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Abstract
We prove a strong quantitative version of the Kurosh Problem, which has been conjectured by Zelmanov, up to a mild
polynomial error factor, thereby extending all previously known growth rates of algebraic algebras. Consequently,
we provide the first counterexamples to the Kurosh Problem over any field with known subexponential growth, and
the first examples of finitely generated, infinite-dimensional, nil Lie algebras with known subexponential growth
over fields of characteristic zero.

We also widen the known spectrum of the Gel’fand–Kirillov dimensions of algebraic algebras, improving the
answer of Alahmadi–Alsulami–Jain–Zelmanov to a question of Bell, Smoktunowicz, Small and Young. Finally, we
prove improved analogous results for graded-nil algebras.
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1. Introduction

One of the most tantalizing problems in combinatorial algebra over the 20th century was the Kurosh
Problem:

The Kurosh Problem (A. Kurosh, 1941). Is every finitely generated algebraic algebra finite-
dimensional?
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2 B. Greenfeld

The Kurosh Problem is tightly connected to the (general) Burnside Problem from 1902, which asks
whether every finitely generated periodic group is finite. In 1964, Golod (using the Golod-Shafarevich
theorem) constructed the first counterexamples to the Kurosh Problem. He constructed finitely generated,
infinite-dimensional, nil algebras – namely, non-unital algebras in which every element is nilpotent;
such algebras – as well as their unital hulls – are immediately algebraic. Using these methods, Golod
and Shafarevich solved the aforementioned Burnside Problem and Hilbert’s Class Field Tower Problem
on the existence of finite extensions of number fields with class number one [13, 14, 15]. Later on,
other long-standing open questions have been resolved using Golod-Shafarevich algebras and groups;
see [12, 26].

Golod-Shafarevich algebras are infinite-dimensional in the ‘strongest possible’ sense: they have
exponential growth. The growth function of a finitely generated algebra A over a field k, generated by a
finite-dimensional subspace V, is defined as

𝛾𝐴(𝑛) = dim𝑘 (𝑘 +𝑉 + · · · +𝑉𝑛).

The growth functions of Golod-Shafarevich algebras are exponential, and so are the growth functions
of the periodic groups resulting from them. This naturally led to the question of whether the solution
to the Kurosh Problem is affirmative under growth restrictions; that is, must every finitely generated
algebraic algebra of subexponential (or: polynomial) growth be finite-dimensional? This question has
been posed and repeated by many experts; see [24] and references therein. This variation of the Kurosh
Problem had been open for many years until Lenagan and Smoktunowicz constructed in 2007 an infinite-
dimensional nil algebra of polynomially bounded growth over any countable fields [24] (see also [25]).
(For more examples of algebraic algebras of polynomially bounded growth, see [2, 7].) Bell and Young
[8] constructed infinite-dimensional nil algebras over arbitrary fields whose growth is bounded above by
an arbitrarily slow super-polynomial function. Later on, Smoktunowicz [34] constructed nil algebras of
intermediate (that is, subexponential and super-polynomial) growth over arbitrary fields. Recently, the
author and Zelmanov [17, Theorems A1, A2] utilized matrix wreath products (previously developed in
[2]) to prove that every increasing and submultiplicative function can be approximated by the growth
function of a nil algebra, up to certain ‘distortion’ factors.

In view of the flexible nature of the space of growth rates of algebraic algebras, Zelmanov posed the
following conjecture, which can be thought of as a strong quantitative version of the Kurosh Problem:

Conjecture 1.1 (E. Zelmanov, 2017, [38, 3]). The following classes of functions coincide, up to asymp-
totic equivalence:{

Growth functions* of algebras
}
=

{
Growth functions of nil algebras

}
.

*Except for algebras of linear growth

In other words, Conjecture 1.1 asserts that counterexamples to the Kurosh Problem are ‘as ubiquitous
as possible’ and occur within any possible growth rate.1

Proving Conjecture 1.1 in its full generality is considered an extremely difficult task since even
some of its (very) special cases are wide open. For instance, no finitely generated, infinite-dimensional
algebraic algebras of known subexponential growth have appeared so far: the constructions in [2, 7,
8, 17, 24, 25, 34] all have different bounds on their growth rates, but to the best of our knowledge,
no single concrete function has been realized as the growth function of any counterexample to the
Kurosh Problem so far. Another evidence to the difficulty of Conjecture 1.1 occurs within polynomial
growth rates. Recall that the Gel’fand-Kirillov (GK) dimension of a finitely generated algebra A is
given by GKdim(𝐴) = lim sup𝑛→∞

log 𝛾𝐴 (𝑛)
log 𝑛 – namely, the (optimal) degree of polynomial growth of

1Linear growth functions are excluded since finitely generated algebras of linear growth satisfy a polynomial identity [33], and
for such algebras, the answer to the Kurosh Problem is affirmative [22].
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A. In particular, GKdim(𝐴) < ∞ if and only if A has polynomially bounded growth. The Lenagan-
Smoktunowicz algebra from [24] has GK-dimension at most 3 (see [25]), although the precise GK-
dimension is unknown; every real number in the interval [8,∞) is realizable as the GK-dimension of
some nil algebra [2]. It is a wide open problem to determine the spectrum of possible GK-dimensions
of finitely generated algebraic algebras, or even if there is a finitely generated algebraic algebra of GK-
dimension 2 (the Kurosh Problem has an affirmative answer for algebras of GK-dimension smaller than
2); see open questions in [7, 8, 24, 25]. It is also unknown if there exist finitely generated infinite-
dimensional algebraic algebras of polynomially bounded growth over uncountable fields; see open
questions in [7, 8, 24, 25, 39].

It is interesting to compare the Kurosh Problem under growth restrictions with the Burnside Problem
under growth restrictions. By Gromov’s celebrated theorem, finitely generated groups of polynomial
growth are virtually nilpotent [21], and therefore, the answer to the Burnside Problem is affirmative for
such groups. The first examples of groups of intermediate growth were constructed by Grigorchuk [18];
these groups are furthermore periodic. However, their precise growth rate is still unknown (see [11]
for a recent major progress). The first examples of finitely generated, infinite periodic groups of known
subexponential growth were given in [4], almost 30 years after (periodic) groups of intermediate growth
first appeared.

In this paper, we give an affirmative answer to Conjecture 1.1 up to a mild polynomial error term (or
an arbitrarily slow super-polynomial error factor in the case of algebras over uncountable fields). Notice
that for sufficiently regular super-polynomial functions, a polynomial error factor is negligible. This
improves the main results [17, Theorem A1, A2] and extends all previously known classes of growth
functions of algebraic algebras, including [2, 8, 34].

Theorem 1.2. Let 𝑓 : N → N be the growth function of any finitely generated infinite-dimensional
algebra, not of linear growth. Then there exists a finitely generated nil graded algebra A over any
countable field such that

𝑓 (𝑛) � 𝛾𝐴(𝑛) � 𝑛4+𝜀 𝑓 (𝑛)

for all 𝜀 > 0, and a finitely generated nil graded algebra over an arbitrary field such that

𝑓 (𝑛) � 𝛾𝐴(𝑛) � 𝑛𝜔 (𝑛) 𝑓 (𝑛)

for any arbitrarily slow given function 𝜔(𝑛) tending to infinity.

As an application, we obtain the first counterexamples to the Kurosh Problem (namely, infinite-
dimensional algebraic algebras) of known subexponential growth, and the first examples of nil Lie
algebras of known subexponential growth, over any field of characteristic zero (Petrogradsky, Shestakov
and Zelmanov constructed finitely generated nil Lie algebras of known polynomial growth over fields
of positive characteristic in [29, 30, 32]). A Lie algebra L is nil if all of its elements are ad-nilpotent;
that is, for every element 𝑎 ∈ 𝐿, the adjoint operator ad𝑎 = [𝑎,−] is nilpotent.

Corollary 1.3. For every 𝛼 ∈ (0, 1), there exists a finitely generated nil graded algebra A and a finitely
generated nil graded Lie algebra over an arbitrary field such that

𝛾𝐴(𝑛) ∼ 𝛾𝐿 (𝑛) ∼ exp(𝑛𝛼).

Moreover, we are able to construct nil algebras of an arbitrary GK-dimension ≥ 6, strengthening the
solution of [2] to [7, Question 1] and [8, Question 2]; our algebras are furthermore naturally graded.

Corollary 1.4. For every 𝛼 ≥ 6, there exists a finitely generated nil graded algebra A and a finitely
generated nil graded Lie algebra over any countable field such that GKdim(𝐴) = GKdim(𝐿) = 𝛼.

A graded associative (resp. Lie) algebra 𝐴 =
⊕∞

𝑛=1 𝐴𝑛 is graded-nil if all of its homogeneous
elements are nilpotent (resp. ad-nilpotent). Such algebras naturally arise from residually finite periodic
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groups (e.g., [27]) and from filtered algebraic algebras [31] and play a major role in Zelmanov’s solution
of the Restricted Burnside Problem (see [37]). We prove improved analogs of the above results, for
graded-nil algebras, where only a linear error factor is needed.

Theorem 1.5. Let 𝑓 : N → N be the growth function of any finitely generated infinite-dimensional
algebra. Then there exists a finitely generated graded-nilpotent algebra A over an arbitrary field such
that

𝑓 (𝑛) � 𝛾𝐴(𝑛) � 𝑛 𝑓 (𝑛).

Corollary 1.6. For every real number 𝛼 ≥ 3, there exists a graded-nil associative algebra A and a
graded-nil Lie algebra L over an arbitrary field such that GKdim(𝐴) = GKdim(𝐿) = 𝛼.

To the best of our knowledge, this provides the first examples of graded-nil algebras of an arbitrary
(in particular, non-integer) GK-dimension, over an uncountable field.

Finally, in Section 6, we revisit Theorem 1.2 and show how a slightly weaker version of it (namely,
slightly weakening the polynomial error factor and omitting the grading assumption) can be constructed
using matrix wreath products, which have been utilized in [2, 17].

2. Growth of algebras

Let A be a finitely generated associative algebra over a field k. Let V be a finite-dimensional generating
subspace – namely, 𝐴 = 𝑘 〈𝑉〉. The growth of A with respect to V is the function

𝛾𝐴,𝑉 (𝑛) = dim𝑘

(
𝑘 +𝑉 +𝑉2 + · · · +𝑉𝑛

)
.

The definition applies for non-unital algebras too (whose growth coincides with the growth of their
unital hulls). If 1 ∈ 𝑉 , then equivalently, 𝛾𝐴,𝑉 (𝑛) = dim𝑘 𝑉

𝑛.
We write 𝑓 � 𝑔 if 𝑓 (𝑛) ≤ 𝐶𝑔(𝐷𝑛) for some 𝐶, 𝐷 > 0 and for all 𝑛 ∈ N, and we say that f

is asymptotically equivalent to g, denoted 𝑓 ∼ 𝑔, if 𝑓 � 𝑔 and 𝑔 � 𝑓 . The function 𝛾𝐴,𝑉 (𝑛) is
independent of the choice of the generating subspace up to asymptotic equivalence, and so we write
𝛾𝐴(𝑛) for the growth function of the algebra A, considered up to asymptotic equivalence. Bell and
Zelmanov [9] characterized growth functions of algebras by means of combinatorial conditions on their
discrete derivatives, from which it follows that every increasing, submultiplicative function is equivalent
to a growth function, up to a linear error term (see [16, Proposition 3.1]). The Gel’fand-Kirillov (GK)
dimension of A is

GKdim(𝐴) = lim sup
𝑛→∞

log 𝛾𝐴(𝑛)
log 𝑛

.

It follows from the definition that GKdim(𝐴) < ∞ if and only if 𝛾𝐴(𝑛) is polynomially bounded. If A is
commutative, then GKdim(𝐴) coincides with the classical Krull dimension of A. The possible values
of GKdim(𝐴) are 0, 1, [2,∞]. For more on the growth of algebras and the Gel’fand-Kirillov dimension,
see [23].

If 𝐴 =
⊕∞

𝑛=0 𝐴𝑛 is graded with finite-dimensional homogeneous components, then 𝛾𝐴(𝑛) ∼
dim𝑘

⊕𝑛
𝑖=0 𝐴𝑖 . For a graded algebra A and a subset 𝑆 ⊆ 𝐴, we let 𝑆𝑛 denote the intersection of S

with the degree-n homogeneous component of A, and 𝑆≤𝑛 := 𝑆 ∩
(⊕

𝑖≤𝑛 𝐴𝑖
)
. For a non-unital graded

algebra 𝐴 =
⊕∞

𝑛=1 𝐴𝑛, we let 𝐴1 = 𝑘 + 𝐴 denote its unital hull.
If L is a finitely generated Lie algebra (over a field of characteristic ≠ 2) generated by a finite-

dimensional subspace V, then its growth function is defined as

𝛾𝐿,𝑉 (𝑛) = dim𝑘 Span𝑘 {𝑑-fold Lie brackets of elements from 𝑉 for 𝑑 ≤ 𝑛},
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again, considered up to asymptotic equivalence. The definition of GK-dimension applies similarly for
Lie algebras.

Let Σ = {𝑥1, . . . , 𝑥𝑚} be a finite alphabet. We denote by Σ∗ the free monoid generated by Σ. Let
𝐼 ⊳ 𝑘 〈Σ〉 be an ideal generated by monomials. Then the quotient ring 𝐴 = 𝑘 〈Σ〉/𝐼 is called a monomial
algebra. For a subset S of a monomial algebra, we let Mon(𝑆) denote the set of nonzero monomials of
S. Thus, for every monomial algebra A and monomial ideal 𝐼 ⊳ 𝐴, Mon(𝐴) = Mon(𝐼) ·∪ Mon(𝐴/𝐼).

Every monomial algebra A is naturally graded by assigning deg(𝑥1) = 𝑑1, . . . , deg(𝑥𝑚) = 𝑑𝑚, for any
choice of natural numbers 𝑑1, . . . , 𝑑𝑚 ∈ N. Let L ⊆ Σ∗ be a hereditary language – namely, a nonempty
set closed under taking subwords. Associated with L is a monomial algebra:

𝐴L := 𝑘 〈Σ〉/〈𝑢 | 𝑢 is not a factor of a word from L〉.

A special case is where L consists of the subwords (also called factors) of a given (right) infinite word
𝑤 ∈ ΣN, and we denote

𝐴𝑤 := 𝑘 〈Σ〉/〈𝑢 | 𝑢 is not a factor of 𝑤〉.

For a hereditary language L (resp. infinite word w), we let 𝑝L (𝑛) (resp. 𝑝𝑤 (𝑛)) be its complexity
function, counting its length-n subwords. If the letters of Σ are assigned with degree 1, then 𝛾𝐴L (𝑛) =∑𝑛
𝑖=0 𝑝L (𝑖) and 𝛾𝐴𝑤 (𝑛) =

∑𝑛
𝑖=0 𝑝𝑤 (𝑖); if the monomial generators are assigned with arbitrary degrees

(not necessarily 1), then these equations hold up to asymptotic equivalence. In any case, 𝛾𝐴𝑤 (𝑛) ∼
𝑛𝑝𝑤 (𝑛).

Let 𝐴 =
⊕∞

𝑛=0 𝐴𝑛 = 𝑘 〈Σ〉/𝐼 be a monomial algebra whose monomial generators are assigned with
degree 1. For any 𝑥 ∈ Σ and 0 ≠ 𝑓 ∈ 𝐴, let

pre𝑥 ( 𝑓 ) = max{𝑖 ≥ 0| 𝑓 ∈ 𝑥𝑖𝐴}, suf𝑥 ( 𝑓 ) = max{𝑖 ≥ 0| 𝑓 ∈ 𝐴𝑥𝑖}.

Let

𝐴𝑥 (𝑛; 𝑖) = Span𝑘 {𝑤 ∈ Mon(𝐴)𝑛 | pre𝑥 ( 𝑓 ) = 𝑖}

𝐴𝑥
𝑦 (𝑛; 𝑖, 𝑗) = Span𝑘 {𝑤 ∈ Mon(𝐴)𝑛 ∩ 〈𝑦〉 | pre𝑥 (𝑤) = 𝑖, suf𝑥 (𝑤) = 𝑗}

and

𝐴𝑥 (�𝑛; 𝑖) =
⊕
𝑙≤𝑛

𝐴𝑥 (𝑙; 𝑖), 𝐴𝑥
𝑦 (�𝑛; 𝑖, 𝑗) =

⊕
𝑙≤𝑛

𝐴𝑥
𝑦 (𝑙; 𝑖, 𝑗)

so 𝐴≤𝑛 =
⊕𝑛

𝑖=0 𝐴
𝑥 (�𝑛; 𝑖) and 〈𝑦〉𝑛 =

⊕
𝑖+ 𝑗≤𝑛 𝐴

𝑥
𝑦 (𝑛; 𝑖, 𝑗).

3. Extensions of algebras

Theorem 3.1. Let 𝑅 = 𝑘 〈𝑥, 𝑦〉/𝐼 be an infinite-dimensional monomial algebra in which 𝑦2 = 0 and y
generates a locally nilpotent ideal. Let A be a graded, infinite-dimensional, nil algebra which is finitely
generated in degree 1. Then there exists a finitely generated nil, graded algebra 𝐴 such that

dim𝑘 𝐴≤𝑛 = dim𝑘 𝐴≤𝑛 +
∑
𝑖+ 𝑗≤𝑛

dim𝑘 𝑅
𝑥
𝑦 (�𝑛; 𝑖, 𝑗) · dim𝑘 𝐴𝑖 · dim𝑘 𝐴 𝑗

(we formally let dim𝑘 𝐴0 = 1.)

Proof. Observe that 𝑅𝑛 =
(⊕

𝑖+ 𝑗≤𝑛 𝑅
𝑥
𝑦 (𝑛; 𝑖, 𝑗)

)
⊕ 𝑘𝑥𝑛. Fix a k-linear basis B = B1 ∪ B2 ∪ · · · of A,

consisting of monomials in some homogeneous generating set of A (say, a basis of 𝐴1). For each 𝑖 ≥ 1,
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fix a basis element 𝑤 [𝑖] ∈ B𝑖 = B ∩ 𝐴𝑖 and let

𝑊 = Span𝑘 {𝑤 [𝑖] | 𝑖 = 1, 2, . . . }, 𝑊⊥ = Span𝑘 (B \ {𝑤 [𝑖] | 𝑖 = 1, 2, . . . }),

so 𝐴 = 𝑊 ⊕𝑊⊥. Consider the (non-unital) free product

𝐴 ∗𝑘

(
𝑘 [𝑦]/

〈
𝑦2〉) = 𝐴 ⊕ 𝐴1𝑦𝐴1 ⊕ 𝐴1𝑦𝐴𝑦𝐴1 ⊕ · · ·

with basis {𝑏0, 𝑏0𝑦, 𝑦𝑏0, 𝑏0𝑦𝑏1, 𝑏0𝑦𝑏1𝑦, 𝑦𝑏0𝑦𝑏1, 𝑏0𝑦𝑏1𝑦𝑏2, . . . | 𝑏0, 𝑏1, 𝑏2, · · · ∈ B}. For each 𝑦2-free
monomial divisible by y (namely, a nonzero monomial in 〈𝑦〉 ⊳ 𝑘 〈𝑥, 𝑦〉/

〈
𝑦2〉),

𝜉 = 𝑥𝑖0 𝑦𝑥𝑖1 · · · 𝑥𝑖𝑠−1 𝑦𝑥𝑖𝑠 ,

and for every 𝑤0 ∈ B𝑖0 , 𝑤1 ∈ B𝑖𝑠 , consider the following element in the above free product:

𝜋𝑤0 ,𝑤1 (𝜉) = 𝑤0𝑦𝑤 [𝑖1] · · ·𝑤 [𝑖𝑠−1]𝑦𝑤1.

In case that 𝜉 = 𝑥𝑖0 , we let 𝜋𝑤0 ,𝑤1 (𝜉) = 𝑤0, and if 𝑖0 = 0 or 𝑖𝑠 = 0, we let 𝜋𝑤0 ,𝑤1 (𝜉) =
𝑦𝑤 [𝑖1] · · ·𝑤 [𝑖𝑠−1]𝑦𝑤1, 𝑤0𝑦𝑤 [𝑖1] · · ·𝑤 [𝑖𝑠−1]𝑦, respectively. We formally set 𝜋𝑤0 ,𝑤1 (0) = 0.

Remark 3.2. Notice that for any pair of disjoint sets of monomials 𝑋,𝑌 ⊆ 𝑘 〈𝑥, 𝑦〉, we have that
Span𝑘𝜋∗,∗(𝑋) ∩ Span𝑘𝜋∗,∗(𝑌 ) = 0. Indeed, let 𝜃 : 𝐴 ∗𝑘

(
𝑘 [𝑦]/

〈
𝑦2〉) → 𝑅 be the linear map defined

by 𝜃 (𝑏0𝑦𝑏1 · · · 𝑦𝑏𝑟 ) = 𝑥deg(𝑏0) 𝑦𝑥deg(𝑏1) · · · 𝑦𝑥deg(𝑏𝑟 ) on basis elements and extended by linearity. Then
𝜃 ◦ 𝜋𝑤0 ,𝑤1 (𝜉) = 𝜉 for any 𝑤0, 𝑤1 of degrees compatible with pre𝑥 (𝜉), suf𝑥 (𝜉).

Consider the ideals

𝐽 =
〈
𝑦𝑊⊥𝑦

〉
= 〈𝑦𝑢𝑦 | 𝑢 ∈ B \ {𝑤 [1], 𝑤 [2], . . . }〉 ⊳ 𝐴 ∗𝑘

(
𝑘 [𝑦]/

〈
𝑦2〉)

and

�̂� =
〈
𝜋𝑤0 ,𝑤1 (𝜉) | 𝜉 ∈ Mon(𝐼), 𝑤0 ∈ Bpre𝑥 ( 𝜉 ) , 𝑤1 ∈ Bsuf𝑥 ( 𝜉 )

〉
⊳ 𝐴 ∗𝑘

(
𝑘 [𝑦]/

〈
𝑦2〉) .

Notice that 𝐼 ⊆ 〈𝑦〉 ⊳ 𝑘 〈𝑥, 𝑦〉, for otherwise, since I is a monomial ideal of 𝑘 〈𝑥, 𝑦〉, it would contain
some 𝑥𝑛, making 〈𝑦〉 finite-codimensional in 𝑅 = 𝑘 〈𝑥, 𝑦〉/𝐼; since by assumption, y generates a locally
nilpotent ideal in R, it follows that R is finite-dimensional, a contradiction to the assumption.

We also note that every element in �̂� is a linear combination of elements of the form 𝜋𝑤0 ,𝑤1 (𝜉), 𝜉 ∈ 𝐼
and elements from J. Indeed, fix 𝜉 = 𝑥𝑖0 𝑦 · · · 𝑦𝑥𝑖𝑠 ∈ Mon(𝐼) and 𝑤0 ∈ Bpre𝑥 ( 𝜉 )=𝑖0 , 𝑤1 ∈ Bsuf𝑥 ( 𝜉 )=𝑖𝑠 :

◦ Given any 𝑢 ∈ B𝑑 , we can write 𝑢𝑤0 =
∑𝑛
𝑖=1 𝑐𝑖𝑤

′
𝑖 for some 𝑤′

𝑖 ∈ B𝑑+𝑖0 , 𝑐𝑖 ∈ 𝑘 , since 𝑢, 𝑤0 are
homogeneous; we compute that
𝑢𝜋𝑤0 ,𝑤1 (𝜉) = 𝑢𝑤0𝑦𝑤 [𝑖1] · · ·𝑤 [𝑖𝑠−1]𝑦𝑤1 =

∑𝑛
𝑖=1 𝑐𝑖𝑤

′
𝑖𝑦𝑤 [𝑖1] · · ·𝑤 [𝑖𝑠−1]𝑦𝑤1 =

∑𝑛
𝑖=1 𝑐𝑖𝜋𝑤′

𝑖 ,𝑤1 (𝑥
𝑑𝜉).

An analogous outcome holds for 𝜋𝑤0 ,𝑤1 (𝜉)𝑢.
◦ We compute 𝑦𝜋𝑤0 ,𝑤1 (𝜉) = 𝑦𝑤0𝑦𝑤 [𝑖1] · · ·𝑤 [𝑖𝑠−1]𝑦𝑤1, which is either in J if 𝑤0 ≠ 𝑤 [𝑖0], or other-

wise, 𝑤0 = 𝑤 [𝑖0] and 𝑦𝜋𝑤0 ,𝑤1 (𝜉) = 𝜋𝑤0 ,𝑤1 (𝑦𝜉). An analogous outcome holds for 𝜋𝑤0 ,𝑤1 (𝜉)𝑦.

It follows by induction that every element in �̂� takes the desired form, and moreover, for every monomials
𝜉, 𝜉 ′ and 𝑤0, 𝑤1, 𝑤

′
0, 𝑤

′
1 ∈ B of compatible degrees, we have that

𝜋𝑤0 ,𝑤1 (𝜉)𝜋𝑤′
0 ,𝑤

′
1
(𝜉 ′) ≡

𝑛∑
𝑖=1

𝑐𝑖𝜋𝑢𝑖
0 ,𝑢

𝑖
1
(𝜉𝜉 ′) mod 𝐽 (3.1)

for suitable 𝑢𝑖0, 𝑢
𝑖
1 ∈ B and 𝑐𝑖 ∈ 𝑘 .
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Finally, let

𝐴 =
𝐴 ∗𝑘

(
𝑘 [𝑦]/

〈
𝑦2〉)

𝐽 + �̂�
.

Note that 𝐴 is naturally graded, extending the grading from A by letting deg(𝑦) = 1; indeed, this defines
a grading on 𝐴 ∗𝑘

(
𝑘 [𝑦]/

〈
𝑦2〉) , and both 𝐽, �̂� are homogeneous with respect to this grading, which thus

induces a grading on the quotient ring. Furthermore, deg𝐴(𝜋𝑤0 ,𝑤1 (𝜉)) = deg𝑅 (𝜉).
Consider the following homogeneous set:

B̂ = {𝜋𝑤0 ,𝑤1 (𝜉) | 𝜉 ∈ Mon(𝑅) \ {1}, 𝑤0 ∈ Bpre𝑥 ( 𝜉 ) , 𝑤1 ∈ Bsuf𝑥 ( 𝜉 ) } ⊆ 𝐴. (3.2)

Notice that B ⊆ B̂ as seen by considering 𝜉 = 𝑥𝑛, 𝑛 ∈ N. We claim that B̂ spans 𝐴. Indeed, 𝐴 ∗𝑘(
𝑘 [𝑦]/

〈
𝑦2〉)/𝐽 is spanned by

B ∪
{
𝜋𝑤0 ,𝑤1 (𝜉)

��� 𝜉 ∈ Mon
(
𝑘 〈𝑥, 𝑦〉/

〈
𝑦2〉) ∩ 〈𝑦〉, 𝑤0 ∈ Bpre𝑥 ( 𝜉 ) , 𝑤1 ∈ Bsuf𝑥 ( 𝜉 )

}
,

and modulo �̂�, we may further assume that 𝜉 ∉ 𝐼 – namely, 𝜉 ∈ Mon(𝑅).
We now claim that B̂ is linearly independent. We first observe that B̂ is a linearly independent subset

of 𝐴 ∗𝑘
(
𝑘 [𝑦]/

〈
𝑦2〉) . Next, if some nontrivial linear combination

∑𝑛
𝑖=1 𝛼𝑖𝜋𝑤 𝑖

0 ,𝑤
𝑖
1
(𝜉𝑖) with 𝜉𝑖 ∈ Mon(𝑅)

belongs to �̂� + 𝐽 (as an element of 𝐴 ∗𝑘
(
𝑘 [𝑦]/

〈
𝑦2〉)), then we claim that it in fact belongs to �̂�. Recall

that every element of �̂� is a linear combination of elements of the form 𝜋𝑤0 ,𝑤1 (𝜉), where 𝜉 ∈ 𝐼 (for
possibly different 𝑤0, 𝑤1, 𝜉) and elements from J. Write

𝑛∑
𝑖=1

𝛼𝑖𝜋𝑤 𝑖
0 ,𝑤

𝑖
1
( 𝜉𝑖︸︷︷︸
∈Mon(𝑅)

) = 𝑓︸︷︷︸
∈𝐽

+

𝑚∑
𝑗=1

𝛽 𝑗𝜋𝑢 𝑗
0 ,𝑢

𝑗
1
( 𝜉 ′𝑗︸︷︷︸
∈Mon(𝐼 )

)

so

𝑛∑
𝑖=1

𝛼𝑖𝜋𝑤 𝑖
0 ,𝑤

𝑖
1
(𝜉𝑖) −

𝑚∑
𝑗=1

𝛽 𝑗𝜋𝑢 𝑗
0 ,𝑢

𝑗
1
(𝜉 ′𝑗 ) = 𝑓 ∈ 𝐽.

However, the left-hand side belongs to the vector space

𝐴 ⊕ 𝐴1𝑦𝐴1 ⊕ 𝐴1𝑦𝑊𝑦𝐴1 ⊕ 𝐴1𝑦𝑊𝑦𝑊𝑦𝐴1 ⊕ · · ·

while

𝐽 ⊆
⊕
𝑖, 𝑗≥1

𝐴1 𝑦𝐴 · · · 𝐴𝑦︸�����︷︷�����︸
𝑖 times 𝑦

𝑊⊥ 𝑦𝐴 · · · 𝐴𝑦︸�����︷︷�����︸
𝑗 times 𝑦

𝐴1,

so f must vanish and
∑𝑛
𝑖=1 𝛼𝑖𝜋𝑤 𝑖

0 ,𝑤
𝑖
1
(𝜉𝑖) =

∑𝑚
𝑗=1 𝛽 𝑗𝜋𝑢 𝑗

0 ,𝑢
𝑗
1
(𝜉 ′𝑗 ). Since Mon(𝐼),Mon(𝑅) are disjoint

sets of monomials in 𝑘 〈𝑥, 𝑦〉, we have by Remark 3.2 that
∑𝑛
𝑖=1 𝛼𝑖𝜋𝑤 𝑖

0 ,𝑤
𝑖
1
(𝜉𝑖) = 0 in the free product

𝐴 ∗𝑘
(
𝑘 [𝑦]/

〈
𝑦2〉) , a contradiction.

Let us now provide a formula for products of basis elements from B̂. Let 𝜓𝑛 : 𝐴 → 𝑘 be the linear
functional projecting an element to the (possibly zero) coefficient of 𝑤 [𝑛] of it, when written uniquely
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as a linear combination of B. If 𝑤1, 𝑤2 ∈ 𝐴 multiply as 𝑤1𝑤2 =
∑
𝑏∈B 𝛼𝑏𝑏, then

𝑤0𝑦𝑤 [𝑖1] · · ·𝑤 [𝑖𝑠−1]𝑦𝑤1 ∗ 𝑤2 =
∑
𝑏∈B

𝛼𝑏𝑤0𝑦𝑤 [𝑖1] · · ·𝑤 [𝑖𝑠−1]𝑦𝑏

𝑤1 ∗ 𝑤2𝑦𝑤 [𝑖1] · · ·𝑤 [𝑖𝑠−1]𝑦𝑤3 =
∑
𝑏∈B

𝛼𝑏𝑏𝑦𝑤 [𝑖1] · · ·𝑤 [𝑖𝑠−1]𝑦𝑤3

and

𝑤0𝑦𝑤 [𝑖1] · · ·𝑤 [𝑖𝑠−1]𝑦𝑤1 ∗ 𝑤
′
0𝑦𝑤 [ 𝑗1] · · ·𝑤 [ 𝑗𝑡−1]𝑦𝑤

′
1

= 𝜓𝑝 (𝑤1𝑤
′
0) · 𝑤0𝑦𝑤 [𝑖1] · · · 𝑦𝑤 [𝑝]𝑦 · · ·𝑤 [ 𝑗𝑡−1]𝑦𝑤

′
1,

where 𝑝 = deg(𝑤1) + deg(𝑤′
0).

Let
∑𝑙
𝑖=1 𝑐𝑖𝜋𝑤 𝑖

0 ,𝑤
𝑖
1
(𝜉𝑖) ∈ 〈𝑦〉 ⊳ 𝐴. Then 𝜉1, . . . , 𝜉𝑙 ∈ 〈𝑦〉 ⊳ 𝑅. By assumption, 〈𝑦〉 is a locally nilpotent

ideal of R, so there exists some d such that

∀1 ≤ 𝑖1, . . . , 𝑖𝑑 ≤ 𝑙, 𝜉𝑖1 · · · 𝜉𝑖𝑑 = 0,

and it follows that(
𝑙∑
𝑖=1

𝑐𝑖𝜋𝑤 𝑖
0 ,𝑤

𝑖
1
(𝜉𝑖)

)𝑑
∈ Span𝑘 {𝜋∗,∗(𝜉𝑖1 · · · 𝜉𝑖𝑑 ) | 1 ≤ 𝑖1, . . . , 𝑖𝑑 ≤ 𝑙} = 0

as seen by (3.1). Consequently, 〈𝑦〉 ⊳ 𝐴 is a nil ideal. Notice that 𝐴/〈𝑦〉 � 𝐴, which is nil. Therefore,

0 → 〈𝑦〉 → 𝐴 → 𝐴 → 0

is an extension of two nil algebras; hence, 𝐴 is nil.
As seen by (3.2),

𝐴𝑛 � 𝐴𝑛 ⊕
⊕
𝑖+ 𝑗≤𝑛

𝐴𝑖 ⊗𝑘 𝑅
𝑥
𝑦 (𝑛; 𝑖, 𝑗) ⊗𝑘 𝐴 𝑗

and

𝐴≤𝑛 � 𝐴≤𝑛 ⊕
⊕
𝑖+ 𝑗≤𝑛

𝐴𝑖 ⊗𝑘 𝑅
𝑥
𝑦 (�𝑛; 𝑖, 𝑗) ⊗𝑘 𝐴 𝑗

isomorphisms of vector spaces (formally taking 𝐴0 = 𝑘); hence,

dim𝑘 𝐴≤𝑛 = dim𝑘 𝐴≤𝑛 +
∑
𝑖+ 𝑗≤𝑛

dim𝑘 𝑅
𝑥
𝑦 (�𝑛; 𝑖, 𝑗) · dim𝑘 𝐴𝑖 · dim𝑘 𝐴 𝑗 ,

as claimed. �

Proof of Theorem 1.2. Let 𝑓 : N → N be the growth function of any finitely generated infinite-
dimensional algebra, not of linear growth. We may assume that f is subexponential (nil algebras of
exponential growth exist by the Golod-Shafarevich theorem, and all of the exponential growth functions
are equivalent to each other). By [9, Theorem 1.1], f satisfies 𝑓 ′(𝑛) ≥ 𝑛 + 1 and 𝑓 ′(𝑛) ≤ 𝑓 ′(𝑚)2 for
every 𝑚 ≤ 𝑛 ≤ 2𝑚. Moreover, by the same theorem, f is then equivalent to the growth function of an
algebra R explicitly constructed therein. Let us recall now the general structure of that algebra. This is
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a monomial algebra 𝑅 = 𝑘 〈𝑥, 𝑦〉/𝐼 in which the set of nonzero monomials is⋃
𝑛≥1

𝑇 (𝑑𝑛, 𝑛) ∪
⋃
𝑛≥1

𝑥𝑒𝑛𝑇 (𝑑𝑛 − 1, 𝑛 − 𝑒𝑛),

where

𝑇 (𝑑, 𝑛) = {𝑥𝑛} ∪ {𝑥𝑖𝑦𝑥𝑎1 𝑦𝑥𝑎2 · · · 𝑥𝑎𝑠 𝑦𝑥 𝑗 of length 𝑛 with 𝑎1, . . . , 𝑎𝑠 ≥ 𝑑}

and for some sequences {𝑑𝑛}∞𝑛=1, {𝑒𝑛}
∞
𝑛=1 of positive integers, explicitly constructed in the proof of [9,

Theorem 1.1]. Furthermore, the sequence {𝑑𝑛}
∞
𝑛=1 tends to infinity since the realized growth function

f is subexponential (see [9, Page 691]). Notice also that 𝑦2 = 0. Since every monomial w in the ideal
〈𝑦〉2 = 𝑅𝑦𝑅𝑦𝑅 contains an occurrence of 𝑦𝑥𝑖𝑦 for some 𝑖 > 0, it follows that for some n (in fact, for
every n such that 𝑑𝑛 > 𝑖 + 1), 𝑤𝑅𝑛 = 𝑅𝑛𝑤 = 0, and therefore, 〈𝑦〉 is locally nilpotent. Furthermore,

dim𝑘 〈𝑦〉≤𝑛 = dim𝑘 𝑅≤𝑛 − dim𝑘 (𝑘 + 𝑘𝑥 + · · · + 𝑘𝑥𝑛) = dim𝑘 𝑅≤𝑛 − (𝑛 + 1). (3.3)

Let us now conclude the proof, using Theorem 3.1.
Case I: Countable base fields. Assume that k is countable. We use R from the above discussion as

a base ring for the construction given in Theorem 3.1, along with the nil graded algebra A from [25],
constructed over an arbitrary countable field. As proven in [25, Theorem 7.5], dim𝑘 𝐴𝑛 ≤ 𝐶𝑛2 log6 𝑛
for all n and for some constant 𝐶 > 0. Consider the finitely generated nil graded algebra 𝐴 resulting by
applying Theorem 3.1 to this setting. Then, for every 𝜀 > 0,

dim𝑘 𝐴≤𝑛 = dim𝑘 𝐴≤𝑛 +
∑
𝑖+ 𝑗≤𝑛

dim𝑘 𝑅
𝑥
𝑦 (�𝑛; 𝑖, 𝑗) · dim𝑘 𝐴𝑖 · dim𝑘 𝐴 𝑗

≤ 𝐶𝑛3 log6 𝑛 +
∑
𝑖+ 𝑗≤𝑛

dim𝑘 𝑅
𝑥
𝑦 (�𝑛; 𝑖, 𝑗) · 𝐶𝑖2 log6 𝑖 · 𝐶 𝑗2 log6 𝑗

≤ 2𝐶2𝑛4 log12 𝑛 dim𝑘 𝑅≤𝑛 � 𝑛4+𝜀 𝑓 (𝑛).

However, by Theorem 3.1,

dim𝑘 𝐴≤𝑛 ≥ dim𝑘 𝐴≤𝑛 +
∑
𝑖+ 𝑗≤𝑛

dim𝑘 𝑅
𝑥
𝑦 (�𝑛; 𝑖, 𝑗) ≥ 𝑛 + 〈𝑦〉≤𝑛 = dim𝑘 𝑅≤𝑛 − 1 ∼ 𝑓 (𝑛).

Case II: Arbitrary base fields. Assume that k is of arbitrary cardinality. We use R from the above
discussion as a base ring for the construction given in Theorem 3.1, along with a nil graded algebra A from
[8], constructed over an arbitrary base field. As proven in [25], for any super-polynomial function, one
can construct a nil graded algebra A over k whose growth is bounded from above by that function. Given
a function 𝜔(𝑛)

𝑛→∞
−−−−→ ∞, let A be a nil graded algebra over k whose growth satisfies 𝛾𝐴(𝑛) � 𝑛

1
2 𝜔 (𝑛) .

Consider the finitely generated nil graded algebra 𝐴 resulted by applying Theorem 3.1 to this setting.
Then

dim𝑘 𝐴≤𝑛 = dim𝑘 𝐴≤𝑛 +
∑
𝑖+ 𝑗≤𝑛

dim𝑘 𝑅
𝑥
𝑦 (�𝑛; 𝑖, 𝑗) · dim𝑘 𝐴𝑖 · dim𝑘 𝐴 𝑗

≤ dim𝑘 𝐴≤𝑛 +
∑
𝑖+ 𝑗≤𝑛

dim𝑘 𝑅
𝑥
𝑦 (�𝑛; 𝑖, 𝑗) ·

(
𝑛

1
2 𝜔 (𝑛)

)2

≤ 𝑛
1
2 𝜔 (𝑛) + 𝑛𝜔 (𝑛) dim𝑘 𝑅≤𝑛 ∼ 𝑛𝜔 (𝑛) 𝑓 (𝑛).

https://doi.org/10.1017/fms.2025.1 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.1


10 B. Greenfeld

However, by Theorem 3.1,

dim𝑘 𝐴≤𝑛 ≥ dim𝑘 𝐴≤𝑛 +
∑
𝑖+ 𝑗≤𝑛

dim𝑘 𝑅
𝑥
𝑦 (�𝑛; 𝑖, 𝑗) ≥ 𝑛 + 〈𝑦〉≤𝑛 = dim𝑘 𝑅≤𝑛 − 1 ∼ 𝑓 (𝑛).

The proof is completed. �

4. Applications

Let A be a finitely generated associative algebra. Then A, equipped with the Lie brackets [𝑎, 𝑏] := 𝑎𝑏−𝑏𝑎,
is a Lie algebra, denoted by 𝐴(−) . Notice that if A is graded, then so are 𝐴(−) and all of its Lie derived
powers. Furthermore,
Lemma 4.1. Let A be a nil (resp., graded-nil) associative algebra. Then 𝐴(−) is a nil (resp., graded-nil)
Lie algebra.
Proof. Let A be a nil associative algebra. For every 𝑎 ∈ 𝐴, there is some d such that 𝑎𝑑 = 0. Since

ad𝑚𝑎 (𝑥) =
𝑚∑
𝑖=0

(−1)𝑚−𝑖

(
𝑚

𝑖

)
𝑎𝑖𝑥𝑎𝑚−𝑖

for every 𝑚 ≥ 0, we obtain that ad2𝑑+1
𝑎 (𝑥) is a linear combination of monomials of the form 𝑎𝑖𝑥𝑎 𝑗 with

𝑖 + 𝑗 = 2𝑑 + 1, so ad2𝑛+1
𝑎 (𝑥) ∈ 𝑎𝑑𝐴 + 𝐴𝑎𝑑 = 0. It follows that L is a nil Lie algebra. If 𝐴 =

⊕∞
𝑛=0 𝐴𝑛 is a

graded-nil associative algebra, then the above argument applies for every homogeneous element a (and
arbitrary x), proving that L is a graded-nil Lie algebra. �

In general, finite generation of A as an associative algebra does not guarantee the finite generation of
the Lie algebras 𝐴(−) and [𝐴(−) , 𝐴(−) ]; but if A is generated by finitely many nilpotent elements, then
[𝐴(−) , 𝐴(−) ] is finitely generated as well and, furthermore, grows asymptotically as A:
Theorem 4.2 [1, Theorem 2]. Let A be a graded associative algebra generated by finitely many nilpotent
elements. Then [𝐴(−) , 𝐴(−) ] is a finitely generated Lie algebra and

𝛾 [𝐴(−) ,𝐴(−) ] (𝑛) ∼ 𝛾𝐴(𝑛).

Proof of Corollary 1.3. Fix an arbitrary 𝛼 ∈ (0, 1). There exists a finitely generated algebra B whose
growth function is 𝛾𝐵 (𝑛) ∼ exp(𝑛𝛼) (see, for example, [35, Corollary D]). By Theorem 1.2, it follows
that, for every increasing, super-polynomial function 𝜔 : N → N, there exists a finitely generated nil
graded algebra over an arbitrary base field whose growth is

𝛾𝐵 (𝑛) � 𝛾𝐴(𝑛) � 𝜔(𝑛)𝛾𝐵 (𝑛).

Taking 𝜔(𝑛) = 𝑛log 𝑛, we get, for 𝑛 �𝛼 1, that

exp(𝑛𝛼) � 𝛾𝐴(𝑛) � 𝑛log 𝑛 exp(𝑛𝛼)
≤ exp((2𝑛)𝛼) ∼ exp(𝑛𝛼),

as claimed.
Now let 𝐿 = [𝐴(−) , 𝐴(−) ]. By [1, Theorem 2], L is a finitely generated graded Lie algebra and

𝛾𝐿 (𝑛) ∼ 𝛾𝐴(𝑛) ∼ exp(𝑛𝛼), and by Lemma 4.1, L is a nil Lie algebra. �

Proof of Corollary 1.4. Fix an arbitrary 𝛼 ≥ 6. Let A be a finitely generated nil graded algebra of
GKdim(𝐴) ≤ 3 (see [25]); denote 𝜌 := GKdim(𝐴). Let 𝑑 ∈ Z≥0 and 0 < 𝛽 ≤ 1 be such that
𝛼 = 2𝜌 + 𝑑𝛽 (in particular, if 𝛼 > 6, then 𝑑 = �𝛼 − 2𝜌�, and 𝛽 = 𝛼−2𝜌

𝑑 and if 𝛼 = 6, take 𝑑 = 0, 𝛽 = 1).
Let 𝑆 = {�𝑛1/𝛽� | 𝑛 ∈ N} and observe that #(𝑆 ∩ [1, 𝑛]) = �𝑛𝛽�.
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Consider the monomial algebra

𝑅 =
𝑘 〈𝑥, 𝑦〉〈

𝑦2
〉
+ 〈𝑦〉𝑑+2 + 〈𝑦𝑥𝑖𝑦 | 𝑖 ∉ 𝑆〉

.

Notice that the ideal 〈𝑦〉 ⊳ 𝑅 is nilpotent. Now for any 𝑖, 𝑗 ,

dim𝑘 𝑅
𝑥
𝑦 (�𝑛; 𝑖, 𝑗) ≤

𝑑+1∑
𝑐=1

#
{
�𝑡 ∈ 𝑆𝑐−1

��� 𝑐−1∑
𝑖=1

𝑡𝑖 ≤ 𝑛
}

(4.1)

≤

𝑑+1∑
𝑐=1

#(𝑆 ∩ [1, 𝑛])𝑐−1 ≤ (𝑑 + 1) · #(𝑆 ∩ [1, 𝑛])𝑑 ≤ (𝑑 + 1)𝑛𝑑𝛽 .

Moreover, if 𝑖 + 𝑗 ≤ 2𝑛, then, given �𝑡 ∈ (𝑆 ∩ [1, 𝑛])𝑑 , we have a nonzero monomial 𝜉�𝑡 ∈ 𝑅𝑥
𝑦 (�𝐾𝑛; 𝑖, 𝑗)

𝑥𝑖𝑦𝑥𝑡1 𝑦 · · · 𝑦𝑥𝑡𝑑 𝑦𝑥 𝑗

for some constant K (in fact, one can take any K such that 𝐾𝑛 ≥ 𝑑𝑛 + (𝑑 + 1) + 𝑖 + 𝑗 , so we can take
𝐾 = 5𝑑), and the assignment �𝑡 ↦→ 𝜉�𝑡 is injective. It follows that

dim𝑘 𝑅
𝑥
𝑦 (�𝐾𝑛; 𝑖, 𝑗) ≥ #(𝑆 ∩ [1, 𝑛])𝑑 (4.2)

≥
(
�𝑛𝛽�

)𝑑
≥ 2−𝑑𝑛𝑑𝛽

(the last inequality follows since �𝑥� ≥ 1
2𝑥 for every 𝑥 ≥ 1.) Thus, by Theorem 3.1, there exists a finitely

generated nil graded algebra 𝐴 such that

dim𝑘 𝐴≤𝑛 = dim𝑘 𝐴≤𝑛 +
∑
𝑖+ 𝑗≤𝑛

dim𝑘 𝑅
𝑥
𝑦 (�𝑛; 𝑖, 𝑗) · dim𝑘 𝐴𝑖 · dim𝑘 𝐴 𝑗 . (4.3)

Hence, by (4.1),

dim𝑘 𝐴≤𝑛 ≤ dim𝑘 𝐴≤𝑛 +
∑
𝑖+ 𝑗≤𝑛

(𝑑 + 1)𝑛𝑑𝛽 · dim𝑘 𝐴𝑖 · dim𝑘 𝐴 𝑗 (4.4)

≤ dim𝑘 𝐴≤𝑛 + (𝑑 + 1)𝑛𝑑𝛽 (dim𝑘 𝐴≤𝑛 + 1)2

≤ (𝑑 + 2)𝑛𝑑𝛽 (dim𝑘 𝐴≤𝑛 + 1)2,

and by (4.2),

dim𝑘 𝐴≤𝐾𝑛 ≥
∑

𝑖+ 𝑗≤2𝑛
dim𝑘 𝑅

𝑥
𝑦 (�𝐾𝑛; 𝑖, 𝑗) · dim𝑘 𝐴𝑖 · dim𝑘 𝐴 𝑗 (4.5)

≥ 2−𝑑𝑛𝑑𝛽
∑

𝑖+ 𝑗≤2𝑛
dim𝑘 𝐴𝑖 · dim𝑘 𝐴 𝑗

≥ 2−𝑑𝑛𝑑𝛽 (dim𝑘 𝐴≤𝑛)
2.

Combining (4.4) and (4.5), it follows that

GKdim(𝐴) = lim sup
𝑛→∞

log dim𝑘 𝐴≤𝑛

log 𝑛
= 2𝜌 + 𝑑𝛽 = 𝛼,

as required.
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Now let 𝐿 = [𝐴(−) , 𝐴(−) ]. By [1, Theorem 2], L is a finitely generated graded Lie algebra and
GKdim(𝐿) = GKdim(𝐴) = 𝛼, and by Lemma 4.1, L is a nil Lie algebra. �

5. Graded-nil algebras

5.1. Morphic words and their algebras

Let Σ = {𝑎, 𝑏} and let 𝜙 : Σ∗ → Σ∗ be an endomorphism of the free monoid Σ∗ = 〈𝑎, 𝑏〉. Assume that
𝜙(𝑎), 𝜙(𝑏) ≠ 1 for all 𝑖 ≥ 1. If 𝜙(𝑎) = 𝑎𝑢 for some 𝑢 ∈ Σ∗, then there is a (unique) fixed point of 𝜙 in
its action on the set of (right) infinite words ΣN:

𝑤 = 𝑎𝑢𝜙(𝑢)𝜙2(𝑢) · · ·

Consider the monomial algebra

𝐴𝑤 = 𝑘 〈Σ〉/〈𝑣 ∈ Σ∗ | 𝑣 is not a factor of 𝑤〉.

In [5, Proposition 2.1], we proved that, under some technical assumptions on 𝜙, if we assign certain
degrees to the monomial generators of 𝐴𝑤 , then the positive part 𝐴+

𝑤 =
⊕∞

𝑛=1 (𝐴𝑤 )𝑛 is graded-nilpotent;
that is, every subalgebra of 𝐴+

𝑤 generated by homogeneous elements of an equal degree is nilpotent (and
hence finite-dimensional). This property is stronger than being graded-nil. Let us focus on a concrete
example, which will serve as a ‘basis’ for the construction in Theorem 1.5.

Example 5.1 [5, Example 2.2]. Let Σ = {𝑎, 𝑏} and let 𝜙 : Σ∗ → Σ∗ be given by 𝜙(𝑎) = 𝑎𝑏, 𝜙(𝑏) = 𝑏2𝑎.
Then 𝜙 satisfies the conditions of [5, Proposition 2.1], and consequently, the resulting infinite-word

𝑤 = 𝑎𝑢𝜙(𝑢)𝜙2(𝑢) · · · = 𝑎𝑏𝑏𝑏𝑎𝑏𝑏𝑎𝑏𝑏𝑎𝑎𝑏 · · ·

gives rise to a monomial algebra 𝐴𝑤 which, when endowed with the grading deg(𝑎) = 1, deg(𝑏) = 2,
has a graded-nilpotent positive part 𝐴+

𝑤 . Furthermore, by [6, Proposition 3.1], the algebra 𝐴𝑤 has a
quadratic growth; that is, 𝑐1𝑛

2 ≤ 𝛾𝐴𝑤 (𝑛) ≤ 𝑐2𝑛
2 for some constants 𝑐1, 𝑐2 > 0. Equivalently, the

complexity function 𝑝𝑤 (𝑛) = dim𝑘 (𝐴𝑤 )𝑛 grows linearly with n, say, 𝑐1𝑛 ≤ 𝑝𝑤 (𝑛) ≤ 𝑐2 (𝑛 + 1) for
some 𝑐1, 𝑐2 > 0, for all 𝑛 ≥ 0 (we put 𝑐2 (𝑛 + 1) on the right-hand side since 𝑝𝑤 (0) = 1).

5.2. Growth of graded-nilpotent algebras

Theorem 5.2. Let 𝑅 = 𝑘 〈𝑥, 𝑦〉/𝐼 be an infinite-dimensional monomial algebra in which 𝑦2 = 0 and y
generates a locally nilpotent ideal. Then there exists a finitely generated graded-nil algebra 𝐴 such that

𝑐1 ·

𝑛∑
𝑖=0

𝑖 · dim𝑘 𝑅
𝑥 (�𝑛; 𝑖) ≤ dim𝑘 𝐴≤𝑛 ≤ 𝑐2 ·

𝑛∑
𝑖=0

(𝑖 + 1) · dim𝑘 𝑅
𝑥 (�𝑛; 𝑖)

for some 𝑐1, 𝑐2 > 0.

Proof. Let w be the infinite word from Example 5.1 and let 𝐴𝑤 be its associated monomial algebra. Let
𝑤 [𝑖] denote the length-i prefix of w (we think of 𝑤 [0] as the empty monomial ‘1’) – for example,

𝑤 [0] = 1, 𝑤 [1] = 𝑎, 𝑤 [2] = 𝑎𝑏, 𝑤 [3] = 𝑎𝑏𝑏, . . .

Consider the following formal language L ⊆ {𝑎, 𝑏, 𝑦}∗:

L = {𝑢𝑦𝑤 [𝑖1]𝑦 · · · 𝑦𝑤 [𝑖𝑠+1] | 𝑢 ∈ Mon(𝐴𝑤 ), |𝑢 | = 𝑖0, 𝑥
𝑖0 𝑦𝑥𝑖1 𝑦 · · · 𝑦𝑥𝑖𝑠+1 ∈ Mon(𝑅)}. (5.1)
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(We include the cases where the monomial in Mon(𝑅) is 𝑥𝑖0 , and 𝑖0, 𝑖𝑠+1 may be zero.) Notice that L is
a hereditary language. Indeed, consider a word

𝑊 = 𝑢𝑦𝑤 [𝑖1]𝑦 · · · 𝑦𝑤 [𝑖𝑠+1],

where u is a factor of w of length 𝑖0 and 𝑥𝑖0 𝑦𝑥𝑖1 𝑦 · · · 𝑦𝑥𝑖𝑠+1 is a nonzero monomial in R. Then every
subword 𝑊0 of W takes one of the forms

𝑣, 𝑣𝑦, 𝑦𝑣′, 𝑣𝑦𝑤 [𝑖𝑝]𝑦 · · · 𝑦𝑤 [𝑖𝑞]𝑦𝑣
′

where 1 ≤ 𝑝 ≤ 𝑞 ≤ 𝑠 and v is either a suffix of u of length 0 ≤ 𝑙 ≤ 𝑖0, or a suffix of 𝑤 [𝑖𝑝−1] of length
𝑙 ≤ 𝑖𝑝−1; and 𝑣′ is a prefix of 𝑤 [𝑖𝑞+1] of length 0 ≤ 𝑙 ′ ≤ 𝑖𝑞+1; hence, 𝑣′ = 𝑤 [𝑙 ′]. Since 𝑥𝑖0 𝑦𝑥𝑖1 𝑦 · · · 𝑦𝑥𝑖𝑠+1

is a nonzero monomial in R, so is 𝑥𝑙𝑦𝑥𝑖𝑝 𝑦 · · · 𝑦𝑥𝑖𝑞 𝑦𝑥𝑙′ , and thus, by (5.1), it follows that 𝑊0 ∈ L.
Let 𝐴L = 𝑘 〈𝑎, 𝑏, 𝑦〉/𝐽 be the monomial algebra associated with L. Endow 𝐴L with the grading

induced by deg(𝑎) = 1, deg(𝑏) = 2, deg(𝑦) = 1. Let 𝐴+
L =

⊕∞
𝑛=1 (𝐴L)𝑛 be the positive part of 𝐴L.

Then 𝐴+
L is finitely generated (by 𝑎, 𝑏, 𝑦) and fits into

0 → 〈𝑦〉 → 𝐴+
L → 𝐴+

𝑤 → 0. (5.2)

Define a surjective map 𝜃 : L → Mon(𝑅) by

𝜃 (𝑢𝑦𝑤 [𝑖1]𝑦 · · · 𝑦𝑤 [𝑖𝑠+1]) = 𝑥 |𝑢 |𝑦𝑥𝑖1 𝑦 · · · 𝑦𝑥𝑖𝑠+1 .

Notice that 𝜃 (L ∩ 〈𝑦〉) = Mon(𝑅) ∩ 〈𝑦〉 and that 𝜃 (𝑊1𝑊2) = 𝜃 (𝑊1)𝜃 (𝑊2) if 𝑊1𝑊2 ≠ 0. We claim that
〈𝑦〉 ⊳ 𝐴L is locally nilpotent. Indeed, for any finite set of monomials from L, each of which containing an
occurrence of y, say𝑊1, . . . ,𝑊𝑡 , consider 𝜃 (𝑊1), . . . , 𝜃 (𝑊𝑡 ) ∈ 〈𝑦〉 ⊳ 𝑅. Since 〈𝑦〉 ⊳ 𝑅 is locally nilpotent
by assumption, there exists some N such that 𝜃 (𝑊𝜇 (1) ) · · · 𝜃 (𝑊𝜇 (𝑁 ) ) = 0 for every 𝜇 : {1, . . . , 𝑁} →
{1, . . . , 𝑡}. If 𝑊𝜇 (1) · · ·𝑊𝜇 (𝑛) ≠ 0, then 𝜃

(
𝑊𝜇 (1) · · ·𝑊𝜇 (𝑛)

)
= 𝜃 (𝑊𝜇 (1) ) · · · 𝜃 (𝑊𝜇 (𝑁 ) ) = 0, a contradic-

tion (recall that 𝜃 : L → Mon(𝑅) and 0 ∉ Mon(𝑅)). It follows that 〈𝑦〉 ⊳ 𝐴L is a locally nilpotent ideal.
Let us now prove that 𝐴+

L is graded-nilpotent. Fix 𝑑 ≥ 1 and let (𝐴L)𝑑 = Span𝑘 { 𝑓1, . . . , 𝑓𝑚}. Since 𝐴+
𝑤

is graded-nilpotent, it follows from (5.2) that there exists some 𝑁1 such that every product of 𝑁1 ele-
ments among 𝑓1, . . . , 𝑓𝑚 vanishes in 𝐴+

𝑤 . Again by the exact sequence (5.2), it follows that every product
of 𝑁1 elements among 𝑓1, . . . , 𝑓𝑚 lies in 〈𝑦〉 ⊳ 𝐴L. By the local nilpotency of 〈𝑦〉 ⊳ 𝐴L, it follows that
there is some 𝑁2 such that every product of 𝑁2 elements among { 𝑓1, . . . , 𝑓𝑚}

𝑁1 vanishes. Therefore,
(𝐴L)

𝑁1𝑁2
𝑑 = 0, showing that 𝐴+

L is graded-nilpotent.
Let us analyze the growth function of 𝐴+

L. By (5.1),

dim𝑘 (𝐴L)𝑛 =
∑

𝑊 ∈Mon(𝑅)𝑛

#𝜃−1 (𝑊)

=
𝑛∑
𝑖=0

𝑝𝑤 (𝑖) · #{𝑊 ∈ Mon(𝑅)𝑛 | pre𝑥 (𝑊) = 𝑖}

=
𝑛∑
𝑖=0

𝑝𝑤 (𝑖) · dim𝑘 𝑅
𝑥 (𝑛; 𝑖)

so

𝑐1 ·

𝑛∑
𝑖=0

𝑖 · dim𝑘 𝑅
𝑥 (�𝑛; 𝑖) ≤ dim𝑘 (𝐴

+
L)≤𝑛 ≤ 𝑐2 ·

𝑛∑
𝑖=0

(𝑖 + 1) · dim𝑘 𝑅
𝑥 (�𝑛; 𝑖),

for 𝑐1, 𝑐2 from Example 5.1, as claimed. �
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Proof of Theorem 1.5. Let 𝑓 : N → N be the growth function of any finitely generated infinite-
dimensional algebra; we may assume that f is not of linear growth. As in the proof of Theorem 1.2, we
may assume that f is subexponential. Using [9, Theorem 1.1], let 𝑅 = 𝑘 〈𝑥, 𝑦〉/𝐼 be a monomial algebra
of growth 𝛾𝑅 ∼ 𝑓 . As observed in the proof of Theorem 1.2, 〈𝑦〉 ⊳ 𝑅 is locally nilpotent. Applying
Theorem 5.2, we obtain a finitely generated, graded-nilpotent algebra 𝐴 =

⊕∞
𝑛=1 𝐴𝑛 such that

dim𝑘 𝐴≤𝑛 ≤ 𝑐2 ·

𝑛∑
𝑖=0

(𝑖 + 1) · dim𝑘 𝑅
𝑥 (�𝑛; 𝑖)

≤ 2𝑐2𝑛 ·
𝑛∑
𝑖=0

dim𝑘 𝑅
𝑥 (�𝑛; 𝑖) = 2𝑐2𝑛 dim𝑘 𝑅≤𝑛 ∼ 𝑛 𝑓 (𝑛)

and

dim𝑘 𝐴≤𝑛 ≥ 𝑐1 ·

𝑛∑
𝑖=0

𝑖 · dim𝑘 𝑅
𝑥 (�𝑛; 𝑖)

≥ 𝑐1 ·

𝑛∑
𝑖=0

dim𝑘 𝑅
𝑥 (�𝑛; 𝑖) = 𝑐1 · dim𝑘 𝑅≤𝑛 ∼ 𝑓 (𝑛),

so 𝑓 (𝑛) � 𝛾𝐴(𝑛) � 𝑛 𝑓 (𝑛). The proof is completed. �

Proof of Corollary 1.6. In the proof of Corollary 1.4 we constructed, for each 𝑑 ∈ Z≥0, 0 < 𝛽 ≤ 1, a
monomial algebra

𝑅 =
𝑘 〈𝑥, 𝑦〉〈

𝑦2
〉
+ 〈𝑦〉𝑑+2 + 〈𝑦𝑥𝑖𝑦 | 𝑖 ∉ 𝑆〉

satisfying, for some constants 𝐾, 𝜆1, 𝜆2 > 0 (in fact, 𝜆1 = 2−𝑑 , 𝜆2 = 𝑑 + 1 and 𝐾 = 5𝑑),

◦ 〈𝑦〉 ⊳ 𝑅 is locally nilpotent;
◦ For every 𝑖 + 𝑗 ≤ 2𝑛, we have that dim𝑘 𝑅

𝑥
𝑦 (�𝐾𝑛; 𝑖, 𝑗) ≥ 𝜆1𝑛

𝑑𝛽;
◦ For every 𝑖, 𝑗 , 𝑛, we have that dim𝑘 𝑅

𝑥
𝑦 (�𝑛; 𝑖, 𝑗) ≤ 𝜆2𝑛

𝑑𝛽 .

It follows that for every 𝑖 ≤ 𝑛, we have

dim𝑘 𝑅
𝑥 (�𝑛; 𝑖) = 1 +

𝑛∑
𝑗=0

dim𝑘 𝑅
𝑥
𝑦 (�𝑛; 𝑖, 𝑗) ≤ 1 + (𝑛 + 1) · 𝜆2𝑛

𝑑𝛽 ≤ 𝜆′2𝑛
𝑑𝛽+1

for some constant 𝜆′2 > 0. In addition, we have, for 𝑖 ≤ 𝑛,

dim𝑘 𝑅
𝑥 (�𝐾𝑛; 𝑖) ≥

𝑛∑
𝑗=1

dim𝑘 𝑅
𝑥
𝑦 (�𝐾𝑛; 𝑖, 𝑗) ≥

𝑛∑
𝑗=1

𝜆1𝑛
𝑑𝛽 = 𝜆1𝑛

𝑑𝛽+1.

We now apply Theorem 5.2 to the algebra R. As a result, we obtain a finitely generated, graded-nilpotent
algebra 𝐴 =

⊕∞
𝑛=1 𝐴𝑛 whose growth function satisfies

dim𝑘 𝐴≤𝑛 ≤ 𝑐2 ·

𝑛∑
𝑖=0

(𝑖 + 1) · dim𝑘 𝑅
𝑥 (�𝑛; 𝑖) ≤ 2𝑐2𝑛 ·

𝑛∑
𝑖=0

𝜆′2𝑛
𝑑𝛽+1 ≤ 𝜆′′2 𝑛

𝑑𝛽+3
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(for some 𝜆′′2 > 0) and

dim𝑘 𝐴≤𝐾𝑛 ≥ 𝑐1 ·

𝐾𝑛∑
𝑖=0

𝑖 · dim𝑘 𝑅
𝑥 (�𝐾𝑛; 𝑖)

≥ 𝑐1 ·

𝑛∑
𝑖= �𝑛/2�

𝑖 · dim𝑘 𝑅
𝑥 (�𝐾𝑛; 𝑖) ≥ 𝑐1

⌊𝑛
2

⌋
·
𝑛

2
· 𝜆1𝑛

𝑑𝛽+1 ≥ 𝜆′1𝑛
𝑑𝛽+3

for some 𝜆′1 > 0 (and for all 𝑛 > 2). It follows that GKdim(𝐴) = 𝑑𝛽 + 3. Since for any 𝛼 ≥ 3 we can
find 𝑑 ∈ Z≥0, 0 < 𝛽 ≤ 1 such that 𝛼 = 𝑑𝛽 + 3, the claim follows. �

6. Matrix wreath products

6.1. Matrix wreath products

Let 𝐴, 𝐵 be k-algebras. We let their matrix wreath product be

𝐴 � 𝐵 = 𝐵 + Lin𝑘 (𝐵1, 𝐵1 ⊗𝑘 𝐴).

Given a linear map 𝜙 : 𝐵1 → 𝐴 defined on 𝐵1, the unital hull of B, we let 𝑐𝜙 : 𝑏 ↦→ 1 ⊗ 𝜙(𝑏) and
consider the ‘restricted’ matrix wreath product:

𝐴 �𝜙 𝐵 = 𝑘
〈
𝐵, 𝑐𝜙

〉
⊆ 𝐴 � 𝐵.

If B is a finitely generated k-algebra generated by some finite-dimensional subspace 𝑉 ≤ 𝐵, then 𝐴 �𝜙 𝐵
is the finitely generated k-subalgebra of 𝐴 � 𝐵 generated by 𝑉 + 𝑘𝑐𝜙 . These have proven to be extremely
useful to construct algebras with prescribed growth and desired algebraic properties such as algebraicity
and primeness [2, 17]. In particular, if A is stably nil (that is, 𝑀𝑛 (𝐴) is nil for every n) and B is nil, then
𝐴 �𝜙 𝐵 is nil too [2, §4]. Let

𝛾𝜙 (𝑛) = dim𝑘

∑
𝑖1+···+𝑖𝑠≤𝑛

𝜙(𝑉 𝑖1) · · · 𝜙(𝑉 𝑖𝑠 )

be the growth function of 𝜙. By [17, Lemma 2.2],

𝛾𝜙 (𝑛) � 𝛾𝐴�𝜙𝐵 (𝑛) � 𝛾𝐵 (𝑛)
2𝛾𝜙 (𝑛), (6.1)

and if in addition, 𝜙 satisfies some ‘density’ conditions, then 𝛾𝐴�𝜙𝐵 (𝑛) ∼ 𝛾𝜙 (𝑛)𝛾𝐵 (𝑛)
2 [2, Lemma 3.9].

6.2. Theorem 1.2 revisited

Fix an arbitrary base field k. Let 𝑓 : N → N be the growth function of a finitely generated infinite-
dimensional algebra, not of linear growth. In particular, 𝑓 ′(𝑛) ≥ 𝑛 + 1; as in the proof of Theorem 1.2,
we may assume that f is subexponential.

Let 𝑅 = 𝑘 〈𝑥, 𝑦〉/𝐼 be the monomial algebra constructed in [9] of growth 𝛾𝑅 ∼ 𝑓 . As in the proof of
Theorem 1.2, the ideal 𝐽 := 〈𝑦〉 ⊳ 𝑅 is locally nilpotent, and by (3.3), dim𝑘 𝐽≤𝑛 = dim𝑘 𝑅≤𝑛 − (𝑛 + 1).
Since 𝑦2 ∈ 𝐼, then, as a k-algebra, J is generated by the set {𝑥𝑖𝑦𝑥 𝑗 }𝑖, 𝑗≥0. Let 𝐵 =

⊕∞
𝑛=1 𝐵𝑛 be a finitely

generated infinite-dimensional nil, graded k-algebra; then dim𝑘 𝐵𝑛 ≥ 𝑛 for every 𝑛 ≥ 1, for otherwise,
B has a linear growth by [23, Lemma 2.4], which implies that B satisfies a polynomial identity [33]; but
a finitely generated nil algebra satisfying a polynomial identity is finite-dimensional [22, Theorem 5].
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Thus, we can define a system of (arbitrary) surjective linear maps

𝜙𝑛 : 𝐵𝑛 � Span𝑘 {𝑥𝑖𝑦𝑥𝑛−1−𝑖 | 0 ≤ 𝑖 ≤ 𝑛 − 1} ⊆ 𝐽 for 𝑛 = 1, 2, . . .

and let

𝜙 = ⊕𝑛𝜙𝑛 : 𝐵1 → 𝐽,

setting 𝜙(1) = 𝑦. This defines a restricted matrix wreath product 𝐽 �𝜙 𝐵. Since B is a finitely generated
nil algebra and J is locally nilpotent (and hence stably nil), it follows that 𝐽 �𝜙 𝐵 is a finitely generated
nil algebra.

Let us estimate 𝛾𝜙 (𝑛). We have

∑
𝑖1+···+𝑖𝑠≤𝑛

𝜙(𝐵𝑖1) · · · 𝜙(𝐵𝑖𝑠 ) ⊆ 𝐽 ∩

( ∑
𝑖1+···+𝑖𝑠≤𝑛

𝑅𝑖1 · · · 𝑅𝑖𝑠

)
= 𝐽≤𝑛. (6.2)

Conversely, let 𝜉 ∈ Mon(𝑅) ∩ 𝐽≤𝑛

𝜉 = 𝑥𝑖0 𝑦𝑥𝑖1 · · · 𝑥𝑖𝑚−1 𝑦𝑥𝑖𝑚

for some 𝑚 ≥ 1, 𝑖0, . . . , 𝑖𝑚+1 ≥ 0, and if 𝑚 > 1, then 𝑖1, . . . , 𝑖𝑚−1 > 0. Decompose

𝜉 = (𝑥𝑖0 𝑦) (𝑥𝑖1 𝑦) · · · (𝑥𝑖𝑚−1 𝑦𝑥𝑖𝑚 ) (6.3)
= 𝜙𝑖0+1(𝑏0)𝜙𝑖1+1(𝑏1) · · · 𝜙𝑖𝑚−1+𝑖𝑚+1(𝑏𝑚−1)

= 𝜙(𝑏0)𝜙(𝑏1) · · · 𝜙(𝑏𝑚−1)

for suitable 𝑏0 ∈ 𝐵𝑖0+1, 𝑏1 ∈ 𝐵𝑖1+1, . . . , 𝑏𝑚−1 ∈ 𝐵𝑖𝑚−1+𝑖𝑚+1, where

(𝑖0 + 1) + (𝑖1 + 1) + · · · + (𝑖𝑚−1 + 𝑖𝑚 + 1) = |𝜉 | ≤ 𝑛;

hence, 𝜉 ∈
∑

𝑝1+···+𝑝𝑠≤𝑛 𝜙(𝐵𝑝1) · · · 𝜙(𝐵𝑝𝑠 ). Therefore,

𝐽≤𝑛 = Span𝑘 (Mon(𝑅) ∩ 𝐽≤𝑛) ⊆
∑

𝑝1+···+𝑝𝑠≤𝑛

𝜙(𝐵𝑝1) · · · 𝜙(𝐵𝑝𝑠 ).

Together with (6.2), we conclude that

𝛾𝜙 (𝑛) = dim𝑘 𝐽≤𝑛 = 𝛾𝑅 (𝑛) − (𝑛 + 1) ∼ 𝛾𝑅 (𝑛) ∼ 𝑓 (𝑛). (6.4)

Case I: Countable base fields. Let k be a countable field. We specify B to be a nil algebra of GK-
dimension ≤ 3, which can be constructed over any countable field [24, 25]. By (6.1) and (6.4), we
obtain, for every 𝜀 > 0, that

𝑓 (𝑛) ∼ 𝛾𝜙 (𝑛) � 𝛾𝐽 �𝜙𝐵 (𝑛) � 𝛾𝐵 (𝑛)
2𝛾𝜙 (𝑛) � 𝑛6+𝜀 𝑓 (𝑛).

Case II: Arbitrary base fields. Let k be an arbitrary field. Let 𝜔(𝑛)
𝑛→∞
−−−−→ ∞. We specify B to be the

Bell-Young nil algebra [8] of growth 𝛾𝐵 (𝑛) ≤ 𝑛
1
2 𝜔 (𝑛) . By (6.1) and (6.4), we obtain that

𝑓 (𝑛) ∼ 𝛾𝜙 (𝑛) � 𝛾𝐽 �𝜙𝐵 (𝑛) � 𝛾𝐵 (𝑛)
2𝛾𝜙 (𝑛) � 𝑛𝜔 (𝑛) 𝑓 (𝑛).

Thus, every growth function of an algebra is realizable as the growth of a nil matrix wreath product
over any countable field, up to a polynomial error factor, and over an arbitrary field, up to an arbitrarily
slow super-polynomial error factor.
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