s130 Poster Presentations

provide education and ongoing training to paramedics who are responsible for the management of disaster within the Australian community.

Prehosp Disaster Med 2019;34(Suppl. 1):s129–s130 doi:10.1017/S1049023X19002814

### Evolution of United States Legislation to Facilitate Bystander Response to Opioid Overdose

Dr. James Fletcher<sup>1,2</sup>, Dr. Michael Molloy<sup>1,3</sup>, Dr. Alexander Hart<sup>1,2</sup>, Amalia Voskanyan<sup>1</sup>, Dr. Ritu R Sarin<sup>1,2</sup>, A Prof. Gregory R. Ciottone<sup>1,2</sup>

- 1. BIDMC Fellowship In Disaster Medicine, Boston, United States
- Department of Emergency Medicine Beth Israel Deaconess Medical Centre, Boston, United States
- 3. University College Dublin, Belfield, Dublin, Ireland

**Introduction:** Opioid overdose deaths in the United States are increasing. Time to restoration of ventilation is critical. Rapid bystander administration of opioid antidote (naloxone) is an effective interim response but is historically constrained by legal restrictions. **Aim:** To review and contextualize development of legislation facilitating layperson administration of naloxone across the United States.

**Methods:** Publicly accessible databases (1,2) were searched for legislation relevant to naloxone administration between January 2001 and July 2017.

**Results:** All 51 jurisdictions implemented naloxone access laws between 2001 and 2017; 45 of these between 2012 and 2017. Nationwide mortality from opioid overdose increased from 3.3 per 100,000 population in 2001 to 13.3 in 2016, 42, and 35 jurisdictions enacted laws giving prescribers immunity from criminal prosecution, civil liability, and professional sanctions, respectively. 36, 41, and 35 jurisdictions implemented laws allowing dispensers immunity in the same domains. 38 and 46 jurisdictions gave laypeople administering naloxone immunity from criminal and civil liability. Forty-seven jurisdictions implemented laws allowing prescription of naloxone to third parties. All jurisdictions except Nebraska allowed pharmacists to dispense naloxone without a patient-specific prescription. Fifteen jurisdictions removed criminal liability for possession of non-prescribed naloxone. The 10 states with highest average rates of opioid overdose-related mortality had not legislated in a higher number of domains compared to the 10 lowest states and the average of all jurisdictions (3.4 vs 2.9 vs 2.7, respectively). **Discussion:** Effective involvement of bystanders in early recognition and reversal of opioid overdose requires removal of legal deterrents to prescription, dispensing, distribution, and administration of naloxone. Jurisdictions have varied in degree and speed of creating this legal environment. Understanding the integration of legislation into epidemic response may inform the response to this and future public health crises.

## References:

- http://pdaps.org/datasets/laws-regulating-administrationof-naloxone-1501695139 (accessed 23 November 2018)
- https://www.kff.org/other/state-indicator/opioid-overdosedeath-rates/ (accessed 23 November 2018)

Prehosp Disaster Med 2019;34(Suppl. 1):s130 doi:10.1017/S1049023X19002826

## Expand the Understanding of Response Roles: Who Really is First on Scene

Dr. Kelly Klein<sup>1</sup>, Dr. Curtis Harris<sup>2</sup>, Kelli McCarthy<sup>2</sup>, Tawny Waltz<sup>2</sup>, Parker Prins<sup>2</sup>, Dr. E. Liang Liu<sup>1</sup>, Dr. Raymond Swienton<sup>1</sup>

- Division of Emergency and Disaster Global Health, Department of Emergency Medicine, University Of Texas Southwestern Medical Center, Dallas, United States
- 2. Institute of Disaster management, College of Public Health, University of Georgia, Athens, United States

**Introduction:** The US, as well as many countries, are being beseeched by more natural and man-made events; both small (e.g., shootings) and geographically vast (e.g., floods). Due to a myriad of issues, traditional first responders i.e., EMS, fire department, and police cannot be expected to be the only trained lifesavers on the scene. In the US (as in many countries), it is imperative to begin the discussion to better understand the role of the "injured" and "immediate" responders and how they interact with the "first" responders.

**Aim:** To open a discussion amongst disaster experts about the merits of training and subsequent promotion of a curriculum for "immediate" responders.

Methods: Literature review.

Discussion: After recent evaluations of events, it is postulated that there are three categories of responders: the injured, the immediate, and the first (EMS, fire department, police). The premise upon which disaster risk reduction and building community resilience are achieved begin with strengthening, empowering, and equipping local populations with the appropriate tools. This would involve education, skills, and training. With the average general public trained, and if they are one of the first two categories, then the community would not only be better able to assist themselves, but also be able to integrate into the recovery process much more quickly and fully. By doing this, they will be empowered to take care of themselves, neighbors, and community, which in turn increases local resilience.

Prehosp Disaster Med 2019;34(Suppl. 1):s130 doi:10.1017/S1049023X19002838

#### Experience of Activation of the J-SPEED(MDS) in Japan

Dr. Tatsuhiko Kubo<sup>1</sup>, Dr. Joji Tomioka<sup>2</sup>, Dr. Hisayoshi Kondo<sup>3</sup>, Dr. Yuichi Koido<sup>3</sup>

- 1. University of Occupational and Environmental Health, Kitakyusyu, Japan
- 2. Yonemori Hospital, Kagoshima, Japan
- 3. National Disaster Medical Center, Tachikawa, Japan

Introduction: The Emergency Medical Team (EMT) Strategic Advisory Group of the World Health Organization has endorsed the EMT Minimum Data Set (MDS) as the standard methodology for EMT daily report. The MDS had been developed on a similar methodology called J-SPEED which developed in Japan. Thus, lessons learned from the J-SPEED can be applied to the MDS.

**Aim:** To review previous J-SPEED activations and to extract lessons learned.

Poster Presentations s131

**Methods:** Cases of the J-SPEED activation at the Kumamoto earthquake in 2016, West Japan Heavy Rain in 2018, and Hokkaido Earthquake in 2018 were reviewed.

Results: The first large-scale activation of the J-SPEED at the Kumamoto earthquake revealed a significant burden in aggregations of submitted paper forms at the EMT Coordination Cell (EMTCC). To strengthen this function of the EMTCC, electronic system and human capacity development have been identified as key issues. To fulfill this gap, a smartphone app so-called J-SPEED+ has been developed. Also, the J-SPEED offsite analysis support team, which is a team to support analysis of data from outside of an affected area has been established. These two functions contributed to significant improvement of J-SPEED data flow at the West Japan Heavy Rain and Hokkaido Earthquake. These two responses reinforced the necessity of strengthening the capacity of J-SPEED onsite coordinator working at the ETMCC, and national education and training for all EMTs.

**Discussion:** In order to strengthen the mechanism to run the J-SPEED, nationwide training for all EMTs, onsite coordinators, and the off-site analysis support team have been established. The authors regard this structural approach as a requirement for other countries to run the MDS.

Prehosp Disaster Med 2019;34(Suppl. 1):s130–s131 doi:10.1017/S1049023X1900284X

# The Experience of a Mass Casualty Incident Call in a Tertiary Hospital after the 2018 Hualien Earthquake

Ms. Hsing Chia Cheng, Mr. Kuang Yu Niu, Mr. Ming Han Ho Hualien Tzu Chi Hospital, Hualien, Taiwan

**Introduction:** After a 6.0 magnitude earthquake struck Hualien on February 6, 2018, over one hundred and fifty patients crammed into the emergency department of a nearby tertiary hospital within two hours. The mass casualty incident (MCI) call was activated, and over 300 related personnel responded to the call and engaged with the MCI management. **Aim:** This research aimed to analyze the practice of an MCI call and to form the strategies to improve its efficiency and effectiveness.

**Methods:** The research was conducted in a tertiary hospital in Hualien, Taiwan. Questionnaires regarding the practice of the MCI call were sent out to the healthcare providers in the emergency department who responded to that MCI operation.

Results: Thirty-seven responders in the emergency department were involved in this study. 78% had participated in training courses for hospital incident command system (HICS) or MCI management before this event. On arrival at the emergency department, 69.4% of the responders were aware of the check-in station and received a clear task assignment and briefing. During the operation, 25.7% reported the lack of confidence carrying out the assigned tasks and 54.1% of the participants experienced great stress (stress score over 7 out of 10).

**Discussion:** MCI is an uncommon event for hospital management. It is universally challenging owing to its unpredictable and time-sensitive nature. Furthermore, the administration could be further complicated by the associated disasters. Despite regular exercises and drills, there are still a significant number of participants experiencing stress and confusion during the operation. The chaotic situation may further compromise the performance of the participants. This study showed that optimizing task briefing and on-site directions may improve the performance of the MCI participants.

Prehosp Disaster Med 2019;34(Suppl. 1):s131

doi:10.1017/S1049023X19002851

## The Experience of Using Informational Systems to Improve the ACLS Process Optimization in the Emergency Department

Dr. Pei Fang Lai, Miss Ying Fang Zhou, Mr. Pin Shou Chen Hualien Tzu Chi Hospital, Hualien, Taiwan

**Introduction:** The best first-aid treatment for cardiac arrest patients is Advanced Cardiac Life Support (ACLS) to not only hope to save lives but to also leave minimal sequelae. The American Heart Association (AHA) published updated ACLS guidelines for care in 2015 emphasizing the concept of teamwork in resuscitation. However, the actual use of ACLS is not easy due to stress and unfamiliarity with the process.

Aim: Therefore, we want to use the information technology to assist the medical team to implement the ACLS process. This information system can help us to save time and labor, as well as increase precision. In addition to this, data analysis is more convenient, which facilitates the management and supervision of resuscitation quality.

Methods: An information system was developed using responsive web design (RWD) website. It can be used on a variety of devices, such as desktops, tablets, or mobile phones, and can be updated simultaneously. The system requires non-synchronous operation to be used in a wireless network environment. When the information system is in operation, the medical personnel can perform the resuscitation actions according to voice prompts, which can periodically remind staff to check rhythm, give correct medication dose, and identify whether defibrillation shock is needed. At the same time, the entire process can be recorded instantly. After the file is uploaded, the medical records are complete at the same time.

**Results:** After 3 months, the satisfaction of medical staff reached 80.3%, the rate of return of spontaneous circulation (ROSC) of OHCA cases elevated to 45% from 15%, and discharge without neurological sequelae elevated to 33% from 27.4%.

**Discussion:** All hospital staff can use this system to assist in the correct implementation of advanced CPR. It improves the quality of resuscitation and reduces the burden on clinical and writing medical records of medical staff.

Prehosp Disaster Med 2019;34(Suppl. 1):s131

doi:10.1017/S1049023X19002863