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1. Introduction

On the model of Newton’s Principia, the great majority of successful new theories
in physics have been introduced by deduction from the phenomena arguments. In
such arguments an explanatory theory is deduced from one or more of the empirical
facts, or lower level empirical generalizations, which it is designed to explain, by the
device of adjoining suitable hi gher-level theoretical constraints on the form of the re-
quired theory. Those theoretical constraints leave certain parameters, the precise form
of certain functions, and so on, in the new theory, undetermined, except with the help
of the lower level empirical premises.

Although Newton’s own complete argument to his inverse square law did contain at
least one additional inductive step, it is not difficult to show that deduction from the phe-
nomena arguments can be rigourously deductively valid within modern formal logic,
(i.e. all the inductive steps can often be confined to the justification of the premises of ’
such arguments) and that nearly all theoretical advances in physics since Newton have
depended partly or wholly on the use of arguments of this general form. Sometimes the
high-level theoretical constraints invoked are claimed partly or wholly to follow from a
priori justifiable principles, but more usually they are either merely claimed to be plausi-
ble inductive generalizations from all experience (as Newton claimed for his three laws
of motion which functioned as theoretical constraints in the deduction of his gravitation-
al force law), or, as in most later examples, they are merely claimed to be derived by in-
ductive extrapolation from the successful parts of previous theories.

Now most philosophers would probably be inclined to suppose that it is a truism
of probability theory that the conclusion of such a deductively valid argument, namely
the new theory thus deduced, must, if validly deduced, end up with at least the initial
probability/plausibility of the conjunction of its premises. Hence, since in virtually all
examples the higher-level premises are deliberately chosen so as already to appear
(possibly with the help of arguments the innovatory theorist has himself just adduced)
reasonably, or highly, probable/plausible, and since the lower-level premises have the
status of relatively uncontroversial empirical facts and low-level laws, it would then
seem that any new theories introduced in this way must themselves automatically be

PSA 1990, Volume 2, pp. 197-208
Copyright © 1991 by the Philosophy of Science Association

https://doi.org/10.1086/psaprochienmeetp.1990.2.193068 Published online by Cambridge University Press


https://doi.org/10.1086/psaprocbienmeetp.1990.2.193068

198

granted a reasonable, or high, degree of probability/plausibility by scientists. P is
probable, P implies Q, therefore Q is probable.

Unfortunately the situation is by no means so simple. For not only have nearly all
successful innovations in physics been introduced by arguments of this general form,
but so have nearly all unsuccessful innovations in physics, and of course historically
there have been far more of the latter. And in most of the latter cases the correspond-
ing deductive justifications from the phenomena, in spite of their logical validity,
never did cut much ice with other scientists, even before any direct evidence emerged
for the falsity of their conclusions. For those other scientists took these arguments’
conclusions as discrediting their theoretical premises: Q is improbable, P implies Q,
therefore P is improbable.

To clarify this situation we need to appreciate that such deductive discoveries in-
evitably lead to revisions of the subjective probabilities initially assigned both to their
conclusions and to their premises.

Thus if a seemingly highly unlikely conclusion (for example a surprisingly com-
plicated equation relative to the apparent simplicity of the data requiring explanation)
is deduced from premises which had previously seemed very likely to be true, then of
course scientists are far more likely as a result of such a deductive discovery to lose
confidence in, and to begin to question, one or more of the premises of the deductive
argument, than to give their assent to its conclusion. In fact what often happens is that
scientists conclude that one or more of the apparently plausible theoretical premises
must after all probably be false, without their being able to say which that is. They
lose confidence in the truth of the conjunction of premises without necessarily con-
cluding of any particular conjunct that it has become less probable than not.

The opposite kind of example is the following: if theoretical premises which
seemed at first, to most other theorists, theoretically unlikely, nevertheless lead to the
deduction of an unexpectedly simple new explanatory theory, then as a consequence
of that deductive discovery both the new theory and the premises which led to it can
end up being assigned much higher degrees of assent than that originally granted to
the initial conjunction of premises.

It is possible to give numerous historical examples of both these types of situation.
The general rule seems to be that if the theory deduced proves to be more complicat-
ed/implausible-looking, than theorists reasonably expected it would have to be, in
order to explain the relevant empirical data, then the deductive discovery does more
to discredit its premises than to raise confidence in its conclusion; while if the theory
deduced proves to be simpler than theorists had anticipated that it would be, then the
deductive discovery strengthens scientists’ confidence both in its premises and its
conclusion. Let us call examples of this second kind impressive deduction from the
phenomena arguments. (Of course there are many intermediate examples where the
deductive discovery is noted as an interesting technical result, but doesn’t induce any
marked change in scientists’ prior opinions.)

Newton’s deduction from the phenomena argument to his inverse square law was,
of course, of the impressive kind just mentioned. The same is true of many examples
in Einstein’s papers of arguments of a similar logical form. Though Einstein himself -
seems never to have noticed how essentially Newtonian in structure his principal
derivations of his own succesful new theories were, or to have commented anywhere
(as nearly all great previous theoretical physicists had done) on the apparent superiori-
ty of such a Newtonian justificational strategy over naive hypothetico-deductivism.

https://doi.org/10.1086/psaprochienmeetp.1990.2.193068 Published online by Cambridge University Press


https://doi.org/10.1086/psaprocbienmeetp.1990.2.193068

199

(For further discussion of Einstein’s use of deductions from the phenomena see
Dorling 1991.)

What I want to consider in the present paper is how much logical weight such im-
pressive deduction from the phenomena arguments (which certainly have a persuasive
effect on their scientific audiences) really carry. Do they, when deductively valid, in
fact legitimate the assignment of high rational probabilities to their conclusions?
Newton plainly thought they did. I shall argue that Newton was wrong, but that he
was wrong in a surprising way, which he could hardly have anticipated, and which
would probably in fact have delighted him.

For I shall argue that what is wrong with ‘impressive’ deduction-from-the-phe-
nomena arguments is not that the theories which they lead to turn out to be too simple
to be exactly true, thus not that they have to be succeeded in the long run by more
complicated theories, but rather the reverse: such theories, in spite of superficial ap- -
pearances of simplicity, have never turned out in the long run to be simple enough:
the theories which later replace them, far from being, as they superficially appear to
be, more complicated replacements, constitute in fact simpler explanations of the
original data—though this often only becomes apparent later, when a sufficiently deep
level of mathematical and logical analysis becomes available.

In a later section I shall illustrate this by considering the line of successors to
Newton’s theory of gravity. But before doing this it will be useful if I digress a little
50 as to bring readers up-to-date with our current very satisfactory understanding of
inductive logic.

2. Digression: modem simplicity-based inductive logic

The centuries-old problem of setting up a completely general, powerful, plausible,
and mathematically coherent system of inductive logic, was finally solved by the
work of R. Solomonoff in the early 1960’s, with some technical improvements by L.
Levin in the early 1970’s. The Solomonoff-Levin solution treats theories as computer
programs for regenerating all the data as output, that is to say as encodings of the

. data, and assigns prior probabilities to theories according to the number of bits they
require as prefix-free programs in the theorist’s internal programming language. Such
prior probabilities fall off by a factor of two for each extra bit required in the state-
ment of a theory.

The mathematical background to this solution is well-known as Complexity-theo-
1y, or as the theory of Kolmogorov Complexity, though it would have been historical-
ly more accurate (since Solomonoff’s publications anticipated Kolmogorov’s), and
philosophically more illuminating, to call it Simplicity-Theory or the theory of
Solomonoff-Simplicity. One of the fundamental theorems in this theory shows that for
any reasonably non-trivial theories their relative priors so-assigned are negligibly de-
pendent on the choice of original programming language. -

A recent review of this approach can be found in Li and Vitdnyi 1991. These au-
thors, apparently following Solomonoff himself, seem to regard these simplicity-
based rational priors as a sort of elegant mathematical substitute for unknown philo-
sophically correct priors. I, however, maintain that these simplicity-based priors really
are the unique philosophically correct priors.

The attempt to link rational probabilities to simplicity has of course a long history.
One can consider Newton’s rules of reasoning (with their missing ceteris paribus claus-
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es added) as simplicity constraints on inductive steps in theory-construction. However -
those simplicity constraints did not quite work, for Newton’s successors such as
Boscovich pointed out that Newton’s rules of reasoning applied indiscrimately could
lead to inductive generalizations inconsistent with one another. In the modern approach -
it is the overall simplicity of the complete theory which determines its rational probabil-
ity, not the requirement that each of the theory’s epistemically distinguishable ingredi-
ents should be the simplest encoding of some particular fraction of the data. But we
could not forge the necessary precise link between simplicity and rational probability
prior to Solomonoff’s and Kolmogorov’s precise formal explications of simplicity.

So we now have an adequate theory of rational probabilities, ones which are lan-
guage-independent for all practical purposes, and this theory yields an inductive logic
satisfying the aspirations of all probabilistic inductivists from Laplace through Camap
to the Finns, an inductive logic which is in no way restricted to observational-lan-
guage theories, since theoretical terms and parameters will be preferred whenever
they can be introduced so as to shorten our theoretical encodings of the data.

This does not mean that different theorists now have to assign essentially the same
priors to new theories. On the contrary, the number of bits required to add a new theo-
ry to a given epistemic system will depend not only indirectly on all the other evi-
dence that that system has been developed to account for, but also in addition on just
what definitions and constructs have already been introduced into the system in the
interests of overall reduction of total epistemic program-length. The relative simplici-
ty assigned by a theorist to a new theory, and hence the relative prior probability he
should assign to it, is given by the number of bits he has to add to his total epistemic
system to incorporate it, but this number will depend not only on his whole intellectu-
al and experiential background, but also on the logical and mathematical skill with
which he has constructed his epistemic system to date, for example on what notations
he has already introduced so as to effect earlier encoding economies. For any new ab-
breviations he introduces in order to shorten a theory will themselves count as part of
the cost in bits of that theory. Thus a differential geometer may give General
Relativity theory a higher rational prior than an experimental physicist would, simply .
because the former’s total epistemic system has already economically encoded much
of the necessary technical apparatus. The rational prior a theorist should give to a the-
ory depends on the actual economy of its encoding in his own epistemic system (or
perhaps, if the approach is extended to a meta-level, on the economy of encoding he
believes he could give to it in that epistemic system) and not on some hypothetical
optimal encoding which he has not yet discovered. Thus different encodings are treat-
ed in the first instance as different theories for the individual in question, and an im-
proved encoding as an improved theory. (Our more usual concept of theory would
only emerge at a later level by adding the rational priors of different programs prov-
ably delivering the same output.)

We also have to be careful to distinguish the apparent number of raw data bits
from the number of bits required for encoding that data. For example it is not the case
that in deduction from the phenomena arguments, we can simply add the raw data bits
for the experimental premises to the bits originally needed for the theoretical premises
of the deduction, in order to bound from above the bits needed for the newly deduced
theory, and hence to bound from below its rational prior. For that theory may have a
very low simplicity ranking among theories consistent with those theoretical premises
on their own. This means that the raw data bits for the experimental premises may
grossly underestimate the number of bits we need to add to the epistemic system as a
whole (to retain its coherence), in order to accommodate that data. Thus an unexpect-
ed null result of an experiment may require adding lots of bits to the total epistemic
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system, even though it is (when we ignore the theoretical background) formally the
simplest possible result and thus involves fewest raw data bits. In fact until we’ve car-
ried out theoretical investigations, such as the construction of deduction from the phe-
nomena arguments, we won’t know how many bits each particular experimental result
adds to our epistemic system. The Solomonoff-Levin approach thus only allows us to
derive relative rational probabilities from computable relative simplicities when the
latter computations are carried out on the theorist’s total epistemic system. Formal
simplicities of data, or of whole theories, considered in isolation from a total epis-
temic system, may thus often be a very poor guide to Solomonoff-simplicity based ra-
tional priors. Thus in practical applications the new inductive logic behaves much
more like subjective-Bayesianism, than like what one might first expect of a formal-
simplicity-based inductive logic.

However while Solomonoff-Levin inductive reasoning seems satisfactory, indeed
correct, as our underlying theory of epistemic rationality, there are tricky issues con-
cerning its effective implementation in any finite physical system such as ourselves.
The problems are twofold. First the number of alternative programs, of alternative
epistemic systems or theories, which theoretically might need to be taken into consid-
eration at any point, is, though finite, unacceptably large, indeed of astronomical di-
mensions even for a negligibly small amount of empirical input data. Hence, in prac-
tice, all alternative theories, whose theoretical priors are large enough to be relevant to
a given theoretical choice, cannot possibly even be explicitly listed. Secondly, we are
confronted with a problem of noncomputability. There is no effective decision proce-
dure as to whether even a quite short program will yield any data predictions as out-
put at all, let alone the data we are trying to regenerate.

It might at first seem that the latter problem could be solved by discarding only -
those theories actually computed to be inconsistent with the data so far, and re-nor-
malizing the absolute Solomonoff-Levin priors assigned to the remainder to unity.
However in practice this strategy won’t do, because in practice inductive reasoning at
ameta-level will make it, for most of the theories which would be left in by such a
procedure, wildly unlikely that they would actually be consistent with the data so far.
(For example most of the high-theoretical-prior theories left in by such an elimination
procedure would be crazy theories such as the theory that all the input data bits so far
received agreed precisely with the binary expansion of & from the billion billion bil-
lionth place onwards. Even a Popperian would surely not wish to assign a high posi-
tion in his epistemic rank-ordering of surviving theories, to not-yet-actually falsified
theories for which there was not yet the slightest reason to suppose that they were
consistent with the existing data.) ’

Moreover, as we shall see, in practive there will often be actually simpler theories
which yield all the data and which have been overlooked by the theorists. This means
that in practice we only get relative rational probabilities from the Solomonof-Levin
approach and not absolute rational probabilities. Whenever we have overlooked yet
simpler theories, the absolute rational probabilities can be much lower for the known
theories than most of us suppose. Only the relative rational probabilities for the
known theories are computable and accessible to us.

Finally I should emphasize the obvious fact that this new inductive logic makes
no pretence at being a logic of discovery. How far one can go in writing computer-
implementable discovery algorithms for the discovery of shorter encodings of realis-
tic data remains an open question. (I am personally optimistic: presumably we should
be able to write discovery algorithms for discovering at least all the theories which
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humans could discover, and this may well include all theories which are actually true
in the empirical world.)

3. The replacement of Newton’s theory of gravity by successively simpler theories
Consider the series of successors of Newton’s theory of gravity.

(i) The exponent 2, in the inverse square law, functioned as an unexplained constant’
in Newton's own theory: its value could only be derived, and then only approximately,
by arguing backwards from the astronomical data of Kepler and others. The unsatisfac-
toriness of this was emphasized by Newton's eighteenth and nineteenth century succes-
sors. They therefore, without actually changing its predictive content, replaced
Newton’s action-at-a-distance theory of gravitation by a field theory in which the expo-
nent 2 emerged as a consequence of the 3-dimensionality of space. This was a simpler
theory, even on Popperian criteria: for it require fewer empirically-derived parameters.

While this first change did not lead directly to new predictions, it did lead never-
theless to a change in scientific strategy with respect to the treatment of recalcitrant
data. From Newton’s point of view there was nothing to rule out the possibility of ad-
ditional terms in the gravitational force formula depending on different powers of the
distance. Such additional terms were indeed proposed from time to time from the
eighteenth century onwards. But believers in the new, more geometrically-explanato-
ry, formulation of the theory were prohibited from taking such additional terms seri-
ously, and had to seek elsewhere for the explanation of any predictive anomalies.
From Newton’s point of view there was also nothing to rule out an exponent in the
force formula close to 2, but not exactly 2. Nineteenth century data (in particular data
on the perihelion of Mercury) in fact led Newcomb and Hall to ‘deduce from the
more-accurately known phenomena’ that this exponent was not exactly 2, but rather
2.0000001573. But no believer in the moregeometrized version of the theory, could
entertain this change as a very serious theoretical possibility, since it sacrificed encod-
ing gains which had already been made and added many additional bits to the theory,
so he had to consider other possible explanations of the recalcitrant behaviour of
Mercury. (One might at first think that such a small deviation from the inverse square
law could be accommodated within a geometrical theory by postulating a slightly
curved spatial geometry for the universe: but it was already known that the introduc-
tion of a curved geometry would not yield a correction of this kind.)

(ii) Newton had, through the kinematics he adopted as part of the mathematical
framework of his theory, committed himself to a peculiarly degenerate geometry of
temporal intervals. Among other disadvantages, Newton’s choice here had the conse-
quence that although his own theory required forces to explain accelerations, acceler-
ated motion was not distinguishable within his own kinematics from non-accelerated
motion: unlike the Euclidean case where a curved line differs in its intrinsic metrical
properties from a straight line (only the latter is an extremal relative to the metric),
Newton’s geometry of temporal intervals failed to distinguish a curved line in space-
time from a straight one, i.e. failed to distinguish accelerated from uniform rectilinear
motion.

Only after the work of Minkowski did it become clear that Newton had not in fact
chosen the simplest mathematical possibility for the geometry of space-time. Newton’s -
implicit transformation group, which simply added the Galilean transformations to the
transformations of the Euclidean group, was mathematically less simple, more artifi-
cial, and less unified, than one which picked instead the combination of the Lorentz
and Euclidean groups. And later. work, from a more synthetic-geometrical point of
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view, showed that more of the structure and simple théorems of Euclidean geometry
were retained in Minkowski’s proposed space-time geometry, than could be retained in
Newton’s space-time geometry. Thus Newton’s geometry proved not to be the simplest
generalization of Euclidean spatial geometry to include temporal intervals as well as
spatial ones, i.e. to extend spatial geometry into a space-time geometry, but 2 more
complicated alternative requiring more independent geometrical axioms.

This inductive error—a failure to assign the higher probability to the mathemati-
cally simpler theory consistent with the data—was what had forced Newton into the
additional epistemically improbable conclusion that his dynamics required forces to
produce sometimes epistemically unascertainable effects. But this latter defect simply
disappeared once the preferred space-time geometry was adopted: absolute accelera-
tions became identifiable with independently-measurable metrical curvature; thus
kinematics and dynamics were no longer at odds with one another, and the conjunc-
tion of their respective axioms no longer reduced their joint probability and simplici-
ty.

(iii) However this could only take us to a special relativistic theory of gravitation.
(Einstein seems at one time to have thought that such a theory could not be consistent
with all the data then known observationally, ¢.g. with that from the experiments of
Eétvos. But Nordstrom and others soon proved Einstein technically mistaken in this
belief.) There remained nevertheless unnecessary data bits in any such special rela-
tivistic theory of gravitation, ones which had already been mysteriously introduced by
Newton; namely the unexplained proportionality of gravitational and inertial masses
in Newton’s gravitational theory. In fact Newton had quite bizarrely introduced a
force field when all that the data evidently required was not a force field but an accel-
eration field. Only through a seemingly accidental cancellation of unnecessarily-intro-
duced terms arbitrarily set equal to one another, did Newton’s force field reduce to the
equivalent acceleration field. .

One way to solve this difficulty was simply to introduce a special-relativistic ac-
celeration field for gravity. But Einstein found an even simpler alternative. For any
such theory, when fully formalized, would contain two axioms where one would do:
namely one axiom requiring that the space-time geometry was everywhere flat (i.e. re-
quiring that the full Riemann curvature tensor vanished everywhere) and another
axiom specifying gravitational departures from geodesic trajectories as a function of
the gravitational source distribution in space-time. But given that gravitation was al-
ready at an observational level an acceleration field and not a force-field, these two
axioms could, with a saving in bits, simply be combined into one axiom specifying the
curvature in a curved space-time geometry as a function of the gravitational source
distribution, i.e. one would no longer prescribe that the Riemann curvature tensor was
everywhere zero, but make its value a function of the gravitational source distribution.
Einstein’s general theory of relativity introduced precisely this formal simplification,
by combining two axioms into one with a small resultant saving in bits.

(iv) Einstein’s theory was not the only theory which would do this or, it first
seemed, the simplest. For Nordstrom’s scalar theory of gravitation, in which the fully
contracted curvature tensor, the curvature scalar, is simply taken proportional to the
rest-mass density, seemed to have a much simpler field equation. However Einstein ob-
served that if one began with a Lagrangian, rather than with field equations, his own
theory was formally the simpler, and that it also unified the gravitational behaviour of
matter and light in a way which no scalar theory could do, since light has zero rest
mass. Both these considerations argued that Einstein’s theory was simpler within the
context of the rest of physics, since the similarities between matter and light had been a
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source of encoding gains in physical theory from Newton to the twentieth century, and -
it had been clear since the eighteenth century (if not earlier: Fermat) that action princi-
ples were one of the formally simplest way of formulating dynamical laws.

(v) Newton had already established the wave properties of light, and had conjec-
tured connections between light and electrical attractions and repulsions, though it
took more than another century before a consistent theory embodying these phenome-
na was available, namely the electromagnetic field theory of Maxwell, From the point
of view of the Newtonian space-time geometry that theory’s equations seemed quite
complicated, but in the simpler space-time geometry of Minkowski, it became clear
that all that was involved was the replacement of Faraday’s geometrical lines-of-force
explanation of electro-statics, with point-charges in space as sources, by planes-of-
force emanating from the world-lines of charges in space-time as sources. Entirely
analogous geometrical constraints then ensure that where the world line of the source
becomes curved there is necessarily a propagated change in its associated planes of
force, with all the properties of an electromagnetic wave. So taking into account the
simplest space-time geometry, and the need to relate inverse power laws to geometry,
if unnecessary data bits were not to appear in the theory, Maxwellian field theory be-
came the simplest explanation of electrostatics.

However, a field theory of radiation coupled to a particle theory of matter was not
really internally coherent. It led to infinities at the location of point-particles (or at the
boundaries of extended particles), and to further infinities (the Rayleigh-Jeans catastro-
phe) when energy exchanges (later also momentum and angular-momentum exchanges)
between the particles and the field were considered. Attempts to resolve the latter diffi-
culty by returning to a particle theory of radiation coupled to a particle theory of matter
never really got off the ground theoretically, and the only viable theoretical alternative
was then to set up a wave-theory (i.e. a field theory) of matter coupled to the existing

" wave-theory (i.e. field theory) of radiation. The simplest wave-theory of matter consis-
tent with the simplest space-time geometry was then discovered, by the combined ef-
forts of Schrodinger and Dirac, to be modern relativistic wave-mechanics.

Due to an unfortunate quirk of history, the mathematical techniques for properly un-
derstanding this new theory not yet being available, physicists for the next seventy
years (1926-1996) did not realise that this theory already without more ado also predict-
ed and explained the particle properties of matter and radiation, and they thought that a
further mysterious complication known as second-quantization was necessary, and not
being able to understand this, pretended that the fundamental entities were not waves,
but- ‘wave-particles’. In fact mass, charge, and energy quantization already comes out of
the exact equations of the ordinary wave theory as a mathematical consequence of the
self-coupling of the matter field via the electromagnetic field (and therefore does not
need to be added independently) but this self-coupling term was ignored because it
made the equations too difficult to calculate with prior to the nineteen eighties. And the
so-called ‘wave-packet-collapse’ is really a pseudo-phenomenon due to the fact that
physicists had neglected half the solutions (the advanced solutions) of their coupled
time-symmetric equations, and ordinary wave-interference between these solutions and
the others already predicts and explains at a classical level all the supposed wave-pack-
et collapse phenomena. Thus the move that had been made in 1929 and 1930 to a more
complicated and epistemically wildly improbable theory was, in hindsight, unnecessary.
The simpler earlier theory was really actually correct. (For more extended discussion of .
my unorthodox contentions here, Dorling 1987.)

(vi) However there remained a gross improbability in fundamental physical theory
due to the now wildly disparate treatment of gravitational and other forces. The for-
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mer force was built into the geometry while the latter were still treated as essentially
classical forces (i.e. as non-geometrized potentials in quantum-mechanical
Lagrangians). This disunity was removed in the later ‘60’s and ‘70’s, when it was re-
alised that once one treats the internal non-spatio-temporal degrees of freedom of the
elementary particle fields as determining an internal geometry analogous to space-
time geometry, one can perform the same trick as Einstein performed and replace all
the other forces by geomemcal curvatures, in each case combining two equations into
one, with a resulting small saving in bits. This change in the direction of greater sim-
plicity constituted the recent gauge-theoretical revolution in physics. Within this
broader geometrical framework, Newton’s second law of motion in effect reduces to
Newton’s first law of motion: all matter now moves uniformly along the straightest
possible lines in the surrounding (generalized) curved geometry. Accelerated, non-
geodesic, motions, no longer really exist in this fuller geometry.

(vii) As a by-product of this inductive simplification it became clear that
Einstein’s theory of gravitation had itself not gone quite far enough. For mathemati-
cally, although Einstein had made the curvature a function of the gravitational
.sources, there was an analogous tensor, the torsion tensor, which was still required to
vanish everywhere and played the role of a flat background geometry. And this fea-
ture of space-time geometry was related in precisely the same way to the six-parame-
ter sub-group of rotations and boosts in the ten-parameter Poincaré group underlying
special relativity as the ordinary curvature was related to the four-parameter Abelian
sub-group corresponding to translations in space and time. Einstein’s theory was the
gauge theory of the latter subgroup, not of the whole group. Einstein’s argument from
cause-effect reciprocity for space-time curvature depending on the distribution of
matter was equally applicable to space-time torsion, and taking this consideration se-
riously generates a further twenty-four equations determining the torsion in addition
to Einstein’s sixteen field-equations determining the curvature. The result is the so-
called U4 theory, or Einstein-Cartan-Sciama-Kibble theory, of gravitation. It is less
mathematically arbitrary than Einstein’s original theory. It also allows elementary par-
ticles such as fermions to function as sources of gravitational fields, which was not re-
“ally possible in Einstein’s original theory since the the natural energy-momentum ten-
sor for fermions is anti-symmetric rather than symmetric as would be required by
Einstein’s original unmodified field equations. However this new less arbitrary theory
still yields the same predictions as Einstein’s original theory as far as ordinary macro-
scopic gravitational effects are concerned.

(viii) However even with these improvements physical theory is still not formally
as simple as one might reasonably expect. For it still contains arbitrary coupling con-
stants. In particular the gravitational coupling constant has to be regarded as a real-
valued parameter equivalent to an infinite-bit ingredient in the theory, and there is
nothing in the orthodox theory to explain why this parameter is not zero, i.e. why
gravitation exists at all. However there is a recent programmatic theory which would
overcome just this difficulty, and explain why gravitation exists at all and has the
strength it does, namely Super-string theory. In fact Super-string theory not only elim-
inates various otherwise unavoidable infinities in the quantum theory of the other
forces, but has no consistent solutions which do not include Einsteinian gravitation,
and requires a non-zero gravitational coupling constant. The empirical value of this
coupling constant should actually be calculable within this theory. Unfortunately the
theory is not yet well enough understood for us to be able actually to carry out this
calculation. Super-string theory remains to this extent still a merely programmatic
theory. But should it prove right we will have to conclude that Newton was wrong in
concluding that gravity was not an essential property of matter, and thus wrong in

https://doi.org/10.1086/psaprochienmeetp.1990.2.193068 Published online by Cambridge University Press


https://doi.org/10.1086/psaprocbienmeetp.1990.2.193068

206

concluding on that basis that the presence of gravity in our world required a free cre-
ative act by an omnipotent Deity.

4. Discussion

‘What I want to emphasize about this brief review of the subsequent history of
Newton's theory is that every change can in fact be viewed as one of formal simplifi-
cation. Things do not seem like this to the layman because the layman does not realise
how complicated the mathematical formalization has to be of all the background as-
sumptions about the world which he takes for granted, and how much mathematical
arbitrariness is implicit in naive formalizations of these background assumptions. But
with the benefit of deeper mathematical understanding, we can see that arbitrarinesses
here can be eliminated simultaneously with the elimination of arbitrarinesses in
Newton’s original explicit theory: such non-evident and evident arbitrarinesses can be
made to cancel each other out, yielding what is overall a succession of mathematical
simplifications of the theory of the world. This is what has happened in physics so far, -
and it is reasonable to suppose that it will continue in the future. (The most natural in-
ductive inference here would be to the conclusion that Galileo and Einstein were right
in thinking that our actual universe will ultimately turn out to be the sunplest possible
physical universe.)

This history creates, however, the following problem for deduction from the phe-
nomena arguments, even for the most “impressive” deduction from the phenomena
arguments. We would have liked these to yield actual high rational probabilities for
the theories to which they lead. At first it seems they must do this because those theo-
ries are deduced from background assumptions which seem to have high probabilities.
Any known rival theory can be shown to be inconsistent with one or other of these
background assumptions and thus can be shown to be less probable in the then state
of knowledge.

But the trouble is that such background assumptions must go well beyond the actual
evidential data. And while they seem at the time to be the simplest mathematical gener-
alizations consistent with that data (and were this so, this would entitle them to high
Solomonoff-Levin rational probabilities), nevertheless subsequent mathematical inves-
tigation has always shown that there were formally simpler alternatives which had been
overlooked, and which, had theorists known of them at the time, would have thus to
have been assigned higher rational probabilities than the alternatives actually chosen.

Underlying this situation is a fundamental mathematical feature of the new induc-
tive logic. Relative rational probabilities for any rival theories known to predict the
same data can always be computed. It is enough to write those theories as programs
and to count the number of program-bits required for each theory. Absolute rational
probabilities are a different matter. )

We would know these too if we knew that there were no simpler theories predict-
ing the same data. For Solomonoff-Levin rational probabilities fall off fast enough
with numbers of additional bits, for more complicated theories, even the disjunction
of all more complicated theories, generally (though there are occasional exceptions)
to get a low relative rational probability. So the problem is not the Popperian problem
of the universe actually probably turning our more and more complicated.

The problem is the reverse. Absolute rational probabilities can only be assigned,

or bounded from below, if we know there are no simpler theories predicting the same
data. And we cannot ever know this because for any realistic data there can be no al-
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gorithm for determining the shortest program which will regenerate that data.
Absolute rational probabilities are thus non-computable. This would not matter if we
had meta-inductive evidence that we were actually good at finding the shortest possi-
.ble encodings of realistic data. If we could show that modulo mathematical miracles
concerning as yet uncomputed sequences of digits in the development of &, we had
every reason to believe that we were often in practice actually succeeding in deter-
mining the shortest encodings of realistic data.

Unfortunately the existing meta-inductive evidence points in precisely the oppo-
site direction. Each generation of theoretical physicists discovered that its predeces-
sors had missed what were actually fewer-bit encodings of all the existing data. For
this reason even the most impressive deduction-from-the-phenomena justifications,
contrary to Newton’s own inductive hopes, fail to yield high rational probabilities. At
best we can take the conclusions to which such arguments lead as the most preferred
of the available theories, and as theories which can be expected to yield correct pre-
dictions in the domain in which their background assumptions remain reasonable ex-
trapolations from the data.

We indeed have some a priori mathematical guide as to when we are likely to be
nearing the boundaries of such domains. Namely when the value of some physical
quantity begins to approximate to the value of what appears to be a fundamental con-
stant in the theory in question or in some related theory. For it is precisely at such points
in a theory, or in the relation between two theories, that we expect deeper mathematical
insights to yield future changes resulting in potential overall theoretical simplification.

Thus in practice it is reasonable to suppose that when an unexpectedly simple the-
ory is deduced from the phenomena it will remain a very good approximation to the
truth in a very extended domain. But the new inductive logic warns us that we cannot
conclude that it is probably true, and meta-induction from the history of physics
teaches us that it is almost certainly false, not because the truth will turn out to be
more complicated, but because the truth will prove to be even simpler when all the
relevant data that were available are taken into account.

The Newtonian strategy gives us a way of establishing theories which are rational-
ly more probable than any rivals we are likely to be able to envisage given the current
state of theoretical understanding. But at the same time the subsequent history of
physics warns us that we will almost certainly be failing to envisage rationally even
more probable theories.

The moral seems to be that physicists should spend more time reflecting on the
foundations of current theoretical frameworks, than on tinkering with theories to ex-
plain particular recalcitrant experimental results. Every feature which is normally
taken for granted in our currently successful theories needs to be repeatedly called in
question, because we can be almost certain that there will be sunpler future theories
obtainable by abandoning some such features.

Extrapolating a little further from the history of physics, it is hard to avoid the induc-
tive conclusion that our actual universe is likely ultimately to prove to be, in some mean-
ingful sense, the simplest possible universe. This suggests that a more direct and a priori
approach to characterizing the latter structure (e.g. by first laying down informal adequa-
cy conditions on the class of mathematical structures which could count as characteriz-
ing possible physical universes, and then looking for the simplest mathematical structure
which could meet those conditions) might eventually deliver the jackpot.
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Thus the results of three centuries of reasoning from the phenomena are more sur-
prising than philosophers seem to realize: for they seem to imply that we may be un-
duly neglecting a potentially viable alternative more aprioristic strategy. :
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