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Abstract For a nonempty set A of integers and an integer n, let 4 (n) be the number of representations
of n in the form n = a + a’, where a < @’ and a,a’ € A, and da(n) be the number of representations
of n in the form n = a — a’, where a,a’ € A. The binary support of a positive integer n is defined
as the subset S(n) of nonnegative integers consisting of the exponents in the binary expansion of n,
Le, m =3 icsm) 2¢, S(—n) = —S(n) and S(0) = @. For real number z, let A(—z,z) be the number
of elements a € A with —z < a < x. The famous Erdés-Turdn Conjecture states that if A is a set of
positive integers such that r4(n) > 1 for all sufficiently large n, then limsup,, ,., 74 (n) = co. In 2004,
Nesettil and Serra initially introduced the notation of “bounded” property and confirmed the Erd&s-
Turdn conjecture for a class of bounded bases. They also proved that, there exists a set A of integers
satisfying r4(n) = 1 for all integers n and |S(z)JS(y)| < 4|S(z + y)| for z,y € A. On the other
hand, Nathanson proved that there exists a set A of integers such that r4(n) = 1 for all integers n and
2logxz/logh + c1 < A(—z,z) < 2logz/log3 + c2 for all x > 1, where c1,c2 are absolute constants. In
this paper, following these results, we prove that, there exists a set A of integers such that: r4(n) =1
for all integers n and da(n) = 1 for all positive integers n, |S(z) JS(y)| < 4|S(z + y)| for z,y € A and
A(—z,z) > (4/log5b)loglogx + ¢ for all > 1, where ¢ is an absolute constant. Furthermore, we also
construct a family of arbitrarily spare such sets A.
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1. Introduction

For nonempty sets A, B of integers, define
A+A={a+d :a,d € A} and A—A={a—d :a,d € A}.

Let Z be the set of integers and N the set of positive integers. For any integer n, let r4(n)
be the number of representations of n in the form n = a+a’, where a < o’ and a,a’ € A,
and d4(n) be the number of representations of n in the form n = a —a’, where a,a’ € A.
Clearly, da(—n) = da(n) for any positive integer n. Let |A| be the cardinality of the
set A and max A be the maximal element in A. For a real number z, denote |z| by the
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absolute value of z, || by the largest integer no larger than x, A+ ={a+z:a € A},
and A(—z,z) by the number of elements a € A with —z < a < z.

The famous Erdds-Turdn Conjecture [3] states that if A is a set of positive integers
such that r4(n) > 1 for all sufficiently large n, then

limsupra(n) = oco.
n—oo

In 2004, Nesetfil and Serra [6] initially introduced the notation of “bounded” property.
For a positive integer n, denote the binary support of n by the subset S(n) of nonnegative
integers consisting of the exponents in the binary expansion of n, i.e., n =}, S(n) 20,
and S(—n) = —S(n). Define S(0) = 0. A set A of integers is called bounded if there is a
function f: N(J{0} — N{J{0} such that f(0) = 0 and for each n € A + A there exists a
pair z,y € A with

n=z+y, |S@@)|JSW<(IS®)).

Obviously, if A is a set of positive integers and the binary expansion of each element in
A has no two consecutive 1’s, then A is a bounded set with f(n) = n. Nesetfil and Serra
[6] confirmed the Erdés-Turdn conjecture for a class of “bounded” bases.

For a set A of integers, A is a basis for Z if r4(n) > 1 for all integers n and a unique
representation basis for Z if ra(n) = 1 for all integers n. For the unique representation
basis for Z, by considering the bounded property, Nesetfil and Serra [6] also obtained the
following result:

Theorem A. ([6, Theorem 5]). There is a bounded basis A of Z satisfyingra(n) =1
for each n € Z.

Recently, the author [4] generalized the above result by adding the restriction that
da(n) = 1 for all positive integers n. On the other hand, research on the density of
basis also attracts much interest from experts. In 2003, Nathanson [5] considered the
existence of unique representation basis A with logarithmic growth, that is:

Theorem B. ([5, Theorem 2]). There is a unique representation basis A for Z such
that

2logx
log 5

_ log 3
log b

2logx

2
log 3 +

2(1

) < A(_xvx) <

forallx > 1.

Afterwards, Xiong and Tang [7] extended Theorem B by considering the structure of
difference, and constructed a unique representation basis A of integers such that da(n) =
1 for all positive integers n and

4(log x — log 2)
log 15

4(log x — log 2)

7
log 3 *

—1<A(—=zx,2) <

for all x> 1.
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In this paper, based on the above results, we incorporate the bounded property and
prove that:

Theorem 1.1. There exists a bounded basis A of integers such that ra(n) =1 for all

integers n and da(n) =1 for all positive integers n, and

4
A(—z,x) > ——loglogx + ¢ for all > 1,
log b

where ¢ is an absolute constant.
On the other hand, similar to [5] and [7], we also obtain the following result:

Theorem 1.2. Let f(x) be a function such that lim, o, f(z) = co. Then there exists
a bounded basis A of integers such that ra(n) = 1 for all integers n and da(n) =1 for
all positive integers n, and

A(—z,z) < f(x) for all sufficiently large z.

Furthermore, noting that if r4(n) = 2 for infinitely many integers, then d4(n) > 2 for
infinitely many integers n, Cilleruelo and Nathanson [2] posed the following problem:
Cilleruelo-Nathanson Problem. Give general conditions for functions f; and fs to
assure that there exists a set A such that da(n) = fi(n) and ra(n) = fa(n). Is the
condition liminf, o fi(u) > 2 and liminf),| o fo(u) > 2 sufficient?

In 2011, Y.G. Chen and the author [1] answered this problem affirmatively. In this
paper, we also consider the bounded property and obtain that:

Theorem 1.3. If two functions fi : N — N and fo : Z — N satisfy that
liminf, so0 f1(u) = 2 and liminf), o f2(u) > 2, then there exists a bounded set A
of integers such that da(n) = fi(n) for alln € N and ra(n) = fa(n) for alln € Z.

2. Proof of Theorem 1.1 and Theorem 1.2

The main idea is from [5]-[7].
critical values. Denote o(n) by

During the induction process, we focus on the choice of
S(o(n))={i€ Sn):i—1¢ S(n)} for positive integer n
and

S(o(n))={ieSn):i+1¢&S(n)} for negative integer n.

It easily follows from the definition of o(n) that |S(n + o(n))| = |S(c(n))| < |S(n),
S(o(n)) and S(n 4+ o(n)) has no two consecutive integers.

Lemma 2.1. ([4, Lemma 2.1]). Let x,y, 2 be integers with yz> 0 such that

(1) 1S(yDI < 1S(=DI;
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(ii) a>b for any a € S(|z]) and b€ S(|z|) U S(|y|);
(iii) each of S(x), S(y) and S(z) has no two consecutive integers.

Then
1S@) S+ 2) <4IS@@+y+2)].

Proof of Theorem 1.1. We will construct finite sets of integers
Ay C Ay C--- C A C -+ such that for any positive integer k, we have:

(i) [Ap| =4k + 3;
(ii) ra,(n) < 1forall n € Z and da, (n)
(iii) 74, (n) = 1 for all n € Z with [n
1<n<k
(iv) 15() US| < 4IS(@ + )| for 2, € Ay
(v) the binary support of each element in Ay has no two consecutive integers;
(vi) dy < 172d}_,, where dj, = max{|a| : a € Ay} and do = 1.

1 for all n € N;
|%] and da,(n) = 1 for all n € N with

VAN

Let Ay = {—32,-10,0,9,33,128,129}. Then dy — 129, r4,(0) = 1, ra,(1) =
r4,(=1) = da;(1) = 1, ra;(n) < 1 for all n € Z and da,(n) < 1 for all n € N,
[S(z) U S(y)| < 4|S(z+y)| for x,y € A1, and the binary support of each element in A
has no two consecutive integers. Thus, (i)-(vi) hold for k£ =1.

Assume that we have already obtained a set Ay of integers satisfying (i)-(vi) for some
positive integer k. By the definition of dj we know that Ay C [—dy, dx]. Since T A, (0) < 1,
we have dy € Ay and —dy & Ay, or —di € Ag and dj g Ap. Thus, A + A C [—2dk +
2,2dy] or [—2dy, 2d), — 2]. In any case, we have Ay — A C [—2dy + 1,2d), — 1]. Write

up =min{|n| :n € A + Ax}, vy =min{n >0:n ¢ Ay — Ap}.
It follows that
2 < up <2dg — 1, 2 < v < 2dg.
Let

3dp +1—o0(u
ay, = [max{log, <W> ,Jogy di, + 1, max S(ug) + 3}, (2.1)

where [z] is the least integer no less than z. Then
o(ug) + 24415011 > 34, 4 1.
Take

zy, = g, + o(ug) + 2% 4+ 202 4 20kt Ly et 2(IS(up)I =), (2.2)
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Thus, zp — ur > 3dg + 1. Furthermore,

AlS(up)l —q 1
o = wk + o (ug) + 2% ————— < ddy + g4'5(%)‘2“1«, (2.3)

where the last inequality is based on the facts that o(ur) < ug and wg < 2dp — 1. If

3di.+1—0o(u
ap = |—1Og2 (W)l(_lk))w, then

3dy;

1 1
L yIsg)igay Lyspigg. 3%
Ady + A% < ady 4+ AN TR

) = 12dy.

If a, = [logy di + 17, then by |S(u)| < max S(ug) + 1 and 2225 5(k) < 4y we know that

4dy, + %4'5(%)‘2% < 4dy, + %4'5%)'(2 - 2losz ity

< 4dy, + %dkz;maxswk)“ < 4dy, + ?dkuﬁ

< 4dy + %di < 22d3.
If ar, = max S(ug) + 3, then

4dy, + %4'*9(“1@)'2% = 4dy, + 24‘“%)'2“"5(%) < 4dy, + %23%"5(%)
< 4dy + %ui < 86d;.
In any case,
4dy, + %4'“%”2% < 86d;. (2.4)
It infers from (2.1) and (2.3) that
Ty < 86d;.

Let

3y, + 2up, —
by = (max{logZ( Tk lefsz)_f(”’“» ,max S(vg) + 3, ar, + 2/S(ux)| — 1}]. (2.5)

Then
o(vg) + 2k gISWRI=1 > 30, 4 2.
Take

Y = o (vg) + 2% 4 2062 bt Ly b 215 ()11, (2.6)
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Thus, y > 3xk + 2ug. Furthermore,

4lsp)l — 1 1
Yk +vp = vk +o(vg) + Qbkf < 4dy, + 54\5(%”2%’ (2.7)

where the last inequality is based on the facts that o(vg) < vp and v, < 2dg. If by =
3x.+2u;.—o(v
[log, (W)L then by z;, < 86d; we know that

3z + 2uyg

1 1
ZalS(vg)lobg ZalS(g)lg 2k T 2Vk
4dy, + 34 2%k < 4dy, + 34 (2 NECE!

8
) = 4dy, + 5(39% + 2uy) < 689d;.

If by = max S(vi)+3, then we could deduce from |S(v;)| < max S(vg)+1 and 22 S(vk) <
vy, that

Ady, + %4\5(%)\2% — dd, + §4|S(vk)|2max5(vk) < ddj, + ?QSmaxS(vk)

32
< 4dy, + gvg < 86d5.
If by, = ag + 2|S(uk)| — 1, then it infers from (2.4) that

Ady, + %4|S(Uk)|2bk — 4y, + %4|S(“k)|2ak . %4\5(%)\ < 8643 - %4\5(1%”
1
< 86d; - 5(2dk)2 =172d3.
In any case,

1
4dy, + §4IS<%>|2’% < 172d3.

Tt infers from (2.5) and (2.7) that
yr + v < 172d3.
To sum up,
3dp < xp —up < T < Y < Yp + vk < 172d2. (2.8)
Now we divide into the following two cases according to ug & Ap+ Ag or up € Ax+ Ag.

Case 1. u, & A + Ag.
Let

Bri1 = Ay U{xk, —xp +urt and Agpr = By U{yk, Yk + Uk}

It follows from xp > xp —ug > 3dg, 3z +2ur < yr < Yr +vi and the definitions of dy, y,
Yr, we know that ra, \ (ux) =da,_ (vk) = 1,74, ,(n) < 1foralln € Zanddya, ,(n) <
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1 for all n € N. Thus, (ii) holds. By ar > max S(ug) + 3, by > max S(v;) + 3 and the

definition of Ap4+1 we know that (i) and (v) hold. We will prove that |S(z)S(y)| <
4)S(x +y)| for z,y € Agyq. If =1y, then

1S(2) | JSW)l = 1S(@)| = |S(22)] = |S(z + y)| < 4S(@ +y)|.
So we only need to consider z # .

Firstly, we will prove that |S(z)JS(y)| < 4]|S(x + y)| for z,y € Bipy1 with z#y.
Noting that

1S ()| < IS (up + o(ur))| + ’S (2% o+ pomktd g 2%””5(%)'*1)) ’
= [S(o(ur))| + S (ur)| < 2[5 (ur)

and

|S(—zk + ug)| = ’S (o’(uk) 4+ 2% 4 20k+2 4 gaptd Ly Qak+2(|5(uk)|—1)) ’
< [S(o(ur))| + 1S (ur)| < 2|5 (ug)l,

we have
1S (@) | S(—ak + )| < 41S(ur)| = 4|S(w + (—2x + wi))|-
Let € Ag. By (2.1) we have ay > log, dj, + 1, then a; > max S(|z|). Also by (2.1), we

know that ap > max S(uy) + 3. Taking y; = up, + o (ug) and z; = 2% + 29k T2 4 29+ 4
oo 20205 (up)1=1) ip Lemma 2.1, we have

1S(@) | S(@r)l = 18(x) | Sy + 21)| < 4IS(z +y1 + 21)| = 4|S(z + )]

Taking Yo = _U(Uk) and 29 = —(2“1@ —|—2ak+2—|—2ak+4+. . .+2ak+2(|5(uk)|71)) in Lemma 21,
we have

|S(x) US(—sck +ug)| = |S(x)US(y2 + 29)| < 4|S(x 4 y2 + 22)| = 4|S(x — xx + ug)|-
Thus, [S(z) JS(y)| < 4]S(z+y)| for z,y € Byt1 with z#y.

Now, we will prove that |S(z)US(y)| < 4]S(z + y)| for z,y € Apy1 with z#y. It
follows from (2.6) that

IS(yx)| = ‘S (a(vk) 4 9bk 4 9Pkt2  obptd Ly Qbk+2(|3(vk)lfl)) ’

< |S(o(vo))| + ’s (2% bRt obetd gy Qbk+2(\5(vk)|—1))‘
= |S(o(vr))] + |5 (ve)| < 2|5 (vi)]
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and

1S (yx + vr)| = ‘S (Uk + o (vg) + 2% + 20k+2 4 obetd Qbk“('S(%”*l))’
< |S(vg + o(vr))| + [S(ve)| < 2|S(vr)],

we have
1S (i) | Sk + vi)| < 41S(wx))-
By b > max S(vg) + 3 and
S 2k + vi) = S(20(vg) + v + 2 (2bk 4+ 202 pgbett 4 2bk+2(|5(”k>‘*1>)),
we know that

1S+ 00)] = 5200 + )| + |5 (2 + 202 2B S0I-D)|
> ‘S (Qbk 4obkT2 L obptd Ly 2bk+2(‘s(”k)|*1)>‘ = [S(vx)|-
Thus,
1S () |J S (e + vn)| < 41S(2yn + v
Let « € Byy1. By (2.5) we have by, > ax + 2|S(ux)| — 1, namely, by, > ax + 2(|S(ux)| — 1).

Then b, > max S(|z|). Also by (2.5), we know that by, > max S(vg)+3. Taking y1 = o(vy)
and z; = 2% 4 20k +2 4 2bkt4 oo 4 90k +2(S(vp)I=1) i Lemma 2.1, we have

15() | Sl = 15() | S + 20| < 4 + 1+ 21)] =4S + o).

Taking yo = o(vg,) +vg and zg = 2% 42062 4 20k +4 .. 4 20k +2(1S(v)I=1) in Lemma 2.1,
we have

1S(2) [ Sk +ve)| = 1) | S (w2 + 22)| < 4IS(@ +y2 + 22)| = 4[S (@ + yx + vx)|-

To sum up, [S(z) U S(y)| < 4[S(z +y)| for z,y € Apps.
Case 2. u, € Ap + Ag. Then —uy Q Ap + Ag.
Let

By = {xp, —xp —up} and  Appr = {yk, v + vk},

where zj, and yi are defined in (2.2) and (2.6). Similar to Case 1, we know that A1
satisfies (i)-(ii), (iv)-(v) and 74, | (—ux) = da, (vk) = 1.

In both cases, it follows from (2.8) and the construction of Agy; that dgy; < 172d2.
Thus, (vi) holds.
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Now we will prove that (iii) holds. (The proof of (iii) is the same as in [7, Theorem 1.1],
we also give the details for the sake of completeness). If uy, & Ay + Ay, then by Case 1 we
know that ux € Agy1+ Agy1, thus, ugyo = upyp1 > ug if —ug € Agg1 + Agy1. Otherwise,
if —up & Agt1 + Agy1, then ugpy; = up € Agg1 + Agy1 and —upr1 € Agao + Agio
by Case 2, thus, ugte > ur+1 = ug. If up € Ap + Ag, then by Case 2 we know that
—uy, € Ag+1+Ag4. It follows from ug, € Ap+Ar C Apyr1+Agy1 that ugrs > ups1 > ug.
In both cases, ugto > ug. It follows from us > 2 that ugy > us +k — 1 > k + 1. Thus,
for any positive integer k we have

{=Fk,---,=1,0,1,--- ,k} C Agj + Aogy.

Similarly, vy < vg41. It infers from v; > 2 that v, > k+ 1. Thus, for any positive integer
k we have

{7]{:7"' 7717031,"' 7k}gAk*Ak

Namely, 74, ,(n) =1 for all n € Z with |n| < |51 and day,(n) =1forallneN
with 1 < n < k+ 1. Thus, (iii) holds.
Let

A= G Ay
k=1

Then ra(n) =1 for alln € Z and da(n) =1 for all n € N, |S(z) U S(v)| < 4]|S(z + v)|
for z,y € A. Furthermore, we could deduce from (vi) and dg = 1 that

=k
di, <c¢] , where ¢ = \4/ 172.

For sufficiently large z, there exists a positive integer k such that dy < = < dpyq1. It
follows from 4k + 3 < A(—z,z) < 4k + 7 that

A(—zx,x) >

4
loglog x + ¢, where ¢ is an absolute constant.
log 5
This completes the proof of Theorem 1.1. d
Proof of Theorem 1.2. In the proof of Theorem 1.1, the only constraint on the choice
of zx (resp. yi) is the size of the value ay (resp. by). The following proof is similar to

[5, Theorem 1] and [7, Theorem 1.1]. We apply the method of Theorem 1.1 by replacing
ay with si(> ay). Namely, take

), = ug + o(ug) + 2%k 4+ 2562 4 2%k Ly 98kt 2(15(up) 1), (2.9)

Given a function f(z) tending to infinity, we shall take induction on & to construct a
non-decreasing sequence of integers {h;}72 ; such that A(—z,z) < f(z) for all integers z
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with hy < o < dy. Firstly, choose hy > d; so that f(x) > 11 for = > hy. Then
A(—z,2) <11 < f(z) for h) <z < da.

Suppose that for some integer k > 2, we have already selected an integer hy_1 > dp_1
such that

flz) >4k +3 for © > hy_1, A(—=z,z) < f(z) for hy <z < dp.
Noting that f(z) tends to infinity, there exist positive integers hy and sg1 with by > di
and hy < Tp41 — ugs1 (taking large sgp4q in (2.9)) such that f(x) > 4k + 7 for > hy.
It follows that

A(—z,x) <4k + 7 < f(z) for hy <z < dggq.

For d, < x < hg, we could deduce from the construction of Ayi; \ Ai and the fact
hy < Tp+1 — Uk that

A(—z,x) = Ag(—x,2) =4k + 3 < f(z) for dp < x < hy.
To sum up,
A(—z,2) < f(x) for di <z < dggr-

By the induction hypothesis we know that A(—z,z) < f(z) for hy < & < di41. It follows
that

A(—z,z) < f(z) forall = > hy.

This completes the proof of Theorem 1.2.

3. Proof of Theorem 1.3

To give the proof of Theorem 1.3, we need the following preliminary lemmas. The idea
is from [1, Theorem 1.2], [4, Theorem 1.1] and [6, Theorem 5].

Lemma 3.1. Let f1 : N — N and f3 : Z — N be two functions such that

liminf f1(u) > 2 and liminf fo(u) > 2. (3.1)

Let B C Z be a finite set with |B| > 2 such that:

(i) dp(n) < fi(n) for alln € N and rg(n) < fa(n) for alln € Z;
(ii) 1S(x)US(y)| < 4[S(x +y)| for z,y € B;

https://doi.org/10.1017/50013091523000421 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091523000421

842 J.-H. Fang

(iii) the binary support of each element in B has no two consecutive integers.
If k is a positive integer with dg(k) < f1(k), then there exists a finite set D with
B C D C Z such that:
(v) dp(k) =dp(k) +1;
(v) dp(n) < fi(n) for alln € N and rp(n) < fa(n) for alln € Z;
(i) () U S(y)| < 4IS(x + )| for 2,y € D;
(vii) the binary support of each element in D has no two consecutive integers.

Proof. Let B = {bl,bg, cee ,bs}, where by < by < - < bs. Let m = Qmaxlgjgs |bj| +
k. By (3.1), we could choose a subset Uy of positive integers such that:

) Ukl = [S(F)[;

) minUy > k + 3max||B||, where ||B|| = {|b] : b € B};

) Uy has no two consecutive integers;

) fi(n) = 2 and fa(n) > 2 for all integers n € [b —m, b+ m|()Z, where b = o(k) +

Zi€Uk 2.

Let

(1
(2
(3
(4

D =B J{b,b+Fk}.

Then
D+ D ={2b,2b+k,2b+ 2k} J{B+ B} B+ b} J{B+b+k}

and

D—D=+{{k} J{B-BH B -b} | {B-b-k}}.

We could deduce from (i)-(iii), the definition of D and the fact b > 3max||B|| + k that
dp(k) = dp(k) + 1, and the binary support of each element in D has no two consecutive
integers. Furthermore, rp(2b) = rp(2b + k) = rp(2b + 2k) = 1. Tt also follows from

b—m<b+b <b+by<---<b+bs<b+m,
b—m<b+k+b <b+k+b<---<b+k+b;<b+m

and (4) that rp(n) < 2 < fa(n) for each n € {B + b} | J{B + b + k}. Noting that the
sets {2b,2b+ k,2b+ 2k}, B+ B, B+ b and B + b+ k are pairwise disjoint, we know that
rp(n) < fa(n) for all integers n. Similarly, by

b—m<b—bs<b—bs_1<---<b—b <b+m,
b—m<b+k—-bs<b+k—-0bs1<---<b+k—0b;<b+m,

and (4) we have dp(n) < 2 < fi(n) for each n € {B — b} | J{B — b — k}. Noting that the
sets B— B, B— b and B —b— k are pairwise disjoint, we know that dp(n) < fi(n) for all
positive integers n. By the same proof as in Theorem 1.1, we know that |S(z)JS(y)| <
41S(z + y)| for z,y € D.
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This completes the proof of Lemma 3.1. 0

Lemma 3.2. Let f1 : N = N and fo : Z — N be two functions such that (3.1) holds.
Let B CZ be a finite set with |B| > 2 such that:

(i) dp(n) < fi(n) for alln € N and rg(n) < fa(n) for alln € Z;

(i) |1S(@) US| < 4|S(x +y)| for x,y € B;
(iii) the binary support of each element in B has no two consecutive integers.

If k is an integer with rp(k) < fo(k), then there exists a finite set D with
B C D C Z such that:

(iv) rp(k) =rp(k)+1;

(v) dp(n) < fi(n) for alln € N and rp(n) < fa(n) for alln € Z;

(vi) 1S(x)US(y)| <4|S(z+y)| for x,y € D;
(vii) the binary support of each element in D has no two consecutive integers.

Proof. Let B = {b1,b2, -+ ,bs}, where by < by < --- < bs. Let m = 2max; s |bj] +
|k]. By (3.1), we could choose a subset Uy, of positive integers such that:

(1) Ukl = 1S(K)|;

(2) minUy > |k| + 3max||B|[;

(3) Ui has no two consecutive integers;

(4) fi(n) =2 and fa(n) > 2 for all integers n € [b — m, b+ m] () Z, where

k+a(kz)+2i€Uk2i, if k>0,
b= ZieUkT’ if k=0,

k+o(k)+Yicu, 271 i k<O0.

Let
D =B| J{b,~b+k}.
Then
D+ D= {k,20,-20+2k}| JB+B) | JB+b)|JB-b+k)
and

D-D=x{{2b-k}JB-B)JB-b)|JB+b-k)}

We could deduce from (i)-(iii), the definition of D and the fact b > 3max||B|| + k that
rp(k) =rp(k)+ 1, and the binary support of each element in D has no two consecutive
integers. Furthermore, rp(2b) = rp(—2b+ 2k) = 1. It also follows from

b—m<b+by <b+by<---<b+bs<b+m,
b—m<-b+k+b<-b+k+b<---<-b+k+bs<b+m

and (4) that rp(n) < 2 < fa(n) for each n € {B + b} J{B — b + k}. Noting that the
sets {2b,—2b + 2k}, B+ B, B+ b and B — b + k are pairwise disjoint, we know that
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rp(n) < fa2(n) for all integers n. Similarly, by

—20—k<b—-—m<b—bs<b—bs_1<---<b—b<b+m<2b+k,
b—m<b—k+b <b—k+b<:---<b—k+bs<b+m

and (4) we have dp(n) < 2 < fi(n) for each n € {B — b} J{B + b — k}. Noting that
the sets {2b — k}, B—B, B—b and B + b — k are pairwise disjoint, we know that
dp(n) < fi(n) for all positive integers n. By the same proof as in Theorem 1.1, we know
that |S(x) U S(y)| < 4|S(z + y)| for x,y € D.

This completes the proof of Lemma 3.2. 0

Remark 3.3. During the proof of Lemma 3.1 and Lemma 3.2, since we do not need
accurate quantitative estimation for di, we just choose sufficiently large b in each stage.

Proof of Theorem 1.3. Theorem 1.3 follows from Lemma 3.1 and Lemma 3.2. The
proof is similar to Theorem 1.1, we omit the detail here.
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