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ON CERTAIN COMPLEX ANALYTIC COBORDISM BETWEEN
SUBVARIETIES REALIZING CHERN CLASSES OF BUNDLES

HIROSHI MORIMOTO

Introduction

Cobordism invariants have been applied to both real and complex
categories. For example, the index of 4k-dimensional manifolds was treated
by Hirzebruch for the generalization of the Riemann-Roch theorem [3].
He also considered, in relation with this, virtual genus or virtual char-
acteristics. But many invariants, such as virtual characteristics, have
their origin in complex analytic category. In view of this, we consider
certain complex analytic cobordism, i.e., quasilinear cobordism among
quasilinear subvarieties in complex manifolds (see for the definition of
quasilinear structure [4].) Quasilinear body has very simple type of sin-
gularities, as well as its quasilinear boundaries. Therefore, the theory of
quasilinear cobordism can be reduced, through o-processes, to that of non-
singular cobordism theory.

In [4] we considered analytic subvarieties which realize Chern classes
of holomorphic vector bundles over a complex manifold. We proved the
existence of such subvarieties which have certain simple singularities and
we called these subvarieties quasilinear subvarieties.

In the present paper we shall consider certain complex analytic co-
bordism between these quasilinear subvarieties. The definition of quasi-
linear cobordism is given in Definitions 1.6 and 1.7. We shall show in
Theorem 3.2 that if & and & are analytically equivalent holomorphic
vector bundles over a complex manifold M which can be induced by some
holomorphic maps from M into the complex Grassmann manifold, then
quasilinear subvarieties V and V’ given as above are quasilinearly co-
bordant.

The author is grateful to Prof. Y. Shikata for preparing this paper.

Received July 15, 1980.

121

https://doi.org/10.1017/50027763000020122 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000020122

122 HIROSHI MORIMOTO

§1.

For positive integers ¢, N,1 < p < g, let G, y,, be the complex Grass-
mann manifold in g-dimensional linear subspaces in the complex Euclidean
space C? X C*¥,  Let M be a complex manifold and f a holomorphic map
from M into G, y,,» Then, f induces a holomorphic vector bundle
[*Gonen) = (B, z, M) over M from the universal vector bundle 7, ., =
By nip Tanip Gonsp), Where y, ., consists of pairs (r,v)e E, 5,, of g¢-
dimensional linear subspace = of C? X C%*¥ and vectors vin z. We denote
by f:E— E, y., the lifting of f and by ¢: E, y,, — C? X C*** the map
sending each (r, v) to v. Notice that the composition goof is a map from
E into C? X C*" which sends each fibre of E to ¢g-dimensional linear
subspaces of C? X C**". Let rn,,y: C? X C*¥ — C?" denote the projec-
tion. We shall identify the complex Grassmann manifold G, with the
space of g-dimensional linear subspaces in {0} X C*¥ C C? X C*7,

DerFiniTION 1.1. A holomorphic map f from M into G, ., is said to
be reducible to G, , if the map ,,ycpof from E into C*¥ sends each
fibre of E to ¢-dimensional linear subspaces of C*%,

If f:M— G,y,., is reducible to G, ,, then f induces a holomorphic
map from M into G,y in a natural way which will be denoted by f: M
— G, y. G, y., contains Schubert varieties F; D F, D --- D F, each of
which is defined by

F, = {g-dimensional linear subspaces ¢ in C? X C*¥;
dim (z,|z) < p —r},
where z,: C? X C**¥ — C? is the projection and |z| is the carrier of z.

We shall fix g, N and p, and we consider, for any integer R > 0, the
Grassmann manifold G, y.z.,- In G, y.z.p Schubert varieties are defined
in a similar way with respect to the decomposition C? X C*¥*# which
will be denoted by FFf D FF D ... D FE.

Under the canonical inclusions C? X C*" = C? X C*" X {0} C C*? X
C™*¥ x CE= C? X C"*"*% we regard g-dimensional linear subspaces of
C? X C*¥ as those of C? X C**¥*E This gives rise to the following
commutative diagram of inclusions:

Goyip 2D F,DF, D---DOF,

ool

Goyigip D FEDFFD ... DFE.
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Under the inclusion G, y., © Gy y:z+p any holomorphic maps from
M into G, y., will be considered as holomorphic maps from M into
G, v.z+p for any positive integer R.

Let M be a complex manifold of dimension n.

DeriNiTION 1.2. A holomorphic map f from M into G, y., is called
a quasilinear map if the map f is reducible to G, and is transverse-
regular to Schubert varieties F, F,, - -+, F, in G, y,,.

DerFintTION 1.3. Let £, and f, be holomorphic maps from M into G, 5.,
which are quasilinear maps. The map f, is said to be strongly quasilinearly
homotopic to f, if there exist an integer R and a holomorphic map F: M
X C— G, n.psp such that

i) FlMXO = fn FLMXI = fz
il) F is transverse-regular to Schubert varieties FFFF ... FF
in Gq,N+R+p'

DerFInITION 1.4. Let f and g be quasilinear maps from M into G, v, ,.
The map f is said to be quasilinearly homotopic to g if there exist quasi-
linear maps fo =71, fi,fo - - > fr-1, [, = & such that f, is strongly quasilinearly
homotopic to f;,,, i =0,-.-,r — 1.

Let M be a complex manifold of dimension n and V be a quasilinear
subvariety of codimension k2 in M. For the definition and of properties
of quasilinear subvarieties, see [4]. We assume that V is given by a
pullback of the Schubert variety. In other words, we assume that there
exists for some integer ¢ a quasilinear map 1 M - G, y,,, D =q — k + 1
such that V = f"Y(F,). We say that V is associated to /. We shall fix
an integer g and sufficiently large N.

DerFINITION 1.5. lLet V,, kB =1, ..., ¢ be quasilinear subvarieties of M.
The sequence (V,, - -+, V,) is said to be a quasilinear sequence if each V,
is associated to some quasilinear map f,: M > G, y,,, P =q—k + 1.

Let V and V’ be quasilinear subvarieties of codimension k2 in M as-
sociated to some quasilinear maps.

DEeFINITION 1.6. V and V’ are said to be quasilinearly cobordant in
the strong sense if there exists a strong quasilinear homotopy F: M X C
— G, v:r+p for some R such that V and V’ are associated to the restric-
tions Fl,,, and F|y,, respectively. V and V’ are said to be quasilinearly
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cobordant if there exists a sequence of quasilinear subvarieties V, =V,
V, -+, V.=V’ such that V, is quasilinearly cobordant to V,,, r =
0,.--,5 — 1 in the strong sense.

DeriNiTION 1.7. Quasilinear sequences (V,, ..., V,) and (V7,---, V)
are said to be quasilinearly cobordant (in the strong sense) if each V,
and V], 1 < k < g are quasilinearly cobordant (in the strong sense).

§2.

This section is devoted to prove our fundamental lemma:

LEmMA 2.1. Let M be a complex manifold and let V' and V* be
quasilinear subvarieties in M of codimension k. If there exist quasilinear
maps Uy M— G, y.po P =q—k+1,i=1,2 such that each V? is asso-
ciated to ¥, and such that the induced bundles T¥(y, v.,) from the universal
bundle v, y., over G, y., are analytically equivalent, then V' and V* are
quasilinearly cobordant.

We begin with the consideration of certain topological space obtained
from total spaces of bundles under certain identifications.

Let & = (E,, z,, M) be a holomorphic vector bundle over M. We
denote by » = (E,, x,, M X C) a holomorphic vector bundle over M X C
induced from ¢ by the projection z,: M X C— M. We consider r-copies
of the bundle 5 and denote them by 5, = (E;,z,, M X C),i =1,---,r. Let
a;:7; — 7 denote the isomorphisms and &,: E; —E, their liftings. We put
El=z"(MX0), E: ==;(M x 1) for each i=1,---,r.

Let 7., E, be a disjoint union of the total spaces E,. From this
union, we construct a topological space by the identifications «; ;,,: E; —

Yoy L =1,---,r — 1, where «,,,, denote the restrictions of a&;}oa, We
shall denote the space obtained in this way by & = {E, a; ;. h<icricjcr1-

DErFiNiTION 2.2. A complex valued function f on & is said to be holo-
morphic if each restriction f|;,:E, — C is holomorphic. A map f=
', ---,f?): & — CF is said to be holomorphic if each f* is holomorphic.

LEMMA 2.3. Given a holomorphic function f on E, for some integer 1
< k < r, there exists a holomorphic function f on & such that

) Fla=f
i) fla =0, fla =0
i) flsp,=0,i<k—-2i>k+2

I
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Proof. Notice that foa,.,, is a holomorphic function on E;_ ,. Ex-
tending it on E,_, by the canonical projection E,_,— E;_,, we obtain a
holomorphic function g,_,: E,_, — C such that g,_, = foa,_,,on Ei_,. Let
0o and p, be holomorphic functions on C such that pf0) = p,(1) = 0, p(1)
= p,0) = 1. Let g, denote the pullback of p, under the projections E,_,
-MxC—C. If we put f,_, = B0+ 8x-1, then the function f._. satisfies
o =foa,_,, on Ei_, and fk_l =0 on E!.,. In a similar way, making
use of p, and g,,,, we obtain a holomorphic function f,m on E,,, which
coincides with fo (@, ..,)"* on EJ,, and vanishes identically on Ej,,.

If we define f,=f and f,=0, i<k —2, i>Fk+ 2, then functions
f,, .+, f, define a holomorphic function f on &. It is easy to verify that
the function f satisfies i) ii) and iii). Q.E.D.

Let & = (E,, n., M) be a holomorphic vector bundle over M which is
holomorphically equivalent to the induced bundles ¥¥(y, y.,) = (E¥),
a(¥,), M) with biholomorphic bundle maps b,: E.,— E@) i =1,2. Let
n = (E, r,, M X C) be a holomorphic vector bundle over M X C induced
from & by the projection M X C— M. Considering three copies of the
bundle 7, we obtain as in the beginning of this section a topological space

& = {Ei’ aj,jﬂ}lsiss, 1<j<2 »

We shall extend to the space & the notions of singularities of holo-
morphic mappings on holomorphic vector bundles developped in [4].

DEeFINITION 2.4. A holomorphic map f from & into C™ is said to be
fibrewise regular if each restriction f|z is fibrewise regular on E, i =
1, 2,8, i.e., the differential d(f|.;1.)) of the restriction to any fibre =;'(2),
ze M x C is injective at any point of the zero cross-section.

Let E, y,, denote the total space of the universal vector bundle 7, v,
over G, y.,- Under the notations in §1, we denote by ¢,: E, — C? X C?*¥
a fibrewise regular map obtained from the pullback of ¢, v,,° 7 : E(T") —
C? x C?*¥ through the canonical projection E, — E(¥,). We denote the
restrictions ¢z by 0@ = (03, 0{ly), ¢’ EY — C?, o) y: E} — C**¥. Notice
that ¢® induces a holomorphic map from M into G, ., which coincides
with 7.

In a similar way we define a holomorphic map ¢,: E, — C? X C**¥ by
the pullback of ¢, y,,¥, under the canonical projection E, -~ E(¥,). We
denote the restriction ¢,|E} by ¢® = (o, {1y). Then ¢® induces 7.
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ProrosrrioN 2.5. For the above constructed topological space &, there
exists a holomorphic map @ = (9,, Dy, 5, Pp): € - C* X C*¥ X CE, 0,: & —
C? D,y € — C*Y, @p: & — C® for some integer R such that

1) Ol = (92 pin, 0)
Dl = (5", 932> 0)
i) (Dyon, Pr): & — C*¥ X C® is fibrewise regular.

Proof. From Lemma 2.3, there exist holomorphic maps @, ¢, from &
into C? X C**¥ such that

i) @ =¢, on E, ¢, =0 on Ej;
i) ¢, =0 on E, ¢, = ¢, on E,

Since ¥,, ¥, are reducible to G, y, 7,y ¢, and z,,yo¢, are also fibrewise
regular for the projection #,,y:C? X C**¥ — C?*¥,

Since the bundle E, is induced by a holomorphic map from the com-
position of the projection and ¥, (or ¥,) M X C—» M — G, y, E, has a
fibrewise regular map ¢,: E, - C%, R = ¢ + N. From Lemma 2.3, there is
a map @: & — C? such that

i) @ =¢, on E,
iii) @, |Ey =0, ¢,|E; = 0.

If we define
(djzn ¢q+N) = (¢l + ¢3) ’ @R = ¢2
then the map @ = (9, 9.5, D) satisfies the required conditions. Q.E.D.

We shall extend the notion of general position defined in [4] to maps
on &. Each zero cross-section of E, will be identified with M x C for
1=1,23.

DEeFINITION 2.6. A holomorphic map f from & into C? is said to be
in general position if each restrictions f|, i = 1,2,83 is in general posi-
tion on M X C.

Let K, and K, be arbitrary compact subsets of M and C respectively
such that 0,1c¢ K, For each i =1,2,8, K,, X Ko C M X C can be re-
garded as a compact subset of E, and will be denoted by K,, We define
a compact subset of & by K = K, U K, U K,. Let L be an arbitrary com-
pact subset of &. For holomorphic maps f from & into C?, norms ||f||,yx
can be defined by
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”f”LuK = 123 HflEz”Em(LUK) s

where norms ||f|z,llz,nczux, are those defined in [4].

LeEmMA 2.7. Let f: & — C” be a holomorphic map such that f|m is in
general position on K, X 0= E). Then, for any ¢ > 0, there exists a
holomorphic map g: & — C® such that

i) g=fon E? and E}
i) |If— 8lleux <
iii) g is in general position on K,
iv) The restriction gl is in general position on K, X 1=— E}.

Proof. Since f|g, is in general position on K, X 0 C EY, f is in general
position on some compact neighbourhood A of K,, X 0 in K, X K, C E,.
From the stability of general position, there is §, > 0 such that if ||f — g||,
then g and gl are in general position on A and K, X 0 C E? respectively.

Let @¢,: & — C? X C**Y be the holomorphic map defined in the proof
of Proposition 2.5. Denote ¢, = (a', ---,a? g, .-, p*¥). We define a
holomorphic function p on E, by composing projections E, — M X C — C.
Then p=0 on Ej, p=1 on E} and does not vanish on E, — E!. Define
holomorphic functions p’: & - C, j=1,2,---,q + N by

B =pp on E,
= p on E, E,.

We shall deform the mapping f: & — C? into the following form, for
some constants &,

g=1(g,8, -,8)6—C"
. L) — .
gl:fi"*—jZ:lez'ﬁja J=1,21“'9p'

Since the maps g, - - -, f2*¥ identically vanish on E?! and E!, the map g
coincides with f on E{ and E}. Because p does not vanish on E, — Ej,
the map (B, B, ---,F): & —C’", r = g + N is fibrewise regular on E, — E?.

Let B be the closure of K, X Ko~ A in K, X K, C E,. Since
@, ---, p) is fibrewise regular on z;'(B), x,: E, —~ M X C, we can apply
the approximation method developped in [4] making use of ', i =1,---, 1.
Hence, we come to see that there are ¢, 1<i<p, 1<j<r such that
the corresponding g is in general position on B and satisfies
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If — glloux < min {—%—, ~52A—} .

In fact, at each stage of approximations, we only add terms of the
form &} ,f’ for some constants ¢j;. Therefore, the final form becomes

g =+ T TP

See for the details [4]. We denote this map g by g’.

From the stability of general position, there is d; > 0 such that if
lg’ — &glls < 5 then g is in general position on B.

Since the restriction of (8, ---, ") to Ej is also fibrewise regular, we
obtain, in a similar way, a holomorphic map g”’: & — C? the restriction
of which to E} is in general position on K, X 1 C E} and which satisfies

’ . 0
lg’ — 8" llux < min {—;—, 7,4’ 53} .

If we set g = g”, then g satisfies the required conditions. Q.E.D.

Applying the same method, we have the approximation lemma with
respect to K, and K, X O:

LEmMA 2.8. Let f: & — C? be a holomorphic map such that f|, is in
general position on K, X 1 C EY. Then, for any ¢ >0, there exists a
holomorphic map g: & — C®? such that

i) f=g on E! and E}
i) |If — gllwx <e

iii) g and glz are in general position on K, and K, X 0 respectively.

Finally with respect to K, C E,, we prove the following approximation
lemma.

Lemma 2.9. Let f: & — C? -be a holomorphic map. Then, for any e >
0, there exists a holomorphic map g: & — C? such that
i) g¢=fon E; and E;
i) |If — 8lleux <ee

i) g is in general position on K,.

Proof. Let ¢": & — C® be the holomorphic map defined in the proof
of Proposition 2.5. We denote ¢, = (', - - -, 7). We deform f into the form
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g=1(8,--,8)&—C"
R
gi:fz+zzle;7,j, I':]-,"'rp'
7=

Since 7%, j = 1, -- -, R vanish identically on E} and E}, g coincides with f
on E? and EL

Because the map ¢, is fibrewise regular on FE, there exist, by the
approximation method in [4], {¢!} such that corresponding g satisfies

1) “f'— g”LUK <e
il) g is in general position on K,. Q.E.D.

ProposrrionN 2.10. Let f: & — C” be a holomorphic map such that f|u
and f|z are in general position on K, X 0 C E] and K, X 1 C Ej respec-
tively. Then, for any ¢ > 0, there exisis a holomorphic map g: & — C? such
that

i) g=fon EY and E}
ii) ”f - g”LUK <e
iii) g and glE{, 1=1,2,8,j=0,1, are in general position on K and
K, X j C E} respectively.

Proof. Firstly, by Lemma 2.7, we deform f into g, so that g, g,/ and
8&:lm are in general position on K, K, X 0 C E} and K, X 1 C E} respec-
tively. Secondarily, by Lemma 2.8, we deform g, into g, so that g, g/
and g|z; are in general position on K, K, X 0 C Ej, K, X 1 C Ej. And
finally, by Lemma 3.8, we deform g, into g; so that g, is in general posi-
tion on K, Notice that in each process, approximation is carried out
on L UK and that f,g,g, and g, coincide on E! and E. From the
stability of general position, it is easy to see that there is g, with condi-
tion iii). Q.E.D.

Let ¢o: E — C?, ¢®: E1 — C? be those defined in Proposition 2.5.
ProposiTiON 2.11. There exists a holomorphic map f: & — C? such that

D) fleg = ¢ fley = 03
ii) f is in general position on M X C C E,; for any i = 1,2, 3.
i) f IE{, 1=1,2,3,j=0,1 are in general position on M X j & E;.

Proof. Let {K%}, {Kz}, n=1,2,3,--., be compact coverings of M and
C respectively such that Kz c K3, {0,1} € Kz C K;** for any n. The
set K% X K& can be regarded as compact subsets in zero cross sections
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M x CC E, for each i =1,2,3. We consider the union K" = K U K?
U K} in &. Let {L"},_;.,..., be a compact covering of & such that K" C
L* < L*** for any n.

Let @ = (9,,0,9:):8 — C? X C**¥ X C* be the map given in Propo-
sition 2.5. Put f, = 9,: & — C?. Then f|E} = ¢° and f,|E} = ¢P. Fur-
thermore f,|E} and f,|E; are in general position on M X 0 C E} and M X
1CE;.

By successive application of Proposition 2.10 to (L*, K*) n=1,2, - --,
we obtain, from the stability of general position, holomorphic maps f,: &
— C? and §, > 0 such that for any n

i) f,=/[, on E¢ and E}
) f.,f.lE, 1<i1<3,j=0,1 are in general position on K*, K% X
j < E} respectively.

i) If ||f, — 8llx» <9, then g and g|E/, 1<i<3,j=0,1 are in

general position on K”, K X j C Ej.

1 1 1 0 52 5,,_
V) |foor — fallin < m1n{2n , 2711 ST .,,22_1}_

Define f = lim,_..f,. Then f is a holomorphic map from & into C?
which satisfies the required conditions. Q.E.D.

The results which we have proved so far in this section can be sum-
med up as follows.

Let @ = (9,,0,,y, 0p): & — C? X C*¥ X C* be the map given by Pro-
position 2.5, and let f: & — C® be the map given by Proposition 2.11. We
define & = (9, D, , Dz) = (f, Dy, Pz). From Proposition 2.5 and Propo-
sition 2.11, we have

PrROPOSITION 2.12. There exists a holomorphic map ®:& — C? X C*V
X C% such that

) P|E = (¢, o2, 0)
D|E} = (¢, ¢ x, 0)

1i) (@“N, Dp): & — CY X C® is fibrewise regular on each M X C C
E,i=123.

1i1) @p: & — C? and @p]Eij are in general position on each M X C C
E,i=1,23 and on each M X j C E/ respectively.

We are now in a position to prove our fundamental lemma (Lemma
2.1). Since the map (@,,y, D5): & — C**¥ — C= is, from ii) of Proposition

https://doi.org/10.1017/50027763000020122 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000020122

COMPLEX ANALYTIC COBORDISM 131

2.12, fibrewise regular on each E, i = 1,2, 3, the map & carries each fibre
of E, to g-planes in C? X C?*¥ x C® Therefore @|E, induce holomorphic
maps

ViiM X C—> Gexineps i=1,23

such that 7,
Proposition 2.12, we have

s = Ualuwo and Tyl = Tylyne. From the condition i) of

z[/ﬂllMXO =¥, M-—> Gq.,\*+p - Gq.A’+R+p
z[/‘sluxl = wzz M——) Gq,N+p C Gq,:\'+12+p .

Let F* D Ff D ... D FF be Schubert varieties in G, y,p., with re-
spect to the decomposition C? X (C**" X C%). From the condition iii) of
Proposition 2.12, it follows that ¥, 7|, ,, i = 1,2, 8, j = 0, 1 are transverse-
regular to FfF, FE, ..., FF

p*

This completes the proof of Lemma 2.1.

§3.
In [4] we have considered the existence of quasilinear subvarieties
which realize Chern classes of given vector bundles. The following the-

orem is an immediate consequence from the proof of Main Theorem of [4].

TueoREM 3.1. Let M be a complex manifold and & be a holomorphic
vector bundle of rank q over M which is assumed to be induced from the
universal bundle y, , over the Grassmann manifold G, , under some holo-
morphic map f: M — G, ;. Then there exists a quasilinear sequence (V,,
Vy oo, V) in M such that

i) V, realizes the k-th Chern class C(&)
i) V. is associated to some quasilinear map fo: M — G, v, P = q —
k 4+ 1 such that & is analytically equivalent to the induced bundle

fl:‘k(rq,N+p)'

From our fundamental lemma we shall prove the following theorem
which asserts that the quasilinear cobordism of the sequences {(V, - - -, V,)}
results from the analytic equivalence of bundles {&}.

THEOREM 3.2. Let M be a complex manifold. Let & and & be holo-
morphic vector bundles of rank q over M which satisfy the assumption of
the above theorem. Let (V,, V,, ---, V) and (Vi Vi, ..., V)) be quasilinear
sequences given by the above theorem with respect to bundles & and & re-
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spectively. If & and & are analytically equivalent, then (V,, ---, V) and
(Vi,---, Vi) are quasilinearly cobordant.

Proof. From the condition ii) of Theorem 3.1, there exists a holo-
morphic map f;,fi: M— G, x.p, P=9 — k + 1 such that V,, V] are as-
sociated to f, and f; respectively and such that the induced bundles
FEGranso)s [¥(rqn+p) are analytically equivalent to & and &. Since & and
¢ are analytically equivalent, f¥(7,,v.,) and fi*(y,,~.,) are also analytically
equivalent. Therefore, from our fundamental lemma, it follows that V,
and V] are quasilinearly cobordant for any k. =1,2,---,q. Q.E.D.
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