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Abstract
Accurate and reliable computation of the aerodynamic characteristics of wind turbines is very important for the
development of new efficient designs. The flow around a wind turbine is modeled by a permeable disc (PD), solved
through the Unsteady Reynolds-Averaged Navier–Stokes equations (URANS), here named PD/URANS method.
The finite volume method and a total variation diminishing (TVD) scheme solve numerically the flow governing
equations. The turbulent flow in the wake of the wind turbine is simulated utilising a one-equation turbulence model.
The Glauert correction calculation considers a uniform normal force distribution (CT) on the virtual permeable disc
applied to the flow, while the axial induction factor is obtained directly from the numerical solution of the URANS
equations. The numerical axial induction factor obtained agrees fairly well with Glauert correction, except if the
flow behind the turbine is highly unsteady and Reynolds number dependent.

Nomenclature
a induction factor
a∞ free-stream isothermal speed of sound
CT thrust coefficient
D turbine diameter
P pressure
M∞ free-stream Mach number
RD Reynolds number
Sz z-area vector component
Sr r-area vector component
t time
T temperature
vr r-velocity component
vz z-velocity component
vθ θ -velocity component
V volume
V0 wind speed
ρ density
τ isothermal compressibility
υt turbulent kinematics viscosity
∞ free-stream conditions

1.0 Introduction
Efficient and accurate computation of wind turbine aerodynamic characteristics is very important for
the development of new efficient designs. Usually, the aerodynamic characteristics of a wind turbine
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are obtained either by experimental model measurements, direct numerical solution of the Navier–
Stokes equations or iterative solution of the blade element and momentum method (BEM) equations.
Experimental measurements are expensive and timely consuming, requiring special devices and mea-
surement equipment, wind tunnel and small tolerance construction of the wind turbine model. On the
other hand, the BEM method is based on a quite simplified theory that neglects viscous effects on
the flow behind the wind turbine. Glauert [5] proposed a correction factor to overcome such a defi-
ciency of the BEM method that has become popular in the aeronautical applications. In turn, the
three-dimensional numerical simulation of the flow around a wind turbine is highly computationally
expensive since it requires a quite well-refined and a complex rotational grid to be generated to discretise
the three-dimensional domain around the rotor blades.

The BEM method does not take explicitly into account the viscous effect that induces circumferen-
tial/tangential velocities in the turbine wake. Such an influence tends to be smaller on longer blades
operating at high tip speed ratios, as is the case of wind turbine blades. Thus, BEM tends to be a suitable
method for wind turbines rather than for marine propellers. Glauert has evaluated his axial induction fac-
tor from experimental results. Therefore, Glauert correction incorporated the existing implicit viscous
effect relating tangential and axial inducted velocities. Numerical results from Navier–Stokes equations
are able to capture such viscous influence on the axial induction factor, confirming, improving and
generalising Glauert correction.

Therefore, an alternative approach as the Permeable Disc/Navier–Stokes (PD/NS) method, utilised in
Ref. (1), can be a very accurate and computationally efficient way to solve the flow around a wind turbine.
The PD/NS method may greatly reduce the number of required grid cells since the rotor geometry is not
resolved. A virtual disc on which the forces from the BE theory are distributed replaces the rotor, while
the induction factors required from the blade element (BE) theory are obtained directly through the
flow numerical solution. The BE theory equations and the flow field governing equations in cylindrical
coordinates are solved simultaneously. The Navier–Stokes equations may be described based on two
cylindrical coordinates only because the flow is assumed to be axisymmetric. Therefore, a much simpler
two-dimensional computational grid will be sufficient to produce the numerical solution of the flow field
governing equations, resulting in a computationally efficient but still accurate method.

Mikkelsen et al. [6] studied numerically the influence of a wind turbine rotor coning using the BEM
method and the permeable disc model combined with PD/NS. The incompressible Navier–Stokes equa-
tions in cylindrical coordinates were solved for axisymmetric flow using the finite difference method
for Reynolds number = 5000. Comparison between results obtained with both models has shown the
limitation of the BEM method. The computation also demonstrated that the power coefficient based on
the projection area of the actuator disc is invariant to coning.

Zhong et al. (2019) combined the effect of tip loss corrections into the PD/NS method. The study
was conducted using an axisymmetric PD/NS solver to simulate the flow around the wind turbine. The
numerical solution of the Reynolds Averaged Navier–Stokes equations in cylindrical coordinates was
obtained through the finite volume method with second order upwind scheme and [7] turbulence model.
The widely used [5] tip loss function F, used in the BEM, and a newly developed tip loss correction were
discussed and evaluated. According to their conclusions, the new tip loss correction has shown superior
performance in different flow conditions compared to the original [5] tip loss function.

Sharp [8] used a general momentum theory for an energy-extracting permeable disc, based on the
PD/NS method, modeling the rotor with a multiple blades defined by a uniform circulation that includes
the effects of wake rotation and wake expansion. According to his conclusions, the rotation of the
wake has been accompanied by an additional fall in the static pressure if one compares it with across
the permeable disc. The overall effect of wake rotation on energy extraction is very small for wind
turbine operating at high tip speed ratios, but can significantly increase the predicted power output
otherwise.

Moens [9] studied the performance of tip-loss correction factor for advanced permeable disc (PD)
method coupled with Large Eddy Simulation (LES) Navier–Stokes equations (PD/NS) for a wind farm
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configuration. The LES incompressible Navier–Stokes equations were solved using fourth-order finite
difference scheme in a three-dimensional Cartesian grid. The classical [5] tip-loss factor was added to
correct the tip and the root induced velocities at the rotor. The numerical results showed that the PD/NS
performance clearly improves by the additional correction on the [5] tip-loss factor.

Simisiroglou [10] discussed a comparative analysis featuring two different permeable disc methods
(PD/NS) [11, 12], and two alternative analytical wake models presented by Refs (13, 14), applied on
the wind farm power production assessment. Simisiroglou [10] concluded that the PD/NS used by Refs
(12, 14) outperforms all the other methods. In the two numerical approaches used in all analysis, the
RANS equations and the k-ε turbulence model were solved using the commercial CFD code WindSim.
The difference between [11, 12] results come from the equation used to calculate the thrust forces. In
the Ref. (12) method, the thrust coefficient is updated at every time of iteration, whereas in the Ref. (11)
method, it is kept constant during all the simulation.

The present work features the slightly compressible URANS equations solution in cylindrical coor-
dinates using finite volume method and upwind total variation diminishing (TVD) scheme of Refs (2,3)
using the [15] flux limiter. The [16] hypothesis and the [4] turbulence model simulate the turbulent
flow in the wake generated by the disc. The governing equations depend only on two coordinates since
the flow is assumed to be axisymmetric. Therefore, a two-dimensional computational grid is enough to
solve the flow around the permeable disc. A uniform normal force distribution (CT ) on the virtual per-
meable disc is applied to the flow field, and the axial induction factor at the permeable disc is obtained
directly from the Unsteady Reynolds Averaged Navier-Stokes (URANS) equations numerical solution.
Finally, the numerical results are compared with the traditional momentum theory results based on the
[5] correction and [17] correction to evaluate accuracy.

2.0 Mathmatical formulation
The Reynolds-Averaged Navier–Stokes (Reynolds Averaged Navier-Stokes) equations in cylindrical
coordinates are obtained by decomposing the Navier–Stokes equations dependent variables into time
averaged and fluctuating components. The time averaged governing equations obtained by using the
mass-weighted procedure suggested by Ref. (18) are shown below:
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r

∂r
+ 1

r

∂ρ̄ṽrṽθ
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where the viscous stresses are:
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From basic thermodynamics, the state of a homogeneous substance can be defined by only two prop-
erties. The mathematical closure of the URANS set of equations requires the extra physical equation:

ρ = ρ(p, T) (7)

Taylor expansion with respect to the free-stream conditions yields:
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For homogeneous temperature field, T=T∞, Taylor expansion simplifies to:
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From the definition of isothermal compressibility, see Ref. (19):
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Since the isothermal compressibility can be thought as a very small physical parameter (10–5 m2/N
for air, and 10–10 m2/N for water, at p = 1 atm), then the second and higher order terms can be neglected
from Equation (12), yielding:

ρ ≈ ρ∞ + ρ∞ (p − p∞) τ (13)

Replacing Equation (13) into the continuity equation, shown in Equation (1), it follows:
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Equation (14) is the continuity equation now expressed in terms of pressure, which can be satisfied
if:

∂ p̄

∂t
+ 1

r

∂

∂r
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(p̄ṽθ ) = 0

and

p∞ = 1

τ
(15)

In non-dimensional form, Equation (15) may be written as:
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Hereafter, the star symbol of the dimensionless variables in Equation (16) will be dropped for sake
of simplicity. Equation (16) together with the incompressible momentum equations gives a convenient
system of equations for slightly compressible flows. The system of equations below stands for axisym-
metric flows in the non-dimensional form, including the [16] hypothesis in Equations (2), (3), and (4),
to substitute the Reynolds stresses terms.
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(p̄rṽr) + ∂

∂z
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r
= 1

r

∂

∂r

[
r2

(
υt + M∞

RD

)
∂

∂r

(
ṽθ
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Figure 1. Finite volume (in red) utilised in the spatial discretisation of the governing equations.

where υt is the turbulent kinematic viscosity obtained by utilising [4] turbulence model, shown below
in cylindrical coordinates – see Ref. (4) for further details:
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3.0 Numerical formulation
The governing equations for three-dimensional and axisymmetric flows, written in the integral, vector
and conservative forms, are solved using the finite volume method and the upwind TVD scheme, see Refs
(2, 3), using the [15] flux limiter. Equation (23) shows the approximated URANS equations using finite
differences and finite volumes for the time and space discretisation, respectively. Figure 1 illustrates the
finite volume (in red) utilised in the spatial discretisation of the governing equations.
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Figure 2. Flow field around the upper part of the permeable disc (profile view).
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In Equation (29), F is the permeable disc force applied on the flow. Figure 2 illustrates the upper part
of the permeable disc (profile view), the stream lines around it and the force applied on the flow, defined
by Equation (32), where V is the volume of the computational cell, CT is the thrust coefficient, and Sz

is the z component of the vector of area.

F =
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SzCT

2V
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(32)

The initial and boundary conditions required to solve the problem of the flow around the wind turbine
are presented below:
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Inflow boundary:
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4.0 Results and discussion
In the classical momentum theory, the wind turbine is replaced by a permeable disc. The disc is con-
sidered frictionless, without rotational velocity component in the wake [20]. Equation (38) shows the
thrust coefficient as a function of the axial induction factor a, obtained from the momentum theory,
while Equation (39) shows the definition of the axial induction factor, where u is the flow velocity at the
permeable disc and Vo is the wind velocity [20].

CT = 4a(1 − a) (38)

where

u = (1 − a)) V0 (39)

However, experiments have shown that the assumption of the ideal wind turbine holds only for axial
induction factor less than 0.4. Figure 3 shows experimental data found in the literature, basic momentum
theory and (5, 17) corrections for CT as a function of a.

From Fig. 3, one can see that as CT increases, the expansion of the wake also increases. Thus the
velocity jump from Vo to u1 in the wake also increases (see Fig. 4). The reason that the basic momentum
theory is not valid for values of a greater than 0.4 is that the free shear layer at the edge of the wake
becomes unstable if the velocity jump is too high and eddies are formed, transporting momentum from
the outer flow into the wake (known as Kelvin & Helmholtz instability).

When the axial induction factor becomes larger than 0.4, the basic momentum theory fails, as can
be seen in Fig. 3. Different empirical relations between the thrust coefficient CT and the axial induction
factor a can be constructed to fit better the measurements, see Refs (5, 17), given by Equations (40) and
(41), respectively.
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Figure 3. Thrust coefficient CT as a function of the axial induction factor a.

Figure 4. The expansion of the wake and the velocity jump in the wake.

CT =
⎧⎨
⎩

4a(1 − a) a ≤ 1/3

4a

(
1 − 1

4
(5 − 3a) a

)
a > 1/3

(40)

CT =
{

4a(1 − a) a ≤ ac

4
(

a2
c + (1 − 2ac) a

)
a > ac

(41)

In the present work, the thrust coefficient defined as a function of the axial induction factor is obtained
numerically in order to be compared with the [5] correction factor. Results were obtained for three
different Reynolds numbers, RD=1.0 × 104, 1.0 × 106, and 1.0 × 108, the numerical results will be
discussed hereafter.

Figures 5, 6 and 7 present the axial induction factor field and stream lines around the wind turbine,
for Reynolds number equal to 1.0 × 108 and three different thrust coefficients, CT =0.47, 1.08, and 1,57.
High and low axial induction factors are printed in red and blue, respectively. As the thrust coefficient
increases, the blockage of the wind turbine increases and higher values of the axial induction factor are
observed behind the wind turbine, with higher deflections of the stream lines. In Fig. 7, where the thrust
coefficient is equal to 1.56, the blockage of the wind turbine is too high forming a vortex behind it.
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Figure 5. Axial induction factor around the wind turbine, CT = 0.47 and RD=1.0 × 108.

Figure 6. Axial induction factor around the wind turbine, CT = 1.08 and RD = 1.0 × 108.

Figure 8 presents the time series of the mean axial induction factor at the permeable disc, for Reynolds
number equal to 1.0 × 108 and three different thrust coefficients: CT = 0.47, 1.08 and 1.57. For thrust
coefficients equal to 0.47 and 1.57, steady state solutions are obtained and the axial induction factors
reach constant values. On the other hand, for thrust coefficient equal to 1.08, an unsteady solution is
obtained and the axial induction factor oscillates, as can be seen in Fig. 8. This unsteady solution for the
thrust coefficient equal to 1.08 is probably caused by Kelvin & Helmhotz instability and is not predicted
either by Refs. [5] or [17] corrections, but it was clearly captured here in the present work.
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Figure 7. Axial induction factor around the wind turbine, CT = 1.57 and RD = 1.0 × 108.

Figure 8. Time series of the axial induction factor for three different thrust coefficients and RD =
1.0 × 108.

Figure 9 presents a comparison of Refs. [5, 17], basic momentum theory, experimental data and
present work numerical results for the thrust coefficient as a function of the axial induction factor.
Numerical results were obtained for three different Reynolds numbers equal to 1.0 × 104; 1.0 × 106;
1.0 × 108. The agreement with [5] correction is quite remarkable.

For Reynolds number equal to 1.0 × 104, the numerical results agree well with [5] correction for
the entire range of the axial induction factor, except for the range 0.75 < a< 1.0. On the other hand, the
numerical results for Reynolds numbers equal to 1.0 × 106 and 1.0 × 108 show a fairly good agreement

https://doi.org/10.1017/aer.2023.54 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2023.54


The Aeronautical Journal 241

Figure 9. Comparison of the thrust coefficient obtained numerically for different Reynolds numbers
and [5] correction.

Figure 10. Thrust coefficient for three different Reynolds number showing the unsteady behaviour.

with [5] correction, except for the ranges 0.75 < a < 1.0 and 0.4 < a < 0.7, where the flow around the
permeable disc is unsteady, as discussed before in Fig. 8. Figure 10 shows the range of axial induction
factor 0.4 < a < 0.7, where the flow around the permeable disc is unsteady for Reynolds numbers equal
to 1.0 × 106 and 1.0 × 108.

Figure 11 presents authors’ suggestion (in red) for the thrust coefficient as function of the induction
factor obtained by curve fitting of the numerical results to be used with the BEM. Equation (42) presents
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Figure 11. Present study correction based in numerical simulation.

Figure 12. Grid sensitivity test for two different grid refinements and RD = 1.0 × 108.

the mathematical representation of the suggested correction.

CT =
{

4a(1 − a) a ≤ 0.3

−1.035a3 + 1.807a2 + 0.3058a + 0.6237 a > 0.3
RD ≤ 1.0 × 104

(42)

Figure 12 presents the grid sensitive test for two different grid refinements, 100 × 150 and 150 ×
150, and for Reynolds number equal to 1.0 × 108. The change in grid refinement did not affect the thrust
coefficient as a function of the axial induction factor. Therefore, the grid with 100 × 150 grid points
could be utilised in the entire investigation.
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5.0 Conclusions
The PD/URANS method utilised to study the viscous and incompressible flow around a wind turbine
for three different Reynolds numbers generated quite accurate and reliable results.

Calculation of the axial induction factor field around the permeable disc, time series of the averaged
axial induction factor on the permeable disc surface, and the thrust coefficient as a function of the axial
induction factor could be performed in a quite efficient way.

For the three Reynolds numbers studied, the agreement between the numerical results and original [5]
correction for the thrust coefficient as a function of the axial induction factor is remarkable for the entire
range of the axial induction factor, except for the range where the flow around the disc is very unsteady.
But it is well known that [5] correction is not able to capture the unsteady state behaviour and the
Reynolds number dependency of the flow around a wind turbine. In aeronautical practical applications
[5], correction is taken as a reasonable approximation for the thrust coefficient as a function of the
axial induction factor, but, unfortunately, it was obtained empirically from a curve fitting from quite
scattered experimental data set, as seen in Fig. 9. Therefore, the results obtained numerically using
the PD/URANS method can be considered to be much more reliable than those obtained using [5]
correction.

The PD/URANS method solves three dimensional and axisymmetric flows around wind turbines in
cylindrical coordinates. In that case, the flow description depends only on two coordinates (r, z), allowing
to be solved in a two-dimensional computational grid. Therefore, the PD/URANS method can be very
efficient, accurate and relatively small computational time, compatible with standard desktop/laptop
computers.

The BEM is usually applied on a first approximation to study the aerodynamic characteristics of a
wind turbine, but instead of using the traditional [5] correction, the suggested correction in Equation
(42) improves the accuracy of the BEM method. However, the PD/URANS method may be used even
for more accurate studies.
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