
Can. J. Math. Vol. 48 (4), 1996 pp. 692-709. 

THE LOCAL PRODUCT STRUCTURE 
OF EXPANSIVE AUTOMORPHISMS 

OF SOLENOIDS AND THEIR ASSOCIATED C*-ALGEBRAS 

BERNDT BRENKEN 

ABSTRACT. An explicit description of a hyperbolic canonical coordinate system 
for an expansive automorphism of a compact connected abelian group is given. These 
dynamical systems are factors of subshifts of finite type. Some properties of the asso­
ciated crossed product C*-algebra are discussed. In these examples, the C* -algebras of 
Ruelle are crossed product algebras. 

1. Introduction. A further investigation of the dynamical systems underlying a 
certain family of crossed product C*-algebras provides our motivation for this paper. 
Various families of crossed product C*-algebras arising from automorphisms of compact 
connected abelian groups, are introduced and studied in [3, 4, 5]. The (typical) algebra 
occuring in these families (and the natural extension of these families described below) 
is separable, amenable, non-type I (in fact antiliminal), finite and embeddable in an 
^F-algebra. It is known that the AT-groups of these algebras are, in general, not sufficient 
to distinguish their isomorphism classes, as the ideal structure must play a role. The 
algebras possess a separating family of finite dimensional quotients and a count of the 
finite dimensional irreducible representations provides an isomorphism invariant related 
to the entropy of the given group automorphism ([10, 3, 4, 5]). These algebras may 
also be described in terms of a universal property involving unitary generators. Here a 
connection with aspects of 'wavelet theory' appears with potentially interesting points 
of view. 

In the following we explicitly describe a local product structure—a topological Smale 
space structure—for expansive automorphisms of compact connected (abelian) groups. 
Many of the above stated properties of the crossed product algebras formed from these 
systems follow from this observation. As shown in [17, 19] there are several important 
C*-algebras formed from various equivalence relations that one can associate to such a 
system in addition to the usual crossed-product algebra. We point out that the dynamical 
systems considered here naturally include both the prototype Anasov diffeomorphism of 
the 2-torus and the solenoid example considered in [17]. Note that the dimension of the 
group can be an arbitrary finite number. 
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We also point out that the dynamical systems we consider are viewed in [11] as 
examples of higher dimensional analogues of subshifts of finite type, where the symbol 
space may be a compact Lie group (in our case, a finite product of copies of the circle T). 
A reference to [8] is made to conclude that the expansive systems considered have a local 
product structure. To strictly apply [8] one seems to require that the dynamical system is 
a factor of a subshift of finite type, which is not immediately clear here. That it is such 
a factor does however follow (from [8]) once we know that the dynamical system has a 
local product structure. In any case, more is shown. By describing a system of canonical 
coordinates along with a metric which expands and contracts on the appropriate sets, a 
Smale space structure is explicitly given. 

The following is an overview of the paper (with detailed references found in the 
main body of the text). With a pair of nonsingular integral d x d matrices, F and M, 
is associated a subshift automorphism of an (explicitly defined) compact, abelian, and 
finite dimensional group G. Restricting the automorphism to the connected component, 
K, of the identity of G, one obtains a model for a class of automorphisms of solenoids 
which include all expansive automorphisms of compact, connected (abelian) groups. The 
identical dynamical system K may be obtained from more than one system G, indeed, 
the rational matrix Q = M~lF determines K. The point of view taken is that both G and 
K are principle fibre bundles (over the same base space, the J-torus) with O-dimensional 
groups as fibres. Using this viewpoint it is seen that K is a Bohr compactification of Rd (d-
dimensional real space) with fibre a Bohr compactification of Td. The local bundle charts 
later provide a convenient vantage point to view the product structure. The characteristic 
class of the bundle K is also identified. That this context is a natural extension of the 
results in [5] is explicitly seen after the dual group K is computed. We also consider 
the (dual) dynamical system defined by a complex matrix whose spectrum consists of 
algebraic numbers. 

In Section 3, by considering the smallest sublattice of ~Ld invariant under both Q and 
Q~l, we obtain a basis of Td in which the matrix F has a useful block upper triangular 
form. This leads to some easily verifiable conditions that assist in determining whether 
the fibre of K is a finite group (so Kisa covering space) or a Cantor group. Conditions on 
the matrices F and M which ensure that G is connected (i.e., G = K) are also examined, 
which is useful, in as far as G is explicitly defined. 

In Section 4, the bundle charts are used to show the existence of a local product 
structure for hyperbolic matrices Q. As expected the group structure on K is reflected 
in some additional coordinate like behaviour. The local charts also enable an intuitive 
description of the local stable and unstable sets. 

In conjunction with some ergodic type results for our expansive systems, the existence 
of a product structure has some particularly nice consequences: the dynamical systems 
occur as elementary parts of the Bowen spectral decomposition and so have both the 
shadowing property and the specification property. The later in turn implies that the 
entropy of an expansive automorphism of a compact, connected, abelian group is given 
by the growth rate of the number of periodic points, giving an alternate approach to 
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one of the results in [15], and also yielding isomorphism invariants for the associated 
crossed product algebra. Along with the crossed product algebra one can associate many 
other C*-algebras with our dynamical system. We consider the stable, unstable and 
asymptotic algebras (which, in our context, are also crossed product algebras) and show, 
in certain cases, that we obtain examples of a class of algebras of much recent interest, 
namely purely infinite, simple, unital, nuclear, algebras. A potentially interesting pair of 
(isomorphic) crossed product algebras defined by the characteristic class of the bundle 
K is also considered. These later algebras are also direct limits of finite dimensional 
algebras over the base space. 

In the final section a universal property for the crossed product algebra C(K) x 
Z is given. One consequence, for example, is an identification of the universal C*-
algebra generated by unitaries satisfying classical wavelet identities with the crossed 
product algebra we consider. We also identify the quotient of a Laurent polynomial ring, 
considered in earlier work, with rings occuring in our present context, thus allowing an 
extension of earlier results. 

I would like to thank I. Putnam for making the preprint [17] available to me and also 
A. Kumjian, M. Rjeirdam and K. Varadarajan for helpful conversations. 

NOTATION. Denote the nonnegative integers, positive integers, integers, rationals, 
reals, complexes and the unit circle in the complex plane by N, N+, Z, Q, R, C and T 
respectively. For d G N identify Jd (with unit e) with Rd /ld by (e2niXl,... ,e2™<0 = 
#(xi, . . . ,JCJ) where q\ Rd —> Rd/Td is the natural quotient map. The group operation 
in Jd is therefore written additively. An endomorphism of Jd is viewed as an element 
of 5K/(Z), the d x d matrix ring over Z. An element A G fW (̂Z) maps q{x) to q(Ax), 
x G Rd. For R a ring and A G !Md(R), char (A) denotes the characteristic polynomial of 
A, det(A — A), an element of R[X\. The transpose of A is At. For R a subring of C, the 
spectrum of A is denoted sp(A). For K a group, \K\ denotes the cardinality of K. For 
K compact, Axx\{K) is the group of continuous automorphisms of K. The entropy of a 
o G KvX(K) is denoted h(p). Where convenient ( , ) : G x G - > T denotes the duality 
between the locally compact abelian groups G and G. Given two elements a, b G Z, 
(a, b) denotes their greatest common divisor. 

2. Solenoids and fibrebundles. A solenoid is a compact connected abelian group 
of finite dimension [16]. We consider the class of topological dynamical systems arising 
from a (continuous) automorphism a of a solenoid K with the property that the dual 
group K is finitely generated under the dual automorphism a, i.e., that K is generated 
(as a group) by a finite union of orbits under <r. We call these dynamical systems (K, a) 
cr-finitely generated (a-f.g.) solenoids. These systems were studied, for example, in [13]. 
It is known ([13]) that the dynamical systems given by expansive automorphisms of 
compact, connected groups are included in this class (the fact that the group must be 
abelian is in [12]). The condition that K is finitely generated under a is equivalent to the 
condition (definable in a more general context) that (K, a) satisfies the descending chain 
condition, in other words, every decreasing sequence of closed a-invariant subgroups 
has only finitely many strict inclusions ([11]). 

https://doi.org/10.4153/CJM-1996-036-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1996-036-4


THE PRODUCT STRUCTURE OF EXPANSIVE AUTOMORPHISMS 695 

The class of cr-f.g. solenoids may also be described by replacing the assumption that 
dimK < oo with the assumption that h(a\ the entropy of a, is finite ([11]). In one 
direction, the entropy of an automorphism of a solenoid is (computable and) finite by a 
result of Yuzvinskii ([16]). In the other direction, finite entropy of a yields that K has 
"locally finite rank under <J" ([13]) and this, coupled with the assumption that K is finitely 
generated under a, shows rank£(= dimK) is finite. 

Given a triple (d, F, M) with d a positive integer and F, M G 0^Q(Z) with det F, det M ^ 
0 we construct a a-f.g. solenoid (K, a). Viewing F, M as surjective endomorphisms of 
the d-torus Jd

9 let K be the connected component of the identity of the compact abelian 
group G = {y G (T^)z | Myn+\ - Fyn, n G Z}. The continuous group automorphism cr 
(shift to the left) defined on (T^)z by (cry)n = yn+\, (y G (T^)z, w G Z) restricts to a group 
automorphism of both G and £. Denote both of these again by a. This class of examples, 
in fact, exhaust all of the possibilities; any cr-f.g. solenoid (K, a) is topologically conjugate 
to one formed from such a triple, where in fact M can be taken to be multiplication by a 
positive integer a ([13]). 

Let (AT, or) be a a-f.g. solenoid described by the triple (d, F, M). Let G be the shift 
invariant subgroup of (Jd)z defined above. We first examine the continuous group ho-
momorphism ir: G —> IP* where it denotes the map y —» yo, (y G G). Note that since 
both M and F are surjective maps of Jd, the equation Mx = Fy always has a solution x 
(respectively y) given j (respectively x) in Trf. It follows that IT: G —> TJ is surjective and 
T^ ~ G/H with / / = 7r_1(e) a closed subgroup of G. 

PROPOSITION 2.1. 77*e closed subgoup H = 7r-1(e) o/G is totally disconnected, and 
so a ^-dimensional group. 

PROOF. It is enough to show that Pn = {yn \ y G / /} is finite for each n G Z, for then 
H is a subspace of a countable product of finite discrete spaces. The set Po consists of 
the single element e. Vox A G 5W (̂Z) with det̂ 4 f 0, the set A~l(t) is a finite subset of Jd 

for each f G T*; it has ^ ( Z ^ / Z ^ l = \ld/A(Zd)\ = | det^| elements. Thus^-^F) is a 
finite subset of Jd for PCT r f finite. The result follows by induction. • 

The next proposition shows that the map IT: G —* Jd has a local cross section, so 
defines a (locally trivial) fibre bundle with fibre ir~l(e) = H and structure group //, i.e., 
a principle //-bundle ([21]). Although a local cross section can be constructed directly 
using induction and the homotopy lifting property for both the covering projections M 
and F, there is a shorter argument. 

PROPOSITION 2.2. There is a neighbourhood U of e in Jd and a continuous map 
s.U —* Gwith 7ros{u) = u, (u G U). 

PROOF. Denote by Q the isomorphism of Rd given by the element M~lF G GL(d, Q). 
Define a continuous group homomorphism 0: Rd —» G by (0(x)) = q(Q?x) for x G Rrf, 
n G Z. Since #: Rrf —* "P* is a covering projection one can choose a neighbourhood £/ of 
e in T^ and a homeomorphism h:U—+Rd with g o h{u) = u,(u G £/). Clearly TTOO = q9 

so the map 0 o /z = 5 is a local cross section for IT. m 
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Let I denote the subgroupp~l(e) of K where/?:A^ —* T^ is the restriction of IT to K. 

COROLLARY 2.3. The map p:K-^Jd defines a principle Z-bundle. 

PROOF. If w is a path in Jd with initial point e it has a (unique) lifting vv in Rd (with 
initial point 0). Since Rd is (path) connected, lm9 C K, where 9: Rd —> G is defined in 
the previous proposition. The path flow thus lies in K and covers the path w with respect 
to p. Therefore p: K —» T^ is a surjection and the local cross section s defined above has 
image in K. m 

Henceforth 0 will denote the homomorphism 0:Rd —* K defined above. Note that 
po9-q and that 9 is the exponential map for the compact abelian group K. 

For future reference we describe the local homeomorphism <j> describing K —> Jd 

as a fibre bundle near the identity e of K. Choosing U as in Proposition 1.2 define 
</>: U x I -^p~\U) by 4>(u,g) = *(«) + g = fl(A(i/)) +g, u G £/, g G I . For * G / ^ ( I / ) , 
(j)~l(k) = (p(k),k — s(p(k)y By means of a similar chart ij;:U x H —* TT~1(U) for the 
//-bundle G, i^(«,g) = 6>(/z(w)) +g , u G C/, g G H, we see that / / + / : = G. Since 
E = / / H / : it follows that G/K ~ / / / I . The group G/K is Hausdorff, compact and 
totally disconnected, so 0-dimensional. It follows that 0 —» G/AT —»• G —> AT —> 0 is an 
exact sequence of discrete abelian groups with K torsion free and G/K torsion. 

The fibres, H and S, of these fibre bundles are totally disconnected and so have no 
nonconstant paths. Since fibre bundles (over a paracompact Hausdorff space) are also 
fibrations, it follows that the bundles ir: G —> T^ and/?: K —> TJ have unique path lifting. 

The next proposition shows that AT is a Bohr compactification of Rd. 

PROPOSITION2.4. hn9 = K. 

PROOF. It is sufficient to show K C Im 9. We first show that if a: I —•» G is a path 
with initial point £, the unit of G, then Imcr C Im0. Since q: Rd —> T^ is a covering 
projection with unique path lifting, there is a (unique) path w in Rrf with initial point 
0 covering the path ir o a. However, 9 o w is also a path in G with initial point £ and 
7r(0 O W) = q o w = 7r o a. By uniqueness of path lifting in the fibration TT: G —* Trf, 
a = 9 ow. 

The subgroup Im 0 thus contains any one-parameter subgroup of K. The smallest 
closed subgroup of K containing all one-parameter subgroups of K, say L, is thus 
contained in Im 9. However, since K is connected, L = K ([9]). • 

REMARK 2.5. Since the map 9: Rd —> (Jd)z only depends on the element Q = M~XF 
of GL(J, Q), we see immediately that the description of (K, a) only depends on Q. It is 
also clear that given Q = M~XF one can always find F G 5W&(Z) and a G N+ so that 
Q = a~lF. Of course, the group G will vary with the M and F chosen to represent Q. 

REMARK 2.6. (a) The computation of K is now straightforward (cf., [11]). Since 
K < (Jd)z we have n = (nk), an element of 0 Z Zd, is in K1 if and only if («, 9{r)) = 0, 
(r G Rrf), i.e., E(/i*, ?fi*(r)) = 0, (r G R*). Thus ?:((Qt)

knk,r)Rd G Z, (r G RJ) where 
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(, )Rd is the usual inner product in Rd. Since 0 is a value of this sum (when r = 0), 
one must have ^{Qtfnk = 0. Thus K * ®Zd/KL & Td\Qu (Qt)~

ll the subgroup of Qd 

(endowed with the discrete topology) generated by U{(Qt)
krik | nk G Zd, k G Z}. The 

dual automorphism a of the shift on K is multiplication by Qt. 

(b) The family of dynamical systems (Afl, a) for a G R+ considered in [5] can be 
extended (see Proposition 6.3 also) to the following setting. For̂ 4 G ^Q(C) with det̂ 4 ^ 0 
consider the subgroup A^ = Zd[A,A~l] (generated by U{AkZd \ k G Z}) of Cd endowed 
with the discrete topology. The automorphism a dual to multiplication by A defines a 
dynamical system (A^, a) where A^ is compact, abelian and connected. It is clear that AA 
is generated as a group by a finite union of orbits under multiplication by A. Also, since 
Zd C AA, d < rank A^. If the minimal polynomial m of A divides an element of Q[A], or 
equivalently, if the spectrum of A consists of algebraic numbers in C, then rank A^ < d s 
where s is the degree of the generator PA of the ideal {h G Q[A] | m\h G R[\]} in Q[A]. 
In this case (AAICT) is a a-f.g. solenoid and one can conclude that there is a r G N+ and a 
Q G GL(r,Q) with Zd[A,A~l] * Zr[Q,Q~l] such that multiplication by A corresponds 
to multiplication by Q. 

The homomorphism 0\Rd -^ K restricts to a group homomorphism \ fr°m ~%-d -
q~x(e) to I =p~\e). The following proof makes implicit use of the local triviality of the 
fLbrationp:K-*Jd. 

PROPOSITION 2.7. The group homomorphism \'-Zd —+I, has dense image. 

PROOF. Since Imx = lm0np~l(e) one needs to show lm0np~l(e) = S. Now 
K = Im0, so given x G £ there is a convergent sequence xn in Im0 with limx„ = x. 
Thus 7r(x„) —•> e and 7r(x„) eventually lies in any neighbourhood V of e in "P*. If 5 is 
the local cross section foxp\K —• P* defined above, then Im5 C Im^,so (for n large 
enough)>>„ = xn — s(n{xn)) G Im0. It is straightforward to check tha t^ G p~x(e) and 
y n —• x — e - x. m 

REMARK 2.8. Although the specific cross section s defined in Proposition 2.2 was used 
in the proof of Proposition 2.7 this was not necessary, as it is the case that lm(s) C Im 0 
for any local cross section s of/?: K —> T^ defined on a path connected neighbourhood 
V of e in Jd. To see this, let v G V, let a be a path in K from e to s'(v) and let w be the 
unique path in Rd with w(0) = 0 and qow=poa.By unique path lifting in the bundle 
p:K—> Jd, it follows that 9 o w = cr and thus a(v) G Im 0. 

The compact group I is thus a Bohr compactification of Td ([9]). The map \ may also 
be viewed in another context, one which (since I is abelian and so has only trivial inner 
automorphisms) shows that it serves to classify the equivalence class of the principle 
X-bundle over T^ given by p ([21 ]). 

PROPOSITION 2.9. The map ^ Z ^ Z w the characteristic class of the bundle 
p\K-^ld. 
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PROOF. The characteristic class of/?: K —> Jd is the group homomorphism defined 
by mapping the class [w] in n\(Jd, e) of a loop w at e in T^ to w#, where w# is a self 
map of Z. By definition ([21]), w#(£) = fT(l) where W is the unique lifting in K of w 
with W(0) = ^ E X . (The definition actually involves W~l, however, since Z is abelian 
we can ignore this convention.) Note that w#(£) = w#(e) + £, (£ G X), since FT + £ is 
the lifting of w with initial point £ if W is the lifting of w with initial point e. We may 
therefore identify w# with the action of the group element w#(e) on Z. 

The fundamental group TT\(Jd, e) is isomorphic to Z^ by mapping [w] to w(l) where 
w is the unique lifting in Rd of w with initial point 0 (in R^). Using this identification we 
have x ( M ) = x(w(l)) = 0(w(l)) = ( « ° HOO) = w#(e). • 

REMARK 2.10. In the following commutative self-dual diagram with exact rows (and 
diagonal) the maps \ and 6 have dense ranges. 

Using this (along with Remark 2.6(a)) the discrete abelian group X may be identified 
with the subgroup q(Zd[Qt, Qj~1]) of Jd (with the discrete topology). 

3. Cantor fibres and connected bundles. Since the fibre I of/?: K —> T^ is a group, 
it has an isolated point if and only if it is discrete, so £ is either perfect, so a Cantor group, 
or it is discrete and hence, by compactness, finite. By the Proposition 2.7 the latter occurs 
if and only if Imx is finite. However, Imx — 1d/ kerx, so this is determined by the 
invariants of the submodule kerx = n{QnZd | n G Z} in Td. Denoting the submodule 
ker x by S, we have that Z is finite if and only if S is a rank d submodule of Zd, otherwise 
Z is a Cantor group. 

REMARK 3.1. A fibration with unique path lifting whose base space is locally path 
connected and semilocally 1-connected must be a covering projection if the total space 
is locally path connected ([22]). Thus K is locally path connected exactly when the fibre 
Z is discrete, i.e., when Z is finite. 

We determine some conditions relating to whether or not Z is a Cantor group. This 
also has bearing on the homomorphism 0, since ker# = kerx (= S). If S = f]nei Q1^ 
has rank r f 0, there is a basis {e, | 1 < / < d} of Zd so that {a,-e/ | 1 < / < r} is a basis 
for S where the at G N, a\ > 1, and at \ ai+\, (1 < i < r — 1). Since Q restricts to an 
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automorphism of 5, there is an N - [«,y] G GL(r, Z) with Q\s = N. Thus, for I <i <r9 

Q{aiet) = £y=i /ly/fl/ey and so (in S <g> Q, a submodule of Qd), g(e,-) = £J=1 njiaflajej. 
However, with Mdenoting multiplication by a, Q(et) = Ylf=\ a~xfjiej for 1 < i < r where 
[/#] is the matrix of F relative to the basis {et | 1 < i < d} of Zrf. (It is similar over 
5Wj(Z) to the given matrix F.) Since {e, | 1 < i < d} may also be viewed as a basis for 
Qd, it follows that a~lfjf - ajn^aj1 for 1 < ij < r andfa = 0 for ij with 1 < / < r 
and r + 1 <y < d. We conclude that F is similar (via a unit in f^(Z)) to a block upper 

triangular matrix n r with A a square rxr matrix, A = a • DND~l, N G GL(r, Z) and 

Z) a diagonal matrix in ^C(Z), 

£> = 

0 i 

with 1 < a\\d2\ • • - \ar 

Notice that charF = char^4 • char C, a product of (monic) elements of Z[A] of degree r 
and d — r respectively, and also that | detF| = ar • | det C\. 

We summarize these results and some of their consequences. 

PROPOSITION 3.2. For a G N, F G 5M&(Z) w///z detF ? 0 set Q = a~lF and S = 
C\{fflZd | « G Z}. TjTr is f/ze nonnegative integer determined by the condition that r <d 
and ar is the maximal power of a dividing detF then rankS < r. In particular, if a > 1 
and (a, detF) = 1, then S=0.Ifa=l, then n{F lZ J | « G Z} has rank*/ if and only if 
F G GL(d, Z) (in which case S is Td). 

PROPOSITION 3.3. With the notation of Proposition 3.2, we have 
(a) TfrankS = d then char Q G Z[A]. 
(b) Ifchar F w irreducible then S=0orS has rank d, zn w/zz'c/z case | detF| = a .̂ 

We give some examples. 

EXAMPLE 3.4. (a) Set a = 2 and F = 
5 1 
1 1 

E fWi(Z), so a2 divides detF and 

0 = 2_ 1F G GL(2, Q). Then ex = (1,1) and e2 = 0 ,0) form a basis for Z2 with ex and 
2^2 a basis for the rank 2 submodule S = Pl{g"Z2 | « G Z}. The matrix of Q relative 

The matrix F relative to the basis {ei, £2} of Z2 is to this basis of S is N = 

2 1 
4 4 

fcl 2 

= 2DND~l where D = 
1 0 
0 2 

. We have char Q is an irreducible element of Z[A]. 

It is interesting to notice that Q* G 5L(2, Z). Since rankS = 2, the fibre for the bundle 
p'.K^J2 corresponding to the triple (2, F, 2) is a finite group, not a Cantor group. 

2 r (b) Seta = 2andF = 
-2 1 

, so detF = a1. Since charF = A2 — 3A +4 is irreducible 

but char Q £ Z[A], S must be 0 and so has rank strictly less than the highest power of a 
dividing detF. The fibre of the fibration/?: K —* T2 determined by the triple (2, F, 2) is a 
Cantor group. 
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After listing some preparatory results (to be mainly used in the next section) we 
discuss when the group G described by a triple (d, F, M) is connected. 

The translation invariant metric on Rd defined by a norm on Rd yields a translation 
invariant metric So on the quotient group Jd = Rd /Zd. The metric 6 = £„Gz 8n on (Jd)z 

with 6n = 2~\n\a6o, n ^ 0, then defines a translation invariant metric on G and K, which 
we still denote by 6. Here a is a strictly positive real number (to be further determined 
in Section 4 if Q = M~XF is a hyperbolic map of R^). 

For H a nonzero discrete (and therefore closed) subgroup of Rd, let s(H) = inf{||h\\ \ 
A G / / , A / 0 } , a strictly positive number. Letting Ube the domain of the local section h 
ofq: Rd —» Jd defined previously, we see that \\h(x)\\ = 8o(q(x), e) for x G Uo, where t/o 
is the ball of radius s(Zd)/2 about e. 

LEMMA 3.5. Letr]>0 be less than s(M-lZd)/2\\Q\\ (or s(M~lZd)/2 if\\Q\\ < l). 
Lety,z G Jd with 8o(y, e) < r\, 8o(z, e) < TJ and Mz = Fy. Then there arex, w GRd with 
||*|| < f], \\w\\ < rj, q(x) = z, q(w) -y andx = Qw. 

PROOF. Sinces(M~lZd) < s{Zd\ we have ||JC|| = <50(z, e)<r} and ||w|| = 60(y, e)<r\ 
if x = h(z) and w = h(y). Since Mz = Fy we have Mx — Fw G Zd, so x — Qw G M~x (Zd). 
However, ||JC — Qw\\ < s(M~l(Zdfj, so JC = Qw. m 

Note that there can be only one element w with q(w) = y and ||w|| < 77, since 
27/ < ^(Z^). Similarly, x is uniquely determined. 

PROPOSITION 3.6. Ifzn, (n G N), is a sequence in Jd with 8o(zn,e) < 77, 77 as in 
Lemma 3.5, andMzn+\ - Fzn then there is a uniquex G Rd with \\x\\ < 77 andqQ"x = zn, 
(n G N). In this case, ||g"x|| < 77, (n G N). 

PROOF. Apply induction with Lemma 3.5 and the fact that Q is an isomorphism. • 

Replacing n with — n yields the next statement. 

PROPOSITION 3.7. If' z-n, (n G N) is a sequence in Jd with 8o(z-n,e) < 77 and 
Mz-n = Fz_(„+i) then there is a unique x G Rd with \\x\\ < 77 and qQ~nx = z_n, (« G N). 
/« rAw case, \\Q~nx\\ <J],(n e N). 

For g G X, define g_ by (g_)w = 

continuous. 

gn' n J U • The map g - * g_ of Z to G is 
e, n < 0 r & d 

LEMMA 3.8. If gel. then g_ G I . 

PROOF. Since 8(Zd) is dense in I , it is sufficient to show 0(r)_ G S for r G Z<*. 

However 0(r)_ = q \y v)) ? w _ j s p a m connected to e in G, so lies in K. 
e, n < 0 

For g G I , define g+ = g — g_, also an element of S. Denote by 1+ the compact 
subgroup {g+ I g G I } . We have I = 1+ 0 I _ where S_ is defined similarly. Note, for 
example, that if a = 1 in the defining triple (d, F, a) for G then S = £+. 
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We will now describe conditions ensuring that G = K, i.e., that G, which is described 
by the triple (d, F, M), is connected. Let ^ , % be the relations (on Jd x Jd) defined by 
{(s, t)\Mt = Fs} and {{qr, qQr) \ r G Rd} respectively, so G = {x G (Jd)z | (JC„, JC„+I) G 

PROPOSITION3.9. K = {x e G \ (xn,xn+\) e%,ne Z}. 

PROOF. Since 6(Rd) C K it is enough to show K is contained in the stated set. Choose 
x G K,n G Z. Since fl(R^) is dense in K there is an r G R* with both 8o(qQ"r - xn, e) 
and 6o(qffl+lr — JC„+I, e) small enough to satisfy the hypothesis of Lemma 3.5. Thus, 
there are v, w G Rd with qv = qQPr — xn, qw = qQ"+lr — xn+\ and Qv = w. In particular, 
*/*+i = tf (2"+1 r-w) = qQ(Q"r - v) and since xn = qiffr - v) we have (xn,xn+i) e %. m 

PROPOSITION 3.10. Gis connected if and only ifFZd + MId = Td. 

PROOF. Clearly G is connected if and only if ^ = %. Since % C ^ and FZJ + 
Mld C Zrf it is enough to show ^ C % if and only if FLd + MI** D ZJ. An arbitrary 
(qu, qv) G ^ with w, v G Rd is an element of % if and only if there is an r G Rd 

with #(w — r) = q(v — Qr) = 0. This is the same as requiring a z (= u — r) G Z^ with 
v — (?« — Qz £ ZJ. However (#«, #v) G ̂  is equivalent to v — Qu G M~l(Zd). Thus 
^ C ^ ) if and only if given w G ZJ there is z G Zrf with M~x{w) - Qz G ZJ. Applying 
the isomorphism M shows this is equivalent to Td C MLd + FLd. • 

PROPOSITION 3.11. If (detM, detF) = 1 rte/i G w connected. 

PROOF. Since MZ<* + FZ J is a rank </ submodule of Zd, there is C G fW (̂Z) with 
det C j - 0 and MZ<* +FZ<* = CZJ. Since both MLd and FZ<* are contained in Cld it follows 
that C (left) divides both M and F. Thus det C divides detM and detF, so | det C\ = 1 
and CZ^ = Zd. By Proposition 3.10, G is connected. • 

Since G is connected if and only if ^ is connected ([11]) it follows that {(s, i) G 
Jd x Jd | Aft = Fs} is connected if (detM, detF) = 1. The converse if not true. For 

example, if M = 1 0 
0 2 

andF = 2 0 
0 1 

then Ml2 + FZ2 = Z2, so G is connected, but 

(detM, detF) ^ 1. If, however, M is a multiplication by a, then the converse holds. 

PROPOSITION 3.12. Let G = {x G (Jd)z | axn+\ = Fxn,n G Z}. 77ie« G w connected 
if and only if(a1 det F) = 1. 

PROOF. Since G is connected, ald + FZd = Zd. If D G 5M (̂Z) is a common (left) 
divisor of al and F then ZJ = aZd +FZd C DZd + DZd = DZd C ZJ: so DZd = Zd and 
| det D\ = 1. Thus / is the greatest common (left) divisor of al and F. If c = (a, detF) then 
c divides the dth invariant factor of the d x 2d matrix [F, a/] and thus the dth invariant 
factor of the greatest common (left) divisor /. Thus c = 1. • 
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4. A local product structure. We show that the dynamical system (K, a) has a 
Smale space structure for an appropriate metric S on K assuming that the map Q = 
M~lF E GL(J, Q) is a hyperbolic map of Rd. 

The map Q is hyperbolic if s p ( 0 D T = <j>. This is equivalent to requiring that the 
homeomorphism a of K be expansive ([13]). In this case there is a decomposition of 
Rd, Rd = E+ © £_, into two ^-invariant subspaces and a norm || || on Rd such that 
llfikll < h Q\E- is an isomorphism with | | e | ^ | | < 1 and ||(a,fc)|| = max{||«||, ||fc||} 
with a E E+, b E E-. Such a norm is called a norm adapted to Q. Since, in our situation, 
Q is an isomorphism of Rd, Q(E±) = E± and Q\^l_ = Q~l \E_. Also note that if E- f 0, 
that | |e |£_| | > HeUJI - 1 > 1 and, similarly, if E+ f 0, | |(T V I I > 1. We have that 
\\Q\\ = max{||2U+||, ||2U_||} with respect to such a norm. Write X = X++JC_ forx E Rd 

where JC+ E £+ and JC_ E £_. For g hyperbolic we will automatically assume that a 
norm adopted to Q has been chosen. In particular the metric <5onG and K discussed in 
Section 3 will arise from such a norm. 

A linear isomorphism, say T, of a normed space with || T~x || < 1 must be (positively) 
expansive; in other words if ||r"z|| is a bounded set for n E N then z = 0. This easily 
follows from ||z|| = || r-w(r"z)|| < l l r ^ H " ! ^ ! ! which tends to zero as n approaches 
infinity if ||7™z|| is bounded, (« E N). Thus Q~x \E+ and Q\E_ are (positively) expansive. 

As in [6] define, for x E K and e > 0, local stable and unstable sets by 

r f o e ) = {y E K | S^x^y) < e,(n E N)} 
F"(x,e) = {yeK\ 8(a-"x,a-ny) < e,(/i E N)} 

respectively. Observe that P(e, e) + JC = F(JC, e), JC E K and similarly for F". 

THEOREM4.1. Assume Q = M~lF is a hyperbolic map of Rd. Let z ep~l(U)where 
U C.Jd denotes the neighbourhood of e in Jd described in Proposition 2.2. Let r\' > Obe 
less than 2r//3 with rj chosen as in Lemma 3.5. Ifh(z, e) < r/7 there is a unique element 
w ofK with w E Vs (z, r/7) n F"(£, r/7). 

PROOF. For w E Vu(e,rjf) we have 8(a~nw,e) < r/7, (n E N), so 80(w-n,e) < r]1\ 
{n E N), and thus (Proposition 3.6) there is a unique JC E Rd with qQ~nx = w_„ and 
||g"~"*ll < r/7, (/i E N). In particular, ||£rw|£+jc+|| < r/, (n E N), and since Q~l\E+ is 
(positively) expansive, we have x+ = 0 and JC = JC_ E £_. Similarly if w E P(z, r/7) we 
have 6o(w„ — zn,e) < r/, (n E N), and there is a unique y E Rd with qQ^iy) = wn — zn 

and ll^jvll < r/, (« E N). Using that Q\E_ is positively expansive, it follows that j _ = 0 
and y =y+ E E+. Thus, for n E N, W-n - qQ~nx- and w„ - qQ"y+ + z„. 

Let </> denote the local chart of the fibre bundle/?: AT —•> IP* described in Section 2. 
Then z = 4>(u, g) for some « G ( / with <$o(w, e) < r/7 and g E l . Thus z„ = qQ*h(u) + g„, 
(n E N). For the two above conditions on wo to agree we need qx- = qy++q(h(uf). Since 
||x_ — y+ — h(u)\\ < 3r/ <2r\< s(Zd), it follows that h(u) = x_ — y+, so h(u)+ = —y+ and 
h(u)- = x-. Note thaty+ + h(u) = /*(«)_ = JC_; this shows qQly+ +zn = qQ*h{u)- +gn, so 

">-„ = qQ~nh(u)-
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and 
Wn = qQrKu)-+gn, (»GN). 

Thus w is in K and is unique. • 

REMARK 4.2. It is straightforward to see that F(x, e) n V(y, e) contains at most one 
point for any expansive homeomorphism of a compact metric space (of course, e must 
be less than a certain constant). 

Thus, if JC, y G K are within r/' of each other (in fact, one only requires p{x) to be 
within rj' of py in Jd), we have V'ix.r]') n Vfari') = P(JC,T/') H (^(£,7/) + .y) = 
(P(JC - 7, ?/') D F^e, r/0) +^ is a unique element of K, denoted [JC,y], ([17, 20]). The 
usual algebraic properties (described in [17,20] for example) of the locally defined map 
[, ] hold: [JC,JC] = JC, [[JC,J>],Z] = [JC,Z] and [JC, [y,z]J = [JC,Z]. Notice that [£, e] = e is a 
restatement of the fact that a is expansive. The underlying group structure of K yields 
additional identities. 

PROPOSITION 4.3. The locally defined map [,]on pairs (x,y) e K x K with x suffi­
ciently close to y satisfy the following: 

(a) [x,y] = [x-y,e]+y=[e,y-x]+x. 

(b) [-x,-y] = -[x,y]. 
(c) [JC,y] = [x, e] + [e,y]forx,y sufficiently close to e. 
(d) [JC — [e,y], e\ = [JC, e] and \e,y — [JC, e]\ = [e,y]for x,y sufficiently close to e. 

PROOF. Part (a) follows from the definition. The translation invariance of 6 implies 
8(x,y) = 8(—y, —x) and since a is a group homomorphism, part (b) follows. For part 
(c) note that [JC, e] + [e, JC] = [JC, e] + ([—JC, e] + JC) = JC, SO [JC,y] = [[JC,J>], e] + [e, [JC, >>]] = 
[JC, e] + [£,>>]. Also [JC - [e,y], e] = [JC, [£,;>]] - [e,j>] = [JC,J>] - [e,y] = [JC, e] (by part (c)) 
and (d) follows. • 

REMARK 4.4. For a E K,a = <j>(u,g) with g E E and w in "F* within distance v[ of e 
(where r/; is as in Theorem 4.1) we have 

[a,e] = </>(«-, g-) 

and 
[e,fl] = 0(tt+,g+), 

where w± has the obvious meaning; u± = q(h(u)^j. The first equality follows from 
Theorem 4.1 where it was shown that P (</>(«, g), rf) H F"(e, r/) = Q(h(u)J\ +g_. Using 
[£, a] = a — [a, £] one obtains the second. We thus have a description of the local stable 
and unstable sets about e, since ([20]) 

Vs (e, e) = {aeK\[e,a] = a and 8(e, a) < E} 

and 
F"(e, e) = {aeK\[a,e]=a and 6(0, d) < e}. 
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To finish showing that (AT, <5, o) is a Smale space we need that [ax, ay] = a[x,y] locally 
and that a (respectively a~l) is contractive on Vs (respectively P ) . 

For the first property we may assume that j> = e. For w G P(x, r\' /2 )n F"(e, 77 Y2) with 
x close enough to e such that <S(cr(x), e) < T / / 2 we have (since <S(cr(w), cr(x)) < r/ /2) 
that 8(a(w), e) < r/7 and so <r(w) G P(CT(JC), r\') n F"(£, 77'). Thus [ox, g] = <r[x, e] for x 
close enough to e. 

PROPOSITION 4.5. There is a constant a defining the metric 8 on K and a constant 
A G (0, 1) so that 

8(ax, ay) < \8(x,y) forx,y G Vs(e, r\f /2) 

and 
8(a~lx, a~ly) < \8(x,y) forx,y G V(e, r]f/2). 

PROOF. Since Q\E+ and g_ 1U- a r e contractive there is A0 G (0,1) with \\Q\E+\\ < 
A0 and ||e_1U_|| < A0. Choose a G (0,1) so that a/2 + A0 = A G (1/2,1). If 
0 G Vs(e,rj') there is a unique u G £+ with ||w|| < <$' and ^ ^ w = an, (n G N), so 
a = </>(w,g+) for some g G I . We have <5(cr(a),£) = I<5„(<z„+i, e) = £«>i 8n(a-n+ue) + 
<50(tfi,e) + Hn>\fin(an+ue) = Hn>o8n+\(a-n,e) + 80(aue) + E«>2^«-i(««,^) = 
Ew>o2-(w+1)a(5o(w_w,e) + ^o(ai^) + Ew>2 2-(w-1)a^o(^,e). Since | |g|£+ | | < A0 and 
\\u+\\ < rj' we have 8o(qQnu+Je) < \o8o(qQn~lu+,e) for n > 1, in other words, 
8o(an,e) < \080(an-\,e) for n > 1. Thus 8(a(a),e) < E*>o2~(n+l)a80(a-n,e) + 
A0^o(«o, e) + A0 E„>2 2-^-1)a^o(«w-i, e) = \(E„>i 2-wa£0(tf-„,e)) + (f + A0)$o(tfo, e) + 
Ao(E«>i 2-wa(50(ww,e)) < \8(a,e). 

A similar calculation shows 8(a~x(a),e} < X8(a1e) for a G V(e, r\'). If x,y G 
P(£, 77 Y 2) then a = x — y G P(e, 7/), and similarly for V". The translation in variance 
of 8 implies the result. • 

5. Isomorphism invariants. We note some further properties of (AT, a). If (AT, a) 
is cr-finitely generated then the periodic points are dense in K ([14]). This also follows 
from [11] since then (K, a) satisfies the descending chain condition. As noted previously, 
this is ensured, for example, if a is expansive. In terms of the element Q(= a~xF) of 
GL(d, Q) defining K, a expansive is equivalent to s p ( 0 H T = <j> ([13]). This condition 
also ensures that (K, a) is ergodic with respect to /i, the (normalized) Haar measure on 
K, since the later is equivalent to s p ( 0 not containing a n-th root of unity ([11], cf. [5]). 

The density of the periodic points implies that the nonwandering set for a is K. 
Coupled with the existence of hyperbolic coordinates (for a expansive), the Smale and 
Bowen spectral decomposition results apply to (K, a) ([6]). We remark that ergodicity of 
a with respect to /1 implies that a is (one-sided) topologically transitive, i.e., has a dense 
(forward) orbit ([23]). More is true. Since a is an ergodic endomorphism of a compact 
metrizable group, a is strong mixing with respect to u and so also topologically strong 
mixing ([23]). Thus (K, a) must occur as an elementary part in the Bowen decomposition 
([6]). It also follows (from a being an ergodic endomorphism of K) that n is a measure 
of maximum entropy ([23]). That /i is actually the unique such measure follows from 
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the fact that the entropy of a is finite ([23]). An alternate route to this conclusion is by 
noting that since (K, a) is an elementary part of the Bowen decomposition, it has the 
shadowing (tracing) property and the specification property ([6]). It is therefore, since a 
is expansive, intrinsically ergodic, i.e., there is a unique measure (so the Bowen measure) 
of maximal entropy ([6]). 

Expansivity and the specification property imply that the (topological) entropy of 
(K, a) is given by the growth rate of the number of periodic points, namely ([6]) 

h(&) =\xm- log \{x G K | O*(JC) = JC}|. 
n—•oo n 

Since \{x G K \ ̂ {x) = x}\ is an invariant of the crossed product C*-algebra C(K) x\a Z 
([10]) the entropy of a is also (cf., [5]). 

THEOREM 5.1. Let a be an expansive automorphism of a solenoid K. There is a 
sequence of isomorphism invariants including the entropy of o for the C*-algebra 
C(K)xaZ. 

Since (K, a) is "irreducible" (an elementary part of the Bowen decomposition) in 
the strong sense described in [17], the considerations of that paper apply to the Smale 
space (AT, a). Given x,y £ K then x is stably (respectively unstably, asymptotically) 
equivalent to y, written x ~ y (respectively x ~ y,x ~ y) if 8(0" x, o^y) —•» 0 as n —> 00 
(respectively —/z —> 00, |/i| —̂  00) ([17], [20]). Since these relations are defined in terms 
of the translation invariant metric 8, they are determined by the respective equivalence 
classes of the unit, e, ofK, which are subgroups ofK. Let Ks = {x G K \ x ~ £}, with 
Ku, Ka defined analogously. Note Ka = Ks D Ku is dense in K ([20]) so these subgroups 
are not locally compact in the subspace topology. However, the inductive limit topology 
on these subgroups yields locally compact groups acting continuously by translation 
on K. For example, Ks = Uw>o cr~n^Vs(e18

,)>j where Vs{e,8') is homeomorphic (via (j>) 
with the locally compact space {u G E+ \ \\u\\ < 8'} x {g+ \ g G E} = (E+)& x I+. 
With this topology, the C* -algebras of the equivalence relations C*(^), C*(~), C*(~) 
are the crossed product algebras obtained from the action of the groups Ks, Ku and Ka 

respectively on K. As observed in [17] these algebras are simple. In this situation one 
may see this by noting that the groups Ks, Ku and Ka each act freely on K with dense 
orbits. Note also that C*(~, Q) ^ C*(^7 Q~x) where Q G 5Mi(Q) is the hyperbolic map 
determining the hyperbolic system (K, a). 

There are enough invariants (though AT-theoretical ones play no role) to essentially 
distinguish the isomorphism class of the usual crossed product algebra C(K) x a Z in some 
restricted cases ([4]). In fact, in these cases, one can recover the dynamical system (as a 
member of the class of expansive automorphisms of a solenoid). Thus, one can naturally 
associate with these crossed product algebras the simple C* -algebras C*(~), C*(~) and 
C*(£) along with the action of Z on them. According to the classification programme 
([7]), ^-theoretical invariants should be able to classify these simple algebras. In the 
other direction one could also ask how well the associated simple C*-algebras, along 
with their Z-actions, determine the crossed product algebra C(K) x Z. 
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We briefly indicate some examples using this framework (cf. [17]). 

LEMMA 5.2. Given a triple (d,F,M) with detFdetM ^ 0, assume (detM, detF) = 1 
andthatMandFcommute. Then \p(o"(g)) \ g G I - } = {q(u) \ u G M~n(ld)} = M~n(e) 

and {p(cr-n(g)) | g G I+} = {q(u) \ u G F~n(ld)} = F~n(e\forn G Z. 

PROOF. This follows by using A~ld + BTd = Zd whenever (deU,det£) = 1 for 
A,B G 5M (̂Z) (Proposition 3.11) and an induction argument. • 

If M - 1 in a given triple (d,F, A/), (or if Q G fMj(Z)9 consider the triple (rf, g, 1)) 
then G = K = {x G (TJ)Z | JCW+I = F*w, /I G Z} and i / = I = Z+. It follows that x G ^ 
if and only if x G 0(2s_). If we further assume that sp(F) and the closed unit disk are 
disjoint, so that Rd = £_, we have that x G Ks if and only if x G (J«>o <T~"(^+) (with 
the inductive limit topology). The preceding lemma shows p(Ks) = \JFu~n(e) and in fact 
p~l([JF~n(e)) = ^ s i n c e l = X+. Thus, for M = 1 and sp(F) disjoint from the closed unit 
disk,wehave(c/[17])thatC*(~) = C(K)*KU = C(K)x9R

d * C(E)xxZJ®3C(L2(r')). 
Also C*(~) = C(K) x\Ks = C(K) x ( I k " " © ) * C(Jd) x [ U ^ G O ] ® %, where the 
subgroup U^~w(^) °f ~fd is given the discrete topology. 

REMARK 5.3. In this preceding example the discrete group \JF~n(e) is the group 
qZd[F,F~l] * % (Remark 2.10) where I , is the fibre of p\Kt -> Jd for the d-f.g. 
solenoid obtained from the transposed matrix Qt (= Ft). Notice also that C*(~) (and 
C*(~)) a r e limits of finite dimensional algebras over C(Jd). 

In general, we can also associate with a given cr-f.g. solenoid (AT, a) (described by 
a nonsingular element Q of fW (̂Q)) the (isomorphic) pair of crossed product algebras 
C(Z) xxZ

d and C(T^) xix Z. These may also be viewed as algebras associated to the 
bundle K with characteristic class \. Note that these algebras are, in general, not simple. 
For example, let Q = 1, so that £ ^ I = {e}. To ensure that these algebras are simple 
it is enough (since Im \ is dense in Y) that the group acts freely on the compact space, 
equivalent here to the homomorphism \ being injective. Propositions 3.2 and 3.3 give 
some sufficient conditions for the characteristic class x to be injective, thus associating 
another simple C* -algebra with (K, a). Since L is an increasing union of finite subgroups 
of T^ (Remark 2.10), this algebra is a limit of finite dimensional algebras over C(Jd). 

We return to the example (K, a) defined by F (= Q) G fW&(Z), detF f 0 and sp(F) 
disjoint from the closed unit disk. A. Kumjian has suggested that by using results of 
M. Rordam, for example, one possibly could show that the crossed products of the stable 
and unstable algebras with the automorphism defined by a are purely infinite algebras (in 
the general Smale space setting). This is the case for the examples under consideration. 

The automorphism a of K yields an automorphism a of C*(~) ([17])- In our 
context the automorphism of C*(~) = C(K) x {[ja~n(L)) is defined by a(f){g,k) = 
A/(cr_1(^), <J~l(kfj for g G Ks, k G K,f:Ks —> C(K) continuous and compactly sup­
ported and A = |detF|. Note that In A is the entropy of a. Restricting a~l to the 
unital, simple and nuclear C*-algebra ^ = C(Jd) x {lJF~n(e)>j defines an endomor-
phism p of ft* given by (pf)(g,k) = \~xf{Fg,Fk) where g G \JF~n(e)9 k G ld and 
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/ : {]F~n(e) —> C(Jd) with finite support. Recall S^ = \im(C(Jd) x F~n(e)) with unital 
embeddings. For h G C(Jd) C j ^ , p(h) = (ho F)X~l EgGF-i(e) Sg where 6g is the unitary 
in C(Jd) x F~l(e) implementing translation by g on Jd. Thus p(h) = (A o F) ®p\ in the 
identification of C(TJ) x / ^ ( e ) with C(TJ) ® JMĵ C), where/?i = A - ^ E g ^ i ^ g ) is a 
proper projection of fWx(C) (the order of the group F~l(e) is | detF| = A which is larger 
than 1 by the condition on sp(F)). Recall here that hoF £ C(Jdf~1{e) * C(Jd). Thus 
p(l) is a proper projection in J3k and p is a corner endomorphism of J^. 

Now observe that ty has a unique trace and so has real rank zero ([2]). Also, since 
it is a limit of matrix algebras over C(ld), it has the comparability property. Thus the 
crossed product of J^ with the corner endomorphism p (that scales the trace by A-1) 
yields a purely infinite simple unital nuclear algebra ([ 18]). These types of algebras have 
recently been classified. 

6. A universal property. We briefly describe a universal property for the algebras 
C(K) xCT Z associated to (K, a). 

THEOREM 6.1. Let F = [f}j] G 3l£(Z) with detF f 0 and a G N+. Let Abe a 
CT-algebra generated byd+l unitaries Ko,..., V^-x, U such that 

(i) {ad iftiYi) | 0 < i < d — I,k € Z} is a commuting family of unitaries 
(ii) BdU(Vf) = UU *f (0 < i < d- 1) 

(7/7> for W € U, the group generated by the unitaries Fo, . . . , Vd-\, £/, we /*tfve JF = / 
ifWa=L 

Then there is a *-homomorphism ofC(K) XCT Z onto J% (intertwining the automorphism 
a with ad U) whereK = Zd[Q, Q~l] and Q = a~lF. The C*-algebra C(K) xa Z is such 
an A. The *-homomorphism maps the corresponding unitaries in C(K) x\aZto those in 
A. 

PROOF. We introduce notation. Choose a basis {et | 0 < / < d — 1} of Td and 
view Zd as a subgroup of 0 z Td with v G Td the element of 0 Td mapping j in Z to 
S0Jv. The automorphismT of 0 Zd is given by the shift; (i~(n))k = «*_I, (« G 0 Zd) and 
F G Aut(Z^) is the element 0 F which commutes with r. For v e Zd,vk denotes the 
element r*(v) of 0 Zd. 

Define a homomorphism </?: 0 Zd —> t i by 

<p(tef) = adU*(Ff), 0 < i <rf— 1; &,£GZ. 

By definition, ad Wipiefi = ip{efs) = ^{e])) for 0 < / < d - 1; k,s G Z. It follows 
that ad (7 o <p = </? o r5, (5 G Z). 

To recast condition (ii) using ip note that ^{r{aei)^ = ad Uy{aei) = <p(Fej). Thus, for 

it G Z, <p(flgf) = a d ^ - V ( r ( ^ ) ) = adU*"V(^i) = ^ " 1 ^ , 0 = vK^?"1), so 

<p(arn) = ip{Fnl ( « G ® Z ^ ) . 

By induction, ipiaWri) = </?(F«), (r G N+,« G 0 ZJ). 
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We show that if n = (nk) €®Zd satisfies E0*«* = 0 (in Q*) then ip(ri) = /. This yields 
a map of K & 0 Zd/KL —• A and so a homomorphism of C*(K) * C(K) —• Jl. Since 
multiplication by Q is the automorphism on the quotient group K corresponding to the 
automorphism r on © ZJ, and since r corresponds to ad U on J?, the result follows. 

Choose n = (nk) e ®Zd with Eg*/!* = 0. Writing n as (... 0, ns,..., « r_5 ,0,.. .) 
with r, 5 G N we see that there is an r and s G N with Qsar(T,Qknic) = EJ=0 Par~^nj-S -
0. The later is an equality in Zd, so (p(Y^FJ'ar~J'nj-s) = I. Since ^{Fjar~jnj-S) = 
(p{d^ar~jnj-s) - ip(<f¥nj-s) we have <̂ CC/=o ^nj-sY = ^ Condition (iii) implies 

REMARK 6.2. We point out that the solenoid K in the preceding result is associated 
with the triple (J, Ft, a). 

An immediate application is that C(K) xa Z is the universal C*-algebra generated 
by two unitary operators D and U satisfying UD = LfiU where K is the a-f.g. solenoid 
associated with the element 2= F € M\ (Z). Unitary operators satisfying these relations 
occur in wavelet theory. 

PROPOSITION 6.3. Let l(x) = Y^arf G Z[x] (ada0 f 0) with Qt G fW (̂Q) the 
companion matrix ofa^11 (so Q = a^lF with F G fMj(Z)). 

Then Zd[Q, Q~l] & Z[x,x~l]/(Q (as rings) if and only if the content oft (= cont I) 
is 1. 

PROOF. Since Z[JC,X _ 1] / (£) is torsion free if and only if cont(£) = 1 and since 
Zd[Q, Q~l] is torsion free (it is a subgroup of Qd) we need only show that there is an 
isomorphism if Z[x,x~l]/(l) is torsion free. Using the notation established in Theo­
rem 6.1 define a group homomorphism l\®Zd —> Z[jc,jc-1]/(f) by 7(e?) = xh+i. We 
have 7 o r = Mx o 7 where Mx is multiplication by JC, so ker7 (along with K1-) is r-
invariant. It follows from £(x) = 0 that 7(adre,-) = l{Fet) and so, as in Theorem 6.1, 
7(adr -fri) = l(Fn) for n G © Zd, r G N. Since Z[JC, x~l ] / (I) is torsion free, the argument 
in Theorem 6.1 shows KL C ker7. Note further that ZJ Pi ker7 = 0. Also, for v G Zd

9 

adr*+1 v - t*Fv G # x , ( t G Z), since ad g*+1 v - 0*Fv = 0*(ad 0v - Fv) = g*(0) = 0. 
With these observations it now follows (Lemma 18 [13]) that K1 = ker7. • 

The preceding proposition implies that the C*-algebras considered in [4, 2, 3] fall 
within the framework of the crossed product algebras considered here. In particular, 
some of the results in those papers which where proved for irreducible elements I G Z[JC] 
are now true for (expansive systems defined by) elements I G Z\x\ with cont(£) = 1. 
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