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108.07 De Moivre's theorem via difference equations

An alternative proof of De Moivre's theorem to the usual methods of
mathematical induction and exponential form (e.g. [1]) is given that is based
on the solution of linear difference equations [2]. The derivation is
surprisingly straightforward and emerges from two trigonometric identities.
It should be stressed that this derivation is not claimed to be in any way
superior to traditional approaches, only an interesting different approach to
achieve the same result. We also see that the difference equation/recurrence
formula gives a useful way of expressing  and  as sums of
powers of  and , as well as the reverse process of expressing
powers of   and  as a sum of multiple angles of these functions.

cos nθ sin nθ
cos θ sin θ
cos θ sin θ

First, we consider the well-known addition of cosines identity [3]

cos (α + β) + cos (α − β) ≡ 2 cos α cos β
with  and , to giveα = (n + 1) θ β = θ

cos (n + 2) θ + cos nθ ≡ 2 cos (n + 1) θ cos θ

or  cn + 2 + cn = 2c1cn + 1,  where    ck = cos kθ

i.e.  cn + 2 − 2c1cn + 1 + cn = 0 (1)

n = 0, 1, 2, 3, … , with initial conditions c0 = 1, c1 = cos θ.
Notice that (1) is a linear, constant-coefficient difference equation as

is a fixed value for any particular . Following the procedure for solving
such equations [2], the auxiliary equation for (1) is

c1
θ

m2 − 2c1m + 1 = 0
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giving
m = c1 ± c2

1 − 1 = c1 ± is1,
where  and .i = −1 s1 = sin θ

Hence the general solution [2] of the difference equation (1) is

cn = A (c1 + is1)n + B (c1 − is1)n ,  (A and B arbitrary constants).

Using the initial conditions, ,  we have  and soc0 = 1 c1 = cosθ A = B = 1
2

cn = 1
2 (c1 + is1)n + 1

2 (c1 − is1)n = Re {(c1 + is1)n}
where the second term is the conjugate of the first.

Next, we consider the well-known addition of sines identity [3]

sin (α + β) + sin (α − β) ≡ 2 sin α cos β
again with  and , yieldingα = (n + 1) θ β = θ

sin (n + 2) θ + sin nθ ≡ 2 sin (n + 1) θ cos θ
or  sn + 2 + sn = 2c1sn + 1, where   sk = sin kθ
i.e.  sn + 2 − 2c1sn + 1 + sn = 0. (2)

We notice that (1) and (2) are essentially the same, except that (2) has the
initial conditions,  and .  Therefore the general solution of (2) iss0 = 0 s1 = sinθ

sn = C (c1 + is1)n + D (c1 − is1)n   (C and D arbitrary constants)

and using the initial conditions, we have  and , givingC = −1
2i D = 1

2i
sn = −1

2i (c1 + is1)n + 1
2i (c1 − is1)n

⇒ isn = 1
2 (c1 + is1)n − 1

2 (c1 − is1)n , (where the terms are conjugates)

i.e.  sn = Im {(c1 + is1)n} .
Hence, adding the results for  and  gives the result for De Moivre's
theorem

cn sn

cn + isn = (c1 + is1)n  (n = 0,  1,  2,  3, … )
or,  cos nθ + i sin nθ = (cos θ + i sin θ)n .

It is easily seen that this result also applies to negative integer values of
 by considering its complex conjugate, as shown by the more traditional

methods [1].
n

Expressing multiple-angle functions as powers and vice versa
We should note here that, for obtaining trigonometric identities,

equations (1) and (2) provide useful recurrence formulae for the expansions
of  and  in terms of powers of  and .  For illustration,
take the successive values of  and 1 in (1) to give

cos nθ sin nθ cos θ sin θ
n = 0

c2 = 2c2
1 − c0 ⇒ cos 2θ = 2 cos2 θ − 1

c3 = 2c1c2 − c1 = 2c1 (2c2
1 − c0) − c1 = 4c3

1 − 3c1 ⇒ cos3θ = 4 cos3θ − 3 cosθ
and so on.
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Similarly, for (2) we have
s2 = 2c1s1 − s0 = 2c1s1 ⇒ sin 2θ = 2 cos θ sin θ
s3 = 2c1s2 − s1 = 2c1(2c1s1) − s1 = 4(1 − s2

1)s1 − s1 ⇒ sin 3θ = 3 sinθ − 4 sin3θ
and so on.

To ensure that the recurrence relations (1) and (2) hold true for all
integers  we may use mathematical induction, i.e. assume (1) is true
for some value  and so

n ≥ 1
n = k

ck + 2 − 2c1ck + 1 + ck = 0.
Multiplying throughout by  then givesc1

c1ck + 2 − 2c2
1ck + 1 + c1ck = 0

and using again the addition of two cosines identities
and  this becomes

c1ck + 2 = 1
2 (ck + 3 + ck + 1)

c1ck + 1 = 1
2 (ck + 2 + ck)

1
2 (ck + 3 + ck + 1) − 2c1 × 1

2 (ck + 2 + ck) + c1ck = 0
giving .ck + 3 − 2c1ck + 2 + ck + 1 = 0

Hence true for  if true for , and we have shown it to be
true for  above and thus true for 2, 3, 4, … .  We see that a similar
proof may be applied to (2) verifying its validity also.

n = k + 1 n = k
n = 1

These formulae are also particularly useful for the reverse problem of
expressing  and  in terms of cosines and sines of multiple angles,
which can be of value in the integration of these functions.

cosn θ sinn θ

Rearranging the recurrence formula (1) as

2c1cn + 1 = cn + 2 + cn (3)
and starting with  gives the familiar resultn = 0

2c2
1 = c2 + 1 ⇒ c2

1 = 1
2 (c2 + 1) or  cos2θ = 1

2 (cos2θ + 1).
Multiplying this by  gives  and using the recurrence
relation (3) with  gives

c1 2c3
1 = c1c2 + c1

n = 1
2c3

1 = 1
2 (c3 + c1) + c1 = 1

2 (c3 + 3c1)
.⇒ c3

1 = 1
4 (c3 + 3c1)  or  cos3θ = 1

4 (cos3θ + 3 cosθ)
Repeating the procedure by multiplying the last result by  we havec1

4c4
1 = c1c3 + 3c2

1

and using (3) on both terms on the right-hand side (  and ) givesn = 2 n = 0
4c4

1 = 1
2 (c4 + c2) + 3

2 (c2 + 1) = 1
2 (c4 + 4c2 + 3)

.⇒ c4
1 = 1

8 (c4 + 4c2 + 3) or  cos4θ = 1
8 (cos4θ + 4 cos2θ + 3)

Repeated multiplication by  and use of the recurrence relation (3) easily
generates the higher order expansions for .

c1
cn

1 = cosn θ
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We see that the expansions for  can be obtained from those of
 by substitution of  for .  However, they may also be obtained

by rearranging the recurrence formula (2) as

sinn θ
cosn θ 1

2π − θ θ

2c1sn + 1 = sn + 2 + sn (4)
and putting  gives the familiar result  or .
Multiplying this by  gives

n = 0 2c1s1 = s2 2 cosθ sinθ = sin2θ
c1

, using (4)2c2
1s1 = c1s2 ⇒ 2 (1 − s2

1) s1 = 1
2 (s3 + s1)

  or  .⇒ s3
1 = 1

4 (3s1 − s3) sin3 θ = 1
4 (3 sin θ − sin 3θ)

We note here that, because of the  term appearing in the recurrence
formula (4), only the odd powers of  can be expressed in terms of
multiple angles of sine only.  If we multiply the above result by  again, we
have

c1
s1 = sin θ

c1

4c1s
3
1 = 3c1s1 − c1s3

= 3
2s2 − 1

2 (s4 + s2) , using (4),

⇒ c1s3
1 = 1

8 (2s2 − s4) or cos θ sin3 θ = 1
8 (2 sin 2θ − sin 4θ) .

Continuing the procedure of successive multiplication by  and using
 along with the recurrence formula (4) will generate the higher

order expansions for  when  is odd.  For example, applying this to the last
relation gives

c1
c2

1 = 1 − s2
1

sn
1 n

(1 − s2
1) s3

1 = 1
8 (2c1s2 − c1s4) = 1

8 [s3 + s1 − 1
2 (s5 + s3)]

⇒ s5
1 = s3

1 − 1
16 (2s1 + s3 − s5) = 1

4 (3s1 − s3) − 1
16 (2s1 + s3 − s5)

= 1
16 (s5 − 5s3 + 10s1)

or .sin5 θ = 1
16 (sin 5θ − 5 sin 3θ + 10 sin θ)

However, for  even, we may express  in terms of only cosines of multiple

angles by integration of , i.e. .

Performing this on the expansion for  above gives

n sn
1

c1sn − 1
1 ∫ cosθ sinn −1θ dθ =

sinnθ
n

=
sn

1

n
c1s3

1

    (  an arbitrary constant)1
4s4

1 = 1
8 (−c2 + 1

4c4) + E E
and  gives , hence we have ).θ = 0 E = 3

32 sin4θ = 1
8 (cos4θ − 4 cos2θ + 3

Summing up, the derivation of De Moivre's theorem result by difference
equations is seen to be an interesting alternative, not necessarily superior,
approach to existing methods.  Through recurrence formulae, it enables
straightforward expansions of  and  in terms of powers of
and , as well as the reverse process of expressing  and  in
terms of multiple-angle sines and cosines.

sin nθ cos nθ sin θ
cos θ sinn θ cosn θ
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108.08 Cone and Integral

Introduction
The process of deriving an equation by finding the value of a quantity in

two different ways and then equating those values with each other has been
there in mathematics since antiquity. In this Note, we employ the same
technique to evaluate an integral by finding the volume of a right circular
cone in two different ways.

Description of the cone
Let us consider a right circular cone that has a circular base of radius

in the horizontal -plane. The centre of the circle lies at the origin, , of
coordinates. The apex, , of the cone lies on the vertical -axis at the point
with  coordinates , where  is the cone's height. Let
be the point of intersection of the cone with the positive -axis,  be any
point on the surface of the cone above the -plane and  be a point on the
-axis having the same  coordinate as . In terms of spherical polar

coordinates , we take  to be the angle measured in space from the -
axis and  to be the distance from . The diagram is as follows:
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FIGURE 1
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