
The effect of glucagon-like peptide-1 and
glucose dependent insulinotropic polypeptide
receptor agonists on neurogenesis,
differentiation, and plasticity (Neuro-GDP):
potential mechanistically informed therapeutics
in the treatment and prevention of mental
disorders

Roger S. McIntyre1 , Natalie Rasgon2, Joseph Goldberg3 , Sabrina Wong4,5,6,
Gia Han Le4,6, Rodrigo B. Mansur1,6 , Joshua D. Rosenblat1, Kayla M. Teopiz4 and
Stephen M. Stahl7

1Department of Psychiatry, University of Toronto, Toronto, Canada; 2Department of Psychiatry and Behavioral
Sciences, Stanford School of Medicine, Rockefeller University; 3Icahn School of Medicine at Mount Sinai, New York,
NY; 4Brain and Cognition Discovery Foundation, Toronto, Canada; 5Department of Pharmacology & Toxicology,
University of Toronto, Toronto, Canada; 6Institute of Medical Science, University of Toronto, Toronto, Canada and
7Department of Psychiatry and Neuroscience, University of California Riverside

Abstract

Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) recep-
tor agonists (RAs)mimic naturally occurringGLP-1 andGIP and are highly effective anti-diabetic
and anti-obesity agents. In addition to their robust acute and long-term effects on weight,
metabolism, and blood pressure, these agents also reduce cardiovascular mortality as well as
stroke risk and associated consequences. A replicated and convergent body of preclinical evidence
also indicates that incretin receptor agonists activatemolecular effectors critical to neuroplasticity,
neuroprotection, and anti-apoptosis. Herein, we propose that GLP-1 RAs and GIP RAs are
promising transdiagnosticmechanistically informed therapeutics in the treatment and prevention
of multiple domains of psychopathology, including general cognitive, reward, and motivation
systems and mental disorders. Major neurocognitive disorders (eg, Alzheimer’s Disease, Parkin-
son’s Disease), alcohol and substance use disorders, traumatic brain injury, and depressive
disorders are near-term therapeutic targets. In addition, GLP-1 RAs and GIP RAs have robust
effects on comorbidities that differentially affect personswithmental disorders (eg, cardiovascular,
cerebrovascular, and metabolic disorders) and psychotropic drug-related weight gain.

Introduction

The mechanism of action of antidepressants is not fully ascertained. It is hypothesized that
antidepressant agents alleviate symptoms in depressive disorders by triggering molecular
cascades integral to neuroplasticity, neuroprotection, and anti-apoptosis (NNA).1,2 The afore-
mentionedmolecular and cellular effects collectively modulate synaptic connection and strength
as well as resting-state functional connectivity (RSFC) in discrete neural circuits and networks
subserving the phenomenology of depressive disorders (eg, default mode network).3–6

Glucagon-like peptide-1 (GLP-1 RA) and glucose-dependent insulinotropic polypeptide
receptor agonists (GIP RA), herein referred to as incretin receptor agonists (IRAs),
mimic naturally occurring GLP-1 and GIP and are highly effective antidiabetic and anti-
obesity agents.7 In addition to their robust acute and long-term effects on weight, metabolism,
and blood pressure, these agents also reduce cardiovascular mortality as well as stroke risk and
associated consequences.7–9 During the past decade, a replicated and convergent body of
preclinical evidence also indicates that IRAs activate molecular effectors critical to NNA.

Herein, we propose that IRAs are promising treatments for mental disorders that engage brain
targets critical to NNA known to subserve transdiagnostic phenomenology, notably general cognitive,
reward, andmotivation systems.We succinctly synthesize extant evidence but donot intend a reviewof
the topic asmultiple comprehensive reviewshavebeenpreviouslypublished.10–19 Instead,weattempt to
provide a mechanistic framework for considering IRAs as putative mechanistically informed thera-
peutics for disparatemental disorders. Articles selected for citation are articles that were determined by
authors to be most impactful either as original research or as a synthesis of available research.
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GLP-1 and GIP physiology and pharmacology

Glucagon-like peptide-1 is the product of preproglucagon encoded
in intestinal L-cells as well as in neurons of the nucleus tractus
solitarius (NTS). GLP-1 receptors are G-protein-coupled receptors
(GPCRs) and are expressed in many human tissues, including the
central nervous system (CNS; eg, hippocampus, hypothalamus,
and cortex).20 GLP-1 receptors are expressed on endothelial cells,
neurons, astrocytes, and microglia.21–23

Neuronal projections from the NTS to the paraventricular
nucleus (PVN) of the hypothalamus facilitate reductions in food
intake and behavior.24,25 GLP-1-producing neurons in the NTS
also project tomesolimbic nuclei [eg, ventral tegmental area (VTA)
and nucleus accumbens (NAcc)] and cortical structures.20 The
aforementioned provides the basis for targeting these systems in
the treatment and prevention of mental disorders.26

GIP is secreted by enteroendocrine K-cells, whose cognate
receptor is also a GPCR.27,28 Whether GIP is synthesized in the
CNS remains uncertain. Mixed evidence suggests that mRNA for
GIP may be detected in select brain regions (eg, hippocampus).29

Notwithstanding, GIP receptors are expressed across disparate
brain regions (eg, cortex, hippocampus, striatum).27,30 GIP recep-
tor gene knockout results in reduced hippocampal NNA and
impairs learning and memory in murine models.27,31

GLP-1 and GIP effects on neuro-genesis, -differentiation, -
plasticity (Neuro-GDP) (Figure 1)(Figure 2)

Glucagon-like peptide-1 receptor agonists activate multiple signal
transduction pathways relevant to neuro-genesis, -differentiation,
-plasticity (Neuro-GDP).32 For example, endogenous GLP-1, GIP,
and GLP-1 RAs (eg, liraglutide) increase synthesis of cAMP
response element-binding protein (CREB), brain-derived neuro-
trophic factor (BDNF), glial-derived neurotrophic factor (GDNF),
and nerve growth factor (NGF) via PI3K-Akt activation.33–35

Moreover, GLP-1 promotes neuronal progenitor cell differentiation
and neurite outgrowth.36,37

In rodent models and humans, GLP-1-mediated secretion of
BDNF increases synaptic density in the hippocampus.38–41 It is

hypothesized that trophic and plasticity effectors triggered by
GLP-1 RAs mediate effects on cognition and/or motor function
reported inAlzheimer’s andParkinson’sDisease rodentmodels.42–48

Preclinical evidence indicates that liraglutide prevents reduc-
tions in phosphorylation levels of mTORC1 and BDNF expres-
sion in rat hippocampal structures exposed to neurotoxic levels of
dexamethasone.49 The effect of liraglutide on BDNF expression
and hippocampal dendrite length and spine density is blocked by
rapamycinor theα-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid receptor (AMPA) receptor antagonist, 2,3-dioxo-6-nitro-1,2,3,4-
tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX).49

Reduced long-term potentiation (LTP), increased long-term
depression (LTD), and alterations in RSFC within and between
brain circuits and networks are replicated findings in persons with
depressive disorders.50–52 Glucagon-like peptide-1 receptor ago-
nists rapidly increase excitatory postsynaptic currents and LTP.53

Glutamatergic availability and function are integral to LTP and
synaptic strength.54

Glucagon-like peptide-1 receptor agonism modulates glutama-
tergic signaling by increasing AMPA trafficking, mTOR activation,
and the transcription of synaptic proteins.55–57 In addition to the
direct effects of GLP-1 RAs onmolecular systems relevant to GDP,
it is also observed that liraglutide increases intrinsic connectivity in
bilateral hippocampal, medial-frontal, and lateral occipital regions,
which inversely correlated with measures of insulin resistance in
persons at genetic risk for Alzheimer’s Disease.58

Similar to the aforementioned effects of GLP-1 RAs on NNA, it
is separately reported that GIP independently activates NNA sys-
tems. For example, GIP receptor knockout reduces neurogenesis
and neurodifferentiation in the dentate gyrus of the hippocam-
pus.59 In addition, GIP increases hippocampal synaptic number
and plasticity effects in murine models.60,61

GLP-1 and GIP neuroprotective effects: anti-inflammatory
and antioxidant

It is further reported that GLP-1 RAs exert neuroprotective effects
via modulating immune-inflammatory processes and redox bal-
ance.43,62–66 Pro-inflammatory processes and redox imbalance
are implicated in the pathogenesis and progression of depressive
disorders.67 Glucagon-like peptide-1 receptors are expressed on
myeloid cells including monocytes, macrophages and glia (eg,
microglia) where they modulate immune-inflammatory and
redox balance systems.68,69 It is known that GLP-1 RAs decrease
circulating C-reactive peptide (CRP), matrix metalloproteinase-9,
monocyte chemoattractant protein-1, toll-like receptor 4 (TLR4),
JNK-1 expression, nuclear factor-B as well as pro-inflammatory
cytokines (eg, interleukin-6; IL-6) in human subjects.70

Glucagon-like peptide-1 is also synthesized and released in
response to exposure to lipopolysaccharide.71 Glucagon-like
peptide-1 receptor agonists also affect glial homeostasis and
reactivity insofar as they induce less transcription of pro-
inflammatory markers.72,73 Finally, it has been observed that
GLP-1 RAs decrease blood-brain barrier (BBB) permeability
under toxic conditions.69,74,75

The brain is especially susceptible to redox imbalance (ie, reac-
tive oxygen species; ROS) due to its high oxygen utilization, lipid
content, and relatively low endogenous antioxidant capacity.67

Oxidative stress compromises neuronal and glial integrity, viability,
and function and is hypothesized to be integral to the pathoetiology
of depressive and other mental disorders.76,77

Figure 1. Distribution of GLP-1 receptors in the human central nervous system.
Relevant structures that express GLP-1 receptors are highlighted.
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Glucagon-like peptide-1 receptor agonists exert direct and indi-
rect regulatory effects on redox imbalance.78 The antioxidant
effects of GLP-1 RAs are observed whether oxidative stress is
activated by glutamate or arachidonic acid.78 A replicated finding
is that the antioxidant effects of GLP-1 RAs are mediated via their
effect on ERK5/CREB signaling.78

Similar to GLP-1, disparate local and systemic anti-inflammatory
effects are reported following GIP receptor activation. For example,
GIP receptor activation results in decreased mRNA expression of
macrophage chemoattractant protein 1 (MCP-1), vascular cell adhe-
sion molecule 1 (VCAM-1), and intercellular adhesion molecule
1 (ICAM) as well as decreased circulating levels of interleukin
IL-1β and TNFα.79 GIP knockout models report decrease in circu-
latingmonocytes and neutrophils, suggesting direct effects on hema-
topoietic lines.80 Neuroprotective effects of GIP are hypothesized to
be mediated via their anti-inflammatory effects.81 The effect of GIP
on redox balance is also replicated with observations of increases in
glutathione peroxidase (GPX) and superoxide dismutase (SOD1)
levels aswell as decreased reactive oxygen species and release of nitric
oxide.82

Beneficial effects of IRAs against post-stroke excitotoxicity as
well as prevention involve many of the effectors previously
covered.9 IRAs affect glutamatergic signaling via ionotropic
receptor modulation. For example, it is separately reported that
N-Methyl-D-Aspartate (NMDA) receptor antagonism increases
GLP-1 synthesis and release improving glucose-insulin homeo-
stasis in persons treated with NMDA antagonists (eg, dextrome-
thorphan).83–85 Glucagon-like peptide-1 receptor agonists also
modulate RSFC within and between circuits relevant to salience and
cognitive control in persons with obesity and/or type 2 diabetes
mellitus (T2DM).86

Anti-apoptotic effects of GLP-1 and GIP

The pro-apoptotic BAX proteins are regulated by caspases and
countered by the increased availability of SOD1, catalase (CAT),
and GPX.87 Indirectly, GLP-1 receptor agonism modulates redox
imbalance by reducing advanced glycation endproducts (AGE),
malondialdehyde (MDA), and thiobarbituric acid reactive substances

(TBARS).87,88. Glucagon-like peptide-1 receptor agonists, as well as
dual GLP-1 agonists, reduce caspase-3 and BAX activity while simul-
taneously increasing Bcl-2 activity.31,89

Clinical corollaries

Glucagon-like peptide-1 receptor agonists (eg, exenatide, liraglu-
tide, semaglutide) and GLP-1/GIP co-agonists (eg, tirzepatide) are
detectable in the brain and have differential CNS penetrance when
using murine models.90,91 It remains uncertain the extent to which
IRAs meaningfully penetrate (ie, target engagement) the BBB in
human subjects and whether differential pharmacokinetics exist
among the IRAs with respect to brain concentration.92 Preliminary
evidence also suggests the benefit of IRAs in the treatment and/or
prevention of alcohol-use, major neurocognitive (eg, Alzheimer’s
Disease), Parkinson’s Disease, traumatic brain injury, and nicotine
use.12,26,93–111 A critical issue bridging preclinical study results to
critical translation is posology and route of administration. Doses
implemented in many of the preclinical models approximate com-
parable human doses but are not identical. Moreover, the route of
administration in animals is similar to (eg, parenteral) human
administration of IRAs, although it is recognized that there is a
growing interest in the oral administration of IRAs in humans. In
addition, it is unknown whether the dosing of IRAs that are
effective in the prevention and treatment of mental disorders is
similar to anti-diabetic and anti-obesity dosing.

An emerging literature has also examined antidepressant effi-
cacy associated with GLP-1 RAs. Chen et al.112 identified 5 ran-
domized controlled trials in diabetic and/or Parkinson’s Disease
patients (n = 2071) prescribed exenatide or liraglutide and
reported a small but significant reduction in associated depressive
symptoms in secondary analyses as compared to placebo or other
antidiabetics such as insulin, sulfonylureas or pioglitazone. The
presence of subthreshold depressive symptoms in the included
samples may account for the small observed effect sizes
(SMD = �0.12, 95% CI = �0.21 to �0.03). A separate meta-
analysis, focusing on GLP-1 RAs specifically to treat major
depression (6 randomized trials, n = 399), reported a small effect
size that just fell short of statistical significance (SMD = 0.25, 95%

Figure 2. GLP-1 and GIP effects on neuro-genesis, -differentiation, - plasticity (GDP), neuroprotection and anti-apoptosis.
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CI =�0.1 to 0.60).113 Exploratory subgroup analyses in the latter
study suggested ethno-geographic variability as a moderator of
GLP-1 RA antidepressant response.112,113

Concluding remarks

We propose that IRAs, via their effect on, NNA hold tremendous
promise as therapeutics across multiple mental disorders. In addi-
tion, extant evidence provides a rationale for potential preventative
effects, especially as it relates to cognitive dysfunction and possi-
bly depressive symptoms with these agents. There is a need for
target engagement studies in human clinical populations with
these agents to better characterize the NNA effects on circuit and
network connectivity. There is also the need for large, adequate,
well-controlled phase II and phase III studies with these agents in
the disorders that are lead candidates (eg, Parkinson’s Disease,
major neurocognitive, alcohol use, and depressive disorders). In
addition, preliminary evidence suggests allelic variants for gene
barriers so the GLP-1 receptor gene may be associated with risk
for select mental disorders (eg, alcohol use disorders, Alzheimer’s
Disease).114,115

Both the United States Food and Drug Administration (FDA)
and the European Medicines Agency (EMA) have issued public
statements that no causal evidence exists linking IRAs to suicid-
ality.116–120 Moreover, replicated results from cohort observa-
tional studies also suggest that GLP-1RAs are associated with
no increase in suicidality and in some reports a decrease reporting
in suicidality and/or conditions associated with suicide (eg,
depressive disorders).110,121–128 In addition, there is a need for
adequate well-controlled studies targeting psychotropic drug-
related weight gain (PDWG) andmetabolically associated comor-
bidity (eg, cardiovascular disease, metabolic dysfunction associ-
ated with steatotic liver disease; MASLD).129,130 The greater effect
size of GLP-1/GIP co-agonists when compared to GLP-1 RAs on
body weight reduction and associated metabolic morbidity, along
with the direct NNA effects documented with GIP, introduce the
rationale that incretin co-agonists may have additional but dif-
ferent mechanistic effects on systems subserving psychopatho-
logical domains.131
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