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When a less-viscous solution of a reactant A displaces a more-viscous solution of another
reactant B, a fast bimolecular A + B → C reaction decreasing locally the viscosity can
influence the viscous fingering (VF) instability taking place between the two miscible
solutions. We show both experimentally and numerically that, for monotonic viscosity
profiles, this decrease in viscosity has opposite effects on the fingering pattern depending
on the injection flow rate. For high flow rates, the reaction enhances the shielding effect,
creating VF patterns with a lower surface density, i.e. thinner fingers covering a smaller
area. In contrast, for lower flow rates, the reaction stabilises the VF dynamics, i.e.
delays the instability and gives a less-deformed displacement, reaching in some cases an
almost-stable displacement. Nonlinear simulations of reactive VF show that these opposite
effects at low or high flow rates can only be reproduced if the diffusivity of A is larger than
that of B, which favours a larger production of the product C and, hence, a larger viscosity
decrease. The analysis of one-dimensional viscosity profiles reconstructed on the basis of a
one-dimensional reaction–diffusion–advection model confirms that the VF stabilisation at
low Péclet number and in the presence of differential diffusion of reactants originates from
an optimum reaction-driven decrease in the gradient of the monotonic viscosity profile.

Key words: fingering instability, Hele-Shaw flows, laminar reacting flows

1. Introduction

The displacement of one fluid by another in porous media is commonly encountered in
environmental and industrial flows. When the injected fluid is more viscous than the
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displaced one, the displacement is hydrodynamically stable and the interface between both
fluids remains planar. In the reverse situation where the invading fluid is less viscous than
the displaced one, the interface shows a finger-like deformation because the interface is
hydrodynamically unstable with regard to a viscous fingering (VF) instability (Engelberts
& Klinkenberg 1951; Saffman & Taylor 1958; Homsy 1987). VF with or without chemical
reactions has been well studied so far (Homsy 1987; McCloud & Maher 1995; De Wit
2020) because of its wide range of applications such as in transport of digestive juices
(Bhaskar et al. 1992), chromatography (Broyles et al. 1998; Haudin et al. 2016), secondary
and ternary oil recovery (Lake et al. 2014; Sabet et al. 2020) and CO2 sequestration
(Berg & Ott 2012) to name a few. In the miscible displacement of a solution of B of
viscosity μb by a solution of A of viscosity μa, an important parameter controlling VF
is the log-mobility ratio Rb = ln(μb/μa). If Rb > 0, the displacement is unstable and VF
is all the more vigorous if Rb is increased or the flow rate is larger (Homsy 1987). The
Rb < 0 case is stable, leading to stable planar interfaces in non-reactive systems.

Fingering patterns can be modified by reactions which change viscosity, permeability
or interfacial tension (Nagatsu 2015; De Wit 2016, 2020). Experiments have provided
evidence for, for example, changes in the fingering pattern due to a decrease in interfacial
tension induced by a reaction in immiscible systems (Fernandez & Homsy 2003; Tsuzuki
et al. 2019) or due to a decrease in permeability by a precipitation reaction in miscible
systems (Nagatsu et al. 2008, 2014; Haudin & De Wit 2015; Shukla & De Wit 2016). When
a chemical reaction affects the VF dynamics, the value of the dimensionless Damköhler
number Da defined as the ratio of the characteristic time of advection to that of the
chemical reaction is an additional important parameter.

From a theoretical point of view, miscible reactive VF for which the reaction induces
in situ a change in viscosity has been investigated numerically in the case of a bistable
chemical reaction changing the viscosity across a moving chemical front, inducing a
new mechanism of ‘droplet’ formation (De Wit & Homsy 1999). Later, linear stability
analysis (Hejazi et al. 2010; Kim et al. 2021) and nonlinear simulations (Gérard & De
Wit 2009; Nagatsu & De Wit 2011; Sharma et al. 2019; Kim et al. 2021; Tafur et al. 2021;
Verma, Sharma & Mishra 2022) have classified the stabilising or destabilising influence of
simple A + B → C reactions on VF. For such simple bimolecular reactions, an important
parameter is the log-mobility ratio Rc = ln(μc/μa) comparing the viscosities of equimolar
solutions of the product C or reactant A. Most theoretical works on this reactive VF
have considered the case where the initial concentration of A and B is the same and all
species diffuse at the same rate. Under this condition, if Rc = Rb, the product has the same
viscosity as the reactant B and the reactive case is exactly the same as the non-reactive one.
If Rc < Rb, the reaction decreases the viscosity while viscosity increases if Rc > Rb. As
long as 0 < Rc < 2Rb, the viscosity profile remains monotonic. An extremum in viscosity
is observed if Rc < 0 or Rc > 2Rb. When Rb < 0 and there is an extremum in viscosity,
modelling predicts that, similarly to differential diffusion effects (Mishra et al. 2010),
reactions are able to destabilise otherwise stable displacements thanks to the build-up of
non-monotonic viscosity profiles (Hejazi et al. 2010; Nagatsu & De Wit 2011; Riolfo et al.
2012; Escala et al. 2019).

In 2007, Nagatsu et al. (2007) reported the first experimental study of miscible VF
with viscosity changes induced by a very fast chemical reaction (infinite Da) during
a radial injection in a Hele-Shaw cell. In this study, polymer solutions with viscosity
depending on pH were displaced by less-viscous acid or base aqueous solutions (Rb > 0
case). The reaction modifies locally the gradient in viscosity but the viscosity profile
remains monotonically increasing. It was shown that, at fixed large flow rates, reactive
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Opposite effects of a reaction-driven viscosity decrease

VF patterns have a larger surface density, i.e. cover a larger area than their non-reactive
equivalent at given times and flow rates when the reaction increases the viscosity. This is
due to the fact that the reaction widens the fingers and decreases the shielding effect. In
contrast, in the case of a decrease in viscosity by reaction, the surface density of the VF
patterns is lower, i.e. fingers are thinner and shielding is enhanced. Subsequently, similar
reactive VF experiments with monotonic increasing viscosity profiles have been performed
under moderate Da conditions using slower reactions for both chemically driven viscosity
decrease (Nagatsu et al. 2009) and increase (Nagatsu et al. 2011). It was shown that, for
such intermediate Da conditions, the experimental results were opposite to those of the
infinite Da case, i.e. the area occupied by the VF pattern was increased (decreased) in case
of viscosity decrease (increase).

In the case of reactive VF (Rb > 0) with non-monotonic viscosity profiles featuring
a maximum, experiments have shown that the maximum induces fingers extending
preferentially towards the back of the reaction zone (Bunton et al. 2017). By increasing
experimentally the Damköhler number, the stabilising effect of the reaction can as well
be enhanced (Stewart et al. 2018). The reactive destabilisation of an otherwise stable front
(Rb < 0) has been achieved experimentally in the case of the reactive displacement of acid
or base aqueous solutions by a more-viscous polymer solution showing that the chemically
induced pattern is different depending on whether the reaction builds a maximum or a
minimum (Riolfo et al. 2012). Destabilisation induced by a pH sensitive clock reaction
has also shown how the reactive feedback of a pH-changing reaction on viscosity can
control fingering (Escala et al. 2019; Escala & Munuzuri 2021). The destabilisation of the
case of reactant solutions of same viscosities, i.e. Rb = 0 has been studied experimentally
by Podgorski et al. (2007).

Numerical simulations of reactive miscible VF with viscosity changes by an
instantaneous A + B → C chemical reaction for infinite Da conditions (Nagatsu & De
Wit 2011) and variable Rb and Rc are in good agreement with the experimental results
(Nagatsu et al. 2007), i.e. an increase (decrease) of viscosity by the reaction leads to
surface denser (less-dense) VF patterns. For Rb = 0, the effect on the properties of reactive
fingering of varying the Damköhler number, the contrast in viscosity between products and
reactant, the initial concentrations, and the diffusion coefficients (Gérard & De Wit 2009;
Verma et al. 2022) are in good agreement with the experiments from Podgorski et al.
(2007). In particular, Gérard & De Wit (2009) showed that, even if the solutions of the two
reactants A and B have the same viscosity, the VF pattern is different whether A is injected
into B or the reverse as soon as these reactants have different diffusion coefficients or
different initial concentrations because the underlying concentration profiles controlling
the viscosity profile are not symmetric. This study was however limited to the case Rb = 0
and did not investigate the effect of changing the value of Pe.

The effect of varying the Péclet number has been investigated numerically as well,
showing that, as expected, decreasing Pe for non-reactive cases stabilises VF (Homsy
1987; Pramanik & Mishra 2015; Shukla & De Wit 2020). Interestingly, Hejazi & Azaiez
(2010) show that, for A + B → C reactions with moderate Da, larger Pe can lead to
slower rates of chemical production, i.e. less product C generated at a same time. This
is attributed to the fact that the mixing between reactants by diffusion is then less efficient
at early times. Shukla & De Wit (2020) have performed a numerical study of the effect
of A + B → C reactions on VF when varying Pe for a finite Da and equal diffusion
coefficients, focusing on the case of a viscosity-decreasing reaction both in the case of
monotonic and non-monotonic viscosity profiles. They found that the viscosity-decreasing
reaction has an increased stabilising effect when Pe is decreased in the sense that the
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Less-viscous solution

Gap

More-viscous

polymer solution

b = 0.3 mm

Figure 1. Schematic of the Hele-Shaw cell reactor.

mixing length of species A at given times is smaller in the reactive case than that in the
non-reactive one when Pe is lower. This effect was attributed to a build-up of a minimum
in the viscosity profile. However, the mixing lengths of species B and C at given times in
the reactive case were larger than those in the non-reactive case and the study focused on
equal diffusion coefficients only.

It is of interest to study to what extent overall stabilisation can also be obtained
for monotonic profiles and what is the role of differential diffusion effects. Moreover,
experiments on miscible VF with A + B → C reactions for which the Péclet number is
varied in a wide range are not yet available.

In this context, we have experimentally investigated the influence of changes in the
injection flow rate or, equivalently, changes in the Péclet number Pe on miscible VF
when a bimolecular A + B → C reaction decreases viscosity. In the experiments, we
analyse the change in the VF patterns when viscous polymer solutions are displaced by a
less-viscous acidic solution such that the viscosity is decreased in situ via reaction-driven
pH changes. Scanning a wide range of flow rates, we show that this reaction-driven
viscosity decrease has opposite effects on the VF pattern at high and low flow rates,
respectively. Interestingly, for lower flow rates, a full stabilisation of the interface by
reaction is obtained. In parallel, a numerical investigation of the influence of changes in
the Péclet number Pe on VF for a viscosity decreasing reaction with monotonic viscosity
profiles confirms the same trend provided the injected reactant diffuses sufficiently faster
than the displaced one. Our findings pave the way to devise a control of VF by chemical
reactions choosing suitable reactants and flow conditions.

2. Experimental set-up and numerical description

2.1. Experimental set-up
Experiments are conducted in a horizontal Hele-Shaw cell consisting in two glass plates
separated by a thin gap in which a viscous fluid is displaced by another less-viscous
one, injected through a central hole at a fixed flow rate (see figure 1). The gap of the
cell b is fixed to 0.3 mm and the injection flow rate q is varied from 9.2 × 10−11 to
3.6 × 10−8 m3 s−1. In reactive displacements, the displaced more-viscous solution is a
0.125 wt % sodium polyacrylic acid (SPA) solution (molecular weight of 2.1–6.6 × 106)
while the injected displacing less-viscous fluid is a 0.2 M HCl aqueous solution. Upon
contact between these solutions, a chemical reaction produces polyacrylic acid (PAA),
resulting in a viscosity decrease at an instantaneous rate (Nagatsu et al. 2007, 2010).

For the non-reactive case, the same 0.125 wt % SPA solution and deionised water are
used as the more- and less-viscous solutions, respectively. In all cases, the less-viscous
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Figure 2. Viscosity as a function of shear rate of the more-viscous fluid (blue squares) and that of the solution
obtained by mixing equal volumes of a 0.125 wt % SPA solution and of a solution of 0 M (black circles) or
0.2 M HCl (red triangles) including 0.1 wt % trypan blue.

solutions are dyed with trypan blue for visualisation of the dynamics. The viscosity of
the various fluids was measured using a commercial viscosimeter (from TA Instruments,
Japan). The viscosity of the more-viscous polymer solution is shear thinning, i.e. decreases
with the shear rate as shown by the blue squares in figure 2. The viscosities of the
displacing dyed Newtonian 0.2 M HCl aqueous solution or pure water are 1.1 and
1.0 mPa·s, respectively. We also measured the viscosity of a mixture of equal volumes
of 0.125 wt % SPA solution and 0.2 M HCl solution (in the reactive case) and that of 0.125
wt % SPA solution and water (in the non-reactive case), see figure 2. We find that the
viscosity in the reactive mixture system is much lower than that in the non-reactive one
and that the reaction, in effect, decreases the viscosity.

2.2. Numerical simulations
To simulate the experiments shown above, we consider a horizontal Hele-Shaw cell of
length Lx and width Ly with constant permeability κ in which a miscible solution of
reactant A with viscosityμA is injected from left to right into a polymer solution of reactant
B with viscosity μB at a constant speed U along the x direction (figure 3). A bimolecular
A + B → C reaction giving the product C with viscosity μC takes place in the contact
zone between reactants A and B. Here, species A, B and C correspond to HCl, SPA and
PAA, respectively in the experiment. As in experiments, we follow the dynamics by the
spatiotemporal evolution of the neutral dye, E, initially dissolved in the injected solution.
We assume that buoyant effects are negligible and that the fluids are incompressible. The
dynamics is described by Darcy’s law coupled to reaction–diffusion–advection equations
for the concentrations:

∇ · u = 0, (2.1)

∇p = −μ(b, c)
κ

u, (2.2)

∂a
∂t

+ u · ∇a = DA∇2a − kab, (2.3)
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xe = 0

c = 0

a = 0

b = b0

µ = µB

e = e0

c = 0

a = a0

b = 0

µ = µA

Lx

y

Ly

U

Figure 3. Two-dimensional porous medium of length Lx and width Ly with permeability κ in which a miscible
solution of reactant A with viscosity μA is injected from left to right into a solution of reactant B with viscosity
μB > μA at a constant speed U along the x direction. Here, a0, b0 and e0 are the initial concentration of reactant
A, reactant B and dye E, respectively.

∂b
∂t

+ u · ∇b = DB∇2b − kab, (2.4)

∂c
∂t

+ u · ∇c = DC∇2c + kab, (2.5)

∂e
∂t

+ u · ∇e = DE∇2e, (2.6)

μ(b, c) = μA exp
(

Rb
b
f0

+ Rc
c
f0

)
, (2.7)

where μA, μB and μC are the viscosities of the solutions of A, B and C at a same reference
concentration f0. Here a, b, c and e denote the concentrations of the reactants A and B, the
product C and the dye E, respectively; u = (u, v) is the two-dimensional velocity; k is the
kinetic constant; p is the pressure; DI is the diffusivity coefficient of species I; μ(b, c) is
the viscosity; Rb and Rc are the log-mobility ratio defined as

Rb = ln
(
μB

μA

)
, Rc = ln

(
μC

μA

)
. (2.8a,b)

Note that, except for (2.7), the formulation is equivalent to the model of Shukla & De
Wit (2020). For the non-reactive case, the system is hydrodynamically unstable when the
less-viscous solution of A displaces the more-viscous solution of B, i.e. when μA < μB
or Rb > 0. To mimic the fact that the reaction decreases viscosity in the experiments (see
figure 2), we consider here Rb = 2 and Rc = 0 such that the product C is less viscous than
the reactant B but we keep a monotonic viscosity profile.

2.3. Non-dimensional equations
To specifically let the Péclet number appear in the dimensionless problem, the reference
scales for length, velocity, time, concentration, viscosity, diffusivity and pressure are taken
as Ly, U, Ly/U, f0, μA, DC and μAULy/κ , respectively. For simplicity, equations are
written in a reference frame moving with speed U with ex being the unit vector along
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x direction. The dimensionless forms of (2.1)–(2.8a,b) can be written as

∇ · u = 0, (2.9)

∇p = −μ(b, c)(u + ex), (2.10)

∂a
∂t

+ u · ∇a = δA

Pe
∇2a − Daab, (2.11)

∂b
∂t

+ u · ∇b = δB

Pe
∇2b − Daab, (2.12)

∂c
∂t

+ u · ∇c = 1
Pe

∇2c + Daab, (2.13)

∂e
∂t

+ u · ∇e = δE

Pe
∇2e, (2.14)

μ(b, c) = exp(Rbb + Rcc), (2.15)

where Da = kf0Ly/U = τh/τc is the dimensionless Damköhler number defined as the ratio
of the hydrodynamic time scale τh = Ly/U to the chemical time scale τc = 1/kf0. The
Péclet number Pe = ULy/DC = τD/τh is the ratio of the diffusive time τD = L2

y/DC and
the advective time τh while δA = DA/DC, δB = DB/DC and δE = DE/DC are the diffusion
coefficient ratios (Shukla & De Wit 2020). Taking the curl of the momentum equation and
defining the stream function ψ as u = ∂ψ/∂y and v = −∂ψ/ψx, we obtain

∇2ψ = Rb

(
∂ψ

∂x
∂b
∂x

+ ∂ψ

∂y
∂b
∂y

+ ∂b
∂y

)
+ Rc

(
∂ψ

∂x
∂c
∂x

+ ∂ψ

∂y
∂c
∂y

+ ∂c
∂y

)
, (2.16)

∂a
∂t

+ ∂ψ

∂y
∂a
∂x

− ∂ψ

∂x
∂a
∂y

= δA

Pe
∇2a − Daab, (2.17)

∂b
∂t

+ ∂ψ

∂y
∂b
∂x

− ∂ψ

∂x
∂b
∂y

= δB

Pe
∇2b − Daab, (2.18)

∂c
∂t

+ ∂ψ

∂y
∂c
∂x

− ∂ψ

∂x
∂c
∂y

= 1
Pe

∇2c + Daab, (2.19)

∂e
∂t

+ ∂ψ

∂y
∂e
∂x

− ∂ψ

∂x
∂e
∂y

= δE

Pe
∇2e. (2.20)

The initial conditions for the stream function and product concentration are taken as
ψ(x, y) = 0 and c(x, y) = 0, for all (x, y). For the initial concentrations of the reactant A
and B solutions, we use a step function between a = 10, b = 0 on the left and b = 1,
a = 0 on the right of x = x0 where x0 is the initial position of the interface with a
random noise of amplitude of order 10−2 added in the front to trigger the instability.
To solve (2.16)–(2.20), we use a pseudo-spectral method based on Fourier coefficients
(Tan & Homsy 1988; Gérard & De Wit 2009; Pramanik & Mishra 2015). The numerical
domain has a size of 1024 × 256 for Pe ≤ 2000 and 4096 × 1024 for Pe = 4000 and 8000.
Boundary conditions are periodic in both directions. This is standard for the transverse
direction and yields good results along the longitudinal direction as long as the length
Lx is taken sufficiently long for the two fronts not to interact. Figures of the fingering
dynamics focus on the unstable front.

Note that, for a given reference concentration f0 and geometry, the diffusive and
chemical time scales τd and τc are constant. Our simulations aim to investigate the effects
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Reactive

CHCl = 0.2 M

t = 16 196 s

116

mm

t = 1922 s t = 304 s t = 85 s t = 11 s

t = 9813 s

q = 9.2 × 10–11 m3 s–1 5.3 × 10–10 m3 s–1 1.7 × 10–9 m3 s–1 8.2 × 10–9 m3 s–1 3.6 × 10–8 m3 s–1

t = 1385 s t = 419 s t = 78 s t = 19 s

Non-

reactive

CHCl = 0

rmax

(a) (b) (c) (d) (e)

( f ) (g) (h) (i) ( j)

Figure 4. Displacement patterns comparing for different injection flow rates the non-reactive cases (upper
line) and the reactive cases (bottom line) at the time (given in each panel) when the longest finger has reached
the distance rmax = 0.8rHS where rHS = 58 mm is the radius of the cell.

of varying the flow rate. To do so, we vary U and hence Pe by changing τh. As Pe = τd/τh
and Da = τh/τc, we have that Pe·Da = const. such that any change in Pe implies a change
in Da as well (Escala & Munuzuri 2021). Here, we fix Pe·Da = 8000.

3. Results and discussion

3.1. Displacement experiments
Experimental results comparing unstable displacements with or without reaction are
shown in figure 4. First, we see that, as expected, increasing the flow rate allows to
reach the same position much faster in both cases. In the non-reactive case, especially
at lower flow rates, the pattern features very branched fingers, similar to those observed
in other non-Newtonian systems (Nittman, Daccord & Stanley 1985; Zhao & Maher 1992;
Kawaguchi 2001). In contrast, in the higher-flow-rate regime, the dynamics is rather
similar to those seen with Newtonian non-reactive fluids with less-branched patterns
owing to the shear-thinning viscosity and the higher shear rate. Note that the sharpness
of the viscosity profile along the gap direction may also play a role (Lajeunesse et al.
1997; Videbaek & Nagel 2019; Keable et al. 2022) as seen when, for instance, the colour
becomes less intense around the fingertip (Videbaek & Nagel 2019; Keable et al. 2022). In
our experimental results, the colour intensity of the dye is almost uniform over the whole
VF pattern as shown in figures 4 and 7. Hence, we do not explore the three-dimensional
structure of the fingers any further. This is also motivated by the fact that ratios of
viscosities μB/μA are here typically of the order of 102–103 depending on flow rate and
position along the radius so that we do not expect here to see patterns with proportionate
growth as observed at lower viscosity ratios when flow rate is varied (Bischofberger,
Ramachandran & Nagel 2014; Videbaek & Nagel 2019).

As seen qualitatively in figure 4 and quantitatively in figure 5 (see Appendix B for details
on finger width measurements), the typical finger width does not depend much on the
injection flow rate q for the non-reactive case. To understand this, we recall that, because
of the shear thinning fluid property of the more-viscous fluid, its apparent viscosity and,
hence, the viscosity contrast between the two solutions is decreasing with an increase in the
flow rate. This stabilising effect is counterbalanced by the fact that, classically, an increase
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Figure 5. Average finger width 〈w〉 as a function of flow rate q for the patterns shown in figure 4. The error
bars represent the standard deviation for experiments repeated at least three times.
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Figure 6. Area density, darea, as a function of the flow rate q for the non-reactive and reactive cases of the
patterns shown in figure 4. The error bars represent the standard deviation for experiments repeated at least
three times.

in the flow rate increases the fingering destabilisation (Homsy 1987). Hence, the balance
between both effects induces that the typical finger width of the non-reactive pattern
is almost independent of the flow rate. Similar effects occur in VF of non-Newtonian
immiscible fluids as well (Bonn et al. 1995; Singh, Lalitha & Mondal 2021).

A temporal evolution of both non-reactive and reactive patterns is shown at the lowest
and highest q in figure 7. Note that the wavelength of the fingers at onset in the non-reactive
case does not scale as 4b as seen in some studies (Paterson 1985), probably due to the
non-Newtonian character of the displaced solution.

In the reactive case, in contrast, we see that while fingers form at higher flow rates,
the displacement is stabilised at the lowest injection speed. Quantitatively, we measure
that, when q increases, fingers typically become narrower and the VF patterns have a
lower surface density than the non-reactive ones, i.e. they cover a smaller area (figure 6).
As already explained previously, this is due to an enhancement of the shielding effect, a
phenomenon in which a finger ahead of its neighbouring fingers shields them from further
growth (Nagatsu et al. 2007; Nagatsu & De Wit 2011). On the other hand, for the lowest
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Figure 7. Temporal evolution of the displacement patterns (a,e) non-reactive and ( f, j) reactive in figure 4.
Pictures of each row are taken at r = 0.2rHS, r = 0.4rHS, r = 0.6rHS and r = 0.8rHS, respectively. This
corresponds to different times depending on the conditions as seen on the value of the time inserted in the
lower right corner of each panel.

flow rate, the reactive displacement pattern is almost circular and the area density is closer
to one.

As will be explained thanks to the numerical part, this stabilisation of VF at lower Pe
is due to the fact that, diffusion gaining increased efficiency with regard to advection, the
reactants A and B diffuse more into each other generating more of the less-viscous product
C (Shukla & De Wit 2020). As the reaction decreases the viscosity in a larger zone, the
underlying viscosity gradient decreases, which further favours the passage of the injected
less-viscous solution. This explains the filling of the reactive pattern at its centre when Pe
decreases and the VF stabilises.

3.2. Quantitative characterisation of the experimental patterns
To quantitatively analyse the VF patterns, we measure the area density, darea, defined as the
ratio of the area of the fingered pattern to the area πr2

max of the circle of radius rmax passing
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Figure 8. Area density as a function of rmax/rHS for (a,e, f, j) in figure 7.

at the end of the longest finger (Nagatsu et al. 2007). An example of rmax is indicated in
figure 4( f ). The dependence of darea on the flow rate for both non-reactive and reactive
cases of figure 4 is shown in figure 6. For low q, darea is larger for the reactive case which
is coherent with the observation on figure 4 that the fingered non-reactive pattern is indeed
replaced by an almost circular filled circle in the presence of reaction. The reverse is seen
for high q: darea is smaller in the reactive case because the shielding effect is enhanced
by the reaction and the fingers are much thinner than in the non-reactive situation. The
chemical reaction has thus an opposite effect on the VF pattern depending on the flow
rate. This conclusion holds all along the temporal evolution of the pattern. Indeed, as seen
on figure 7, patterns grow maintaining a similar shape all along their progression. Their
area density darea typically decreases with rmax for all conditions analysed here (figure 8)
such that, at all time, darea in the reactive system is larger than that in the non-reactive
system at low q whereas the opposite is seen at high q.

3.3. Numerical simulations
To consider the same situation as in the experimental study described above, we perform
numerical simulations varying Pe both without and with chemical reaction for Rb = 2
and analyse the VF pattern by following the dye distribution (Nagatsu & De Wit 2011).
In the reactive case, Da is changed to satisfy the condition Pe·Da = 8000 and we take
Rc = 0 to consider a reaction decreasing viscosity but keeping the viscosity profile
monotonic (Nagatsu & De Wit 2011). In the case without reaction, Da = 0. We set the
initial concentration of A to be 10 times larger than that of B because, in experiments,
the concentration of the displacing HCl solution, CHCl = 0.20 M is about 10 times
larger than that of the displaced SPA solution (CSPA = 0.0133 M). We analyse the effect
of differential diffusivity by either imposing all diffusion coefficients to be the same
(δA = δE = δB = 1 = 1) as in previous numerical studies on reactive miscible VF (Hejazi
& Azaiez 2010; Hejazi et al. 2010; Nagatsu & De Wit 2011; Omori & Nagatsu 2020;
Shukla & De Wit 2020) or taking the diffusion coefficients of the low-molecular-weight
chemical species (i.e. A and the dye E) to be 10 times larger than that of the polymer B,
i.e. δA = δE = 10, δB = 1.

We first investigate the effect of varying the Péclet number Pe on the VF dynamics
for the non-reactive case with different diffusivities. Figure 9 shows that fingers become
longer and narrower when Pe is increased, which is consistent with the well-known
observation that increasing displacement speed makes the interface more unstable to VF
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(a) (b)

(c) (d)

1

0

Figure 9. Non-reactive VF patterns shown at time t = 1 for different values of the Péclet number: (a) Pe =
1000, (b) Pe = 2000, (c) Pe = 4000 and (d) Pe = 8000 for different diffusivities (δA = δE = 10, δB = 1). The
grey scale shows the non-dimensional concentration of the dye, E.
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Figure 10. Temporal evolution of the mixing length for the simulations of figure 9. The curves show the
average of five simulations with different initial perturbations.

(Chen 1987; Petitjeans et al. 1999; Nagatsu & Ueda 2004; Pramanik & Mishra 2015;
Suzuki et al. 2020). To be more quantitative, we compute the corresponding mixing length
L defined here as the length of the zone in which the transverse-averaged concentration of
the dye ē(x, t) lies in the range 0.01 < ē(x, t) < 0.99 (Tan & Homsy 1988; Nagatsu &
De Wit 2011). Classically, the mixing length L first grows as

√
t in the early diffusive

regime, followed by a linear growth when convection develops. Figure 10 shows that the
onset time of VF becomes smaller while the slope of the linear growth increases when
Pe increases. This confirms that the non-reactive VF dynamics becomes more unstable
as Pe is larger. Note that the fingers narrowing is not observed in the experiment when
Pe increases because experimental shear thinning effects not taken into account in the
simulations come into play to maintain similar form of the fingers as explained above.

We next investigate the effect of the chemical reaction on the VF dynamics for both
different or equal diffusivities at low Pe (figure 11) and high Pe (figure 12). First, panels
(a,c) of these figures compare the dye distribution in the non-reactive cases. Beyond the
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(a) (b)

(c) (d)

1

0

Figure 11. Comparison of non-reactive (Da = 0, first column) and reactive VF (Da = 8, second column)
patterns at time t = 1 for Pe = 1000 with (a)(b) different (δA = δE = 10, δb = 1) or (c)(d) same diffusivity
(δA = δE = 1, δb = 1). The grey scale shows the non-dimensional concentration of the dye, E.

(a) (b)

(c) (d)

1

0

Figure 12. Same as figure 11 for Pe = 8000.

fact that the displacement is more unstable when Pe increases, we see that, for both Pe
values scanned, the case with differential diffusion (panels a) looks more stable. The
underlying fingering pattern is the same, however it appears more blurry and hence more
stable if the dye diffuses quickly, because its spatial distribution is then more smoothed
out. When inspecting the effect of reaction (panels b,d), we see in figure 11 that the VF
pattern for the reactive case at low Pe is more stable than that for the non-reactive case
in the different diffusivity case (shown in the upper line panel), which is consistent with
the experimental result of figure 4. In figure 11(d), the reactive VF pattern seems also
less dense than the non-reactive VF pattern (figure 11c), which is not observed in the
experiments. At high Pe (figure 12), in contrast, reactive fingers with Da = 1, shown in
the right column, always look more extended and thinner (smaller darea), than those with
Da = 0 (left column), which is similar to what is seen in experiments. This conclusion
holds whether the diffusivities are the same or not.

The corresponding temporal evolution of the mixing length is shown in figures 13 and
14, respectively. Figure 13 shows that, in the reactive case, the onset time is larger and the
slope of the linear growth smaller than in the non-reactive case for different diffusivity
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Figure 13. Mixing length of non-reactive (Da = 0) and reactive VF (Da = 8) patterns for Pe = 1000 with
different (δA = δE = 10, δb = 1, solid lines) or same diffusivity (δA = δE = 1, δb = 1, dashed lines). The
curves show the average of five data with different initial perturbations.
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Figure 14. Same as figure 13 for Pe = 8000.

while the reverse is seen if diffusion coefficients are equal. These results quantitatively
demonstrate that the reaction stabilises the VF instability for low Pe in the differential
diffusivity case only. At higher Pe (figure 14), there is no clear difference in the onset
time between the reactive and non-reactive system at both different and same diffusivity.
For the period of nonlinear growth of VF (when t > 0.5), we can see that L in the
reactive system is larger than that in the non-reactive system for the same diffusivity,
whereas L in the reactive system is almost the same as that in the non-reactive system for
different diffusivity. This result for the same diffusivity is consistent with the observation
in figure 12(c,d) in which the patterns in the reactive systems look more extended and
thinner.
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Figure 15. Temporal evolution of finger density, dfinger comparing non-reactive (Da = 0) and reactive
(Da /= 0) VF for Pe = 1000 (upper panel) or Pe = 8000 (lower panel) for (a,c) different diffusivities (δA =
δE = 10, δb = 1) or (b,d) same diffusivities (δA = δE = 1, δb = 1). The curves show the average of five
simulations with different initial perturbations.

To further analyse the numerical patterns quantitatively, we compute as well the finger
density as

dfinger = 1
Ly × L

∫ Ly

0

∫ L+

L−
e(x, y, t) dx dy, (3.1)

where L = L− + L+ and L− is the length of the upstream finger propagating in the
backwards direction with respect to the initial interface while L+ is the length of the
downstream finger propagating in the forwards direction (Nagatsu & De Wit 2011). The
temporal evolution of dfinger is shown in figure 15. At low Pe, dfinger for Da = 8 is larger
than that for Da = 0 with different diffusivities as long as t is smaller than around 1.2,
which confirms the quantitative observation made in figures 11(a) and 11(b). However,
at later time, dfinger for Da = 8 becomes smaller than that for Da = 0 (figure 15a).
This point is discussed in detail below. With same diffusivities, dfinger for Da = 0 is in
contrast, larger than that for Da = 8, which confirms the quantitative observation made
in figure 11(c,d). For high Pe, dfinger for Da = 0 is larger than that for Da = 1 no matter
whether the diffusivities are the same (figure 15d) or not (figure 15c), which is similar to
the quantitative observation made in figure 12. Figure 16 shows dfinger at t = 1 for various
Pe in the case involving different diffusivities. Although the dfinger value for the reactive
case is smaller than that for the non-reactive case at high Pe, the reverse is seen at low Pe.
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Figure 16. Finger density dfinger computed at time t = 1 as a function of Pe in the case involving different
diffusivities. Each value is the average of five simulations with different initial perturbations with the error bar
showing the standard deviation.

This trend is exactly the same as in the experimental results shown in figure 6. Note that at
Pe = 1000 and 1200, the finger density with error bars is larger in the reactive case. This
shows that there is a significant difference between the reactive and non-reactive cases
even if the difference is small. To conclude, we see that opposite effects of the reaction
on dfinger at low and high values of Pe are obtained numerically only when the diffusion
coefficients are different.

3.4. One-dimensional reaction–diffusion profile
To understand the specific effect of differential diffusivity, we reconstruct viscosity profiles
on the basis of one-dimensional reaction–diffusion (RD) concentration profiles, solutions
of ((2.11)–(2.13)) in which the injection speed is set to zero:

∂a
∂t

= δA

Pe
∇2a − Daab, (3.2)

∂b
∂t

= δB

Pe
∇2b − Daab, (3.3)

∂c
∂t

= 1
Pe

∇2c + Daab. (3.4)

We numerically solve the RD equations (3.2)–(3.4) by an Euler method for time integration
with a time interval dt = 10−5 and a second-order central difference method with spatial
step dx = 0.005 to solve the second spatial derivative. The initial condition is a = 10,
b = 0, c = 0 for x − x0 < 0 and a = 0, b = 1, c = 0 for x − x0 > 0. No flux boundary
conditions are applied at both ends for all concentrations. We obtain the concentration
profiles shown in figure 17 for Pe = 1000 and t = 0.5.

The viscosity profiles of figure 18 are calculated from these concentration profiles using
(2.15). The Δ value is the gradient of lnμ around lnμ = 1. First, we see that, for all
viscosity profiles, the reactive curve is to the right of the non-reactive one, which is due to
the fact that the reactant A is 10 times more concentrated than reactant B (figure 17). The
flux of A is thus higher than that of B towards the reaction zone and the A + B → C front
invades the reactant B and replaces it by C in its wake (figure 17a,c) (Gálfi & Rácz 1988;
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Figure 17. Concentration profiles at time t = 0.5 for Pe = 1000 and (a) (Da, δA) = (8, 10); (b) (Da, δA) =
(0, 10); (c) (Da, δA) = (8, 1); and (d) (Da, δA) = (0, 1). Here x0 represents the position at initial interface.
(a) Reactive case with δA = 10, (b) Nonreactive case with δA = 10, (c) Reactive case with δA = 1 and
(d) Nonreactive case with δA = 1.

Gérard & De Wit 2009). This invasion effect is stronger at lower Pe as diffusion then has
more time to operate. In addition, increasing the Péclet number induces sharper viscosity
profiles as seen by comparing the slopesΔ of the curves in the upper panels (low Pe) with
those of the lower panels (high Pe) in figure 18. Again, this is logical as diffusion is more
effective in smoothening gradients at lower Péclet numbers.

As the product C of the reaction has the same viscosity as the reactant A in the
simulation (Rc = 0), the viscosity is decreased where B has been consumed. If A diffuses
at the same rate than B (figure 17c,d), this sharpens the viscosity profile as shown in the
right column of figure 18. In contrast, if A diffuses 10 times faster than B (figure 17a,b
and left column of figure 18), the reaction front invades and consumes B even faster, more
C is produced (figure 17a), and the gradient of viscosity decreases (figure 18a,c). This
suggests that stabilisation of VF at lower values of Pe is here due to the efficiency of the
fast diffusion of the reactant A (HCl in the experiment) into the slower diffusing polymer
to reduce locally the viscosity gradient in the reactive zone.
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Figure 18. Viscosity profiles at time t = 0.5 for the non-reactive case Da = 0 (blue curves) and reactive case
Da = 8 (red curves) for Pe = 1000 (upper line) or Da = 1 for Pe = 8000 (lower line) and (a,c) δA = 10 (b,d)
δA = 1: (a) Pe = 1000, different δ, (b) Pe = 1000, same δ, (c) Pe = 8000, different δ and (d) Pe = 8000, same
δ. The other parameters are Rb = 2, Rc = 0, a0 = 10, b0 = 1 and δB = 1.

At higher Pe, this mechanism seems less efficient because the nonlinear enhancement of
the shielding effect triggered by advection wins over the diffusive effects, which explains
the formation of a less-dense pattern in the reactive case, as already explained in Nagatsu
et al. (2007).

We find that the fact that the reactive case with different diffusivities is more stable
than the non-reactive case for low Pe, has a time dependency. Looking closely at dfinger in
figure 15(a), we see that dfinger for the reactive case is larger than that for the non-reactive
case until roughly t = 1.2. After t = 1.2, the reverse result is observed. This suggests
that the stabilising effect of VF by reactions might depend on time. Figure 19 shows the
viscosity profiles and the numerical VF results at t = 1.5. Comparing the (b) non-reactive
and (c) reactive cases with different diffusivity, we find that the non-reactive case seems
more stable than the reactive case, while we see the reverse at t = 1.0 (figure 11).
Moreover, the Δ value for the reactive case is steeper than that for the non-reactive case,
which implies increased destabilisation by reaction. These results are consistent with the
dfinger results in figure 15(a) in which dfinger becomes smaller in the reactive case at later
times.
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Figure 19. (a) Viscosity profile at t = 1.5 and numerical VF results for (b) non-reactive (Da = 0) and
(c) reactive (Da = 8) cases. The parameters for (b) and (c) are: Pe = 1000, Rb = 2, Rc = 0, a0 = 10, b0 = 1,
δA = δE = 10 and δB = 1. The grey scale shows the non-dimensional concentration of the dye, E.

3.5. Remarks on the value of Rb, Rc and Da for the experiment
Let us here discuss the values of Rb, Rc and Da for the experiments. Regarding Rb,
because of the radial geometry and the shear thinning viscosity of the more-viscous
fluid, the apparent viscosity contrast between reactants varies with the flow rate and
time (the apparent displacement velocity decreases with radius at a constant injection
rate in the radial geometry). The value of Rb when rmax varies from 2 to 47 mm is
calculated to be 8.0 < Rb < 9.9 for the lowest flow rate and 3.9 < Rb < 5.9 for the
highest flow rate. The value of Rb used in the simulations is lower to avoid numerical
stiffness. However, we emphasise that the quantitative matching of the value of Rb is not
important in the present study to elucidate the mechanism behind the experimental results.
The details of the calculations of Rb for experiments are provided in Appendix A. The
viscosity measurement results (figure 2) show that the viscosity of the product solution
is approximately equal to that of water. This indicates that we can consider that Rc = 0.
In the experiment, Da cannot be calculated because the reaction occurs instantaneously.
We note that the calculation method for infinite Da reported in Nagatsu & De Wit (2011)
cannot be used when the diffusion coefficients are different. Therefore, the present study,
in which the effect of differential diffusion is highlighted, performs simulations for finite
values of Da.

4. Conclusions

The present study has experimentally and numerically investigated the influence of varying
the injection flow rate on reactive miscible VF in the case of a chemical reaction
decreasing the viscosity of the solutions in situ for monotonic viscosity profiles. At large
flow rates, i.e. large Pe, we recover experimental results from Nagatsu et al. (2007) and
corresponding numerical results from Nagatsu & De Wit (2011) showing that the reactive
VF pattern covers a smaller area than its non-reactive equivalent, a change due to an
increase of the shielding effect when the viscosity is decreased by the reaction. We
experimentally find that opposite effects of the reaction on the VF pattern are obtained
at lower values of Pe. Indeed, at low flow rates, the reaction stabilises the VF dynamics,
creating fingered patterns covering a larger area. At the lowest value of Pe scanned here,
we even observe a large stabilisation with resulting circular displacements. Simulations in
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which the diffusivity of the injected reactant A is larger than that of the displaced reactant
B and of the product C can reproduce the same stabilising trend as in the experiment.
Quantitative analysis of the dynamics shows that low Pe values and faster diffusion of the
invading reactant allow a more effective decrease of the viscosity in situ and, hence, a
better stabilisation of VF. One-dimensional viscosity profiles reconstructed on the basis
of a RD model confirm that an efficient decrease in the viscosity gradient needed for
VF stabilisation is obtained only in the reactive case with different diffusivities. Further
studies will be undertaken to optimise the stabilisation conditions of VF by such chemical
reactions.
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Appendix A. Calculation of Rb in the experiments

In experiments, the value of Rb varies with flow rate and time. Indeed, the viscosity of
the displaced shear-thinning polymer solution varies with the shear rate, which is itself a
function of the radius from injection point. To compute Rb, we first calculate the shear rate
γ̇ as (Nagatsu et al. 2007)

γ̇ = q
πrb2 . (A1)

Then, we calculate the viscosity ηpolymer of the polymer (0.125 wt %) SPA solution for
each calculated γ̇ . Finally, the Rb value is computed as

Rb = ln
(
ηpolymer

ηwater

)
, (A2)

where ηwater is the viscosity of water (1.0 mPa·s). We find that the value of Rb when rmax
varies from 2 to 47 mm is 8.0 < Rb < 9.9 for the lowest flow rate and 3.9 < Rb < 5.9 for
the highest flow rate.

Appendix B. How to measure the finger width

The rmax is radius of the longest finger in figure 20. Then, the finger width is measured at
0.8rmax shown as a red circle in figure 20. The average finger width 〈w〉 is defined as the
total length of the red curve covering black fingers divided by the number of fingers.
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0.8rmax

rmax

Figure 20. How to measure the finger width at an arbitrary time.
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