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Abstract We consider three different families of Vafa–Witten invariants of K3 surfaces. In each case, the
partition function that encodes the Vafa–Witten invariants is given by combinations of twisted Dedekind
η-functions. By utilizing known properties of these η-functions, we obtain exact formulae for each of the
invariants and prove that they asymptotically satisfy all higher-order Turán inequalities.
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1. Introduction and statement of results

In 1994, Vafa and Witten [24] introduced invariants that count the number of solutions to
the N =4 supersymmetric Yang–Mills equations over four-dimensional spaces, now called
Vafa–Witten invariants. Given a surface and group action, many results in the literature
focus on providing the generating function Z of the Vafa–Witten invariants (also known
as the partition function). These generating functions are often linear combinations of
modular objects. Thus, with the tools of modular forms at our disposal, we are in a
position to obtain precise information on the Vafa–Witten invariants in question. One of
the most natural families of surfaces, which we consider throughout, are the K3 surfaces,
and there have been several recent results for the generating function of Vafa–Witten
invariants in this case [15, 22, 23].
In what follows, we let

η(q) := q
1
24

∞∏
n=1

(1− qn) (1.1)

be the usual Dedekind η-function, where q := e2πiτ with τ ∈ H.
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1.1. Formulae for Vafa–Witten invariants

Tanaka and Thomas proved the following formula for the generating function of SU(r)
Vafa–Witten invariants on K3 surfaces, thereby proving a conjecture of Vafa and Witten
(here and throughout, r ∈ N).

Theorem 1.1 (Theorem 5.24 of [22]). For a K3 surface, the partition function of
rank r trivial determinant SU(r) Vafa–Witten invariants is

ZSU(r)(q) :=
∑
n∈Z

α1,r(n)q
n =

∑
d|r

d

r2
qr

d−1∑
j=0

η
(
ζjdq

r
d2
)−24

,

where ζd = e
2πi
d .

Moreover, in [22, Theorem 5.24], it is shown that the same generating function also gives
the rank r, trivial determinant, weighted Euler characteristic Vafa–Witten invariants, and
so any results for ZSU(r) also apply to these invariants.
In [15], Jiang and Kool determined the generating function for SU(p)/Zp Vafa–Witten

invariants for prime p. To describe the result, fix a Chern class c1 ∈ H2(S,Z), let µp be
the cyclic group of order p and let

δa,b :=

1 if a− b ∈ pH2(S,Z),
0 otherwise.

Theorem 1.2 (Theorem 1.4 of [15]). For a K3 surface S, prime p, generic
polarization and c1 ∈ H2(S,Z) algebraic, we have the partition function

Z
SU(p)/Zp
c1 (q) =

∑
w∈H2(S,µp)

e
2πi(w·c1)

p Zw(q),

where w · c1 is the natural inner product on H2(S,Z) (see [24, pages 45 and 46]) and

Zw(q) :=
∑
n∈Z

α2,p(w;n)q
n
p =

δw,0

p2
η (qp)

−24
+

1

p

p−1∑
j=0

e−
πijw2

p η
(
ζjpq

1
p
)−24

. (1.2)

We also consider the twisted Vafa–Witten invariants for smooth projective K3 surfaces
as described by Jiang (see also [14, Definition 5.13]).

Theorem 1.3 (Theorem 6.36 of [14]). Let S be a smooth projective K3 surface
with Picard number ρ(S) and p prime. Then we have the partition function

Z
SU(p)/Zp
twist (q) :=

∑
n∈Z

α3,p(n)q
n
p =

qp

p2
η (qp)

−24

+ qp

p21η (q 1
p
)−24

+ pρ(S)−1

p−1∑
j=1

η
(
ζjpq

1
p
)−24

 . (1.3)
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Remark. Note that the generating functions in Theorems 1.2 and 1.3 consist of n/pth
powers of q unlike the generating function in Theorem 1.1, which only contains integer
powers of q. However, in special cases, the non-integral powers of q in Equations (1.2)
and (1.3) vanish. See Corollaries 3.1 and 3.2 for more information.

To obtain an exact formula for each of the Vafa–Witten invariants discussed above, we
first obtain an exact formula for the coefficients of η(q)−24. This is achieved using a result
of Zuckerman (see Section 2.1), which relates the coefficients of a weakly holomorphic
form to the principal part of the form at each cusp.

Lemma 1.4. Let a(n) denote the nth Fourier coefficient of η(q)−24. Then, a(n) = 0
for n < −1, a(−1) = 1 and a(0) = 24. For n> 0, we have

a(n) =
2π

n
13
2

∞∑
k=1

1

k

∑
0≤h<k

gcd(h,k)=1

ω24
h,k e

− 2πi(n+1)h
k I13

(
4π

k

√
n

)
.

Moreover,

a(n) =
2π

n
13
2

I13
(
4π

√
n
)(

1 +O

(
1

e2π
√
n

))
∼ 2π

n
13
2

e4π
√
n√

8π2
√
n
, (1.4)

where I13 is the usual I-Bessel function.

We then prove the following theorem, which combined with Lemma 1.4 gives exact
formulae for the Vafa–Witten invariants.

Theorem 1.5. For all n ∈ Z, we have

α1,r(n) =
∑

s|(n−r,r)

1

s2
a

(
(n− r)r

s2

)
, (1.5)

along with

α2,p(w;n) =
1

p

p−1∑
j=0

e
πij(2n−w2)

p a(n) +


δw,0

p2
a
(

n
p2

)
(p2 | n)

0 (otherwise)
, (1.6)

and

α3,p(n) = p21a(n− p2) +

 1
p2
a
(

n−p2

p2

)
if (p2 | n)

0 (otherwise)

+

pρ(S)−1(r − 1)a(n− p2), if (p | n)
−pρ(S)−1a(n− p2), if (p - n)

. (1.7)
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From these exact formulae, we also deduce the asymptotic behaviours of the invariants
using Equation (1.4).

Theorem 1.6. As n→ ∞, we have

α1,r(n) =
2π

(rn)
13
2

I13
(
4π

√
rn
)(

1 +Or

(
1

e2π
√
rn

))
. (1.8)

For α2,p(n), we have

α2,p(n) =



2π

n
13
2
I13(4π

√
n)
(
1 +Or

(
1

e2π
√
n

))
if 2p | 2n− w2,

2πδw,0p
9
2

n
13
2

I13

(
4π
p

√
n
)(

1 +Op

(
1

e
2π
p

√
n

))
if 2p - 2n− w2 and p2 | n,

0 otherwise.

(1.9)
Finally,

α3,p(n) =
2πcp(n)

n
13
2

I13
(
4π

√
n
)(

1 +O

(
1

e2π
√
n

))
, (1.10)

where

cp(n) =

p21 + pρ(S)−1(p− 1), (p | n),
p21 − pρ(S)−1, (p - n).

The case of α2,p is a little complicated in the statement of the theorem, which is
explained by the fact that the sum over j can vanish or not as n varies, yielding a
non-uniform asymptotic.

1.2. Turán inequalities

The Turán inequalities for functions in the real entire Laguerre–Pólya class are intri-
cately linked to the Riemann hypothesis [9, 21] and have seen renewed interest in recent
years. In fact, the Riemann hypothesis is true if and only if the Riemann Xi function lies
in the Laguerre–Pólya class, and a necessary condition is that the Maclaurin coefficients
satisfy Turán inequalities of all orders [9, 20].
The second-order Turán inequality for a sequence {an}n≥0 is known as log-concavity

and is satisfied if

a2n ≥ an−1an+1

for all n ≥ 1. Log-concavity for modular objects is well-studied in the literature, for exam-
ple [4, 6–8, 17]. The higher-order Turán inequalities are linked to the Jensen polynomial
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associated to a sequence of real numbers {α(n)}, given by

Jd,n
α (X) :=

d−1∑
j=0

(
d

j

)
α(n+ j)Xj .

Consider a polynomial with real coefficients, f(x) = xn + an−1x
n−1 + · · · + a1x + a0.

Then a classical result of Hermite states that the polynomial f is hyperbolic if and only
if the Hankel matrix of f is positive definite. In turn, this gives a set of inequalities on the
coefficients of f as all k × k minors of the Hankel matrix must be positive definite (see,
e.g., the introduction of [7] for an explicit description). When applied to Jd,n

α , Hermite’s
theorem gives a set of inequalities associated to the sequence {α(n)}n≥0 and are known
as the order k Turán inequalities1. Thus, the higher order (strict) Turán inequalities for
1 ≤ k ≤ d are satisfied for {α(n+ j)}n≥0 if and only if Jd,n

α is hyperbolic.
In [10], the authors proved new results on the (asymptotic) hyperbolicity of Jensen

polynomials attached to a vast array of sequences, including those that are coefficients
of weakly holomorphic modular forms. Following this, several other recent papers have
made progress in this area, for example [16], [11] and [7].
Our result in this direction readily follows from results of [10], and we obtain the

following which, to the best of the authors’ knowledge, is the first description of higher-
order Turán inequalities for Vafa–Witten invariants. The case for α2,p is slightly more
complicated than the others, as it depends inherently on the choice of w.

Theorem 1.7. For fixed r and p, as n→ ∞, the Vafa–Witten invariants α1,r(n) and
α3,p(pn) each satisfy all order k Turán inequalities. If gcd(2p, w2) = 1, then α2,p(w;n)
satisfies all order k Turán inequalities. If w2 = 2pm for some m ∈ Z, then α2,r(w; pn)
satisfies all order k Turán inequalities. Moreover, α2,p(w; p

2n) satisfies all order k Turán
inequalities.

Since the Jensen polynomial attached to each of the sequences α1,r(n), α2,p(pn) and
α3,p(pn) (replacing α2,p(n) by α2,p(pn) or α2,p(p

2n) as necessary) for fixed r and p are
all eventually hyperbolic, in Corollary 4.1, we obtain several examples of generating func-
tions, which can be regarded as new examples of functions in the shifted Laguerre–Pólya
class, as in recent work of Wagner [25]. To the best of the authors’ knowledge, such
functions have so far only previously been studied in the context of number theory and
combinatorics. That our functions lie in the shifted Laguerre–Pólya class is a direct con-
sequence of the generating function of αj,r(n) arising from specializations of (twists of)
Dedekind η-functions. A natural question to pose is whether further examples of topo-
logical invariants define objects in the same class of functions, and therefore what are
the implications of general properties of this class of function to the topological spaces
at hand, motivating further investigation of the situation in [25].

2. Preliminaries

In this section, we collect several preliminary results required for the rest of the paper.

1 One also allows the equality case.
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2.1. An exact formula of Zuckerman

We require a powerful result of Zuckerman [26] that builds on the work of Rademacher
[19]. Zuckerman obtained exact formulae for Fourier coefficients of weakly holomorphic
modular forms of arbitrary non-positive weight on finite index subgroups of SL2(Z) in
terms of the cusps of the underlying subgroup and the principal parts of the form at each
cusp. Let τ ∈ H and let F be a weakly holomorphic modular form of weight κ ≤ 0 with
multiplier χ satisfying the transformation law

F (γτ) = χ(γ)(−i(cτ + d))κF (τ) (2.1)

for all γ =
(
a b
c d

)
in some finite index subgroup of SL2(Z). The transformation law (2.1)

can be expressed equivalently in terms of the cusp h
k ∈ Q. Let h ′ be defined by the

congruence hh′ ≡ −1(mod k). Letting τ = h′
k + i

kz and choosing γ = γh,k :=
(

h β

k −h′

)
∈

SL2(Z), we obtain the equivalent transformation law

F

(
h

k
+

iz

k

)
= χ(γh,k)z

−κF

(
h′

k
+

i

kz

)
. (2.2)

Let F have the Fourier expansion at i∞ given by

F (τ) =
∑

n�−∞
a(n)qn+α

and Fourier expansions at each rational number 0 ≤ h
k < 1 given by

F |κγh,k(τ) =
∑

n�−∞
ah,k(n)q

n+αh,k
ck .

In this framework, Zuckerman’s result [26, Theorem 1] (see also [3]) reads as follows.

Theorem 2.1. Assume the notation and hypotheses above. If n+ α > 0, then

a(n) = 2π(n+ α)
κ−1
2

∞∑
k=1

1

k

∑
0≤h<k

gcd(h,k)=1

χ(γh,k)e
−2πi(n+α)h

k

×
∑

m+αh,k≤0

ah,k(m)e
2πi
kck

(m+αh,k)h
′ ( |m+ αh,k|

ck

)1−κ
2

I−κ+1

4π

k

√
(n+ α)|m+ αh,k|

ck

 ,

where I−κ+1 is the usual I-Bessel function.
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2.2. Transformation laws of q-Pochhamer symbols

For coprime h, k ∈ N, let

ωh,k := exp(πi · s(h, k)),

with the Dedekind sum

s(h, k) :=
∑

µ(mod k)

((µ
k

))((hµ
k

))
.

Here,

((x)) :=

x− bxc − 1
2 if x ∈ R \ Z,

0 if x ∈ Z.

Let (a; q)∞ be the usual q-Pochhammer symbol and q := e
2πi
k

(h+iz) for z ∈ C with
Re(z) > 0. The classical modular transformation law for the Dedekind η-function (see
e.g. [2, Theorem 3.4]) is

η

(
aτ + b

cτ + d

)
= ε(a, b, c, d)(−i(cτ + d))

1
2 η(τ),

where

ε(a, b, c, d) = e
iπ

(
a+d
12c +s(−d,c)

)

if c> 0. Thus, if (a, b, c, d) = (h, β, k,−h′), we get

η

(
h′

k
+

i

kz

)
= e

iπ

(
h−h′
12k

+s(h′,k)
)
z−

1
2 η

(
h

k
+

iz

k

)
so that

1

η
(

h′
k + i

kz

) = e
iπ

(
h′−h
12k

+s(h,k)

)
z
1
2

1

η
(
h
k + iz

k

) . (2.3)

Here we have used a standard result regarding the Dedekind sum ([2, Theorem 3.6b]),
which implies that s(h, k) = −s(h′, k).

2.3. Hyperbolicity of Jensen polynomials

In [10], it was shown that for certain classes of functions, the Jensen polynomials of the
coefficients tend to the order d Hermite polynomials Hd(X), in turn implying asymptotic
hyperbolicity.
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Theorem 2.2 (Theorem 3 of [10]). Let {α(n)}, {A(n)} and {δ(n)} be three
sequences of positive real numbers with δ(n) tending to 0 and satisfying

log

(
α(n+ j)

α(n)

)
= A(n)j − δ(n)2j2 +

d∑
i=3

gi(n)j
i + o(δ(n)d)

as n→ ∞, where each gi(n) = o(δ(n)i) for each 3 ≤ i ≤ d. Then the renormalized Jensen
polynomials

Ĵd,n
α (X) :=

δ(n)−d

α(n)
Jd,n
α

(
δ(n)X − 1

exp(A(n))

)
satisfy

lim
n→∞

Ĵd,n
α (X) = Hd(X)

uniformly for X in any compact subset of R. Moreover, this implies that the Jensen
polynomials Jd,n

α are each hyperbolic for all but finitely many n.

3. Vafa–Witten invariants

The goal of this section is to obtain the claimed exact formulae and asymptotics for
α1,r(n), α2,p(w;n) and α3,p(n). We begin with a short subsection computing an exact
formula for the coefficients a(n).

3.1. Formula for the coefficients of η(q)−24

We begin by proving Lemma 1.4, which gives an exact formula for the nth coefficient
of η(q)−24 =

∑
n∈Z a(n)q

n. Note that in [12], a longer and more general argument, not
using Zuckerman’s formula, is used to compute exact formulae for fractional powers of η.

Proof of Lemma 1.4. By the definition (1.1) of η(q), we have a(n) = 0 for n < −1,
a(−1) = 1 and a(0) = 24. For n > 0, we apply Zuckerman’s formula. So, let F (q) =
η(q)−24. For the setup of Zuckerman’s formula, we write

τ =
h′

k
+

i

kz
, q = e2πiτ , and q1 = e2πi(γh,k(τ)),

where γh,k =
(

h β

k −h′

)
as in § 2.1.

Now, using Equation (2.3), we have

F (q1) = e
24πi

(
h′−h
12k

+s(h,k)

)
z12F (q). (3.1)
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In terms of Zuckerman’s formula, α=0, and from Equation (3.1), we see that κ = −12
and

χ(γh,k) = ω24
h,ke

2πi

(
h′−h
k

)
.

Next, by Equation (3.1),

F |κγh,k(τ) = F (τ) =
∑
n∈Z

a(n)qn.

Thus, we can set ck = 1, αh,k = α = 0 and ah,k(n) = a(n). Moreover, the only term in the
principal part of F (τ) is q−1 with coefficient a(−1) = 1. Putting all of this information
into Theorem 2.1 gives, for n > 0,

a(n) =
2π

n
13
2

∞∑
k=1

1

k

∑
0≤h<k

gcd(h,k)=1

ω24
h,k e

2πi

(
h′−h
k

)
e−

2πinh
k e−

2πih′
k I13

(
4π

k

√
n

)

=
2π

n
13
2

∞∑
k=1

1

k

∑
0≤h<k

gcd(h,k)=1

ω24
h,k e

−2πi(n+1)h
k I13

(
4π

k

√
n

)
, (3.2)

as desired.
For the asymptotic expression, we note that for any ν ≥ 0 (see, e.g., [1, (4.12.7)])

Iν(x) =
ex√
2πx

(
1 +O

(
x−1

))
, (3.3)

meaning the k =1 term dominates in Equation (3.2). �

We are now in a position to compute the exact formulae and asymptotics for α1,r(n),
α2,p(w;n) and α3,p(n) (Theorems 1.5 and 1.6).

3.2. Exact formula for α1,r(n)

In this subsection, we prove the exact formula (1.5) for α1,r(n) and the corresponding
asymptotic Equation (1.8). So, recall that

ZSU(r)(q) =
∑
n∈Z

α1,r(n)q
n = qr

∑
d|r

d

r2

d−1∑
j=0

η
(
ζjdq

r
d2
)−24

. (3.4)
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Using the substitution q 7→ ζjdq
r
d2 , we see that for any k ∈ Z, the k r

d2
th coefficient of

η
(
ζjdq

r
d2
)−24

is equal to ζjkd a(k). Therefore, the k r
d2
th coefficient of

d

r2

d−1∑
j=0

η
(
ζjdq

r
d2
)−24

(3.5)

is d2

r2
a(k) if d | k and 0 if d - k. In particular, the only non-zero coefficients of q in

Equation (3.5) are the multiples of r/d. Hence, the nth coefficient of

∑
d|r

d

r2

d−1∑
j=0

η
(
ζjdq

r
d2
)−24

is given by

∑
d|r, r

d
|n

d2

r2
a

(
nd2

r

)
.

Incorporating the factor of qr in Equation (3.4) and letting s = r/d then gives

α1,r(n) =
∑

s|(n−r,r)

1

s2
a

(
(n− r)r

s2

)
, (3.6)

as required. Now, from the asymptotic expression (1.4) for a(n), we see that the s =1
term dominates in Equation (3.6) so that

α1,r(n) ∼ a((n− r)r) ∼ a(rn)

with each of the error terms in these asymptotics less than Or

(
I13

(
4π

√
n
)

e2π
√
rnn

13
2

)
. This gives

Equation (1.8).

3.3. Exact formula for α2,p(w;n)

We now turn to the second Vafa–Witten invariant. To begin with, let α2,p(w;n) =
α2,p,1(w;n) + α2,p,2(w;n), where∑

n∈Z
α2,p,1(w;n)q

n
p =

δw,0

p2
η(qp)−24,
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∑
n∈Z

α2,p,2(w;n)q
n
p =

1

p

p−1∑
j=0

e−
πijw2

p η(ζjpq
1
p )−24.

Now, the n/pth coefficient of η(qp)−24 is given by a(n/p2) if n | p2 and 0 otherwise. Thus,

α2,p,1(w;n) =


δw,0

p2
a
(

n
p2

)
(n | p2),

0 (otherwise).
(3.7)

Then, the n/pth coefficient of η(ζjpq
1
p )−24 is given by ζnjp a(n) so that

α2,p,2(w;n) =
1

p

p−1∑
j=0

e
πij(2n−w2)

p a(n). (3.8)

Combining Equations (3.7) and (3.8) then gives Equation (1.6) as desired. Similar to the
asymptotics for α1,r(n), the asymptotics for α2,p(w;n) are obtained directly from the
asymptotic expression (1.4) for a(n). Some care must be taken, however, as the sum

p−1∑
j=0

e
πij(2n−w2)

p

may vanish depending on the value of w, as indicated by Equation (1.9). We draw par-
ticular attention to the case when w2 is an even integer. Namely, writing w2 = 2m, we
have

α2,p,2(w;n) =

a(n) (p | n−m),

0 (otherwise).
(3.9)

In addition, if p | m, we can do even more. In particular, we have the following corollary.

Corollary 3.1. Let α′
2,p(w;n) = α2,p(w; pn). If w

2 = 2m is an even integer and p | m,
then

Zw(q) =
∑
n∈Z

α′
2,p(w;n)q

n.

That is, all of the non-integer powers of q vanish from the expansion of Zw(q). Moreover,

α′
2,p(w;n) = a(pn) +


δw,0

p2
a
(

n
p

)
(p | n)

0 (otherwise)
.

As a result, α′
2,p(w;n) ∼ a(pn) and satisfies the same asymptotics (1.8) as α1(n).
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Proof. We simply apply Equation (3.9), noting that if p | m, then p | n − m is
equivalent to p | n. �

3.4. Exact formulae for α3,p(n)

Finally, we turn to proving an exact formula for the third Vafa–Witten invariant in
question. Let

∑
n≥0

α3,p,1(n)q
n
p =

1

p2
qpη (qp)

−24
, (3.10)

∑
n≥0

α3,p,2(n)q
n
p = p21qpη

(
q
1
p
)−24

, (3.11)

∑
n≥0

α3,p,3(n)q
n
p = pρ(S)−1qp

p−1∑
j=1

η

(
e
2πij
p q

1
p

)−24

(3.12)

so that α3,p(n) = α3,p,1(n) + α3,p,2(n) + α3,p,3(n). Now, Equations (3.10) and (3.11) are
simple transformations of the function η(q)−24 =

∑
a(n)qn. In particular,

α3,p,1(n) =

 1
p2
a
(

n
p2

− 1
)

(p2 | n),

0 (otherwise)

and

α3,p,2(n) = p21a(n− p2).

As for Equation (3.12), we note similarly as in § 3.2 that the n/pth coefficient of

η

(
e
2πij
p q

1
p

)
is given by ζjnp a(n). Thus, the n/pth coefficient of

p−1∑
j=1

η
(
e
2πij
r q

1
p
)−24

= −η
(
q
1
p
)−24

+

p−1∑
j=0

η

(
e
2πij
p q

1
p

)−24

is (p− 1)a(n) if p | n or −a(n) if p - n. Therefore,

α3,p,3(n) =

pρ(S)−1(p− 1)a(n− p2) (p | n),
−pρ(S)−1a(n− p2) (p - n).
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Combining our expressions for α3,p,1(n), α3,p,2(n) and α3,p,3(n) gives Equation (1.7) as
required. Again, to obtain the asymptotics (1.10), we use the asymptotic expression (1.4)
for a(n).
We also note that the exact formula (1.7) for α3,p(n) simplifies in the case when the

surface S is supersingular (i.e., ρ(S) = 22). In particular, all non-integral powers of q
vanish, leading to the following corollary.

Corollary 3.2. Let α′
3,p(n) = α3,p(pn). Then, if the surface in question is supersin-

gular, we have

Z
SU(p)/Zp
twist (q) =

∑
n≥0

α′
3,p(n)q

n

and

α′
3,p(n) = p22a(p(n− p)) +

 1
p2
a
(

n
p − 1

)
(p | n)

0 (otherwise)
.

Furthermore,

α′
3,p(n) =

2πp
31
2

n
13
2

I13 (4π
√
pn)

(
1 +Op

(
1

e2π
√
pn

))
∼ p

61
4 e4π

√
pn

√
2n

27
4

.

Proof. Let ρ(S) = 22 in Equations (1.7) and (1.10). �

3.5. Higher-order Turán inequalities

In this section, we prove that all relevant Vafa–Witten invariants asymptotically satisfy
the higher-order Turán inequalities.

Proof of Theorem 1.7. We have

α1,r(n) =
2π

(nr)
13
2

I13(4π
√
nr)

(
1 +Or

(
1

e2π
√
rn

))
as n→ ∞. This implies the asymptotic formula

log

(
α1,r(n+ k)

α1,r(n)

)
∼ log

(
n

13
2 I13(4π

√
(n+ j)r)

(n+ j)
13
2 I13(4π

√
nr)

)

= 4π
√
r
∑
i≥1

(
1/2

i

)
ki

n
1
2−i

+
21

4

∑
i≥1

(−1)i−1ki

ini
+
∑
s,t≥1

ct

(
−t
s

)
ks

ns+t

for some (computable) constants ct arising from the asymptotic expansion for the I -Bessel

function, valid to all orders of n−
1
2 . We may then apply Theorem 2.2 with A(n) and δ(n)
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given by

A(n) = 2π

√
r

n
+O

(
1

n

)
, δ(n)2 =

π

2

√
rn−3

2 +O
(
n−

5
4

)
.

Noting that the asymptotic hyperbolicity of the relevant Jensen polynomials implies that
all higher-order Turán inequalities are satisfied for large enough n, finishing the proof in
this case. The arguments for α2,p and α3,p are very similar, where for α2,p, one accounts
for the variations depending on w2. �

4. Further results

We end by indicating related results and their implications to α1,r(n), α2,p(n) and α3,p(n).

4.1. Laguerre–Polyá classes of functions

A real entire function ψ(x) =
∑

k≥0
γk
k! x

k is said to lie in the Laguerre–Polyá class if
it can be represented by

ψ(x) = Cxm ebx−ax2
r∏

k=1

(
1 +

x

xk

)
e
− x

xk , 0 ≤ r ≤ ∞,

with b, C, xk ∈ R, m ∈ Z≥0, a ≥ 0 and
∑r

k=1 x
−2
k < ∞. In [25], Wagner introduced

new classes of objects known as the shifted-Laguerre–Polyá classes, and we recall the
definitions here.
A real entire function ψ(x) lies in the shifted-Laguerre–Polyá class of degree d if it is

the uniform limit of polynomials {ψk(x)}k≥0 with the property that there exists N (d)

such that ψ
(dn−d)
n (x) has all real roots for n ≥ N(d). The function ψ is then said to lie

in the shifted Laguerre–Polyá class if it satisfies the above for all d ∈ N.
Most importantly for the present paper is [25, Theorem 1.1], which states that if

{γk}k≥0 is a sequence of eventually non-negative reals, then the following are equivalent2;

(i) The sequence {γk} is a shifted multiplier sequence of type 2 (in the sense of [25]).
(ii) For every d ∈ N, there exist N (d) such that the Jensen polynomial Jd,n

γ (X) has all
real roots for n ≥ N(d).

(iii) The formal power series
∑

k≥0
γk
k! x

k defines a function in the shifted Laguerre–Polyá
class.

In § 3.5, we proved that the Jensen polynomial attached to each of the Vafa–Witten
invariants α1,r(n), α2,p(n) and α3,p(pn) (throughout replacing α2,p(n) by α2,p(pn) or
α2,p(p

2n) as necessary) for fixed r and p tend to the Hermite polynomials as n → ∞,
and so have all real roots. Therefore, we immediately obtain the following corollary.

2 Here we use the second remark under [25, Theorem 1.1] to rewrite the theorem in the general setting
where we do not assume that the real roots have the same sign.
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Corollary 4.1. Let r be a fixed positive integer and p be a fixed prime. Then each
sequence α1,r, α2,p and α3,p defines a shifted multiplier sequence of type 2, and the formal
power series

∑
n≥0

α1,r(n)

n!
xn,

∑
n≥0

α3,p(pn)

(pn)!
xpn,

along with

∑
n≥0

α2,p(w;n)

(n)!
xn if gcd(w2, 2p) = 1,

∑
n≥0

α2,p(w; pn)

(pn)!
xpn if w2 = 2pm

and ∑
n≥0

α2,p(w; p
2n)

(p2n)!
xp

2n

each define a function in the shifted Laguerre–Polyá class.

4.2. Representations as Poincaré series and algebraic formulae

Let Γ∞ be the stabilizer of i∞ in Γ := SL2(Z) and |k,ν the usual Petersson slash
operator with weight k and multiplier ν (see, e.g., [13]). For κ ∈ 1

2Z with κ ≥ 5
2 , and

m ∈ 1
24Z such that κ− 12m ∈ 2Z, the Poincaré series of weight κ and index m that we

consider is defined by

Pk,m(τ) :=
∑

M∈Γ∞\Γ

qm |κ,ν24mη
M,

with νη the multiplier of η. In [18], the authors showed that a(n) is given by the coeffi-
cient of q in P14,1−n, and thus we can build linear combinations of weight 14 Poincaré
series with varying index whose coefficients are precisely α1,r(n), α2,p(n) or α3,p(n). For
example, for fixed r, we have

α1,r(n) = [coefficient q]
∑

s|(n−r,r)

1

s2
P
14,1− (n−r)r

s2

(τ).

Although this formula looks a little messy, it simplifies nicely in explicit examples; taking
r =2 for instance gives

α1,2(n) = [coefficient q]

(
P14,3−4m(τ) +

δeven
4

P14,2−m(τ)

)
,

where δeven = 0 if n = 2m+1 and 1 if n = 2m. Formulae for the remaining Vafa–Witten
invariants as coefficients of linear combinations of Poincaré series follow similarly.
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In their famous paper [5], Bruinier and Ono proved a formula for the coefficients of
1

η(q) as a sum of certain algebraic integers. Since each of the Vafa–Witten invariants in

this paper have a generating function that is (essentially) a linear combination of 1
η(q)24

,

one could obtain exact algebraic formulae for each of α1,r(n), α2,p(n) and α3,p(n) in a
similar fashion.
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(20) J. Schur and G. Pólya, Über zwei Arten von Faktorenfolgen in der Theorie der
algebraischen Gleichungen, J. Reine Angew. Math. 144 (1914), 89–113.
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