 
produced by departures from homogeneity and isotropy on scales larger than the Hubble length 
cH~l = 3000Λ Mpc, but in that case one would expect that dynamical perturbations to the 
quadrupole terms in the CBR anisotropy are no smaller than the dipole, contrary to what is 
observed. An isocurvature perturbation, where the primeval mass density is homogeneous but 
the entropy per baryon, s, is a function of position, could produce a pure dipole by suitable 
choice of the function s (χ ), but that seems to be a contrived arrangement. Thus, the straight-
forward and generally accepted interpretation is that the Local Group has a peculiar motion, 
produced by the gravitational acceleration of mass fluctuations on scales less than the Hubble 
length. 

This velocity interpretation of the CBR dipole might be checked in several ways. The 
motion would produce a dipole in the X-ray background (called, in this connection, the 
Compton-Getting effect). Boldt (1989) concludes that the data are not yet adequate for a con-
vincing test for this effect in the X-ray background. 

The velocity interpretation also would predict that our motion relative to the mean pro-
vided by distant galaxies agrees with that denned by the CBR. The evidence, summarized by 
Aaronson et al. (1986, 1989), is that velocities defined relative to the CBR and galaxy frames 
of reference agree to better than - 5 % of the cosmological redshift of galaxies at distances 
greater than Hr - 4000 km s"1. Aaronson et al. (1986) conclude that the rest frame defined by 
clusters of galaxies in the Arecibo declination range at redshifts 4000 to 10,000 km s"1 agrees 
with the CBR frame to one standard deviation -200 km s"1. This indicates that the motion of 
the Local Group relative to a universal reference frame has been detected, at - 3 standard devi-
ations, and that the coherence length of the peculiar velocity field is less than the typical dis-
tance to clusters in this sample, that is, below -40A" 1 Mpc. 

Direct evidence of gravitationally induced motion would be the identification of the mass 
concentrations responsible for the motion (perhaps to be called the ''ultimate attractor, , , after 
the ''great attractor" of Lynden-Bell et al. 1988; though the gravitational field need not be that 
of a single mass). If galaxies trace the large-scale mass distribution, and the mean mass den-
sity is somewhere between that indicated by local dynamical estimates and the Einstein— 
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de Sitter value (Ω between -0.1 and 1), then the peculiar gravitational acceleration at the 
Local Group that originates in mass fluctuations within distances Hr - 4000 km s"1 produces a 
local peculiar motion with at least roughly the right magnitude and direction (Lynden-Bell and 
Lahav 1988; Yahil 1988, and references therein). This suggests that the bulk of the ultimate 
attractor lies within a distance Hr - 4000 km s . If this were typical, the coherence length r v 

of the peculiar velocity field, where the scalar velocity autocorrelation function, 

v c ( r ) 2 = < v ( r 1 } - v ( r ! + r)>, (14) 

is half its value at zero lag, would be r v ~ 40Λ"1 Mpc. 
To summarize, the evidence is that the CBR defines a universal rest frame relative to 

which the Local Group is moving at -600 km s"1, and that the coherence length of the peculiar 
velocity field is - 40A - 1 Mpc. 

3.2. Mass Fluctuations on the Scale ~300h _ 1 Mpc 

We can bound mass fluctuations on scales larger than r v by the limit on their effect on the 
peculiar velocity field. In linear perturbation approximation, the scalar autocorrelation function 
of the velocity field produced by the gravitational acceleration of the fluctuating mass distribu-
tion is (Peebles 1980) 

oo 

vc(rn? = 4πΗ2Ω}2 ^dkPksin(kr)/(kr)t (15) 

where the spectrum Pk of mass fluctuations is the transform of the mass autocorrelation func-
tion, 

ξ ρ (Γ) = \d3kPk^. (16) 

If ξ ρ is negligibly small on large scales, the spectrum Pk is nearly flat, and equations (15) and 
(16) give at large r 

vc(r)2 - / / 2 ß 1 2 / p ( r ) / r , (17) 

This relates the large-scale peculiar velocity field and large-scale mass fluctuations as deter-
mined by 7 ρ through equation (4). 

If we approximate Jp by / 3 in equation (6), we get 

v c (40/ i _ 1 Mpc) - 4 5 0 ß a 6 k m s _ 1 . (18) 

This is at least roughly consistent with a velocity clustering length [at which v c

2 is half its cen-
tral value of perhaps -(600 km s" 1) 2] of r v - 40A"1 Mpc. 

Now let us use equation (17) to bound mass fluctuations on larger scales. Taking 
r - 300/Γ 1 Mpc, and using vc < 600 km s"1, we get a bound on 7 p integrated to this larger 
radius. This in equation (4) gives 

— < 0.03Ω" 0· 6 at r = 300/Γ 1 Mpc. (19) 
M 

Another limit comes from the isotropy of the X-ray background. As discussed by Setti 
(1989, this volume), an appreciable fraction of the X-ray background comes from clusters and 
active galaxies at redshifts less than unity. If the space density of these sources fluctuates by 
the fractional amount b*N/N on the scale r , it produces surface brightness fluctuations in the 
X-ray background, 
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I 

Hr 

c 

1/2 

M ( 2 0 ) 

on the angular scale 

θ ~ Hrlc, (21) 

where / is the fraction of the background originating at ζ ~ 1 or less. At r ~ 300/t"1 Mpc, 
the angular scale is θ ~ 6°, the HEAO-1 A2 bound is &'// < 0.03 (Boldt 1989), and the result-
ing bound on the rms density fluctuation is 

— < 0 . 1 / _ 1 at r = 3 0 0 / 1 - ^ 0 0 . (22) 
Ν 

For Ω - 0 . 1 , equations (19) and (22) allow large-scale mass fluctuations considerably 
larger than equation (7), the value expected if galaxy positions were uncorrelated at separations 
greater than -30 /Γ 1 Mpc. That is, we cannot exclude the possibility that the mass fluctuation 
power spectrum on the scale of a tenth the Hubble length is considerably larger than a flat 
extrapolation from equation (6). In the baryon isocurvature theory, the mass fluctuation spec-
trum has a considerable bulge at r ~ 300/t Mpc (Peebles 1987). Tighter constraints on such 
large-scale fluctuations would be of considerable interest. Perhaps they will be obtained from 
measurements of fluctuations in the optical background, by integrated surface brightness meas-
urements or galaxy counts. 

3 3 . Mass Fluctuations on the Scale of the Hubble Length 

Sachs and Wolfe (1967) pointed out that inhomogeneities in the mass distribution gravitation-
ally perturb the CBR: the radiation moves through an inhomogeneous gravitational potential 
field that shifts the frequency and hence the surface brightness of the radiation. The effect is 
most sensitive to mass fluctuations on the scale of the Hubble length, because for given relative 
mass fluctuation SM IM, the perturbation to the potential is larger the larger the scale of the 
fluctuation. The following review of bounds on mass fluctuations from the Sachs-Wolfe effect 
assumes an Einstein-de Sitter model universe, because that greatly simplifies the analysis. 

It is convenient to express the CBR temperature as a function of position across the sky 
in the spherical harmonic expansion 

ψ = Σ ^ Γ ( Θ , Φ ) . ( 2 3 ) 

If the temperature fluctuations approximate an isotropic random process, the expected values of 
the expansion coefficients a™ are independent of m : 

ai = {<\αΓ\2>)υι. (24) 
In this notation, the bound on the quadrupole moment of the CBR from the RELIKT experi-
ment discussed by Strukov (1989) is 

Û 2 < 5 X 10"5. (25) 

In an Einstein-de Sitter universe, the expected values of the at are given by the equation 
(Peebles 1981, 1982) 

( Ο / ) 2 = 4π2Η4 ^k~ldkP^{Ikc IHa0)\\ (26) 

where ji is the spherical Bessel function, and Pk is the power spectrum of the mass fluctua-
tions, related to the mass autocorrelation function ξ ρ by equation (16). (To be more precise, ξ ρ 

is the autocorrelation function of the growing mode of the density perturbation in synchronous 
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time-orthogonal gauge; equation (25) is derived in linear perturbation theory following §93 of 
Peebles 1980.) If the mass autocorrelation function vanishes at large separations, then the 
integral / p (equation [17]) converges to a fixed value, and equation (26) gives the expected 
quadrupole moment, 

If galaxies trace the large-scale mass distribution, then / p ~ J3 ~ 800A 3 Mpc 3 from equation 
(6), and we get 

û 2 ~ 6 x 10"5. 

Given the uncertainties in the theoretical estimate, this white noise case is just possible, 
but we certainly cannot imagine that the mass fluctuation spectrum on the scale of the Hubble 
length is significantly larger than a flat extrapolation from -30A" 1 Mpc. For example, if the 
mass autocorrelation function at large separations varied as ξ ρ «= r , which corresponds to 
Pk oc k~l, then the predicted quadrupole moment would be 

(a2)
2 = KH2r\(r)inc2. (28) 

In the biasing picture (discussed by Kaiser and Lahav 1988; Davis and Efstathiou 1988, and 
references therein), the mass autocorrelation function at hr ~ 10A"1 Mpc is smaller than the 
galaxy two-point function ξ(Γ) (equation [3]) by a factor ~4. With this factor, and matching 
correlation ninctions at Ar=10 Mpc, we get a2 ~ 2 χ 10" 4, which is ruled out. Consistent with 
this, the direct estimates of the galaxy two-point correlation function ξ(Γ) indicate that the 
function falls below the small-scale power law at hr ~ 10 Mpc (Groth and Peebles 1986). 

To summarize, the evidence from the observed relative velocities of galaxies and the 
velocity interpretation of the CBR dipole is that the mass fluctuation spectrum is roughly com-
parable with that of the observed galaxy clustering on scales less than about 30/Γ 1 Mpc. The 
spectrum extrapolated from this scale to the Hubble length must be flat or decreasing toward 
larger scales, to avoid overproducing the low-order multipole moments of the CBR. This is 
consistent with the scale-invariant Zel'dovich spectrum Pk «= k produced in the simplest 
inflation models (Bardeen, Steinhardt, and Turner 1983). The same is true of the explosion 
picture (Ostriker 1986), and some versions of the baryon isocurvature picture, depending on 
how the spectrum of fluctuations in the primeval entropy per baryon is adjusted (Peebles 
1987). On the other hand, it is still possible that the quadrupole moment a2 will be found to 
be consistent with equation (27). In this case the simplest interpretation would be that the 
large-scale structure of the universe developed out of uncorrected adiabatic mass density 
fluctuations. 

4. SCATTERING OF THE CBR IN YOUNG GALAXIES 

Measurements of small angular scale fluctuations in the CBR constrain theories for the origin 
of galaxies and groups and clusters of galaxies. The case where the CBR has not been appre-
ciably scattered since decoupling of matter and radiation at redshift ζ ~ 1000 has been 
analyzed in detail (Bond 19886 and references therein). Another possibility is that stars form 
and ionize matter at high redshifts, in which case the CBR is scattered by free electrons and 
the fluctuations in the CBR left over from decoupling are replaced by perturbations caused by 
the scattering. The effect of scattering by moving plasma is studied in second order perturba-
tion theory by Vishniac (1987) and Efstathiou and Bond (1987). In the other limiting case to 
consider, the CBR is scattered by plasma already concentrated in discrete compact clouds: 
young galaxies or pre-galaxy star clusters. This is an interesting case because the clouds could 
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provide the stars to ionize the matter. The order-of-magnitude estimates presented here indi-
cate that the predicted fluctuations in this case are below the experimental bounds. 

Since the CBR is last scattered at an epoch when the value of the density parameter is 
close to unity, we can approximate the relation between cosmic time and redshift as 

2 . v-3/2 
t = 

3Ωυ2Η 
( 1 + z ) (29) 

where Ω is the present value of the density parameter. The mean number of times a photon is 
scattered at redshift < ζ is the time integral of the scattering probability per unit time, 
<5Tn(t)ct which with equation (29) is 

= 2°?lfn [ ( l + z ) - 3 / 2 - l L 
3 / /Ω 1 7 2 

with cT the Thomson scattering cross section. This amounts to x b = 0.5 at redshift 
12/3 

i n firi*'* 

1 + z 1 / 2 = II + 
10.8Ω 1 7 2 

xQBh 

(30) 

(31) 

where ΩΒ is the density parameter in baryons and χ is the fraction of the baryons in optically 
thin ionized gas. In the biased cold dark matter picture (Davis and Efstathiou 1988, and refer-
ences therein), where standard choices of the cosmological parameters are h = 0.5, Ω = 1, and 
Ω^ - 0 . 1 , the characteristic epoch of last scattering is ζ ~ 35. In this theory, density fluctua-
tions would be small at z 1 / 2 , so it is reasonable to assume the CBR has not been scattered 
since decoupling. On the other hand, with the current estimate h = 0.67 of van den Bergh 
(1989), and the density parameter indicated by dynamical estimates, Ω = Ω Β - 0.1, one finds 
z i / 2 ~ 13. It is quite conceivable that plasma-rich young galaxies or pre-galaxy star clusters 
existed at this epoch and that they scattered the CBR. 

Assuming such objects existed, with scattering probability τ per cloud, their perturbation 
to the CBR temperature along a line of sight would be 

δΓ v l v 2 ο v 3 

T c c c 
(32) 

The velocity in the η01 cloud along the line of sight is v n , and the prefactor is the probability 
that the last scattering is in the Λ λ cloud counting back from the present. Squaring this 
expression, averaging, and ignoring the correlation of velocities of clouds, we get 

Ί2 

= Σ τ 2 ( 1 - τ ) 2 Λ ( ν / < : ) 2 , (33) 
δΓ 

which gives 

δΓ 
Γ 2 - τ 

1/2 
(34) 

For an order-of-magnitude estimate, let us suppose a typical plasma cloud has the mass 
and density characteristic of the bright part of a large galaxy, radius r - 5h~l kpc and circular 
velocity vc - 250 km s"1. This works out to surface density τ - 0.08 if the bulk of the matter 
is dilute ionized gas. The rms line-of-sight velocity due to internal motion is ~ v c / 3 1 / 2 . These 
numbers in equation (34) give 

οΎIT - 1 x 10"4. 
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The temperature fluctuation would be coherent over the angular size of one of the plasma 
clouds, 

θ - (1 + zV2)OHr/(2c) - 3Ω arc sec , (35) 

for ζ 1 / 2 ~ 20. This effect is well below the experimental bounds summarized by De Zotti 
(1989, this volume). 

The effect of correlated motions of the gas clouds can be roughly estimated by scaling 
the velocity field discussed in section 3.1 back in time to the epoch z 1 / 2 of last scattering. Let 
us model the present large-scale velocity field as adjacent patches of width w - 40A Mpc 
within each of which the velocity is roughly uniform at rms value -600 km s"1. In linear per-
turbation theory, the velocity scales with time as ~ ( l + z ) ~ 1 / 2 , which brings the one-
dimensional rms value of the velocity at z 1 / 2 - 20 to -100 km s"1. The net perturbation to the 
CBR depends on the correlation of peculiar motions of neighboring patches, as discussed by 
Efstathiou (1988). Here, because the probability that a line of sight intersects a galaxy in a 
given patch is fairly small, it is a reasonable approximation to ignore this correlation. 

The scattering probability through the width w of a coherent patch is 

τ - 9 x KT 4 Ω Β h (1 + ζ 1 / 2 ) 2 - 0.02 (36) 

for ΩΒ - 0.1, h = 0.67, and z 1 / 2 ~ 20. These numbers give 

^ - 3 x ΙΟ"5 at θ - - 2 arc min , 
T 2c 

for Ω - 0.1. This is just at the limit from the Owens Valley Radio Observatory (Readhead et 
al. 1989). 

The conclusion is that one can find gravitational instability scenarios in which fluctuations 
in the CBR associated with the formation of galaxies or pre-galaxy star clusters at high redshift 
are consistent with present experiments. This early galaxy formation picture is constrained by 
the CBR anisotropy on scales of arcminutes, which would be produced by the large-scale velo-
city field. More detailed calculations of this effect will be of interest. 

5. BACKGROUND RADIATION FROM ELEMENT PRODUCTION 

A signature of the electromagnetic radiation released in the production of the heavy elements in 
galaxies may be the fluctuations in the background due to the clustered distribution of the 
sources in galaxies. This heavy element radiation background (HERB) could reach us directly, 
as redshifted starlight. The other commonly discussed possibility is that the HERB is dom-
inated by thermal radiation from dust that has absorbed the starlight, a case that has attracted 
considerable attention with the possible detection of a submillimeter radiation background 
significantly in excess of a 2.7 Κ Planck spectrum (Matsumoto et al. 1988; Draine and Shapiro 
1989; Bond, Carr, and Hogan 1989, and references therein). Starlight could be absorbed 
within the galaxy that produced it (as would be the case in our galaxy if the amount of dust 
were - 3 times higher in the past) or, in the other limit, starlight may have traveled many 
galaxy clustering lengths before being absorbed by dust in galaxies. In all the above cases, the 
autocorrelation function of the HERB source luminosity density is the same as the galaxy 
correlation function. As discussed by Bond, Carr, and Hogan (1989), this would imply a 
significant HERB anisotropy. I present here a review of the effects that yield the order of 
magnitude of the anisotropy. 

A simple and reasonable model for the source density of this background is based on the 
following assumptions. Suppose a fraction / of the baryon mass has been converted to radia-
tion at a uniform rate ending at the epoch te. Then the mean luminosity density is 
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J = 
9oC2f 

z>zet (37) 

where p 0 is the present mean baryon mass density and ze is the redshift at the end of the 
epoch of build-up of the heavy elements. As we have seen, it is reasonable to assume that the 
HERB source density autocorrelation function is 

<JiJ2> = < 7 > 2 [ 1 + ξ ( Γ ΐ 2 ) 1 (38) 

The shot noise term (analogous to the first term on the right-hand side of equation [10]) is sub-
dominant if, as will be assumed, te is much less than the present epoch. To simplify the dis-
cussion, I will suppose that the galaxy two-point correlation function ξ is negligibly small at 
r > 30h~l Mpc, and that the integral of ξ varies with time as 

x2dxi\ = J3(a/a0)\ (39) 

where χ is a comoving coordinate, / 3 is given by equation (6), and last factor assumes an 
Einstein-de Sitter universe with galaxies clustered with mass. If the density were lower than 
Einstein-<ie Sitter, or galaxies more strongly clustered than mass, the clustering at high redshift 
would be higher, increasing the expected HERB anisotropy. Generalization of the calculation 
to these cases and to the case of large-scale correlations of galaxy positions is left as exercise. 

The mean HERB surface brightness integrated over all frequencies is 

the last factor in the integral accounting for the dimunition in bolometric surface brightness by 
the expansion of the universe. With equation (37) this is 

(40) 

(41) 

The HERB autocorrelation function is 

(42) 

(43) 

The physical separation of the points i 

where the coordinate distance can be approximated as χ ~ 2c/(Ha0Q). The mean square 
fluctuation in the background smoothed through a window of radius θ is 

(44) 

where the second line follows if the window is large enough to include the significant correla-
tion of the HERB sources. On writing the proper spatial volume element as 

(45) 

and using equation (39) for the integral of ξ and equation (37) for the mean luminosity density 
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as a function of time, we get the mean square fluctuation in the background due to the energy 
release in heavy element production, 

( Δ ι ) 2 = 
9 p 2 c 6 / 2 

416π 2 θ 2 

7/2 

Ω 5 / 2 

With equation (41), the fractional fluctuation in the HERB is 

Aj_ 
i 

25 
26 

1/2 
Ω 5 / 4 

θ 

1/2 r 3/4 
0.6Ω 5/4 

( 1 ze ) Ö arcmin 

(46) 

(47) 

This assumes the smoothing window radius θ subtends a length large compared with the 
source clustering length, which translates to 

(48) θ > > 
2 c ( l + z e ) 2/3 ~ 

> 3Ω arc min 

Detectability of the HERB fluctuations depends on the wavelength. If the HERB were 
starlight from galaxies at modest redshifts, the fluctuations would be subdominant to the contri-
bution from ordinary low redshift galaxies, as discussed in section 2. If the HERB were ther-
mal radiation from dust, it would be concentrated to the Wein part of the CBR spectrum 
(Wright and Peterson 1989; Bond Carr and Hogan 1989). Orders of magnitude in this case are 
as follows. 

If - 3 % of baryon density ΩΒ ~ 0.03 is converted to heavy elements at ze ~ 10, the mean 
background (equation [41]) is 

/(HERB) ~ 7 x KT 6 erg cm" 2 s"1 s r - 1 . 

If the HERB is reradiated by dust, it would appear at wavelength λ < 600 μ, where the CBR 
flux density is 

i(CBR < λ) ~ 2kTcX~3e 

~ 2 χ 10"5 

(49) 

erg cm 2 s 1 sr *, 

which is comparable with the HERB. That is, if the starlight from heavy element production is 
reradiated by dust in galaxies at modest redshifts, it could produce a substantial signal, compar-
able with equation (47). The search for fluctuations in the short wavelength part of the CBR 
spectrum thus will be followed with particular interest. 
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