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1. Introduction

Forr > 0,let D, :=={z € C: |2 <r},D:=D;,D:= {2 € C: 2] <1} and let
RT :={z € C: |z| = 1}. Let H(D,) denote the class of all analytic functions f in I, and
let H := H(D). Then f € H(D,) has the following representation

f(z)=> an(f)z", zeD,. (1.1)
n=0

Let A(D,) be the subclass of H(D,) of all f normalized by f(0) =0 = f’(0) — 1 and let
A := A(D). By S we denote the subclass of all univalent (i.e. analytic and injective in
D) functions in A.

Given « € (0, 1], let S} denote class of all functions f € A such that

2f'(z)
f(2)

ozg, z €D, (1.2)

‘Arg

and the so-called strongly starlike of order a. For a := 1 the class & =: §* is the
well-known class of starlike functions, i.e. functions f which map univalently I onto a
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2 A. Lecko and B. Smiarowska

set which is star-shaped with respect to the origin. Then, the condition (1.2) can be
written as

2f'(2)
f(2)

The class of strongly starlike functions was introduced by Stankiewicz [18] and [19] and
independently by Brannan and Kirwan [1] (see also [6, Vol. I, pp. 137-142]). Stankiewicz
[19] presented an external geometrical characterization of strongly starlike functions.
Brannan and Kirwan found a geometrical condition called §-visibility which is sufficient
for functions to be strongly starlike. In turn, Ma and Minda [15] gave the internal charac-
terization of functions in S} basing on the concept of k-starlike domains. Further results
regarding the geometry of strongly starlike functions were presented in [13, Chapter IV],
[14] and [20]. Since §* C S (cf. [5, pp. 40-41]) and S} C S* for every « € (0, 1], it follows
that 8¢ C S for every a € (0,1].

If f € S, then the inverse function F := f~! is well-defined and analytic in D),
where 7(f) :=sup({r > 0:D, C f(D)}). Thus

Re

>0, ze€D.

oo
w) :w—l—ZAnw", w € Dp(py, (1.3)

where A, := a,(F). By Koebe one-quarter theorem (e.g. [5, p. 31]), it follows that
r(f) = 1/4 for every f € S.
For f € S define

Fy(z) := logi Z D,

a logarithmic function associated with f. The numbers v, = a,(Fy) are called the
logarithmic coefficients of f. It is well-known that the logarithmic coefficients play a
crucial role in Milin’s conjecture (see [16], [5, p. 155]).

Referring to the above idea, for f € S, there exists the unique function Ff_l analytic
in D,y such that

Lioe 1200 S
Fffl(w) = *1ogT = Zan , we ]D)r(f)a (14)

where I, := a, (Ff_1> are logarithmic coefficients of the inverse function f~1.
It follows from Equation (1.3) that (e.g. [6, Vol. I, p. 57])

A2 = —ag, Ag = —as + 2&% and A4 = —aq4 + 50,20,3 — 5(1;’, (15)

where a,, := a,(f). Thus from Equation (1.4) we derive that

1 1 1 1 1 1
In= §A2, I, = 5143 - ZAi I's = §A4 - §A2A3+ 614:2)’7
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and next using Equation (1.5) we obtain

1 1 3 1 )
Fl:_iag, F2=—§a3+1a% and F3:—§a4+2a2a3—§a§. (16)

For ¢,n € N, the Hankel matrix Hy ,(f) of f € A of the form (1.1) is defined as

Qp apy1 -0 Optq—1
Ap+1 Ap+2 et anJrq
Hon(f):=| . . . - (L.7)
Ant+q—1 Qntq " Ani2(g—1)

In recent years, there has been a great deal of attention devoted to finding bounds for
the modulus of the second and third Hankel determinants det Ho o(f) and det Hs 1(f),
when f belongs to various subclasses of A (see [2, 10, 11] for further references).

Based on these ideas, in [8] and [9], the authors started the study the Hankel deter-
minant det Hy ,(Fy) whose entries are logarithmic coefficients of f € S, that is, a,
in Equation (1.7) are replaced by +,,. In this paper, we continue analogous research con-
sidering the Hankel determinant det qun(Ff_l) whose entries are logarithmic coefficients
of inverse functions, i.e. a, in Equation (1.7) are now replaced by I3,. We demonstrate
the sharp estimates of

1
[det Ha (Fy1 )| = |12y = 1] = 5 (1303 — 120 + 12000, — 12030

in the classes S.

2. Preliminary lemmas

Denote by P the class of analytic functions p € ‘H with positive real part given by
(o o]
p(z) =14 cu2", z€D, (2.1)
n=1

where ¢, := a,(p).

In the proof of the main result, we will use the following lemma which contains the
well-known formula for ¢s (see, e.g. [17, p. 166]) and the formula for c3 (see [3, Lemma 2.4]
with further remarks related to extremal functions).

Lemma 1. Ifp € P is of the form (2.1), then

C1 = 2(1, (22)

c2 =20 +2(1 = [Gi[*)¢a (2.3)
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and

e =2C +2(1 — |G]*)(2G — G&)é +2(1 — |G - &P)G (2.4)

for some (1, (o, (3 € D.
For (1 € T, there is a unique function p € P with ¢; as in Equation (2.2), namely,

o 1+C12

= D.
1—C127 FAS

p(2)

For {4 € D and (5 € T, there is a unique function p € P with ¢; and cs as in Equations
(2.2) and (2.3), namely,

1+ (GG )z A+ (oR?

plz) = L+ (GG — G)z — (22’

z € D. (2.5)

Lemma 2. ([4]). For real numbers A, B, C, let
Y(A,B,C) :=max ({|A+ Bz +Cz*|+1—|2]*: 2 € D}).

I If AC >0, then

Y(4,B.0) Al +1B+[Cl, |B| = 2(1 - |C]),
= B
" 14+[Al+——— Bl <2(1—C)].
A+ e |Bl<20-10)
I1. If AC' <0, then
B? -2 2
17|A\+m, —4AC(C—= —=1) < B*AN|B| < 2(1 —1|C)),
Y(A B C) - B2 2 . 2 —92
T 1+|A|+——~, B 41+ |C —4AC(C—= -1
Al ey B < min {40+ 10D ( )}
R(A, B, (), otherwise,
where
|A[ + |B| - [C], ICI(IB] + 4]A]) < |AB,
R(A,B,C) = { —lAlI+IBl+]C], i |AB| < |C|(|B| — 4|A]),
B .
(IC]+ 1A/ 1 = TAc otherwise.

We recall now Laguerre’s rule of counting zeros of polynomials in an interval (see
[7], [12], [21, pp. 19-20]). We will apply Laguerre’s algorithm in the proof of the main
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theorem. Given a real polynomial
Qu) == dou" + dyu" ' +---+d,_ u+d, u€cR,dy,...,d,€R,

consider a finite sequence (qx),k = 0,1,...,n, of polynomials of the form

For each ug € R, let N(Q;ug) denote the number of sign changes in the sequence
(qx(u0)),k = 0,1,...,n. Given an interval I C R, denote by Z(Q;I) the number of
zeros of @ in I counted with their orders. Then the following theorem due to Laguerre
holds.

Theorem 1. If a<b and Q(a)Q(b) # 0, then

Z(Q; (a,b)) = N(Q;a) — N(Q; b)

or

N(Q;a) — N(Q;b) — Z(Q; (a,b))

18 an even positive integer.

Note that
k
@(0) =dp, qr(1) = _d;.
3=0
Thus, when [a, b] := [0, 1], Theorem 1 reduces to the following useful corollary.

Corollary 1. If Q(0)Q(1) # 0, then
Z(Q;(0,1)) = N(Q;0) — N(@;1)
N(Q;0) = N(@;1) — Z(Q;(0,1))

is an even positive integer, where N(Q;0) and N(Q;1) are the numbers of sign changes

in the sequence of polynomial coefficients (di) and in the sequence of sums (Z?:o d;),
where k =0,1,...,n, respectively.
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3. Main result

The main result of this paper is the following.

Theorem 2. Let o € (0,1]. If f € S, then

1 1
1042, 0<Oé<g,
a?(15a? +5a+2) 1
det H. (F_)‘:rr—ﬂg . <a<ag, 3.1
’e 21 (Fy1 )| = [0 = I (3302 +300+7) " 5 @S (3-1)
%a2(35a2 +4), ap < a < 1,

where ag = 0.39059 is the unique root in (0,1] of the equation
1225a* + 105002 — 15502 — 60a — 44 = 0. (3.2)

All inequalities are sharp.

Proof. Let f € S be of the form (1.1). Then by Equation (1.2), there exists p € P
of the form (2.1) such that

2f'(2)
f(2)

= (p(2))%, zeD. (3.3)
Putting the series (1.1) and (2.1) into (3.3), by equating the coefficients we get

1 3a—1,
as = «acq, CL3:§Oé C2+TC1 ,

1 +5a_2 +17012—15&—1-43
ay = —a | C C1C —_—C .
1730\ g 172 12 1

Hence and from Equation (1.6) we obtain

1 1
Iy = —50401, I; = —ga(z@ — (3o + I)C%)’

1
I3=——a (12¢5 — (420 + 12)c1c + (2907 + 21 + 4)c}) |

and therefore

1
NI3—T3= %a2(c‘{(35a2 + 30+ 7) — 12(5a + 1)cicq + 48cic3 — 36¢3).  (3.5)

Since both the class S and | det Hz 1 (Fffl) | are rotationally invariant, without loss of

generality we may assume that as > 0, which in view of Equation (3.4) yields ¢; > 0,
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i.e. by Equation (2.2) that ¢; € [0,1]. Thus substituting Equations (2.2)-(2.4) into
Equation (3.5), we obtain

2
o
NIs—T3 = 36 ((350° +4)¢1 — 30a(1 — (7)¢i¢e — 3(1 = (¢ +3)G (3.6)
+12G (1= (7)1 = [¢2[*)¢s)
for some (; € [0,1] and (o, (3 € D.
A. Suppose that ¢; = 0. Then from Equation (3.6),
a? a?
N5 —IF = —|GP < —.
’ 143 2| 4 |<2‘ 4
B. Suppose that ¢; = 1. Then from Equation (3.6),
1
|5 - T3] = %&(35@2 +4).
C. Suppose that ¢; € (0,1). Since (3 € D, from Equation (3.6) we get
1
| — 15| < 50‘2@(1 —(3)P(A,B,C),
where
®(A,B,C) == |A+ B¢ + OG | +1 ¢l
with
4B’ +d)  p ZhaG o, (G H3)
“a-g P2 YT
Observe that AC <0 and therefore we apply only the part IT of Lemma 2.
C1. Let’s consider the condition |B| < 2(1 — |CY), i.e.
2
2 4G
The above inequality is equivalent to
2(5 1) —4 3
G(B5a+1) Gt <0, (3.7)

2¢1

which is equivalent to (5o + 1)¢? — 4¢; + 3 < 0. However
(Ba+ 1) 4G +3=5a + (1 - G)(B3—G) >0

for ¢; € (0,1), which shows that the inequality (3.7) is false.

https://doi.org/10.1017/50013091524000531 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091524000531

8 A. Lecko and B. Smiarowska

C2. Since

1 _(9-¢))B5a +4)¢F
—4AC(02—1)_— 122 +3) <0

for ¢; € (0,1), we deduce that the condition B? < min{4(1 + |C|)?, —4AC(C~2 — 1)} is
equivalent to

¢21(10a2 — 1)¢¢ + 13502 + 9]
3(¢E+3)

<0, (3.8)

which is equivalent to (100 — 1) + 13502 + 9 < 0 for ¢; € (0,1). However, in the case
when 1002 — 1 > 0 we have

(10a® — 1)¢F + 1350 +9 > 135a% + 9 > 0,
and in the case when 10a® — 1 < 0 we have
(10a® — 1)(F + 13502 +9 > 145a% + 8 > 0,

for all ¢; € (0,1). Thus the inequality (3.8) is false.
C3. The inequality |C|(|B| 4+ 4|A]) < |AB| is equivalent to

(17503 — 7002 + 35 — 8)({ — 6(35a? — bav + 4)(} — 45
24(1 - ¢F)

=0

which is equivalent to
Pa(C?) =0, (3.9)
where for t € R,
0a(t) == (175a% — 7002 + 350 — 8)t* — 6(35a* — 5 4 4)t — 45a.

Observe that the equation 175a% — 70a? 4+ 35a — 8 = 0 has only one real root a; in (0, 1],
where

2
77 + — =~ 0.2758,

13769 + 882v/445)/% — :
) 15(13769 + 882y/445)1/3 15

41 705

and that the inequality (3.9) is false for « := a;. Let now « € (0, 1] \ {a1}. For ¢,, we
have A := 144(525a* — 17503 + 12002 —20a+4) > 0, which is true for all & € (0, 1]\ {1 }.
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Hence the square trinomial ¢, has two roots

3(3502 — 5a + 4) £ 6525t — 17503 + 12002 — 20a + 4
17503 — 7002 + 350 — 8 '

tl’g =

Note that for all a € (0,1] \ {a1} we have —6(35a — 5a + 4) < 0. Now for a € (o, 1]
we have 17503 — 70a? + 35a — 8 > 0. Hence t3 < 0 because the inequality

3(35a° — 5ar + 4) — 61/52504 — 17503 + 12002 — 200 + 4 < 0
is equivalent to
—45a(175a* — 70a* + 35a — 8) < 0,

which is true for all @ € (ay,1]. On the other hand, the inequality ¢; > 1 is equivalent
to

6v/52504 — 17503 + 12002 — 200 + 4 > 5(35a° — 3502 + 10a — 4), (3.10)

which is evidently true for @ € (aq, s, where as =~ 0.82155, since then the right hand
side of Equation (3.10) is non-positive. For a € (aq, 1] by squaring both sides of Equation
(3.10), we equivalently get the inequality

(5a — 8)(6125a° — 24500 + 192502 — 56002 + 140a — 32) < 0

which is true for « € (ag, 1]. Thus we conclude that for « € (a, 1] the inequality (3.9) is
false.

Let a € (0,a1). Then 175a% — 70a? + 35a — 8 < 0 and therefore t; < 0 evidently.
Moreover, the inequality t5 < 0 is equivalent to

3(3502 — ba + 4) — 61/52504 — 17503 + 12002 — 20a + 4 > 0
which is equivalent to
—45a(1750* — 70a* + 35a — 8) > 0,
which is true for all & € (0,a;). Thus we conclude that for a € (0,a) the inequality
(3.9) is false.
C4. The inequality |C|(|B| — 4|A]) > |AB| is equivalent to

(1750 + 7002 + 35a + 8)(f + 6¢F (350 + ba + 4) — 45

21(1 -2 <0

which is equivalent to

7a(¢}) <0, (3.11)
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where for t € R,
Ya(t) :== (1750 4+ 7002 + 35a + 8)t* + 6(35a° + 5o + 4)t — 45a.

For 7y, we have A := 144(525a* + 17503 + 1200 + 20a + 4) > 0 for all a € (0, 1]. Hence
the square trinomial v, has two roots

o —3(3502 4 5a + 4) £ 615250t + 17503 + 12002 + 20c + 4
A 17503 + 7002 + 350 + 8 '

Note that t4 < 0 evidently. Observe now that ¢3 > 0. Indeed, this inequality is equivalent
to

—3(35a% + 5o + 4) 4 61/525a% + 17503 + 12002 4 200 + 4 > 0
which is equivalent to the evidently true inequality
45a(1750 + 70a% + 350+ 8) > 0, a € (0,1].

Moreover, t3 < 1 is equivalent to

61/52504 + 17503 + 12002 + 200 + 4 < 5(35a° + 3502 + 100 + 4)
that after squaring both sides is equivalent to
(5a + 8)(6125a° + 24500 + 192502 4 56002 + 140 + 32) > 0,

which is true for all a € (0,1]. Therefore the inequality (3.11) is true for ¢; € (0,¢Y],

where ¢ := /13.
Applying Lemma 2 for 0 < ¢; < (Y, we get

1
| - I3 < 5042@1(1 — @) (=|A[+]B| +C]) = palG),
where
1
palt) = —%a2((35042 +30a + )t — 6(5a — 1)t* —9), tE€R.

We have

Pa(0)

-
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and
202
(17503 + 7002 + 35c + 8)2
x [—18375a° — 166250° — 10150a* — 37750° — 1025a% — 150 — 12
+(1050a* + 700a” + 320a* + 80a + 10)

pa(C?) =

x\/52504 + 17503 + 12002 + 20 + 4] .

Note that for a € (0,1/5] the equation

[e4

oL(t) = —éoﬁt((:ﬁa? +30a+7)t? = 3(5a—1)) =0 (3.12)

has no root in (0,¢Y) and then evidently

For a € (1/5,1], Equation (3.12) has a unique positive root, namely

3(ba—1)

ts = —————.
3502 4+ 30a + 7

(3.13)

It remains to check the condition t5 < (¥ equivalently written as

10(105a* 4 700 + 32a% + 8 + 1
3502 + 30 + 7

) V52504 + 17503 + 12002 + 200 + 4,

which is equivalent to

(17502 + 7002 + 35a + 8)(2625a° — 175a* — 92503 — 42502 — 80a — 12)

< 0.
(3502 + 30 + 7)2

The last inequality is true for a € (1/5, a3), where ag =~ 0.812678 is the unique root in
(0,1) of the equation

26250° — 1750 — 9250° — 4250% — 80a — 12 = 0.
Then p,, attains its maximum value on (0, ()] at t5 with

a?(15a% + 5a + 2)
3502 + 30+ 7

pa(t5) =
If a € [ag, 1], then evidently,

pa(t) < max ({pa(o)vpoz(c(lj)}) = poc(d))v 0<t< C?
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C5. Applying Lemma 2 for (¥ < ¢; < 1, we get

B2
 4AC

1
|15 — T <502C1(1—C12)(|A|+\C|) 1 = ¥a(C1),

where for t € [0,1],

—(1002 — 1)2 + 4502 + 3

Va(t) == ia2((35a2 + 1)t* — 612 + 9)\/

18 (3502 + 4)(t? + 3)
We have
0 202(3502 + 4) G(a)
wa( 1) = - 3 2 2 (a) - )
(17503 + 7002 + 35 + 8) K(a)
where

H(a) := — 1050a* — 52503 — 27002 — 65a — 10 + (3502 + 10a + 3) x
x /52504 + 17503 + 12002 + 20a + 4,

G(a) := — 2625a° — 14000 — 7500 — 1950° — 30a — 4 + (200° — 2) x
x /52504 + 17503 + 12002 + 20a + 4

and

K(a) := (1750 + 3502 + 30ar + 4 + 2¢/52504 + 17503 + 12002 + 200 + 4) (350 + 4).

Note that

Differentiating v, leads to the equation

U4 (D) = — gta® Wy
—(10a2 — 1)2 + 4502 + 3
(8502 + )¢ + 3)2\/ (3502 + 4)(22 + 3)

where for s € [0,1],

Q(s) :=4(350% +1)(10a? — 1)s® + 3(175a* — 31502 — 4)s?
— 18(1050a* + 11502 — 2)s + 229502 + 108.
Now we describe the number of zeros of @ in the interval (0,1) by combining Descartes’

and Laguerre’s rules. To apply Descartes’ rule, we check the numbers of sign changes of
coefficients of the polynomial ). We have:
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e dy(a) := qo(0) = 4(350% + 1)(10a* — 1) > 0 iff « € (1/V/10,1),
e di(a):=q(0) = 3(175a* — 31502 — 4) < 0 iff a € (0,1),
o dy(a) := q2(0) = —18(1050a* + 11502 — 2) > 0 iff a € (0, a4) , where

1 [1
= =1/ —(v/865 — 23)) ~ 0.12
o 2\/105( 865 — 23)) ~ 0.12355,

o ds() := g5(0) = 229502 + 108 > 0 iff o € (0,1).

Thus there is one change of signs in (0, 1/\/%), i.e. N(Q,0) =1, and two changes of signs
in [1/v10,1), i.e. N(Q,0) = 2. According to Descartes’ rule of signs, the polynomial Q
has one positive real root in (0, 1/\/@) and zero or two positive real roots in [1/\/ﬁ, 1) .

To apply Laguerres’ rule, it remains to compute the number N(Q, 1) of sign changes
in the sequence of sums Z?:o uj(a), where k = 0,1,2,3. We have

do(a) = 4(3502 + 1)(100% — 1) > 0 iff a € (1/v/10,1)
o do(a) +di(a) = 19250 — 104502 — 16 > 0 iff o € (a5, 1), where

s = \/(209 +3v/5401)/770 ~ 0.74683,

o do(a) + di() + d2(a) = —5(3395a* + 62302 — 4) > 0 iff € (0, ) , where

o6 1= \/(3\/4916 —623)/6790 ~ 0.078806,

do(@) + di(a) + do() + ds(a) = — (3502 + 4)(485a2 — 32) > 0 iff a € (0,a7),
where a7 1= 4,/2/485 ~ 0.25686.

Thus there are no changes of signs in (a7,1/v/10), i.e. N(Q,1) = 0, and one change of
sign in (0, a7]U [l/m, 1) ie. N(Q,1) = 1. According to Laguerre’s rule, the polynomial
@ has one root in [0, 1] for « € (a7, 1), and no roots in [0,1] for a € (0, a7] . Therefore,
for o € (0, 7], the function 1, is increasing for () < ¢ < 1 and hence

Ya(t) S va(1), ¢ <t<l.

In turn, for @ € (a7, 1), the function v, has a unique critical point in [0, 1], where by
using jointly Descartes’ and Laguerre’s rules we state that v, attains its minimum value.
Thus

Yo (t) < max ({a()),Ya(1)}), ¢ <t<l.

Now we summarize results of sections C4 and C5.
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(i)

(iii)

D.

A. Lecko and B. Smiarowska

For o € (0,1/5), we compare 1,(1) and p,(0). Note that then g, (0) > ¥4 (1) since
it is equivalent to

1 1
—a? — =a?(3502 +4) = %(12(5 —35a%) > 0.

For a € [1/5, au3) , we compare 1,(1) and g, (t5). Note that the inequality

(150 +5a+2) _ 1
> —a?(350% + 4
3502 130017~ 36° B0 T4

is equivalent to

3—16a2(1225a4 + 10500 — 1550 — 60a — 44) < 0

which is true for a € [1/5, ], where ag = 0.390595 is the unique root in (0, 1]
of Equation (3.2). Thus 04(t5) = ¥a(1) for a € [1/5, apl, and g4 (t5) < 14 (1) for
a € (ap, as).

For a € [a3,1), we compare ¥, (1) and p,(¢?). Note that the inequality p,(¢?) <
14 (1) is equivalent to

—18375a° — 166250° — 10150a* — 37750 — 10250% — 150a — 12
+ (1050a* + 7000 + 32002 + 80 + 10)v/52504 + 17503 + 12002 + 20c + 4

1
<5(35a2 +4)(17503 + 70a% + 35 + 8)2,

equivalently written as

(1050a* + 7000° + 32002 4 80a + 10) x v/525a* + 17503 + 12002 + 20a + 4
1
<5 (1071875a° + 857500a" + 2045750a° + 15645000° 4 881475a* + 3222000
+854200” + 130400 + 1120)

which is equivalent to

25

F1%i (3502 + 4)(175a° 4 700 4 35a + 8)? x

x (428750° + 34300a” + 134750a° + 1104600° 4 178350 — 73440
—5036a” — 1120 — 128) > 0

which is true for o € [a3,1).

We now show sharpness of all inequalities by using the formula (3.5). In the first

inequality in Equation (3.1), the equality is attained by the function f € S given by
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Equation (3.3) with

_1—22

=112 ‘€D

p(z) :
for which ¢; = c3 =0 and ¢y = —2.
In the second inequality in Equation (3.1), the equality is attained by the function f €
S’ given by Equation (3.3), where p € P is defined by Equation (2.5) with (; =t5 =: 7
and (; =1, i.e.

_ 14272+ 22

1 >— 2z €D.
—z

p(2) :
Here t5 is described by Equation (3.13).
In the third inequality in Equation (3.1), the equality is attained by the function f € S
given by Equation (3.3), where p € P is defined by

1tz
1=z

p(2) : z €D,
for which ¢ = ¢y = c3 = 2.
This ends the proof of the theorem. O

For =1, we have the following result:

Corollary 2. If f € §*, then

13
_ 2
’det Hos (Ff,l)‘ — N - 13| < 55

The inequality is sharp.
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