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Abstract

The Central Asian Orogenic Belt is the world’s largest accretionary orogenic belt, associated
with the closure of the Paleo-Asian Ocean (PAO). However, the final closure timing of the
eastern PAO remains contentious. The Permian-Triassic sedimentary sequences in the
Wangqing area along the Changchun-Yanji suture zone offer important clues into this final
closure. New data on petrology, whole-rock geochemistry, zircon U-Pb geochronology and
zircon Hf isotopes of sedimentary rocks from the Miaoling Formation and Kedao Group in
Wangqing area provide new insights into the final closure of the eastern end of the PAO. The
maximum deposition ages of the Miaoling Formation and Kedao Group have been constrained
to the Late Permian (ca. 253 Ma) and early Middle Triassic (ca. 243 Ma), respectively. These
sedimentary rocks exhibit similar geochemical characteristics, showing low textural and
compositional maturities, implying short sediment transport, with all detrital zircons
suggesting their origins from felsic igneous rocks. The εHf(t) values of the Miaoling
Formation range from −6.09 to 12.43 and from −2.20 to 7.59 for the Kedao Group, implying
these rocks originated from NE China. Considering our new data along with previously
published data, we propose that a reduced remnant ocean remained along the Changchun-
Yanji suture zone in the early Middle Triassic (ca. 243 Ma), suggesting the final closure of the
eastern PAO likely occurred between the latest Middle Triassic and early Late Triassic.

Highlights:
1. Miaoling Formation and Kedao Group were deposited around 253 Ma and 243 Ma,

respectively.
2. The eastern segment of the Paleo-Asian Ocean closed in a scissor-like manner along the

Changchun-Yanji suture zone.
3. Remnants of the Paleo-Asian Ocean still existed in the early Middle Triassic.

1. Introduction

The Central Asian Orogenic Belt (CAOB), the largest accretionary orogenic belt on Earth, is
situated between the Siberian Craton to the north, and the North China and Tarim Cratons to
the south (Sengör et al. 1993; Windley et al. 2007; Wilde, 2015; Xiao et al. 2015; Xu et al. 2015;
Chen et al. 2022; Li, H.D. et al. 2022; Fig. 1a) and reflects a complex tectonic evolution closely
connected to the closure of the Paleo-AsianOcean (PAO) (Khain et al. 2002;Windley et al. 2007;
Xiao et al. 2015; Zhang et al. 2019; Wu et al. 2007; Pei et al. 2016). Northeastern China (NE
China), also called the Xing’an-Mongolian Orogenic Belt (XMOB; Sun et al. 2004; Xu et al.
2014), is located in the eastern segment of the CAOB and has witnessed the amalgamation of NE
China massifs during Paleozoic and early Mesozoic, which from west to east are Erguna,
Xing’an, Songnen and Jiamusi-Khanka massifs or terranes, all of which are separated by major
faults or suture belts (Wu et al. 2007, 2011; Zhou et al. 2011a, b, 2015; Zhou &Wilde, 2013; Cao
et al. 2012, 2013; Santosh & Somerville, 2013; Sun et al. 2013; Xu et al. 2014; Mi et al. 2017; Liu
et al. 2017; Li, 2006; Tang et al. 2013; Fig. 1a). This amalgamation of NE China (XMOB) and the
North China Craton (NCC) along the Solonker-Xar Moron-Changchun-Yanji Suture (SXCYS)
is commonly recognized as the final closure of the PAO, supported by evidence from magmatic
rocks, structural features and palaeontological data (Sun et al. 2004; Jia et al. 2004; Wu et al.
2007; Cao et al. 2013; Zhou et al. 2017; Wang et al. 2015a, b; Li et al. 2017; Yang et al. 2017; Gu
et al. 2018; Du et al. 2019). Nonetheless, there are still no definite conclusions about the final
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closure time of the PAO, as different scholars present varied
perspectives. The closing process of the PAO during the Permain-
Triassic has been inferred through the study of intrusive rocks
exposed in the NCC and igneous rocks in NE China (Cao et al.
2013; Guan et al. 2022; Han et al. 2020, 2021; Song et al. 2018;
Wang et al. 2015b; Wu et al. 2007; Yuan et al. 2016; Yu et al. 2022).
Some scholars, using high-quality paleomagnetic data and
geological evidence, suggest the closure around 250 Ma (Zhao
et al. 2013; Ren et al. 2023). Conversely, others, focusing on
sedimentary rocks, argue differently (Du et al. 2019, 2021; Han
et al. 2019; Liu J et al. 2017; Shi et al. 2020; Sun et al. 2022; Wang
et al. 2015a). Most studies agree that the final suturing occurred
during the Permian-Triassic (Cao et al. 2013; Du et al. 2019, 2021;
Guan et al. 2022; Han et al. 2019, 2020, 2021; Li, 2006; Li & Zhao,
2007; Liu J et al. 2017, 2020; Shi et al. 2020; Song et al. 2018; Sun
et al. 2022; Wang et al. 2015a, b; Wu et al. 2007; Yuan et al. 2016),
while some propose it occurred before the Permian (Zhang et al.
2008; Shi et al. 2010), or even before the Late Devonian (Xu &
Chen, 1997; Zhao et al. 2013; Xu et al. 2015; Zhu & Ren, 2017), or
between the Late Devonian and Early Carboniferous (Tang, 1989;
Hong et al. 1995). Others suggest that closure spanned from the
Permian to Triassic, encompassing late Early Permian (Yu et al.
2022; Feng et al. 2010; Liu et al. 2010), Middle to Late
Permian(Sengör et al. 1993; Chen et al. 2000, 2009; Jian et al.
2010; Lin et al. 2013), Late Permian (Li, 2006; Wu et al. 2011), Late
Permian to Early Triassic (Sengör et al. 1993; Li, 1998, 2006; Xiao
et al. 2003; Sun et al. 2004; Zhang et al. 2004; Wu et al. 2007, 2011;
Xu et al. 2009; Peng et al. 2012; Cao et al. 2013; Eizenhöfer et al.
2014; Li et al. 2014; Wilde, 2015; Han et al. 2015; Guo et al. 2016;
Wu & Li, 2022), Late Permian to Middle Triassic (Jia et al. 2004;
Wang F et al. 2015; Xiao et al. 2015; Liu et al. 2017; Guan et al.
2023) and Middle-Late Triassic (Peng et al. 2012; Zhou & Wilde,
2013). This controversy largely arises from insufficient time
constraints and sedimentological data for the transition from
subduction to collision in the eastern segment of CAOB (Zhang
et al. 2023).

This uncertainty about the provenance of Late Permian to
Triassic sedimentary rocks in this area and the absence of

constraints from related orogenic events further exacerbate the
differing viewpoints. The Wangqing area in eastern Jilin Province,
adjacent to the Changchun-Yanji suture zone, plays a key area in
elucidating the final closure of the eastern end of PAO (Fig. 2). This
study focuses on petrology, geochronology and geochemistry
investigations conducted on sandstone samples from the Middle
Permian Miaoling Formation and Upper Triassic Kedao Group in
the Wangqing area, aiming to enhance the understanding of the
evolution and closure history of the eastern PAO from a
perspective of provenance analysis.

2. Geological setting and sample descriptions

2. a. Geological setting

The SXCYS is bordered by the eastern CAOB to the north and the
NCC to the south. NE China is located in the east segment of the
CAOB, also known as the XMOB, which consists of numerous
micro-blocks, including the Erguna Block, Xing’an Block,
Songnen-Zhanggaungcai Range and Jiamusi-Khanka massifs or
terranes (Ge et al. 2005; Huang et al. 2006; Li, S.K. et al. 2020). The
NCC, the oldest and largest known craton in China, is divided into
the Western Block and the Eastern Block, which amalgamated
along the Trans-North China Orogen around 1.85 Ga (Zhao et al.
2012). Jilin Province features a series of discontinuous Permian-
Triassic sedimentary sequences along the Changhun-Yanji suture,
witnessing the amalgamation of NE China blocks and the NCC,
preserved within the extensive “granite ocean” (Cao et al. 2013).
The study area in the Wangqing area in the east of Jilin Province,
adjacent to the southeastern XMOB and the northern NCC
(Fig. 1a), is pivotal in reconstructing the final closure process of the
PAO and the collision between the NCC and NE China.

The tectonic evolution history of NE China is complex,
featuring Phanerozoic granitoids and Paleozoic to Mesozoic
sediments, such as the Middle Permian Miaoling Formation and
the Triassic Kedao Group. Intrusions associated with the PAO
tectonic domain are primarily I-type granites and mafic to
ultramafic rocks, while those related to the Paleo-Pacific tectonic

Figure 1. Tectonic sketch map of the Central
Asian Orogenic Belt (a; Zhou & Wilde, 2013) and
NE China (b; Liu et al. 2017).
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domain consistmainly ofA-type and I-type granites, with fewermafic
intrusions. Different formations often exhibit distinct lithological
characteristics and different fossil assemblages. Previous studies on
theMiaoling Formation have focused on volcanic interlayers (Lu et al.
2022), while the definition of the Kedao Group remains unclear (Yu,
2017). Therefore, for our study, we select theMiaoling Formation and
the Kedao Group in the Wangqing area, Jilin Province, as our
sampling locations are closer to the Changchun-Yanji suture zone,
providing better representation.

Sun (1988) defined the Miaoling Formation as marine siliceous
pyroclastic rocks intercalated with intermediate-felsic lavas,
siltstone and limestone lenses. It exhibits a conformable contact
with the upper Hongtaiping Formation and an angular uncon-
formable contact with the lower Kedao Group. Its lower part is
predominantly composed of grey and grey-green feldspathic
quartz sandstone, greywacke and siltstone, intercalated with thin
lenses of limestone; the upper part is mainly characterized by
sandstone, siltstone and shale, interbedded with thick lenses of
limestone.

Yin et al. (2011) concluded that the Kedao Group consists of
Permian marine strata, divided into the Shanguqi and the Tanqian
formations, which are mainly composed of fluvio-lacustrine
deposits. Its upper part is in parallel unconformity with the
Daxinggou Group, and the lower part is in angular unconformity
with the Miaoling Formation. This group consists mainly of
conglomerate, tuffaceous siltstone, arkose and shale with interca-
lated allochthonous limestone blocks (Shen et al. 2019; see Fig. 3
for more details).

2. b. Sample descriptions

Five samples were collected in the study area (Fig. 2), including
mudstone 23JL34, grey-black mudstone 23JL36 and graywacke
23JL38 from the Miaoling Formation and grey-black siltstone
23JL30, blueish-grey mudstone 23JL33 from the Kedao Group.

2. b.1. Miaoling formation
Samples 23JL34 (43°34 057.35″N, 129°34 00.75″E) and 23JL36
(43°25 036.77″N, 129°32 016.37″E) are both mudstones with over
90% argillaceous content; the primary difference is their colour
under microscope, with 23JL34 appearing yellow-brown (Fig. 4a
and d) and 23JL36 grey-black (Fig. 4b and e).

Sample 23JL38 (43°3 012.36″N, 129°51 048.77″E) is a graywacke
from Shixian town, characterized by low maturity, with 50%
matrix and 50% clastic fragments, featuring 70% quartz, 5%
polycrystalline quartz and 25% feldspar, with poorly sorted, sub-
rounded grains and aligned mineral fragments (Fig. 4c and f).

2. b.2. Kedao group
The Kedao Group is dominantly exposed in Miaoling, Kedao,
Xiangrenping, Houdidong, Wangqing and Sidonggou in the
Yanbian area, with an exposed area of approximately 189 km2

(RGSR, 2007). Predominantly composed of conglomerate and
tuffaceous siltstone, these strata contain few fossils and exhibit
contested age estimates (BGMRJP, 1997). While some studies
suggest a Permian origin (BGMRJP, 1997), recent evidence
indicates an Early-Middle Triassic age, supported by Triassic
fossils (Zhou, 2009) and geochronologic data from the Yanji area.

Sample 23JL30 (43°27 053.65″N, 129°43 024.31″E) is a grey-
black siltstone from the eastern Miaoling Quarry, characterized by
low maturity and composed of 35% matrix and 65% clastic
fragments. It comprises 80% quartz and 20% feldspar, featuring a
clastic texture with poorly sorted, sub-rounded grains and a clear
alignment of mineral fragments (Fig. 5a and c).

Sample 23JL33 (43°34 00.38″N, 129°36 03.54″E) is a blueish-grey
mudstone in the southwest of Tianqiaoling town, containing over
90% argillaceous materials and presenting challenges for mineral
identification (Fig. 5b and d).

3. Analytical methods

3. a. LA-ICP-MS zircon U-Pb dating

Selected zircon grains (Fig. 6) were mounted into an epoxy resin
disc and polished to about half-sections to expose grain interiors.
Cathodoluminescence (CL) images coupled with transmitted and
reflected light micrographs were obtained to examine the internal
structures. Zircon U-Pb isotopic and trace element analyses were
performed using an ASITM RESOlution-LR Series 193 nm excimer
laser ablation instrument (LA) coupled with Thermo ScientificTM

iCAPTM RQ series inductively coupled plasma mass spectrometry
(ICP-MC) at Key Laboratory of Orogen and Crust Evolution,
Peking University and Hebei Key Laboratory of Strategic Critical
Mineral Resources, Hebei GEOUniversity. The laser spot diameter
is 29μm, the frequency is 6 Hz and the energy density is 3 J/cm2.
High-purity argon gas is used as the carrier gas and high-purity He
and N2 gas are used to increase sensitivity. The background of
204Pb and 202Hg is usually less than 100 cps. Calibration for the
zircon U/Pb ratios and trace elements was carried out by using the
standard zircon 91500 (1062Ma;Wiedenbeck et al. 1995) and glass
standard NIST 610, respectively. Zircon standard Plésovice (337
Ma; Sláma et al. 2008) and GJ-1 are also used to supervise the
deviation of age measurement/calculation. Those external stan-
dards were analyzed once per five unknown samples. The contents
of trace elements in all zircons were also calculated using 91Zr as an
internal standard. Isotopic ratios and element concentrations of
zircons were calculated using GLITTER (ver. 4.4.2, Macquarie
University) and iolite ver. 4.3.0. The common lead was corrected

Figure 2. Detailed geological map of the Wangqing area showing the stratigraphic
distribution and sampling locations.
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using LA-ICP-MS Common Lead Correction (ver. 3.15), following
the method of Anderson (2002). Concordia diagrams and
weighted average plots were obtained using Isoplot/Ex (3.0)
(Ludwig, 2003). Probability density distribution plots were
produced using AgeDisplay (Sircombe, 2004). Uncertainties on

individual analyses are reported at the 2σ andmean ages for pooled
U/Pb analyses are calculated at a 95% confidence interval.

All the errors are within 2σ interval, and the isotopic ages
plotted in the diagrams for the relative probability of the ages of the
samples. The 207Pb/206Pb age is used when the age is over 1000Ma,

Figure 3. Stratigraphic columns of the study
area with sampling locations.

Figure 4. Field photographs (a-c) and photomicrographs (d-f) of analyzed samples from the Miaoling Formation.
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while the 206Pb/238U age is used when the age is younger than 1000
Ma due to the imprecise measurement of 207Pb in young grains
(Sircombe, 1999). The ages with discordance degree over 10%were
excluded when Mapping.

3. b. Major and trace element determinations

The siltstone samples used for whole-rock analysis were crushed to
~200 mesh in an agate mill after the removal of altered surfaces.
Major and trace elements compositions were determined by using
an X-ray fluorescence spectrometer and ICP-MS (Agilent 7700x),
respectively, at the Key Laboratory of Mineral Resources
Evaluation in Northeast Asia, Ministry of Natural Resources,
Jilin University, Changchun, China, after the sample powders had
been dissolved in Teflon bombs. The analytical results for the
BHVO-1 (basalt), BCR-2 (basalt) and AGV-1 (andesite) standards

yielded values of analytical precision that were better than 5% for
major elements and 10% for trace elements (Rudnick et al. 2004).

3. c. Hf isotope analysis

Zircon Hf isotope ratios were measured using a Neptune (Plus)
MC-ICP-MS (ThermoFisher ScientificTM, USA) equipped with
an ASITM RESOlution-LR Series 193 nm excimer laser ablation
instrument, which is hosted at the Hebei Key Laboratory of
Strategic Critical Mineral Resources, Hebei GEO University,
China. These analyses were performed with a laser beam diameter
of ca. 43 μm and 5 Hz repetition rate, yielding a signal intensity of
~1.2 v at 179Hf during the analysis of the standard zircon GJ-1.
The ablation time is 40 s, yielding pits of 30–40 μm deep. Masses
172, 173, 175, 176, 177, 178, 179 and 180 were simultaneously
measured in static-collection mode. Standard zircons GJ-1 were

Figure 5. Field photographs (a-b) and micrographs
(c-d) of analyzed samples from the Kedao Group.

Figure 6. Cathodoluminescence (CL) images
of representative detrital zircons from all dated
samples. Circles mark dating spots (red for U-Pb
isotopic tests, yellow for Hf isotopic tests.).
Below zircons refer to the U-Pb ages, above are
dating numbers.
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used as external standards and were analyzed twice before and
after every 10 analyses. The resulting data were normalized to
179Hf/177Hf = 0.7325 using an exponential correction for mass
bias. The interference of 176Lu on 176Hf was corrected by
measuring the intensity of the interference-free 175Lu isotope and
using the recommended 176Lu/175Lu ratio of 0.02655. The mean
173Yb/172Yb ratio on the zircon sample itself was measured to
calculate the mass fractionation factor βYb, and the signal
intensity of 176Yb was calculated based on the signal intensity of
173Yb and the calculated βYb, and then used to correct the
interference of 176Yb on 176Hf.

4. Analytical results

4. a. Zircon U–Pb dating

4. a.1. Miaoling formation
A total of 142 concordant U-Pb dating analyses from three samples
in this study were obtained, and the results are given in
Supplementary Table 1. All dated zircons, ranging in size from
30–220 μm, are euhedral to subhedral with some corrosion marks
(Fig. 6). Their high Th/U ratios of 0.02–2.17 (over 98% are above

0.1) and clear oscillatory zones (Fig. 6) indicate a magmatic origin
(Wu & Zheng, 2004).

In sample 23JL34, 42 zircon grains yield concordant ages ranging
from 248 ± 9 Ma to 915 ± 26 Ma (Fig. 7a; Supplementary Table 1),
grouped as 248–284 Ma (42 grains, peaking at 254 Ma), 316–500 Ma
(12 grains, peaking at 410 Ma) and 638–915 Ma (6 grains) (Fig. 7b).
The youngest ages yield the 206Pb/238U weight mean age of 252 ± 3.7
Ma (Fig. 7c; Mean Square Weighted Deviation (MSWD)= 0.086,
n= 18), with a mean Th/U ratio of 0.64.

In sample 23JL36, 50 concordant zircons show concordant ages
from 247 ± 15Ma to 428 ± 10Ma (Fig. 7d; Supplementary Table 1),
predominantly in the age group of 247–276 Ma (47 grains, peaking
at 258Ma) (Fig. 7e). The youngest zircons yield the 206Pb/238U age of
253 ± 2.9 Ma (Fig. 7f; MSWD= 0.22, n= 28), with a mean Th/U
ratio of 0.53.

For sample 23JL38, 50 zircon grains yield concordant ages from
249 ± 6 Ma to 1420 ± 19 Ma (Fig. 7g; Supplementary Table 1),
which can be subdivided into groups of 249–303 Ma (25 grains,
peaking at 256 Ma), 463–553 Ma (10 grains, peaking at 503 Ma)
and 623–1420 Ma (15 grains) (Fig. 7h). The youngest zircons yield
the 206Pb/238U weight mean age of 254 ± 3.1 Ma (Fig. 7i;
MSWD= 0.30, n= 13), with a mean Th/U ratio of 0.57.

Figure 7. U-Pb concordia diagrams of detrital zircons from the Miaoling Formation; ellipses represent 2σ uncertainties (blue ellipses represent the group of the youngest
concordant ages).
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4. a.2. Kedao group
A total of 89 concordant U-Pb dating analyses from two samples
in this study were obtained, and the results are given in
Supplementary Table 1. All dated zircons, ranging in size from
30 to 200 μm, are euhedral to subhedral with some corrosionmarks
(Fig. 6). They exhibit high Th/U ratios of 0.08–2.13 (over 98% are
above 0.1) and clear oscillatory zones (Fig. 6), indicating a
magmatic origin (Wu & Zheng, 2004).

For sample 23JL30, 57 zircons yield concordant ages ranging
from 238±8 Ma to 1178±34 Ma (Fig. 8a; Supplementary Table 1),
falling into groups of 238–271 Ma (29 grains, peaking at 246 Ma),
303–363Ma (6 grains, peaking at 337Ma), 405–532Ma (11 grains)
and 707–1178 Ma (11 grains) (Fig. 8b). The youngest concordant
zircon yields the 206Pb/238U age of 245 ± 2.7 Ma (Fig. 8c;
MSWD= 0.31, n= 18), with a mean Th/U ratio of 0.52.

For sample 23JL33, 32 concordant zircons yield a broad age
spectrum ranging from 237 ± 6 Ma to 1801 ± 19 Ma (Fig. 8d;
Supplementary Table 1), which can be divided into groups of 237–
310 Ma (22 grains, peaking at 242 Ma), 445–708 Ma (9 grains,
peaking at 460 Ma and 518 Ma) and 1801 Ma (Fig. 8e). The
youngest zircons with a mean Th/U ratio of 0.66 yield the 206Pb/
238U age of 242±4.8 Ma (Fig. 8f; MSWD = 0.48, n = 7).

4. b. Major and trace elements

4. b.1. Major elements
Whole-rock major and trace elemental analyses were carried out
on the fifteen sandstones and the data are provided in
Supplementary Table 2. Samples from the Miaoling Formation
have higher contents of TFe2O3, CaO, MgO, Na2O, Ti2O, P2O5 and
MnO, but lower contents of SiO2, Al2O3 and K2O than those from
the Kedao Group. The SiO2/Al2O3 ratios are relatively low (3.13–
5.68; average 3.92), classifying the samples as immature rocks
(Peittijohn et al. 1972; Herron, 1988). In the lithological

discrimination (Fig. 9), all samples from both formations are
plotted in the greywacke area, consistent with our microscopic
observations (Figs. 4 and 5).

4. b.2. Trace elements
The chondrite-normalized Rare Earth Elements (REEs) distri-
bution patterns of all samples are similar to those of the average
upper continental crust (Rudnick & Gao, 2014), featuring
enriched Light Rare Earth Elements (LREEs) ((La/Yb)N = 1.79–
7.13; averagely 4.29), flat Heavy Rare Earth Elements (HREEs)
((Gd/Yb)N = 0.95–2.42; averagely 1.45) and slight to moderate
negative Eu anomalies (Fig. 10a), with no Ce anomaly. The

Figure 8. U-Pb concordia diagrams for detrital zircons from the Kedao Group; ellipses represent 2σ uncertainties (blue ellipses represent the group of the youngest concordant ages).

Figure 9. Geochemical classification diagrams of the Miaoling Formations and Kedao
Group (after Pettijohn et al. 1972 and Herron, 1988).
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enrichment of LREEs and depletion in HREEs are obvious for all
samples, reflected in their similar right-dipping curves. The
mantle-normalized multi-element variation diagram of trace
elements shows a consistent trend (Fig. 10b), indicating depletion
of high-field strength elements (HFSE) Nb, Ta and of large-ion
lithophile elements Sr, while showing slight enrichment in Ba, Th,
La, Ce, Nd, and Sm in HFSE and Zr, K in large-ion lithophile
elements, although the enrichment of La and Ce is not
conspicuous.

4. c. Hf Isotope results

We conducted Hf isotope analysis on representative Paleozoic to
Mesozoic zircon grains from sedimentary rocks of the Miaoling
Formation and Kedao Group (Supplementary Table 3 and Fig. 11).

The Hf isotopic compositions of 28 detrital zircons from the
Miaoling Formation (23JL34, 23JL36 and 23JL38) were analyzed.
Paleozoic zircons (495–254 Ma) exhibit 176Hf/177Hf ratios
ranging from 0.2823145 to 0.2829695, with εHf(t) values varying
between −6.09 and 12.43, and the TDM2 are 1830–493 Ma.
Mesozoic zircons (251–247 Ma) exhibit 176Hf/177Hf ratios
ranging from 0.282512 to 0.282947, with εHf(t) values varying

between -3.90 and 11.5, and the TDM2 ranging from 1272 to 488
Ma (Supplementary Table 3).

The Hf isotopic compositions of 12 detrital zircons from the
Kedao Group (23JL30 and 23JL33) were analyzed. Paleozoic
zircons (438–252 Ma) exhibit 176Hf/177Hf ratios ranging from
0.2824738 to 0.282837, with εHf(t) values varying between -2.20
and 7.59, and the TDM2 of 1499–794Ma. Mesozoic zircons (250–
239 Ma) exhibit 176Hf/177Hf ratios ranging from 0.2825632 to
0.282849, with εHf(t) values varying between -2.07 and 7.66, and
the TDM2 of 1407–784 Ma (Supplementary Table 3).

5. Discussion

5. a. The sedimentary ages of the miaoling formation and
kedao group

The deposition time of a sedimentary strata is much younger
than its sediments, allowing detrital zircons within a formation
to help constrain the maximum deposition ages (Fedo, 2003).
This method relies on the assumption that the U-Pb system of
analyzed zircons remained undisturbed by post-depositional
tectonic-metamorphic or hydrothermal events (Zeh & Gerdes,
2012). In this study, combined with age-diagnostic fossils and
intruded dykes, the mean age of the youngest overlapping zircon
grains at 2σ uncertainty (Dickinson & Gehrels, 2009) was used
to estimate the maximum deposition ages of the Miaoling
Formation and Kedao Group in Wangqing area.

5. a.1. Miaoling formation
Extensive research has been conducted on the Miaoling
Formation; however, its deposition time remains a point of
contention. Gathering all data from these three samples (23JL34,
23JL36 and 23JL38), the maximum depositional age of the
Miaoling Formation was determined to be late Permian by the 57
youngest concordant zircons having a weighted mean 206Pb/238U
age of 253 ± 1.9 Ma (Fig. 14d; MSWD = 0.19, n = 57). Among all
142 concordant zircons, only 21 are older than 600 Ma, with the
oldest three grains yielding the 207Pb/206Pb age of 1005 ± 36 Ma,
1209 ± 24 Ma and 1420 ± 19 Ma (Fig. 14c). Phanerozoic ages
peak at 256 Ma (Fig. 14c). This late Permian maximum
depositional age is obviously younger than the previously
published youngest cluster of zircons in sandstones with the
age of ca. 265 Ma (Lu et al. 2022).

Figure 10. Chondrite-normalized REE patterns (left) and Primitive Mantle trace element diagrams (right) for the studied sandstones. The normalizing values for REE and trace
elements are from McDonough & Sun (1995) and Boynton (1984), respectively. Data for the average upper continental crust are from Rudnick & Gao (2014).

Figure 11. Hf isotopic compositions of detrital zircons from Miaoling Formation
(yellow) and Kedao Group (blue) in the study area (Yang et al. 2006).
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5. a.2. Kedao group
Divergent views exist regarding the sedimentary ages of the Kedao
Group, ranging from the Late Permian to the Late Triassic (Zhou,
2009; Yu, 2017; Zhou et al. 2017; Du et al. 2019). Combining all the
data from two samples together, the 20 youngest concordant
zircons of the Kedao Group yielded a weighted mean 206Pb/238U
age of 243 ± 2.7 Ma (MSWD = 0.24, n= 20) (Fig. 14b), implying
the maximum depositional age of Middle Triassic (ca. 243 Ma).
Precambrian zircons constitute a significant proportion in all
analyses (15.7%), with 14 grains older than 600 Ma, while the
Phanerozoic ages with peaks of 245 Ma and 468 Ma (Fig. 14a).

5. b. Provenance analysis of Miaoling Formation and Kedao
Group in the study area

The chemical index of alteration (CIA) is useful for quantitatively
assessing weathering intensity (Fedo et al. 1995; Nesbitt & Young,
1984). The samples show an average CIA value of 68.60, reflecting
weak initial chemical weathering (Fig. 12a; Fedo et al. 1995). In the
A-CN-K diagram (Fig. 12b), the average Chemical Index of
Weathering is 77.85, about 10% higher than the CIA. The
weathering trend deviates slightly to the right (Fig. 12a), indicating
a potassium metasomatism influence during diagenesis, which
indicates a nearby source and a short transportation distance. The
intersection of the weathering trend line and the plagioclase-K-
feldspar line indicates a higher plagioclase content than K-feldspar
in parent rocks (Fedo et al. 1995), indicating a provenance related
to felsic igneous. Analyzed detrital zircons, in this study, show a
positive correlation between U and Y concentrations, suggesting
origins from intermediate-acidic igneous rocks such as granite,
syenite and pegmatite. The trace element analysis of zircons also
indicates that the parent rocks were primarily felsic igneous,
although some points suggest minor mixture of mafic rocks
(Fig. 13a, b, c, and d). Overall, these characteristics indicate that the
REE contents of the sandstones approximate the global average for
continental upper crust, with their provenance related to felsic
rocks in the upper crust.

Both the sandstones from Miaoling Formation and Kedao
Group exhibit characteristics of greywackes (Figs. 4, 5, and 9), with

low compositional and textural maturities indicating a nearby
provenance. These samples contain a high proportion of
argillaceous materials and various sizes of mineral clasts. The
CL images of euhedral detrital zircons further support a relatively
near source. Possible provenance areas for these formations
include the NCC to the south and the NE China massifs
(Zhangguangcai Range and Jiamusi-Khanka block) to the north
(Fig. 1a). Detrital zircons carry geochronological information
about their source rocks and have high diagenesis stability (Wu &
Zheng, 2004), providing them a valuable for provenance analysis of
sandstones at plate margins or orogenic belts.

The age distributions of these two formations exhibit the same
characteristics, as evidenced by variations in the proportion of each
age group and the distribution of peak ages (Fig. 14). The Miaoling
Formation is characterized by the overwhelming majority of
Phanerozoic zircons (81.3%), with 118 out of 145 grains. A peak
age of ca. 256 Ma can be perfectly related to the Permian granitic
magmatism (256–252 Ma; Yu et al. 2013) and magmatic activities
linked to the westward subduction of an ancient oceanic plate in
the southern Jiamusi-Khanka block (272–257 Ma; Long et al.
2019). A peak age of ca. 504 Ma is consistent with the ~500 Ma late
Pan-African crystal basement in NE China massifs (Xiong et al.
2020; Hua et al. 2019; Li, Y. et al. 2017; Wen et al. 2017; Wang et al.
2012; Wu et al. 2011; Yang et al. 2014; Zhou et al. 2011b, 2015,
2018), representing typical differences from the NCC. In addition,
a minor peak at 920 Ma in the Neoproterozoic is consistent with
the magmatic activities in NE China, implying a strong affinity.
Both the Kedao Group and Miaoling Formation exhibit similar
magmatic activity peaks at 245 Ma, 468 Ma and 876 Ma, while
zircon grains older than 1000 Ma are rare in both formations,
lacking distinct peaks, which highlights a clear deviation from the
zircon curve of the NCC (Fig. 14).

Vermeesch (2013) proposes multidimensional scaling (MDS)
as a valuable statistical tool for geological data analysis. The solid
line signifies the strongest correlation, while the dashed line
represents the second strongest correlation. Through MDS
analysis, both the Miaoling Formation and Kedao Group have a
higher affinity with NE China (Fig. 15). Zircons from these
formations exhibit similar Hf isotopic compositions consistent

Figure 12. A-CN-K weathering diagram of major elements (after Nesbitt & Young, 1984) in sandstones from the Wangqing area. The solid arrow represents the ideal weathering
trend line of each igneous rock, according to data from Condie (1993). A: Al2O3, CN: CaO*þNa2O, K: K2O.
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with those from the CAOB, in line with the Hf isotope results of the
magmatic rocks in the study area (Fig. 11; Shi et al. 2022; Lu et al.
2022; Shi et al. 2020), indicating a certain level of data reliability.
The TDM2 did not provide evidence for an age of 2.5 billion years.
Based on various evidence, we can confidently infer that the
samples from both the Miaoling Formation and Kedao Group
originated from NE China (Zhangguangcai Range and Jiamusi-
Khanka block). Additionally, combined with the findings from
other studies, we can boldly infer that the Permian to Triassic
stratigraphic source areas in the eastern part of Jilin Province are
more closely related to NE China (Sun et al. 2023; Du et al. 2019,

2021; Zhang et al. 2019), further supported by Hf isotope results
from igneous rocks exposed in the surrounding area (Cao
et al. 2013).

5. c. Tectonic setting

The oceanic subduction-continental collision system has become
a research hotspot in recent years (Dai et al. 2018; Li et al. 2018a,
b, 2019; Yu et al. 2019a, b, c; Zhang et al. 2019). The
amalgamation of the NE China (XMOB) and the NCC along
the SXCYS is widely believed to record the subduction and

Figure 13. The fields of zircon compositions used as discriminants for different rock types (Belousova et al. 2002). (a) Zircon Y versus U, (b) Zircon Nb versus Ta, (c) Zircon Y versus
Yb/Sm, (d) Zircon Y versus Nb/Ta, (e) Zircon Nb/Hf versus Th/U (Yang et al. 2012) and (f) Zircon Hf/Th versus Th/Nb (Yang et al. 2012).
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closure of the PAO (Sun et al. 2023), as indicated by the evidence
from magmatic rocks, structural features and palaeontological
data (Sun et al. 2004; Jia et al. 2004;Wu et al. 2007; Cao et al. 2013;
Wang et al. 2015a, b; Li et al. 2017; Yang et al. 2017; Zhou et al.

2017; Gu et al. 2018; Du et al. 2019). In contrast to previous
studies, we take a perspective of provenance analysis by
concentrating on the sedimentary strata through petrology,
geochronology and geochemistry in the Wangqing area along the

Figure 14. a-b. Age probability histograms of detrital
zircons with concordant ages and the youngest weight
mean age from the Kedao Group; c-d. Age probability
histograms of detrital zircons with concordant ages and
the youngest weight mean ages of the Miaoling
Formation; e. The data originate from NE China
(Zhangguangcai Range and Jiamusi-Khanka block; data
from Du et al. 2016; Meng et al. 2011; Wang et al. 2012,
2015; Yu et al. 2013; Luan et al. 2017; Li, Y. et al. 2017;
Long et al. 2019; Xue et al. 2023; Hua et al. 2019; Li, H.D.
et al. 2022; Meng et al. 2017; Mou et al. 2023; Pu et al.
2015; Wen et al. 2017; Xiong et al. 2020; Zhang et al. 2021;
Zhao et al. 2021; Zhao et al. 2023; Zhou et al.2013). f. The
data originate from North China Craton; data from Liu
et al. 2020, 2021; Chen et al. 2017, 2020; Fu et al. 2018; Li,
G.S. et al. 2022; Liu et al. 2018; Pei et al. 2014; Peng et al.
2020; Peng & Wang, 2018; Shao et al. 2014; Yang et al.
2022; Zhang et al. 2015; Zhang et al. 2022; Zhang et al.
2013).
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suture zone between the NCC and NE China (Fig. 1b). The
Permian Miaoling Formation major consists of polycyclic
sandstone, siltstone, silty mudstone and is the product of an
arc-basin series. The Tanqian Formation, representing a muddy
construction beneath the Carbonate Compensation Depth line of
the abyssal plain, and the Shanguqi Formation, reflecting
continental slope turbidites, together constitute the Kedao
Group, which belongs to a deep-water slope-basinal sedimentary
system (RGSR, 2007). The samples analyzed in this paper align
well with previously established conditions. The Miaoling
Formation and Kedao Group show distinct characteristics in
various tectonic diagrams based on both major and trace
elements (Figs. 9 and 10), with all geochemical data indicating
their orogenic origin (Fig. 12e and f).

Zircon transport processes mainly influence the age distribu-
tion of detrital zircons in the strata, with peak age compositions
effectively reflecting the tectonic environment of the sedimentary
basin (Cawood et al. 2012). The convergent plate boundary is
characterized by a large proportion of zircon ages close to the
deposition age of the sediment, whereas sediments in collisional,
extensional and intracratonic settings contain higher proportions
of older ages reflecting the history of the underlying basement
(Cawood et al. 2012). The majority of detrital zircons from the
Miaoling Formation (70%) and Kedao Group (64%) have
crystallization ages (CA) close to the depositional ages (DA)
(CA-DA< 100 Ma), similar to the sedimentary facies of a
convergent environment (Fig.16).

Verma & Armstrong-Altrin (2013) developed new discrimi-
nant-function-based major-element diagrams for classifying
siliciclastic sediments from island or continental arc, continental
rift and collision settings. The results of all sandstones indicate
that the Wangqing area is still within the continental island arc
(Fig. 17), reaffirming previous conclusions and indicating
ongoing subduction of the PAO in this area during the Middle
Triassic.

Recent studies on PAO evolution have documented consid-
erable sedimentary evidence. Research on the southern part of the
Great Xing’an Range and the Songliao Basin in NE China indicates
that the PAO closed on the western side of the Changchun-Yanji
suture zone in the Late Permian (He et al. 2023; Zhang et al. 2023).
However, an alternative argument proposes a delayed closure of
the eastern segment between the Middle Triassic and the Late
Triassic (Zhang et al. 2019; Du et al, 2019). Igneous rocks in this
region provide additional supporting evidence (Cao et al. 2013;
Sun et al. 2023). Considering our new data with previously
published data, Sun (2023) suggests that the volcanic interlayers of
the Yangjiagou Formation formed in a syn-collisional setting,

implying a remnant ocean basin remained along the Changchun-
Yanji suture zone during the Early Triassic. Furthermore,
simulations of the crustal thickness in the central Jilin Province
show that the crust gradually thickened from 280 Ma to 245 Ma,
with the subduction of oceanic crust contributing to the
continuous thickening of the continental crust (Guan et al.
2023). On a broader scale, Liang et al. (2019) summarize
thermochronological data suggesting that significant strike-slip
movement likely occurred in the Late Triassic, attributed to the
eastward extrusion of the XMOB and far-field forces related to Late
Triassic convergence following the final closure of the PAO.

The Miaoling Formation and the Kedao Group mainly
originated from continental island arcs of NE China, including
the Zhangguangcai Range and Jiamusi-Khanka block. During
their sedimentation, a reduced remnant ocean basin remained in
the Wangqing area, indicating that the PAO has not yet
completed its closure until the early Middle Triassic (ca. 243
Ma; Fig. 18). Combining previous research suggests the final
closure of the easternmost segment of the PAO likely occurred
between the latest Middle Triassic and early Late Triassic in a
scissor-like manner.

Figure 15. Multidimensional scaling (MDS) analysis
results of Miaoling Formation, Kedao Group and
surrounding potential source areas (NE China and
North China Craton). a. After the standard K-S test. b.
After the standard Kuiper test. (Vermeesch, 2013).

Figure 16. Summary plot of the general fields for convergent (A: red field), collisional
(B: blue field), and extensional basins (C: greenfield). From the variations observed
between the different fields, a model that predicts the tectonic setting of sedimentary
packages of unknown origin is proposed based on differences between the
crystallization and depositional ages (CA-DA) of the zircons.
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6. Conclusions

This study investigated the geochronology and geochemistry of the
sandstones of the Miaoling Formation and the Kedao Group in the
Wangqing area of NE China to determine their provenance and
tectonic setting.

1. New LA–ICP–MS zircon U–Pb dating results show that the
sedimentary rocks from the Miaoling Formation were deposited
around 253Ma, while the maximum depositional age of the Kedao
Group is early Middle Triassic (ca. 243 Ma).

2. The Miaoling Formation and the Kedao Group are
dominantly composed of Phanerozoic sediments originating from
the NE China, suggesting that their parent rocks were likely felsic
igneous rocks from an orogenic tectonic setting.

3. The provenance of these sedimentary strata has remained
relatively consistent, implying that around 243 Ma, a small
remnant ocean basin of PAO still existed in this area, and the
continental blocks on the north and south sides had not yet
completely converged. The final closure of the easternmost
segment of the PAO likely occurred between the latest Middle
Triassic and early Late Triassic in a scissor-like manner.

Supplementary material. The supplementary material for this article can be
found at https://doi.org/10.1017/S0016756824000359
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