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Abstract. The phase space of the geodesic flow on an almost integrable polyhedral
surface is foliated into a one-parameter family of invariant surfaces. The flow on a
typical invariant surface is minimal. We associate with an almost integrable polyhe-
dral surface its holonomy group which is a subgroup of the group of motions of
the Euclidean plane. We show that if the holonomy group is discrete then the flow
on an invariant surface is ergodic if and only if it is minimal.

0. Introduction
Geodesic flows on Euclidean polyhedra is an old subject that goes as far back as
1906 (see [10] and a related paper [8]). An example of such a flow is the motion of
a billiard ball inside a polygon. If the angles of the polygon are rational multiples
of IT, the direction of any geodesic takes only a finite number of values as time
varies. Fixing these values one obtains invariant 'surfaces' of the billiard flow and
the induced flow on the typical invariant surface is minimal ([13]). It is not known
whether the flow is typically ergodic (with respect to the invariant Lebesgue measure).
The general expectation is that the answer is yes.$ This question is related to the
question of whether the typical interval exchange transformation is ergodic, where
the answer is positive ([5], [12]).

For arbitrary polyhedral surfaces the condition that vertex angles are 7r-rational
does not insure the existence of invariant surfaces for the geodesic flow. One needs
an extra condition that a certain holonomy group is finite. We call surfaces satisfying
this condition almost integrable because the geodesic flow which is a Hamiltonian
system with two degrees of freedom has an additional integral of motion which
'almost commutes' with the Hamiltonian.

In § 1 we associate with any almost integrable surface S a Riemann surface R in
a purely geometric way. The genus of R is determined by the vertex angles of S
(formulae (8)—(11)). The main tool is the developing map of the universal covering
of S onto the complex plane. The typical invariant surface of the geodesic flow of
S (which we call the billiard flow) is isomorphic to R. Topology of the foliation of
the phase space of the billiard flow into invariant surfaces is discussed in [4].

t Current address: University of Southern California, Los Angeles, U.S.A.
t Added in proof: S. Kerckhoff, H. Masur and J. Smillie have recently proved that the flow is typically

uniquely ergodic.
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570 E. Gutkin

In § 2 we show that the billiard flow of S is equivalent to a family of bg, 0 < 0<2TT,

of flows on R (b'g is the billiard flow in direction 6). They are pulled back by the
developing map from the linear flows l'e on C. At the end of the section we extend
to 6̂  the minimality results of [13] and [3].

In § 3 we consider a class of almost integrable surfaces S given essentially by the
condition that the full holonomy group of S is discrete. For these surfaces, as
theorem 3 shows, the billiard flow b'e is minimal if and only if it is uniquely ergodic
(which is false for general almost integrable billiards). Moreover in this case b'e
extends the linear flow l'e on a certain torus intrinsically denned by S, thus b'e is
minimal if and only if 6 is an irrational direction. If 0 is irrational the discrete
spectrum of b'e coincides with the spectrum of l'e, i.e. b'e is weakly mixing modulo
l'e. It is reasonable to expect that for almost integrable polyhedral surfaces outside
of this class the billiard flow b'g is typically weakly mixing.

Some results of the paper generalize to billiards on higher dimensional polyhedra
which will be discussed elsewhere. It is worth mentioning that almost integrable
billiards (both classical and quantum) are of interests to physicists (cf. [7], [1]).

I would like to thank A. Katok and W. Veech for useful consultations. This work
was partially supported by NSF Grant MCS 8101739.

1. Developing map
By Euclidean polygon we mean a closed bounded polygon P in C such that its
interior P\dP is connected. If P has more than one connected component we say
that P has obstacles. If an obstacle has two adjacent sides with angle 2TT between
them we say that P has a slit (see figure 1).

p

FIGURE 1. The shaded regions are obstacles. Obstacle 2 has a slit and obstacle 3 is just a slit.

A Euclidean polyhedron S (of dimension 2) is a collection of Euclidean polygons
with some sides identified by isometries. These polygons, their sides and vertices
are the faces, edges and vertices of S. A Euclidean polyhedron has a natural topology.

Definition 1. A polyhedral surface 5 is a connected Euclidean polyhedron homeomor-
phic to a topolbgical surface.

If a polyhedron S has vertices with an infinite number of adjacent faces then S
cannot be a polyhedral surface. We say that S is a polyhedral surface with vertices
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at infinity if 5 with those vertices punctured becomes a topological surface.
Henceforth polyhedron will mean a polyhedral surface possibly with vertices at
infinity. A polyhedral surface is closed if it has no boundary, 55 = 0 . If 55 ̂  0 two
copies of S glued along the boundary make a closed polyhedral surface dS called
the doubling of 5.

There is a canonical complex structure on any oriented polyhedral surface. Assume
first that 55 = 0 . Every face and every edge of 5 define a coordinate patch in an
obvious way. Let A be a vertex of 5 and let P , , . . . , Pn be the adjacent faces in an
orientation preserving order. Let a , , . . . , an be their respective angles. The sum
a = a, + • • • +an is called the angle of A. Cut U = P\ u • • • u Pn along an edge b
and unfold it on C so that A goes into 0 and b goes into the positive real axis. Let
z be the complex coordinate in C. Then u = z2ir/a is a well defined coordinate in
U. It is straightforward to check that the transition functions of the covering are
complex analytic and that the complex structure thus defined does not depend on
the choices made. If 55 # 0 the imbedding S c dS defines the complex structure
on 5. Thus any polyhedral surface is a Riemann surface.

Polyhedra S,, S2 are isomorphic if there is a continuous invertible mapping
f:Sl->S2 which maps faces isometrically onto faces. Given a polyhedron 5 one can
always draw new edges on the faces of 5. This operation does not change 5 essentially.

Definition 2. Polyhedra 5,, S2 are called equivalent if they can be made isomorphic
by adding new edges.

A group G of automorphisms of a polyhedron 5 acts properly discontinuously if for
any face P<^ S there is only a finite number of g e G such that gP n P # 0 . The
quotient S/G is naturally a polyhedron.

Definition 3. A mapping / : 5, -» 52 of polyhedra is a covering if for any x e 5, there
is 5'i equivalent to S,, a subpolyhedron R of S\ containing x and a group G acting
properly discontinuously on R such that 52 is equivalent to R/G and/|R coincides
with the natural projection R-> R/G.

If G acts on 5 properly discontinuously the covering 5 -» 5/ G is the regular covering
with the group G of deck transformations. The reader should be aware of the fact
that coverings of polyhedra are usually branched. If 35 ̂  0 the natural involution
of dS defines a regular covering dS^> S with the group Z/2 of deck transformations
branched at 55 c dS.

Let 5 be a closed polyhedron and let x0 be an interior point of a face Po
 c S.

Consider the set of continuous loops on S starting at x0 and avoiding vertices. The
set of homotopy classes of these loops endowed with the usual composition becomes
a group iTf(S) called the full fundamental group of 5. If 5 is the topological surface
obtained by puncturing 5 at the vertices then -ny(5) = 77,(5). Let 38^0. Imbed 5
into dS and denote by 50, 5, the image and the mirror image of 5 respectively. Let
x, e 5, be the mirror image of xoeSo. To define 77/(5) we start from the set of
piecewise smooth loops transversal to 55. Any such loop y has a unique lifting y
on dS if we agree that y passes from 50 to S, or vice versa each time as y bounces
off 55. We say that y, and y2 are equivalent if y, and y2 are homotopic with fixed
ends. The set of equivalence classes with the usual operation is the group Trr(S).
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There is an obvious exact sequence

A natural class of coverings of S is associated with the subgroups of trf{S). Let
dS = 0 and let H c Trf(S) be a subgroup. The imbedding S<^ S identifies H with a
subgroup of 77i(S). Let SH be the unbranched covering of S corresponding to H.
Filling in the punctures we obtain a closed polyhedron SH and the covering
pH:SH -* S. If dS 5* 0 we define SH for any subgroup H c 77y(dS) to be (dS)H with
the projection pH: (dS)H -> dS-» 5. The coverings p H : S H -» S are branched at the
vertices and above dS.

PROPOSITION 1. Let S be a closed polyhedron and let H, G be subgroups of 'irj-(S).
(i) The inclusion H <= G holds if and only if there is a covering q: SH -» Sa such

that the diagram below commutes:

5°

(1)

(ii) For any subgroup H <= Trf(S) we have 7rf(S
H) = H. IfH is normal then pH:SH^>

S is a regular covering with the group 7jy(S)/ H of deck transformations.

The proof and the generalization to the case dS ¥• 0 are straightforward and are
left to the reader.

Definition 4. The covering of S corresponding to the trivial subgroup of TT/(S) is
called the universal covering and is denoted by S.

Definition 5. Let S be a closed polyhedron. A mapping <p: S-* C is called a developing
map if it is an isometry on every face of S and if for any edge b there is a
neighbourhood U of the interior of b such that <p is an isometry on U.

A closed polyhedron S is called developable if there exists a developing map

PROPOSITION 2. (i) For any closed polyhedron S the following are equivalent:
(a) S is developable;
(b) there exists an isometry <po:Po->C of a face Po which continues to a developing

map <p : S -* C
(c) any isometry <p0: P0->C uniquely extends to a developing map <p: S->C.

(ii) Let O(C) denote the group of isometries of C. Then for any two developing
maps <p, ip of S there is a unique g e O(C) such that </» = g ° <p.

The proof is obvious and is left to the reader. For general polyhedra S the universal
covering S is the minimal developable covering of S.
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Definition 6. A polyhedral surface S is called rational if any vertex angle of S is IT
times a rational number.

Let S be a closed rational polyhedral surface. Let A,, with angles 2irmj/ nt (m, and
n, are coprime), i e /, be the vertices of S. Denote by gt e 7jy(S) the equivalence class
of a simple loop around A{. Let n(S) be the minimal normal subgroup of TT/(S)

containing g"\ ie I.

Definition 7. The corresponding covering S of 5 is called the universal rational
covering. If 95 ^ 0 we set S = (dS)*

For any polyhedron S we denote by IT, (S) the fundamental group of the underlying
topological space. We say that S is simply connected if TT,(5) = 1.

THEOREM 1. Let Sbea compact connected rational polyhedral surface. Let a, = irmj nh

i = 1 , . . . , M and a}•,= 2 irm,-/ rij,j = M + 1,..., Nbe the angles of boundary, respectively
interior vertices of S.

(i) S is a closed connected simply connected non-compact developable polyhedral
surface.

(ii) S with its canonical complex structure is isomorphic to C if and only if all the
numerators m,, = 1, i = 1 , . . . , JV. Otherwise S is isomorphic to the hyperbolic plane H.
The isomorphism / : S - » H (S-»C) carries the group 7rr(S) = vf(S)/TT(S) of deck
transformations of the covering S->S into a discrete group G of isometries of H
(respectively C). IfS is oriented the projection p :S^Sisa covering ofRiemann surfaces.

(iii) For any developing map <p:S->C there is a homomorphism h: 7TY(S)-» O(C)
such that <p is h-equivariant i.e. for any g e Trr(S), <p ° g = h(g) ° <p. The developing
map <p is a holomorphic branched covering. The branching locus is contained in the
set of vertices ofS. The branching number at a vertex Ae S with angle 2irm is m.

Proof By proposition 1, Trf(S) = 1 therefore ir,(S) = 1. The regular covering q.S^S
induces a homomorphism q^: IT(S)-» TTI(S)-> 1. The group n{S) is generated by
conjugates of g"1 (taking dS if necessary we can assume without loss of generality
that dS = 0 ) . Each g, fixes some vertex at infinity of S, thus n(S) is generated by
transformations with fixed points. Those generate the kernel of q^, thus 7r,(S) = 1.
Let A be a vertex of S above A with angle 2rrm/ n. Going around A once and lifting
to S we rotate 5 about A by 2TTW/M. Repeating it n times we make a circle around

.A A

A, thus A has a finite number of adjacent faces and its angle is 2-nm.
The covering S is developable almost by definition. Choose a reference face Po

and an imbedding <po:Po^>C. Continue <p0 analytically along a path y going from
Po to some face P. The path y defines a face o f P c j above P. If y' is another path
homotopic to y we continue <p0 analytically along the homotopy from y to y' and
conclude that the imbedding of P depends only on the homotopy class of y. Thus
<p0 uniquely continues to a developing map cp:S-*C Any automorphism g of 5
defines another developing map ip = <p ° g. By proposition 2, there is an isometry h
of C such that t// = h° (p. Thus h = h(g) is a homomorphism of TTf(S) into O(C)
such that <p is fc-equivariant. Let Ae S be a vertex above Ae S with angle 2irm/n.
Let ge TTf(S) correspond to a simple loop around A. Then h(g) is the rotation of
C by 2irm/n around <p(A). Thus h(g") = 1 therefore TT(S) C Ker h. Therefore <p: S-»
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C is invariant with respect to TT(S) and it projects uniquely to a developing map
of S. Since S is developable it is not compact. We have now proved (i) and (iii).

A

Since the Riemann surface S is simply connected and non-compact, by the
Riemann mapping theorem S is either C or H. Denote both by D and let / : S-* D
be an isomorphism. Any ge irr(S) is an automorphism of S, therefore it preserves
(reverses) the canonical complex structure of S if g preserves (reverses) the orienta-
tion. Thus / induces an isomorphism of vr(S) onto a discrete subgroup G of the
group O(D) of isometries of D and identifies 5 with the quotient D/G. If 5 is
oriented than S = D/ G as a Riemann surface.

It remains to prove that D = C if and only if m, = 1, i = 1 , . . . , N. Doubling S if
necessary we assume that dS = 0 . Any polyhedral surface S defines an orbifold
([11, ch. 13]). The orbifold S has an Euler number Xo(S) which is given by [11]

N

where x(S) is the Euler characteristic of 5. For any closed compact polyhedral
surface S with vertex angles a,, / = 1 , . . . , JV, we have

X(S)=1 (l-a,./27r). (3)
i=\

The proof of (3) is an elementary computation and is left to the reader. If S is
rational with vertex angles 2Trmi/nh (2) and (3) yield

^o(S) = | (1-"».•)/«,•• (4)

Thus Xo(S) — 0 and the equality takes place if and only if mt = 1 for all i. Let Go be
a subgroup of G of finite index n which acts freely on D. Then D/ Go = R -» 5 is a
covering with n sheets and x(R) = Xo(R)- For a covering R -> S of orbifolds with n
sheets we have ([11, 13.3.4])

Xo(R) = r>Xo(S). (5)

If D = C then #(#)=() which is equivalent to m{ = 1, i = 1, . . . , N. •

Definition 8. A rational polyhedral surface is called flat (respectively hyperbolic) if
the corresponding orbifold is isomorphic to C/G (resp. 0-0/ G) for some discrete
group G of isometries.

The following corollary has been established in the course of the proof of theorem
1 (compare with [11, 13.3.6]).

COROLLARY 1. A rational polyhedral surface S is flat if and only if the numerators of
all vertex angles of S are equal to 1. Otherwise S is hyperbolic.

COROLLARY 2. Let S be a polyhedral surface with boundary vertex angles Trm./n,,
i = 1 , . . . , M, and interior vertex angles 27rm,/ nh i = M + 1, . . . , N. Then the Euler
number of the orbifold modelled on S is

M N

Xo(S)=L
2Z(\-mi)/n,+ I (l-m,)/«, (6)
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Proof. If dS = 0 (6) becomes (4). If dS^0 (6) follows from (4) for dS and
Xo(dS) = 2xo{S)by (5). •

From now on we identify S with D ( D = C orH) and the group irr(S) of the deck
transformations of S with G c O(D). We choose a developing map cp : D-»C and
let Fc: O(C) be the image of G under the homomorphism ft: G-» O(C). Choose an
origin in C, let C be the unit circle around it and let O(C) be the group of isometries
of C. Then O(C) contains O{C), the normal subgroup C of translations and
O(C) = O(C)C is the semidirect product. Denote by h:G-* O(C) the composition
of h and the homomorphism O(C)^O(C). Let f = /J"(G)<= O(C). For reasons that
will become clear in § 2, /) (resp. ft) is called the holonomy (resp. restricted holonomy)
homomorphism. The group F (resp. F) is called the holonomy (resp. restricted
holonomy) group of S.

Denote b y Z / n c O(C) the group of rotations of order n and by Dn c O(C) the
group generated by reflections in two axes meeting at the angle IT/ n. These groups
exhaust all finite subgroups of O{C).

PROPOSITION 3. Let S be a compact rational polyhedral surface and let n be the least
common multiple of denominators of the vertex angles of S. Then T contains Z/ n. If
dS ¥• 0 or if S is not orientable then f contains Dn.

Proof. Let dS = 0 and let Ah i = 1 , . . . , N, be the vertices of S with angles 277-m,/n,.
Let g;G G be the simple loops around At. Then h(gt) is the rotation of C around
<p{Aj) by lirmjnj. Thus h{gt) is a primitive rotation of order n,. Together they
generate Z/ n. Let S be non-orientable and let S' be the orientable 2-sheeted covering
of S. Then G is generated by G(S') and an element r such that r2e G(S'). Then
h(r) reverses orientation so ft(r) is a reflection. Thus F contains Z/n and a reflection,
so Dn c r . If dS ^ 0 then G is generated by G(dS) and an element r such that r2 = 1.
Then fc(r) is a reflection therefore D , c f . •

Definition 9. A rational polyhedral surface S is called almost integrable if the
restricted holonomy group F is finite.

In order to state proposition 4 we need the notion of the developing map along a
path. Let y(t), 0 < l < 1, be a piecewise differentiable path on a polyhedron S going
through faces P , , . . . , Pn. Any isometry (pt: P, -» C uniquely analytically continues
to an immersion <p: U"= i ^i -* C which is an isometry on each Pf. The mapping <p
is the developing map along y.

PROPOSITION 4. (i) A polygon P is almost integrable if and only if the angle between
any two sides of P is ir-rational.

(ii) Let a rational polyhedral surface S be homeomorphic to the sphere with n holes,
n = 0, 1 , . . . . Let Qi,..., Qn be the connected components of dS. Choose a side a, of
Q( and a path ytfrom a, to ai+u i = 1 , . . . , n - 1. Then S is almost integrable if and
only if developing S along % we map at, ai+l into intervals a\, a'i+i respectively with a
ir-rational angle between them.

(iii) Let a rational polyhedral surface S be homeomorphic to the projective plane
P2. Then S is almost integrable.
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Proof. The group G is generated by simple loops g, around vertices, 7r,(S) and the
flipping r if dS^0. Proving proposition 2 we have shown that h(g(), i=\,..., N,
and h~(r) generate a finite group f ' c f . In case (i), h(wi(S)) = 1 and in case (ii),
hiir^S) is generated by rotations of finite order, thus T is finite. In case (Hi) let r
be the generator of TT^S) . Then h(gt) generate Z/n and h(r) is a reflection, thus

r=Dn.
COROLLARY (of the proof), (i) Let S be a polygon with ir-rational angles between
the sides and let n be the least common multiple of denominators. Then T = Dn.

(ii) Let S be a rational polyhedral surface homeomorphic to S2 (resp. P2 or the disc)
and let n be the least common multiple of denominators of the vertex angles. Then
T = Z/n (resp. Dn).

Let S be an almost integrable polyhedral surface. Denote by Go the kernel of
h:G^O(C) and by R the quotient D/Go. Then R = SG° is the regular covering
of S with the group T of deck transformations. With this notation we have

THEOREM 2. (i) Let n be the least common multiple of denominators of the vertex
angles of S. Then F = Z/n if S is orientable and dS = 0 , otherwise T = Dn. where n'
is divisble by n.

(ii) R is a compact Riemann surface without boundary and Go = ir\(R). The vertex
angles of R are multiples of 2ir. The Euler characteristic x(R) is equal to n'xo(S)
(resp. 2n'xo(S)) if S is closed orientable (resp. otherwise) where Xo(S) is the Euler
number of S given by (6).

(iii) The group Fo = h(G0) is a finitely generated group of parallel translations. The
developing map <p : D -» C is h-equivariant, i.e. for any g 6 Go

<P°g = h(g)°(p (7)

and D/G0=R.

Proof, (i) By proposition 4, the group T is cyclic if S is closed orientable and T is
dihedral otherwise. By proposition 3, T contains Z/n, Dn in the first, resp. second
case.

(ii) If ge G has fixed points then g has a fixed vertex A. Thus h(g) fixes <p(A)
therefore h(g) ^ 1. Analogously if g reverses orientation then h(g) does and h(g) •£ 1.
Thus Go acts freely by conformal automorphisms of D inducing a complex structure
on R = D/G0 and 7r,(/?) = G0. Besides x(&) =Xo(R) = \T\xo(S) by (5). The vertex
angles of S are multiples of 2n and Go acts freely, thus vertex angles of S/ Go are
the same.

(iii) By definition h(G0) = 1 so Foc C. If p is the genus of R then Go and therefore
Fo have 2p generators. The rest is obvious. •

The Riemann surface R is called the canonical covering of an almost integrable
surface S. In cases of particular interest we can calculate T and the genus g(R)
from the angles of S.

PROPOSITION 5. (i) Let S be a polygon and let n be the least common multiple of the
denominators of angles between sides ofS. Then T = Dn. Let irm,/ nh i = 1 , . . . , M, be
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the vertex angles. Then

g(JJ)=l+(n/2) I (m,-l)/«, (8)

(ii) Lef S fee homeomorphic to the disc and let Tnw./n,, i = 1 , . . . , M, {lirmj nh

j = M + 1 , . . . , N) be the boundary (interior) vertex angles of S. Let n be the least
common multiple of nt. Then f = Dn and

(9)[ M I N I

5 I (mI-l)/nj+ I (m,-l)/n, .
(iii) Lef S be homeomorphic to the sphere {resp. projective plane), let

i = 1 , . . . , N, be the vertex angles and let n be the least common multiple of nt. Then
{resp. F = Dn) and

respectively

N

I(m,-l)/n,, (10)

g(R)=l+n I (/n,-l)/«, (11)

Proof The groups F were calculated in proposition 4. Using the fact that 2 - 2g(R) =
X(R) = \T\xo(S) and formula (6) we obtain (8)—(11). •

2. Invariant surfaces of the billiard flow
If a polygon P is embedded in C we define the unit tangent bundle T(P) to be the
set of tangent vectors in C of length one with base points in P and looking into P.
The unit tangent bundle T(S) of a polyhedral surface S is made from r(Pf) where
Pt runs over the faces of S, with obvious identifications.

The set T(S) is the phase space of the geodesic flow on S which is modelled on
the movement of the billiard ball on S. The ball goes straight within each face. It
bounces off boundary edges in an obvious way. Let the ball come to an edge b
between two faces P and Q, at an interior point of b. We imbed P u Q i n C and
let the ball cross straight from P to Q. We agree to stop the ball at the vertices. We
will see later that the trajectory has a natural continuation through a boundary
(interior) vertex if and only if its angle is v/n (2ir/n).
Definition 10. The flow on T(S) defined above is the billiard flow of S.

If x e S is not a vertex, the fibre T(S)X is isomorphic to C and the measure on T(S)
which is locally the product of Lebesgue measures on C and C is preserved by the
flow (cf. [9]). For any x e S the set of directions which will bring the ball from x
to a vertex is countable and therefore the set of ve T(S) which generate finite
lifetime trajectories has measure 0.

Let x, y e S and let y b e a piecewise differentiate curve on S going from x to y
and avoiding vertices. Developing S on C along y we obtain an isomorphism
T(S)|y = yxC and an isometry Ty: T(S)X-* T(S)y which depends on y. It is called
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the parallel translation along y. Moreover Ty depends only on the homotopy class
[y]G77y(S).

From now on S is assumed to be almost integrable. Choose a base point x0 e Po

and an imbedding <p0: Po~* C. For any x e S a choice of curve y from x to x0 gives
an isometry Ty: T(S)X-* C. Varying y changes Ty by the action of T on C which
yields a mapping @:T{S)-> C/T. Now let R be the canonical covering of S and
identify Po with a face of R. Since the restricted holonomy group of R is trivial the
construction above yields a mapping 0 : T(i?) -» C. The action of F on R obviously
lifts to T(R) and we have T(S)= T(R)/T. The projection/>*: T(R)^ T(S) of unit
tangent bundles commutes with the billiard flows on T(R) and T(S), so the billiard
on S is the quotient of the billiard on R.

PROPOSITION 6. (i) The mapping 0(0) uniquely extends to a continuous mapping
@:T(R)^C (0 : T(S)-* C/T) invariant under the geodesic flow and such that
the following diagram commutes

T(R) > C

T(S) * C/T
e

(ii) For 6eC (6e C/T) denote by /?„<= T(R) (R§<= 7(5)) the set given by the
equation @(v) = 0 (®(v) = 0) and by b'e (b's) the flow induced on Re(Rg) by the
billiard flow on T(R) (T(S)). Letd.C^ C/T be the projection and say that 0~e C/f
is regular if any ded~l(d) has a trivial isotropy subgroup. Then

(a) for any 8 e C the projection q: T(R) -* R induces a mapping qe:Re^> R which
is one-to-one everywhere except over vertices of R with angles 2Trm>2ir where it is
m-to-one;

(b) for any regular deC/T and any 6ed~\d) the projection p^ induces an
isomorphism ofRe onto R§ which commutes with be and b'§ on Re and Rg respectively.
Let 0e C/T be not regular and let Te be the isotropy subgroup of 6e d~l(0). Then
TB acts on Re and Rg= Re/te with the flows b'e and b'g respectively.
Proof. First of all we can define the billiard flow and the parallel translations on
T(S) where everything commutes with the projection q*:T{S)^> T(R). Parallel
translations on T(S) define 0 : T(S)^> C. Parallel translations and the geodesic flow
on T(S) are induced by the developing map <p:S-»C, thus 0 is induced by the
composition of <p%: T(S) -» T(C) = C x C and the projection C x C -» C. Therefore
0 is defined everywhere including the vertices, and commutes with the geodesic
flow. All the mappings are compatible with the action of relevant groups, so we
have the following commutative diagram

T(S)
•j
C

" T{R)

-i
> T(S)

—» c/r
which implies (12).
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Fixing some 8 e C we have the constant vector field Xe on C which is a cross-
section of T(C)-»C. The set Se<= T(S) is the pullback of Xg by tp^. The branching
properties of <p imply (see theorem 1) that the projection Sg->S is one-to-one
everywhere except above the vertices with angle 2irm where it is m-to-1. Factoring
out by the action of Go we obtain the same property for the projection Rg -* R.
Commutative diagram (12) implies that for any 0e C/T the action of F on T(R)
permutes Re. for 0,&d~\8) according to the action of F on d~\d). The assertion
(ii(b)) follows. •

Proposition 6 shows that for regular 0 e C/T {C/T has two irregular points if F is
dihedral and none otherwise) the billiard flow on the invariant surface J!,-c T(S)
is equivalent to that on Rec T(R) for any 0ed~\0). The projection qg:Re->R
being essentially one-to-one, we use it to transfer the flows b'g from Re to R, denote
them by the same symbol and call them the billiard flows on R. It is clear from the
construction that the flows b'e have singularities at the vertices of R with angles
2irm >2TT.

PROPOSITION 7. (i) Let 0e C be arbitrary. Let l'e be the linear flow on C in direction
0, i.e. l'ez = z + te'e. Let(p%ll'e be the pullback of l'g on S by the developing map <p: S -» C.
Then the flow <p~^l'e is invariant under the action of Go and the induced flow on
R = D/G0 is b'e.

(ii) Each vertex of R with angle 2-rrm > 2TT is a singular point ofb'e with uniformly
spaced m incoming and m outgoing separatrices. Other points of R are non-singular.
The flows b'e are obtained from any one of them by rotation.

(iii) The billiard flow on T{R) is isomorphic to RxC with the flow b'e on R x 0.

Proof From the proof of proposition 6 we see that the geodesic flow on S is induced
by the developing map <p: S -» C. Proposition 7 follows easily from that, the informa-
tion about the branching of <p (theorem 1) and the fact that h(G0) = T0 is a group
of translations, thus it leaves l'e invariant. •

Recall that a flow b' on a manifold M smooth everywhere except at a finite number
of multisaddle singular points is called minimal (quasiminimal in [13]) if every
infinite semi-trajectory of b' is dense in M.

Definition 11. A direction 0 is called rational with respect to a set X c C (with respect
to a group F of translations) if there exists a straight line in direction 0 which meets
X in two points (which contains points z{, z2 such that the vector zx — z2€F).

PROPOSITION 8. Let S, R, To and b'e be as before. Denote by V<= C the image of the
branching locus of <p: D->C. Then the flow b0 has a periodic trajectory (resp. is not
minimal) only if 0 is rational with respect to Fo (resp. 0 is rational with respect to V).

Proof. Let y(t) be a periodic trajectory of b'e with period T. Then the lifting y{t)
on D has the property y(t + T) = gy(t) for some ge Go. The image (p^y(t) is the
straight line in direction 0, thus the equivariance of <p implies that 8 is rational with
respect to Fo. Let b'e have a non-dense infinite semi-trajectory. Arguing as in [3] or
as in [13] (where theorem 9 of [6] is used) we conclude that b'e has trajectory y
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going from one singular point to another. Thus both ends of y are vertices of S
and <p(y) is a straight interval with both ends in V. •

COROLLARY. The flow b'e is not minimal for at most a countable set of 0's.

Proof. The set of branching points of <p: S -> C is at most countable. •

3. Ergodicity and spectrum
We keep the notation of the previous sections. We will assume that the reader is
familiar with the basic notions of ergodic theory (cf. [9]). The flow b'e preserves the
Lebesgue measure on R and let U'e be the corresponding group of unitary operators
on L2(R). For any discrete group L of translations the linear flow l'e defines a flow
on the torus T = C/L denoted by the same symbol..When L is fixed we call 0e C
rational if it is rational with respect to L. It is well known that the flow l'e on the
torus is ergodic if and only if it is minimal if and only if 0 is an irrational direction.
Moreover for irrational 0 the flow is uniquely ergodic and for rational 0 it is periodic.
The spectrum of l'e is discrete. We will generalize these facts to a certain class of
billiards.

Denote by Vo
c V the set of fixed points of rotations in F. Any two points x, yeC

define a translation vector y — x.

Definition 12. A point zeC is called rational if there exists zoe Vo and au a2eT0

such that z — zo= rxax +r2a2 for some rational numbers r,, r2.

THEOREM 3. Let S be an almost integrable polyhedral surface such that the monodromy
group F c O(C) is discrete and such that all points of V are rational. Then:

(i) The following are equivalent:
(a) direction 0 is irrational;
(b) flow b'e is minimal;
(c) flow b'e is ergodic with respect to the Lebesgue measure;
(d) b'e is uniquely ergodic.

(ii) Let l'e be the linear flow onT = C/Fo. For every irrational direction 0 the discrete
spectrum of b'e coincides with the spectrum of l'e. The continuous spectrum of b'e is
empty if and only ifS is flat.

(iii) For every rational 0 the flow b'e is periodic.

Proof. If Fo is discrete, theorem 2(iii) implies that there is a commutative diagram
<p

D » C

(14)

p

R * T

that yields a branched covering p:R^>T which projects b'e on l'e.
It is well known [2] that there are 17 types of discrete groups Fez O(C). The set

Vo of centres of rotations together with the axes of reflections and sliding reflections
of F form a pattern of lines and points in C. Choose two generators a, b of Fo and
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take some Oe Vo for the origin in C. An obvious choice of coordinates x, y identifies
a with (1,0), b with (0,1) and Fo with the integer lattice. It is easy to verify case
by case that every AeV0 has rational coordinates and that every axis of (sliding)
reflection has two points with rational coordinates. By assumption all points of V
have rational coordinates. Observe that all points of V\V0 come from (boundary)
vertices of S with angle (nm> TT) 2nm>2n and that V is invariant under the
action of Fo. There is a finite number of orbits of V under the action of Fo, therefore
coordinates of z€ V have a common denominator, say N. Let FQ be the group
generated by a/N and b/N, denote by x, y the new coordinates and by Q =
{0< x, y < 1} the fundamental parallelogram of T'o. Now the points of V have integer
coordinates and the whole plane is the union of

Qm,n = {m - 1 < x < m, n - 1 < >> < n}.

Denote the torus C/Fo by T, and let p': T-* Tx and px = p'p: R -» Tt be the natural
projections. The covering />, is branched only over (0,0) e Tu therefore R can be
represented as a union of Qi3 i e /, such that p, :<?,-»(? is 1-to-l for all i. Choose a
fundamental domain R<= D for R, then R = LJ j Q,- Since the composition of (p: D->
C and the projection C-» T, maps each Q, onto Tu <p must map Qt on some Qmn

for all i e /. Thus we have represented R by the union of a finite number of Qmn

where each Qmn may be taken with some multiplicity. Let us call this object a
polygon in the lattice r'o and denote it by R'. Identifications on the boundary of R'
are made by elements of Fo.

This construction represents the billiard flow b'e on R by the linear flow in the
direction $ on R'. When the ball reaches a boundary edge of R' it gets transferred
by some g e Fo to another edge and then it keeps rolling in the same direction. We
think of Qh i e /, as parallelograms on the plane and let X be the union of their
bases. Thus X = [0, 1) x /. The flow b'e that started on the base of some Q, reaches,
after a certain lapse of time Te, the tops of two parallelograms of R' which are
identified with the bases of, say, Q and Qy (see figure 2). Every point of the base
of Qj comes to its destination translated by the rotation number a of the flow l'e.
Also the [0, 1 - a) part of Q, comes to Q, and the [1 - a, 1) part of <?, comes to Qy.
Denote by pa the rotation of [0,1) by a. The previous remarks can be summarized
as follows. There exists a function w(x) on [0, 1) with values in the permutation
group Y.i of / symbols, constant on [0, 1 - a) and [1 - a, 1), so that the first return
to X map ra is

ra(x, i) = (x + a, w(x)i) forxe[0, 1), ie /.

Thus Ta is the extension of rotation pa with the skewing function w(x). The flow
b'e is the suspension of T« with the constant time of return function. To show (i)
we use an unpublished result of W. Veech.

THEOREM (W. Veech). Any extension ra of an irrational rotation pa with the skewing
function constant on [0, 1 —a) and [1 —a, 1) is ergodic if and only if it is minimal.
The ergodic components of ra are in 1 -to-1 correspondence with the orbits on I of the
group W<=-£, generated by w([0, 1 - a ) ) and w([l - a , 1)).
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R'

Qr fa

W,
a

/ / /
1 - a

-Qi

FIGURE 2. Boundary edges are identified by parallel translations. The shaded area does not belong to
R', it comes from an obstacle.

Ergodicity or minimality of ra is equivalent to the ergodicity or minimality of b'e.
If the direction d is irrational then b'g is minimal by proposition 8 and a is irrational.
Thus by Veech's theorem, ra is ergodic. For finite extensions of irrational rotations
ergodicity is equivalent to unique ergodicity which proves (i). If 0 is rational then
l'e is periodic and b'e being a finite extension of it is too.

Pulling back by p:R^> T we imbed L2{T) isometrically into L2(R) as functions
constant on the fibres. We want to show that L2(R)QL2{T) does not contain
eigenfunctions of b'e. Every nontrivial eigenfunction of b'g comes from an eigenfunc-
tion f(x,i) of Ta with an eigenvalue A. Then g(x, i,j) =/(x, i)f(x,j) is a fixed
function of the transformation r'a of [0, 1) x / x I given by

(x, i,j)^(x + a, w(x)i, w(x)j).

Thus by Veech's theorem, g{x, i,j) = h(i,j) where h(wi, wj) = h(i,j) for any weW.
Since ra is minimal, W acts transitively on / and let Wo be the isotropy subgroup
of 1. Set h(i) = h(l, i), then h is W0-invariant, \h\ = 1 and

f(x,i) = h(i)f(x,l). (15)

Applying ra to both sides of (15) we get

f(x + a, w(x)i) = h(w(x)i)f(x + a, l) = A/(x, i) = \h(i)f(x, 1).

Thus for each generator w e W there is an interval J c [0, 1) such that for all x e J

h(wi)hd)-1 = \f(x, l)f(x + a, I)"1. (16)

Since the right hand side of (16) does not depend on i, there is c(w) e C such that

h(wi) = c(w)h(i) (17)

for all i e /. It follows from (17) that w^> c(w) is a character of W trivial on Wo.
Its kernel W, is a normal subgroup containing Wo. Let m = [W: W,] and let / , c /
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be the W, -orbit of 1. Then the character c induces an isomorphism c: W/ W, -» Z/ m,
the group W, has m orbits / , , . . . , Im of the same magnitude \I\/m, and Z/m permutes
them cyclically. Therefore if we represent elements of / by pairs (i,j)l < i"< m,

we have

The transformation aa :{x, i)^-(x + a, c(w(x))i) is an m-point extension of pa and
ra is a |/ |/m-point extension of aa. The eigenfunction / of ra is the pullback of an
eigenfunction / of o-a and an is equivalent to the rotation by a of [0, m).

Going back to the flows we conclude that there is a torus f, a branched covering
p-.R^T with \I\/m sheets and a covering q:T->Tx (unbranched) with m sheets
such that p, = qp and the diagram below commutes

R * T * T,

I * ['•• ° 8 )

R —* f —> r,
p i

Thus we know that any eigenfunction of b'e is the pullback from some torus f. Let
f = C/r0 . Since R is the polygon R with sides identified by some g,, the group Fo

must contain all g,. But gt generate Fo, thus Fo <= Fo which implies that the covering
p:R^T factors through p and some q:T->T where all the mappings commute
with the relevant flows. This argument shows that T is the maximal torus covered
by R. Therefore we can pull an eigenfunction back from T to R in two steps: first
from f to T and then from T to R. The continuous spectrum of b'e is empty if and
only if L2(R) = L2( T) which means that p: R -* T is an isomorphism. •

COROLLARY 1. Let P be a polygon with Tr-rational angles between the sides. Assume
that the obstacles ofP have no slits. If the group F generated by reflections in the sides
of P is discrete then the billiard flow b'e is uniquely ergodic for any irrational direction
e.
Proof. Since P has no vertices with angles irm > TT, we have V = Vo- Points of Vo

are rational with respect to F by definition, therefore assumptions of theorem 3 are
satisfied. •

COROLLARY 2. Let P be a polygon with v-rational angles between sides such that the
group F generated by reflections in the sides of P is discrete. Let A be a vertex of a slit
and continue the line of the slit until it crosses a side b of P. Let B be the point of
intersection. If the vector B — A is rational with respect to F {for every slit in P) then
b'e is uniquely ergodic for any irrational direction 0.

Proof. The slit and the side b define axes of reflections in F. It was mentioned in
the proof of theorem 3 that those are rational lines. The intersection of rational
lines is a rational point. Since B is rational and B - A is by assumption, A is rational
and we are able to apply theorem 3. D
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COROLLARY 3. Let S be a rational polyhedral surface homeomorphic to the sphere or

the disc. Assume that S has no boundary (interior) vertices with angles irm{2Trm), m >

1. Let the holonomy group F of S be discrete. Then for any irrational direction 6 the

billiard flow b'e is uniquely ergodic.

Proof. By proposition 4(ii), S is almost integrable. Apply theorem 3. •

COROLLARY 4. Let S be any Platonic solid except the dodecahedron. Then the billiard

flow on S in any irrational direction is uniquely ergodic.

Proof. Developing S on the plane one sees that F is not discrete only for the
dodecahecron. •
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