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EXISTENCE AND ASYMPTOTIC BEHAVIOR FOR A 
STRONGLY DAMPED NONLINEAR 

WAVE EQUATION 

G. F. WEBB 

1. Introduction. In this paper we study the nonlinear initial boundary 
value problem 

(1.1) wtt — aAwt — Aw = f(w), t > 0 

w(x, 0) = <t>(x), x £ 12 

wt(x, 0) = $(x), x £ 12 

w(s, 0 = 0, x Ç 612, t ^ 0. 

In (1.1) 12 is a smooth bounded domain in Rw, w = 1, 2, 3, a > 0, and 
/ G C 2 (R;R) with/ ' (x) ^ £o for all x Ç R (where c0 is a nonnegative 
constant), lim §up\x\^+mf{x)/x S 0, and /(0) = 0. Our objective will be 
to establish the existence of unique strong global solutions to (1.1) and 
investigate their behavior as t —> +oo . 

Our approach takes advantage of the semilinear character of (1.1) and 
reformulates the problem as an abstract ordinary differential equation in 
a Banach space. We identify the Laplacian A in 12 with the infinitesimal 
generator of a strongly continuous semigroup of operators in L2(12) and 
we define F: D(A)->L2(Q) by F(4>)(x) = / («(*)) . The problem (1.1) 
may then be written abstractly as 

(1.2) u" - aAu' - Au = F(u), t > 0 

«(0) = 0 G D(A) 

u'(0) = if/ e L2{ti). 

The problem (1.2) may in turn be converted to an abstract first order 
system in the Banach space ï = : [D(A)] X L2(tt) (where [D(A)] 
denotes the Banach space D(A) with the graph norm) of the form 

(1.3) u'(t) =s/u(t) +#~(u(t)),t > 0 

u(0) = Wo Ç 1 

In (1.3) u: R + - + X , s/; X -> 36 with j / [ 0 , £] = ty, 4 0 + o ^ L and 
F: X -* X with F([0, £|) = [0, F(</>)]. 
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Using the hypothesis o n / and the fact that a > 0 (which is essential), 
we are able to show that unique local solutions on (1.3) exist, remain 
bounded in ï , and hence exist globally. We then treat the solutions of 
(1.3) as a dynamical system in 36 and apply Liapunov type stability 
techniques to obtain information about their behavior as t—> +oo. In 
particular we show that all solutions of (1.3) converge in H to the set of 
equillibrium solutions for the equation, and if CoM"-1! < 1, then all solu­
tions converge in H to 0. A key ingredient in this stability analysis is a 
result which establishes that the orbits of the dynamical system are pre-
compact in 3E. For this precompactness of orbits it is again essential to 
have a > 0. 

There are many treatments of various nonlinear wave equations and 
we have listed some of them in our references. Of particular relevance to 
our results are those of J. Greenberg, R. MacCamy, and V. Mizel in [15], 
which establish unique global existence and asymptotic stability for the 
equation 

utt — oiUt = <J' (ux)uxx, a' > 0, 

in one space dimension. Also relevant are the results of J. Clements in 
[6], [7], which establish the existence in higher space dimensions of unique 
strong global solutions to 

utt — aAut = à/àxicri(uxi) 

if 0 < a I < constant and the existence of weak global solutions if 
0 ^ a I. Related work is also found in T. Caughey and J. Ellison [4] in 
which global existence for small initial data and asymptotic stability 
results are obtained for an equation similar to (1.1). The results we 
present here generalize the work in [36] in which the damping term had 
the form awt and the space dimension was restricted to 1. The strong 
damping term aAwt allows us to treat relatively general nonlinearities 
in the higher space dimensions n = 2, 3, as well as forces a certain pattern 
of asymptotic behavior. Our use of ideas from the theory of dynamical 
systems derives from the work of N. Chafee and E. Infante [5] and D. 
Henry [16], in which similar techniques were used in the study of para­
bolic equations. The estimates we use to bound the solutions derive from 
ideas developed by J. Greenberg, R. MacCamy, and V. Mizel in [15]. 

2. Local existence. We first establish a local existence and uniqueness 
result for the abstract equation (1.3). Let X be a Banach space with 
norm || ||, and let T(t), t ^ 0 be an analytic semigroup of bounded linear 
operators in X (for a discussion of analytic semigroups the reader is 
referred to [13], Part 2 or [16], Chapter 1). It is known that there must 
exist constants M ^ 1 and co £ R such that 

(2.1) \AT(t)\ ^ Me^/t, t > 0. 
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(cf. [13], Theorem 2.2, p. 105.) Let [D(A)] denote the Banach space which 
is the domain of A with the norm 

IWU = (M<M|2 + H\\*)m or 
Hb = \\A4>\\ 

if A~l exists as a bounded everywhere defined linear operator in X. Define 
X = [D(A)]X X with norm 

(2.2) ||[0,*]||x = (||</>|L2 + , W ) 1 / 2 , [0,*] G I 

For each ; ^ 0 define a linear operator $~ (t) from ï to H by 

(2.3) ^{t)[4>,^} = [4> + frétas, T(t)M, [ * , * ] € * . 
^ 0 

PROPOSITION 2.1.^ r( /) , / ^ 0 is an analytic semigroup of bounded linear 
operators in 26 with infinitesimal generator 

(2.4) A[4>, ft = [*, ^ ] , £ ( J / ) = D(A) X 2^(4). 

Proof. It is easily verified that^~(£), £ ̂  0 is a strongly continuous 
semigroup having infinitesimal generator^/. The condition (2.1) implies 
that 

\AT(t)\ g M^/t, £ è 0, 

for some constants Mi ^ 1 and coi Ç i£, and thus guarantees thatJ^~(£)> 
/ è 0 is an analytic semigroup in ï (cf. [13], Theorem 2.3, p. 106). 

Now let a > 0 and define the linear operator S$a from ï to X by 

(2.5) j / a [ 0 , f| = ty, « 4 * + A4>], D(*/a) = D(A) X D(A). 

PROPOSITION 2.2. s/a is the infinitesimal generator of an analytic semi­
group 3Ta{t), t ^ 0 of bounded linear operators in ï . 

Proof. Write sea = Bl + £2 , where £i[0, #] = [ ,̂ aAft, D(BX) = 
£ > « * ) , £2[«, <A] = [0, ,40], £>(£2) = Ï . Then £ i is the infinitesimal 
generator of an analytic semigroup in H by Proposition 2.1 and B<L is a 
bounded linear operator in #. By Corollary 2.5, p. 498 of [17] we have 
that Sl?a is the infinitesimal generator of an analytic semigroup in H. 

Now let F be a (possibly nonlinear) operator from D(A) to X satisfying 

(2.6) F is Lipschitz continuous from bounded sets of [D(A)] to X 
(that is, if K is a bounded set of [D(A)], then there exists a 

constant L such that 

\\Ffa) - F(02)|| ^ L||0! - «2|U 

for all 0i, 02 e K). 

Define Ĵ ~ from 96 to £ by 

(2.7) ^ ( [ 0 , *]) = [0, F(0)], P(#~) = Ï . 
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It is immediately seen that fF is Lipschitz continuous from bounded sets 
of 36 to £. The following theorem is proved in [16], Theorem 3.3.3, 3.3.4, 
3.4.1, [27], Theorem 5.2, and [31], Corollary 1.5: 

THEOREM 2.1. Let A be the infinitesimal generator of an analytic semi­
group in X, let F satisfy (2.6), lets/a be defined as in (2.5), and let F be 
defined as in (2.7). For each [</>, \p] G £ there exists to = to(<j>, \p) > 0 and 
a unique function u = u(t\ <t>, \p): [0, to) —* 36 such that u is continuous on 
[0, to), u is continuous differ entiable on (0, to), u(t) Ç Dise a) for t £ (0, to), 
o/au is continuous on (0, to), and u satisfies 

(2.8) u'{t) =s/au(t) + F(u(t)), 0 < t < to 

«(0) = [*,*]. 

Moreover, u(t; </>, \j/) is continuous in (0, \j/) in the sense that if [</>, \[/] Ç £, 
0 û t < to(<l>, \p), and e > 0, then there exists ô > 0 such that 

l|[</>> tâ — [</>i> fa]\\% < à implies t < £0(*i, <M &wd 
||w(/; <t>, \l/) - «(/; 0i, I£I)1U < e-

Finally, if to = to((t>, $) is maximal, so that there exists no solution of (2.8) 
on (0, ti) with t\ > to, then either to = +oo or \\u(t\ <£, i/0||x is not bounded 
on [0, to). 

Remark 2.1. Note that Theorem 2.1 provides strong solutions of (2.8) 
forO < t < to (that is, u(t) is differentiate from (0, to) t oX ) for arbitrary 
initial data [(/>, \p] in X (not only initial data in D(£/a)). This strong 
differentiability is proved in [27], Theorem 5.2, and arises from the fact 
that s/a is the infinitesimal generator of an analytic semigroup in X and 
Ĵ ~ is Lipschitz continuous from bounded sets of X to X. Notice that we 
need not assume any differentiability of F as a function from X to X. 

Now define the projections wi and 7r2 from £ into [£>(^4)] and X, 
respectively, by 

*l[<t>, ^ ] = <t>, 7 T 2 [ 0 , ^ ] = ^ . 

From (2.5), (2.7), and (2.8) we see that for [</>, £] 6 Ï , 0 < / < /0(«, tfO, 

(2.9) d/dt iriu(t; </>, ^) = T2u(t; <£, ^) 

(2.10) d2/d/2 *-!«(*; 0, ^) = Awiu(t; <j>, \f/) + aAd/dt inu(t; <j>, xf/) 

+ F{Tnu(t',<t>,^)). 

3. Global existence. We next prove global existence of the solutions 
to (1.1). Let X be the Hilbert space L2(12) with norm || || and inner 
product ( , ), where 12 is a smooth bounded domain in Rw, n = 1, 2, or 3. 
Define 

(3.1) A:X-*X,A4> = £ ? - i d 2 0 / ô x / for 0 Ç Co00 (ft), 
and 4̂ is the self-adjoint closure in X of its restriction to Co°°(^). 
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We will use the following well known facts about A : 

(3.2) For p > 0, ( — A)p exists as a closed self-adjoint linear operator 
in X and ( — A)~p is a bounded everywhere defined compact 
operator in X (cf. [16], Theorem 1.6.1, Theorem 1.4.8 and [10], 
Theorem 25, p. 1743). 

(3.3) For p > 3/4 there exists a constant cp such that if <t> € Xp : = 
D({ — A)p)} then 0 is continuous on 12 (except for a set of 
measureO)and | |0| |œ: = esssup^ûkOxOI ^cp | |0 | |p = : cp\\( — A)p4>\\ 
(cf. [16], Section 1.6). 

(3.4) A has a complete countable orthonormal set of eigenfunctions 
Xi» X2, • . . and eigenvalues Xi, X2, . . . , with . . . X2 < Xi < 0, and 
for each w, xn € C°°(Î2), xw = 0 on 612, and 4̂%w = KXn (cf. [10], 
Theorem 25, p. 1743). 

(3.5) A is the infinitesimal generator of an analytic semigroup T(t), 
t^OinX (cf. [10], Theorem 1, p. 1767). 

Define the Banach space 96 as [D(A)] X X with norm 

l|[*,flll*= (Nli2 + W)1/2-
Next, define 

(3.6) F:D(A)-*X, (F(<j>))(x) = /(0(x) for all 0 € Z>(4), * € 0, 
where / : R —» R such that 

(i) / is continuously differentiate on R, 
(ii) there exists a constant c0 ^ 0 such tha t / ' ( # ) ^ Co for all 

(iii) lim sup\x\_>+œf(x)/x g 0, and 
(iv) /(0) = 0. 

PROPOSITION 3.1. If p > 3/4 then there exists an increasing function 
Lp: R+ —» R + swcfe /fta/ 

ll^(0i) ~ F(*2)|| ^ i p ( r ) | | * i - * 2 | | P 

/or a// 0!, 02 G ^ P ŝ cfc that ||0i||p, ||02||P â r. 

Proof. By (3.6) (i) there exists an increasing function L: R+—>R+ 
such that 

\f(x) - f(y)\ 5i L{r)\x - y\ 

if x, y € R and \x\, \y\ g r. Let 

Z , ( r ) : = | ( - ^ ) - ' | L ( c P r ) , r e 0 , 
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where cp is as in (3.3). If <j>u 4>i G X„ with ||0i||p, \\^\\P ^ r, then by (3.3) 

\\F(<j>i) - F(<j>,)\\2 = f |/(*i(*)) -fifaixVfdx 

^ L(cpr)2 I \4nipc) - fa(x)\2dx S i P ( r ) 2 | | * i - faW?-

THEOREM 3.1. Let A be as in (3.1), let F be as in (3.6), let s$a be as in 
(2.5), and let ̂  be as in (2.7). For each [#, \[/] £ ï /fee unique solution 
u(t; (j>, \p) of (2.8) given by Theorem 2.1 exists and is bounded (in the 
H-norrn) on R+ . 

Proof. To show global existence it suffices by Theorem 2.1 to show 
that the maximal solution u(t\ cj>, \p) : = [v(t)t v'(t)] of (2.10) defined on 
(0, ^o(0, ^)) stays bounded in 36. First, let 0 < t < h(4>, \p) and multiply 
(2.10) by v'(t) to obtain 

(3.7) (v", v') = a(Av', v') + (Av, v') + (F(v), vf) 

(where we have suppressed that /-dependence of v). Define / : R —> R 
by 

J(x) = I f(s)ds for all x 6 R. 
J o 

By (3.6) (iii) there exists a constant k\ > 0 such that 

J(x) ^ (x 2 /4 | ( -^l) - 1 / 2 | 2 ) + ifeifor all x G R. 

From (3.3) we see that fn J(<j>(x))dx is defined for all 0 Ç D(A). From 
(3.7) we obtain 

(3.8) (\)d/dt IKII2 = -a|K| | i /22 - (i)d/d* ||w||i/2
2 + d/d/ f 7(i;)d* 

(where we have used the self-adjointness of ( — A)112). 
From Theorem 2.1 we have that seau{t) = [«/(/), Av(t) + aAv' (t)} is 

continuous in H for / > 0. Thus, we may integrate (3.8) from t\ to /2, 
0 < h < h < *o(0, i/0, to obtain 

(3.9) (è)|K(/2)ir - (i)IK(*i)lr = -<* I K « 111,2 dt 

- (è)|bfe)||l/22+ (i)|K*l)||l/22 

- I J(v(t2))dx - I J(v(h))dx. 

Since 

/ . 

+ km(ù) û (1)11*111/2* +*im(o) 
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for all 0 6 D(A)f we obtain from (3.9) 

(3.10) ||w'(*2)||
2 + 2a f |K(0 | | i /2 2 A+ (i)||»(/2)||i/22 ^ 

l|v'('i)H2+ ||»(^i)||i/22 + 2fcim(0) - 2 I J(v(h))dx. 

Now let h -> 0 in (3.10) to obtain 

(3.11) ||i/(*2)||2 + 2a P ||f>'(*)||i,22<a+ (è) |bfe) | | i / 2
2 ^ 

•J 0 

II^H2+ li0ili/22 + 2^im(fi) - 2 I J(<l>)dx= -.Kxti,*). 

Next, multiply (2.10) by 4«/(0, 0 < t < t0(<t>, t), to obtain 

(3.12) (*/", Av) = a{Av\ Av) + (Av, Av) + (F(v), Av). 

From (3.4) and (3.6) (ii) and (iv) we have that for all 4> 6 D(A) 

( I m \ m n \ 

F\ Z (<*>. x O x J , Z (*, X«) E àl/àxs\i) 
, . „ - , ^ \ i = l / i = l .7=1 / 

w / / m \ m m \ 

= lim - X) 1 ^ i Z (</>> Xi)Xi ) Z («, Xi)d/dxjXi, Z (0, Xt)d/dXjXi ) 
m->oo i = l \ \ i = l / i = l i = l / 

n I m m \ 

^ - t o lim X) 1 Z (0» Xi)d/dxjXi, Z (*» X<)d/d*jX*) 
m->oo i = l \ r*=l i = l ' 

= Co lim I Z (*, Xi)xt,^( Z (*, Xi)Xi) ) = -Co||4>||i/22. 
m^oo \ i '=l \ z'=l / / 

Then, from (3.11), (3.12), and (3.13) we obtain 

(3.14) (i;", ^v) ^ (a/2)d/dt \\Av\\2 + | [ ^ | | 2 - 2c0K1(<l), ^ ) . 

Since Ï / ' = ^ + c^4fl' + F(z;) and ^4y, ./lu', and F(v) are continuous in / 
for / > 0, we may integrate (3.14) from t\ to /2, 0 < t\ < t2 < t0(<t>, \f/), 
and perform an integration by parts to obtain 

(3.15) I n | |w'(/)||1/2
2* + {v'{h),Av(h)) - ( v ' f a ) , ^ ^ 

^ («/2)||vC^)Mi2 — ( « / 2 ) | K O I | i 2 + f" Ik(011idt 

- (*2 - h)2c,Kl{<i>, yp). 
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We now combine (3.11) and (3.15) to obtain 

(3.16) (a/2) 11^2) 1112 + f I KO Hi2* ^ (a/2) I K O Hi* 

+ * ! ( * , * ) I K/2) I | i + ll»'('i)ll IKOII1 + (l/2a)ii:i(*, ^) 

+ (h ~ h)2coKi(<l>, * ) . 

Now let h - > 0 in (3.16) and set A(0 = ||i>(OI|i to obtain for 0 < h < 
/o(4>, <A), 

(3.17) h(t2)
2 + I l h(tfdt £a + 2bh(t2) + I * b2dt 

Jo J 0 

where a, 6 ^ 0 are constants. Then, (3.17) implies 

(3.18) (h{h) - bf + I " (A(0 - bfdt ^a + b2. 
J 0 

Thus, IKOIIi ls bounded in t, as is ||tf'(0ll (by (3.11)). The existence of 
the solution on R + now follows from Theorem 2.1. 

4. Asymptotic behavior. The main result of this section is 

THEOREM 4.1. Let A be as in (3.1), let F be as in (3.6), let sea be as in 
(2.5), and let & be as in (2.7). Let E = { [ « , £ ] G 3Ê: A<f> + F(<t>) = 0 and 
\p = 0}. If [0, \j/] G X and w(/; 0, i/0 is 2fee solution of (2.8) (which exists 
on R + 6;y Theorem 3.1), ̂ £n 

(4.1) Hm^+00 dist (w(/; 0, i/0, E) = 0. 

Before proving Theorem 4.1 we first establish four lemmas, each of 
which is under the hypothesis of Theorem 4.1. 

LEMMA 4.1. For all [(/>, \p] G ï , / ^ 0, define S(t)[<f>, \p] = u(t; <f>, \f/). 
Then, S(t), t ^ 0 is a dynamical system in 3c in the sense that 

(4.2) S(t) is a continuous mapping from T£ to ï for each t ^ 0 

(4.3) KS(-)[</>, \p\ is continuous as a function from R + to ï for 
each fixed [</>, i/'] (E 36 

(4.4) S(0) = / 

(4.5) S(/)S(s) = S(t + 5) /or all s} t ^ 0. 

Proof. The conclusions are true by virtue of Theorem 2.1. We observe 
that (4.5) follows from the fact that the solutions of (2.10) are unique. 

LEMMA 4.2. Let^~a(t), t ^ 0 be the semigroup of bounded linear operators 
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in H with infinitesimal generator s/a as in Proposition 2.2. There exist 
constants K ^ 1 and r > 0 such that 

(4.6) \Taif)\ ^Ke~v\t^ 0. 

Proof. Using the notation of (3.4) we employ the method of separation 
of variables to obtain a solution of the equation 

(4.7) wtt = otAwt + Aw 

w(.}0) = 0(.) G D(A) 

«>,(•, 0) = *(•) 6 X 

in the form ww = Tn{t)xn f° r each w = 1, 2, . . . . The solution of 

(4.8) Un"{t) - a\nUn'{t) - \nUn(t) = 0 
Un(0) = 1, Un'(0) = 0 

is 

(4.9) Un(t) = e«»'(cos hVFj - (a . /v 7 ^) sin hy/FHt), if bn > 0 

ea^(l - ant)/iibn = 0 

ea"'(cos V-bJ - (an/V -bn) sin y/ — bnt), \ibn <Q 

where an = a\n/2, bn = an
2 + Xn. Also, the solution of 

(4.10) Vn"(t) - a\nVn'(t) - \nVn(t) = 0 

7,(0) = 0, PV(0) = 1 
is 

(4.11) Vn(t) = (€*>'/Vbn) sin hy/b~nt, i(bn>0 
tea-', if bn = 0 

(e**'/V=Fn) sin v 7 3 ^ , if 6» < 0. 

Then, for all (<t>, ^ ) f ï , / H 

(4.12) ^ . ( O I * . *] = E ((4>,Xn)Un(t) + {*,Xn)Vn{t))Xn, 

E ((*,x,)f/.'(0 + (^x.)f.'(0)x-

Thus, using the fact t ha t . . . X2 < Xi < 0, we see that there exist con­
stants K > 1 and r > 0 such that (4.6) holds. 

Remark 4.1. We observe that the existence of the constant r > 0 in 
(4.6) requires a > 0. We further note that^" a ( / ) is not compact when 
/ > 0. This claim may be seen from the following facts: ^~a(t)y t ^ 0 
arises from a bounded perturbation of 3~(t), t ^ 0 (Proposition 2.2), 
compact semigroups are stable under bounded perturbations ([26], 
Theorem 4.2), and^"( / ) , t ^ 0 is not compact for t > 0(formula (2.3). 
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LEMMA 4.3. If [0, x//] £ X, then \u(t; <t>, \p) : t ^ 0} is a precompact set 
in X. 

Proof. It is well known that the solutions of (2.8) must satisfy the 
integral equation 

(4.13) u(t\4>,+) = <Ta(t)[ct>, *] + I <T*(t- ^ W ^ ^ W M è O 
^ 0 

(cf. [16], Lemma 3.3.2). In [37], Proposition 3.2, it is shown that if^~a(t) 
satisfies (4.6), £F is compact as a nonlinear operator from 36 to X, and 
5(/)[0, \p] : = u(t; <j>, \p) satisfies (4.13), then bounded orbits of S(t), 
t ^ 0 must be precompact. Since {u(t; 4>, \p) :t ^ 0} is bounded by 
Theorem 3.1, it suffices to show thatJ^" is compact. Observe that Air\ is 
bounded from X to X and 

F*, = F(-A)-o(-A)^(-A)T1îor p £ (f, 1). 

From Proposition 3.1 we see that F( — A)~p is continuous from X to X 
and from (3.2) we see that ( — A)p~l is compact from X to X. Thus, FTI 
is compact from ï to X and hence ^ is compact from ï to ï . 

LEMMA 4.4. .For mc/^ [</>, ̂ ] Ç Ï define the omega limit set of [</>, ^] by 

U((j>, \p) : = {[</>o, î o] ë ï : //zere exists tn—>+co such that 

5(/„)[«, iW-*[*o, *o]}. 

/ w eac/̂  [0, ^] Ç X, S2(</>, i/0 is nonempty, compact, connected, and 

dist (S(t)[<f>, i//], £2(0, i ^ ) ) ->0f l5 / -> +oo. 

Proof. Lemma 4.4 is true for every dynamical system in a complete 
metric space in which the orbits {S(t)[4>, \p] : t ^ 0} are all precompact 
(cf. [16], Theorem 4.3.3). 

Proof of Theorem 4.1. In view of Lemmas 4.1-4.4 it suffices to show that 
if [0o, ^o] G Œ(</>, yp)j then [0O, W G £• Define the Liapunov functional 
V: X -> R by 

(4.14) 7 (0 , *) = (e)( | |0 | | i / 2
2 + ll^ll2) - f J(4>(x))dx 

where 7(x) = J j f(s)ds. We claim F is defined and continuous on X. 
This claim is true, since from (3.3) 

/
I f I f02(a;) I 

^ I ( sup | / (*) | ) |*i(*) - *a(*)|<k. 

^ ( sup | / ( * ) | W ( Û ) * i | | * i - *2||i. 
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We also claim 7(5(/)[0, \[/]) is bounded below as t —» -\-co for each 
[0, \p] Ç 36. To see this claim observe that by (3.6) (iii) there exists a 
constant k2 such that J(x) ^ x2 + &2, # £ R. Then, 

(4.15) 7 (0 , ^ ) è - I |0 (x) | 2 dx-£ 2 m(a) ^ - | ^ ~ T l W l i 2 - *2m(Q). 
•J n 

The boundedness of {Ainu(tm, 0, ^ ) : / ^ 0} in 36 (established in Theorem 
3.1) now implies the boundedness of { 7 (5(0 [0, ^]): / ^ 0} from below. 

We also claim that for all [0, >p] Ç 36, / > 0, 

(4.16) d/<ft F(w(*; 0, ^)) g aXi||7T2w(/; 0, i£)||2 

where Xi is as in (3.4). This claim follows from the fact that (A<t>, 0) ^ 
Xill̂ H2 for all 0 e D{A) and 

d/dt V(u(t; 0, i/0) = (-Airiu(t; 0, i/0, d/dt inu(t\ 0, \p)) 

+ (ir2u{t\ 0, \p), d/dt w2u(t; 0, x//)) 

~ (/(iriw(/; 0, i/O), ^/d/ 7nw( ;̂ 0, \[/)) 

= (aAd/dt iriu(t; 0, \p), d/dt ir\u{t\ 0, i/0)-

Now integrate both sides of (4.16) to obtain 

(4.17) V(u(t; 0, *)) ^ 7(0 , *) +aX x I % ||ir2«(*; 0, V) | | 2 ^ . 
** o 

Thus, for [0, \[/] £ 36, 7 (5(0 [0, £]) is nonincreasing and bounded below 
for / ^ 0. Let q = l i m ^ 7(5(0 [0, £]) and let [0O, ^0] G Œ(0, M, so that 

[0o, \M = l i m ^ S ^ C * , £| 

for some sequence tn —> +oo . Since 7 is continuous, 7([0O, ^o]) = <Z- It is 
easily seen that if [0O, *Ao] £ ^(0> ^)» then so is 5 (0 [0o, ^o] for all / ^ 0. 
Thus, 

7 (5(0 [0o, iAo]) = g for all/ ^ 0. 

From (4.17) we must have that T2u(t; 0O, ^o) = ^o = 0 for all / ^ 0. 
From (2.9) we must have that -K\u{t\ 0O, ^o) = 0o for all t ^ 0, and from 
(2.10) we must have that [0O, ^o] £ E> 

COROLLARY 4.1. Suppose the hypothesis of Theorem 4.1 and, in addition, 
suppose that cQ\A~l\ < 1. / / [0, yf] 6 36, then lim^+oo5(O[0, iM = [0, 0]. 

Pnw/. It suffices to show that E = {[0, 0]}. From (3.13) we have that 

(F(0), .40) è CoO40, 0) for all 0 £ Z>(i4). 

Suppose [0, ^] Ç JE. Then, 

U0,^0) = -(/^(0),^(0) ^ -Co(^0,0) ^ ^oM-1! M0II2, 
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which implies that 

(1 - c0\A-i\)\\A<l>\\* SO. 

Since Col^"1! < 1> we must have A(j> = <t> = 0. 

Remark 4.2. In the case that the space dimension n — 1, 12 = (0, ir), 
and / satisfies some additional hypotheses, we can describe the set E of 
equilibrium solutions precisely. In particular, suppose that / satisfies 
additionally 

(4.18) / is twice continuously differentiate on R, J'(O) > 0, and 
sgn/"(x) = ~ s g n x I 0 r all x € R-

For a given X ^ 0 define F: D(A) —* X by 

(F(<t>))(x) = X/ (*W) , 0 G 0 ( 4 ) , x G [0, TT]. 

Let X̂  = n2/f(0) for w = 0, 1, . . . , and let \n < X ^ Xw+i for some 
w = 0, 1, . . . . There exist exactly 2n + 1 equilibrium solutions, that is, 
exactly 2n + 1 members of E (cf. [36], Theorem 3.5, [16], Section 5.3, 
or [5], Theorem 5.5). In this case every solution of (2.8) must converge in 
ï to exactly one of these equilibrium solutions by virtue of Theorem 4.1. 

REFERENCES 

1. J. Ball, On the asymptotic behavior of generalized processes with applications to nonlinear 
evolution equations, J. Math. Anal. Appl. 27 (1978), 224-265. 

2. V. Barbu, Nonlinear semigroups and differential equations in Banach spaces (Noord-
hoff, Leyden, 1976). 

3. M. Biroli, Sur Vinéquation des ondes non linéaire dans la fonction inconnue et avec un 
convexe dépendant du temps II, Atti Acad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. 
Natur. (8) 55 (1973), 178-186. 

4. T. Caughey and J. Ellison, Existence, uniqueness and stability of solutions of a class of 
nonlinear partial differential equations, J. Math. Anal. Appl. 51 (1975), 1-32. 

5. N. Chafee and E. Infante, A bifurcation problem for a nonlinear parabolic equation, 
Applicable Analysis 4 (1974), 17-37. 

6. J. Clements, On the existence and uniqueness of solutions of the equation 
utt - d/dxiai(ux.) - ANut =f, Can. Math. Bull. 2 (1975), 181-187. 

7. Existence theorems for a quasilinear evolution equation, SIAM J. Appl. Math. 
26 (1974), 745-752. 

8. C. Dafermos and R. DiPerna, The Riemann problem for certain classes of hyperbolic 
systems of conservation laws, J. Differential Equations 20 (1976), 90-114. 

9. P. Davis, A quasilinear hyperbolic and related third-order equations, J. Math. Anal. 
Appl. 51 (1975), 596-606. 

10. N. Dunford and J. Schwartz, Linear operators, Part II (Interscience, New York, 
1963). 

11. Y. Ebihara, On the global classical solutions of nonlinear wave equations, Funkcial. 
Ekvac. 18 (1975), 227-244. 

12. F. Ficken and B. Fleishman, Initial value problems and time periodic solutions for a 
nonlinear wave equation, Comm. Pure Appl. Math. 10 (1957), 331-356. 

13. A. Friedman, Partial differential equations (Holt, Rinehart, and Winston, New York, 
1969). 

https://doi.org/10.4153/CJM-1980-049-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1980-049-5


WAVE EQUATION 643 

14. J. Greenberg, Smooth and time-periodic solutions to the quasilinear wave equation, 
Arch. Rational Mech. Anal. 60 (1975/76), 29-50. 

15. J. Greenberg, R. MacCamy and V. Mizel, On the existence, uniqueness, and stability 
of solutions of the equation <r'(ux)uxx + Xuxtx = poUtt, J. Math. Mech. 17 (1968), 
707-728. 

16. D. Henry, Geometric theory of semilinear parabolic equations, to appear. 
17. T. Kato, Perturbation theory for linear operators (Springer-Verlag, New York, 1966). 
18. J. Keller, On solutions of nonlinear wave equations, Comm. Pure Appl. Math. 10 

(1957), 523-530. 
19. K. Jôrgens, Das Anfangwertproblem in Grossen fur eine Klasse nichtlinear Wellen-

gleichungen, Math. Z. 77 (1961), 295-308. 
20. J. Lions and W. Strauss, Some nonlinear evolution equations, Bull. Soc. Math. France, 

93 (1965), 43-96. 
21. R. MacCamy and V. Mizel, Existence and nonexistence in the large of solutions to 

quasilinear wave equations, Arch. Rational Mech. Anal. 25 (1967), 299-320. 
22. M. Nakao, Convergence of solutions of the wave equation with a nonlinear dissipative 

term to the steady state, Mem. Fac. Sci. Kyushu Univ. Ser. A 30 (1972), 257-265. 
23. Decay of solutions of some nonlinear evolution equations, J. Math. Anal. Appl. 

60 (1977), 542-549. 
24. M. Nakao and T. Nanbu, Existence of global (bounded) solutions for some nonlinear 

evolution equations of second order, Math. Rep. College General Ed. Kyushu Univ. 
10 (1975), 67-75. 

25. M. Panakov, A mixed problem for quasilinear equations of hyperbolic type, Azer-
baïdzàn. Gos. Univ. Ucen. Zap. Ser. Fiz.—Mat. Nauk 1 (1973), 46-52. 

26. A. Pazy, On the differentiability and compactness of semigroups of linear operators, J. 
Math. Mech. 17 (1968), 1131-1141. 

27. A class of semi-linear equations of evolution, Israel J. Math. 20 (1975), 23-36. 
28. J. Sather, The initial-boundary value problem for a non-linear hyperbolic equation in 

relativistic quantum mechanics, J. Math. Mech. 16 (1966), 27-50. 
29. The existence of a global classical solution of the initial-boundary value problem 

for u +u3 = f, Arch. Rational Mech. Anal. 22 (1966), 292-307. 
30. W. Sadkowski, Behaviour of solutions of some non-linear hyperbolic equation, Demon­

s t r a t e Math. 9 (1976), 393-408. 
31. I. Segal, Non-linear semi-groups, Ann. Math. 78 (1963), 339-364. 
32. V. Vogelsang, Uber Nichtlineare Wellengleichungen mit zeitabhdngigem Hauptteil, 

Math. Z. 149 (1976), 249-260. 
33. W. von Wahl, Uber nichtlinear Wellengleichungen mit zeitabhdngigem ellipteschen 

Hauptteil, Math. Z. I42 (1975), 105-120. 
34. Regular solutions of initial-boundary value problems for linear and nonlinear 

wave equations I, Manuscripta Math. 13 (1974), 187-206. 
35. C. Wang, A uniqueness theorem on the degenerate Cauchy problem, Can. Math. Bull. 

18 (1975), 417-421. 
36. G. Webb, A bifurcation problem for a nonlinear hyperbolic partial differential equation, 

to appear in SIAM J. Math. Anal. 
37. Compactness of bounded trajectories of dynamical systems and application to 

nonlinear equations, to appear. 

Vanderbilt University, 
Nashville, Tennessee 

https://doi.org/10.4153/CJM-1980-049-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1980-049-5

