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A TEST CAN HAVE MULTIPLE RELIABILITIES

Jules L. Ellis
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It is argued that the generalizability theory interpretation of coefficient alpha is important. In this
interpretation, alpha is a slightly biased but consistent estimate for the coefficient of generalizability in a
subjects x items designwhere both subjects and items are randomly sampled. This interpretation is based on
the “domain sampling” true scores. It is argued that these true scores have a more solid empirical basis than
the true scores of Lord and Novick (1968), which are based on “stochastic subjects” (Holland, 1990), while
only a single observation is available for each within-subject distribution. Therefore, the generalizability
interpretation of coefficient alpha is to be preferred, unless the true scores can be defined by a latent
variable model that has undisputed empirical validity for the test and that is sufficiently restrictive to entail
a consistent estimate of the reliability—as, for example, McDonald’s omega. If this model implies that the
items are essentially tau-equivalent, both the generalizability and the reliability interpretation of alpha can
be defensible.

Key words: true score, stochastic subject, domain sampling, latent variable, generalizability, reliability,
indeterminacy.

It is an honour that I have this opportunity to comment on the article of Sijtsma and Pfadt (in
press). It is interesting to see how the opinion of Sijtsma developed over time. For the superficial
reader, the message of the 2009 article seems to be “bad alpha”, while the message of the current
article seems to be “hail alpha”. Sijtsma and Pfadt nicely point out that the message of Sijtsma
was rather that alpha is a poor index of unidimensionality, but an acceptable lower bound of
reliability. Nevertheless, my impression is that Sijtsma and Pfadt current opinion over alpha is
more favourable than Sijtsma’s (2009) opinion, especially in comparison with the greatest lower
bound.

I agree with the conclusion of Sijtsma (2009) and Sijtsma and Pfadt (in press) that alpha
should not be used as an index of unidimensionality. Hoekstra et al. (2019, table 3) show that,
in a sample of 534 corresponding authors of nine top-tier journals from four disciplines, 80%
made the wrong inference about alpha, suggesting that they interpreted alpha as an index of
unidimensionality. I believe the frequent use of the term “internal consistency” is related to this.
Using the term “internal consistency” for alpha is misleading, and use of the term in this meaning
should be banned from future academic publications. I also agree with the claim of Sijtsma and
Pfadt that alpha still has many advantages as an index of reliability, and that the lower bound
theorem of Guttman (1945; attribution by Lord and Novick 1968 , p. 87) is valid and useful,
which is also the conclusion of Raykov andMarcoulides (2019). However, I do not agree with the
conclusion of Sijtsma and Pfadt, that “this is really all there to say about coefficient alpha”. An
important perspective on alpha is missing here, namely that it can be interpreted as an estimate
of the coefficient of generalizability in a subjects x items design (Cronbach et al. 1972, pp. 80–
82; Webb et al. 2006). I will discuss this in the next section. In Sect. 2, I will argue that this
interpretation has advantages over the interpretation of alpha as a lower bound of reliability.
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1. Alpha as an Estimate for the Coefficient of Generalizability

The typical design where alpha is applied is a subjects x items design, where the items are
questions or parts of a psychological test. Two different interpretations of alpha are possible here:
one based on classical test theory (CTT) (Lord andNovick 1968) and one based on generalizability
theory (GT) (Cronbach et al. 1972). Let me briefly explain the difference for readers who are
unaware of the difference; see Vispoel et al. (2018) for a more elaborate discussion. In CTT, as
described by Lord & Novick (1968, pp. 82-88) in their development of alpha, it is assumed that
the test items are, in ANOVA terms, a fixed factor. That is, if the measurement is repeated, it would
necessarily be based on exactly the same test items. In GT, in contrast, it is assumed that the items
are, in ANOVA terms, a random factor. That is, it is assumed that the items are sampled from a
large pool of item, and that if the measurement is repeated, one might use another sample of items,
at least in theory. For an example of items that form a random factor, consider an examiner who
possesses a pool of 1000 exam items, and who construes an exam each year by drawing 40 items
randomly from the pool. For standard psychological tests, it is usually more difficult to replace the
items, but still one can imagine that the test constructors could have ended with slightly different
items.

In a design of subjects x items, where the items are drawn from a large pool, the item pool
would be called the domain or universe (Nunnally 1978, p. 194), and the universe score of a
subject would be defined as the expected value of its score across all items in the item pool (Webb
et al. 2006). This universe score is also called a true score (Nunnally 1978, p. 194; ), and it will
be called the domain sampling true score here. The coefficient of generalizability is defined as the
variance of the universe scores divided by the variance of the test scores (Cronbach et al. 1972, p.
17; Webb et al. 2006). This coefficient of generalizability can be estimated by alpha (Cronbach
et al. 1972, pp. 80-82, 98). This then is another advantage of alpha that I would like to add to the
discussion of Sijtsma and Pfadt: coefficient alpha tells you how representative the test scores are
for scores that would be obtained with the full domain of admissible items.

The next question is: how good is alpha as an estimator for the coefficient of generalizability?
While Sijtsma discuss the error and bias of alpha when subjects are sampled, in GT alpha will also
have an error and bias due to the sampling of items. In the example of the 40 items sampled from a
pool of 1000, if alpha is computed each year in the 40-items sample, then the average value of alpha
over years would be approximately correct according to Cronbach et al. (1972, p. 98; Cronbach
and Shavelson 2004 , p. 402). Thus, alpha is claimed to be an approximately unbiased estimate of
coefficient of generalizability even if the items are not essentially τ -equivalent. McDonald (1978),
however, showed that alpha is a lower bound to the coefficient of generalizability if the domain
has a finite number of common factors, with equality only if the item covariances are equal.

The fact that coefficient alpha can be used as an estimate for the coefficient of generalizability
even in the absence of unidimensionality, albeit biased, is certainly an advantage. In some cases,
the selection of test items should be based on a broad domain definition rather than a theoretical
analysis of dimensionality, and focussing on unidimensionality may lead to tests that are too
narrow in content. As Cronbach and Shavelson (2004, p. 413) put it in their comment on the quest
for unidimensionality: “A contrary position emphasizes that one needs to represent all aspects of
the variable that is the focus of measurement, not narrowing it to a single focal topic”. This is
another advantage of alpha that I would like to add to the discussion of Sijtsma and Pfadt: if the
item domain is broad and heterogeneous, a high value of coefficient alpha tells you that you have
enough items to cover it.

Ironically, Sijtsma and Pfadt (in press) defend alpha as an index relevant to reliability by
virtue of the lower bound theorem based on CTT true scores, whereas Cronbach (1951, p. 306)
adopted the domain sampling interpretation of alpha (“α is therefore an estimate of the correlation
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expected between two tests drawn at random from a pool of items like the items in this test”) and
later disagreed with the lower bound interpretation:

My 1951 article embodied the randomly parallel-test concept of the meaning of true
score and the associated meaning of reliability, but only in indefinite language. Once
Lord’s (1955) statement was available, one could argue that alpha was almost an
unbiased estimate of the desired reliability for this family of instruments. The almost
in the preceding sentence refers to a small mathematical detail that causes the alpha
coefficient to run a trifle lower than the desired value.
This detail is of no consequence and does not support the statement made frequently
in textbooks or in articles that alpha is a lower value to the reliability coefficient.
(Cronbach and Shavelson 2004, p. 402)

Alpha is a consistent estimator for the coefficient of generalizability in the subjects x items
design (Webb et al., p. 16), but it is not directly clear how large the sampling errors can be under
the sampling of items, and how this depends on further assumptions such as dimensionality.
To illustrate this, I simulated items with a 2-dimensional 2PL model P(Xi = 1|�1,�2) =
(1 + exp (−α1i�1 − α2i�2 − βi ))

−1 with �1,�2 bivariate standard normal with correlation
0, and α1i , α2i ∼ Uni f (0.5, 2.5)andβi ∼ Uni f (−2, 2), where each item loaded on exactly
one dimension: min{α1i , α2i } = 0, max {α1i , α2i } > 0. In 1000 samples, each with a test of 5
randomly selected items and 10,000 subjects, alpha ranged from 0.16 to 0.75. The 5th percentile
of alpha was 0.23, and the 95th percentile was 0.57. The conclusion is that alpha is not always
close to the coefficient of generalizability: for a small number of multidimensional items, the
estimation error in alpha may be sizable even if the subject sample is large. Confidence intervals
for alpha in the two-way random model are available for normally distributed variables (McGraw
andWong 1996; Demetrashvili et al. 2016), and bootstrap methods are developed for the variance
components (Brennan 2007; Tong and Brennan 2007) and their ratio (Gilder et al. 2007; Ye
et al. 2020). Still, it would be helpful for test makers in explorative research to have a simple
guideline on the a priori minimum test length required for accurate estimation of the coefficient
of generalizability with alpha.

2. The Indeterminacy of True Scores

Sijtsma and Pfadt (in press) assume in their article the existence of true scores as defined by
Lord and Novick (1968). This is common practice in treatments of reliability, and I can see the
merits of it, but in the present section, I will argue that these true scores are not well defined inmost
applications of coefficient alpha, and that this obscures the meaning of the concept “reliability”.
The domain sampling true score has a stronger connection to observations, and for this reason,
the interpretation of coefficient alpha as an estimate of a coefficient of generalizability should be
preferred.

The definition of true scores by Novick (1966) and Lord and Novick (1968, p. 30) can be
paraphrased as follows if it is applied to item scores:

Definition 1. The true score of a subject on an item is the expected value of the observed score,
where the observed score is drawn randomly from a probability distribution that depends on the
subject and the item.

This definition assumes that there is some probability distribution of scores within a subject, and I
will refer to this probability distribution as thewithin-subject distribution, and to the resulting true
scores as stochastic subject true scores.The term stochastic subject was coined byHolland (1990).
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Note that this definition does not specify the nature of the randomness of the observed scores. The
true score is not necessarily defined by instantaneous replications under the same circumstances,
where the subject is “brainwashed” between replications, although Lord and Novick (p. 29) cite
this fictitious example of Lazarsfeld. An entirely different example of definition 1, that does not
involve stochastic processes inside the subject, is this: if we measure the height of a child on one
randomly sampled day from a five-year period, the corresponding true score would not be the
momentary height, but rather the average height of the child over the entire period of five year.
Indeed, Lord and Novick acknowledge the existence of multiple true scores:

Finally, with respect to the syntactic definition of true score we have adopted here,
it should be evident that a person’s true score will depend on the various kinds of
conditions underwhich themeasurements are taken. For example, of all the conditions
which affect measurement, we might choose to control lighting conditions. Suppose
we set up two lighting conditions, one called “good” lighting and the other “bad”.
Then, over repeated experimentally independent observations for each condition, a
true score for each person will be definable, and presumably these true scores will
differ for each person over the two conditions. Also, if a third conditionwhich involves
a random sampling of the first two conditions is considered, a third true score can be
defined. In Chapter 7 the first two of these true scores will be called a specific true
score and the third, a generic true score. (p. 43)

The conclusion is that for the same test item, different true scores exist, depending on the
within-subject probability distribution of the circumstances. Lord and Novick (p. 29) require
that the within-subject distribution is “well-defined”, and in that case the true scores are well
defined. However, the within-subject distribution is often not well defined. Lord and Novick (p.
30) write that this distribution “is a hypothetical one because as we noted in Chapter 1, it is not
usually possible in psychology to obtain more than a few independent observations”. Even if such
independent observations were possible, alpha is routinely applied in situations where only one
observation per item per subject is available, and the possibility to do this is often presented as
the main advantage of alpha. Thus, in most applications of alpha, the within-subject distribution
is ill-defined, and then, the true scores are ill-defined.

That the within-subject distributions are ill-defined is not a logical necessity. In some cases,
one can draw a random sample of observations from the same subject, as in the cited example given
by Lord and Novick, and in that case the true scores can be properly defined. But in the typical
application where coefficient alpha is being used outside GT, such explicit sampling schemes
are absent. For example, suppose that a test is administered on one day in one location, and
the answers are scored by one rater, and alpha is computed from this. Are the true scores now
defined by sampling days within this fixed location and this fixed rater, or by sampling locations
within this fixed day and fixed rater, or by sampling raters, or by a combination of days, locations
and raters? Each of these possibilities may yield different true scores and different reliabilities,
even though they all satisfy Lord and Novick’s definition. The sampling scheme in reliability
assessment in CTT is usually not explicit in these facets, leaving the reliability ill-defined. In
contrast, GT requires explicit sampling schemes and solves the problem by adopting the domain
sampling true score.

This limitation of stochastic subject true scores does not mean that they are useless under all
circumstances. Ellis (1993) showed that a factor model for stochastic subject true scores predicts
measurement invariance, while this prediction does not follow if the factor model holds merely
for latent variable true scores. However, in that case there are additional data and additional
restrictions about subpopulations. The point here is that stochastic subject true scores are ill-
defined in a subject x items design without additional data or restrictions.
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Let me now take this to the extreme by adding a second definition of true scores, in which
they are considered as latent variables, possibly in factor analysis or item response theory models:

Definition 2. For a set of random variables X1, X2, ..., X J , true scores are any set of (possibly
latent) random variables T1, T2, ..., TJ such that, with Ei := Xi − Ti , it holds that E(Ei |Tj ) =
Cov(Ei , Tj ) = 0 for all i, j = 1, ..., J.

I will call this latent variable true scores. It should be emphasized here that there is no claim here
that these true scores are uniquely defined; on the contrary, many different true score variablesmay
fit this definition with the same observed score variables, similar as in factor score indeterminacy
(McDonald 1977; Steiger 1979) and indeterminacy of latent variables in the Rasch model (Ellis
and Junker 1997, p. 508). The stochastic subject true scores of Lord and Novick are latent true
scores with the additional restriction that T = E(X |S), where S is a variable that identifies the
subject. Other latent variable true scores can defined by a random sampling formulation (Holland
1990), meaning that there is no within-subject variability; the additional restriction then is that
X = E(X |S).

We need one more definition:

Definition 3. For a set of random variables X1, X2, ..., X J with latent variable true scores
T1, T2, ..., TJ , we say that the errors are uncorrelated if Cov(Ei , E j ) = 0 for all i, j =
1, ...J with i �= j.

Latent variable true scores with uncorrelated errors will always exist, however. Suppes and
Zanotti (1981)showed that if X1, X2, ...X J are binary random variables with a joint distribution,
there exists a random variable � such that X1, X2, ..., X J are conditionally independent given �.
They claim that this can easily be extended to continuous variables. For such �, we can define
Ti := E(Xi |�) and Ei := Xi − Ti , to obtain E(Xi − Ti |Tj ) = E(E(Xi − Ti |Tj ,�)|Tj ) =
E(0|Tj ) = 0, and uncorrelated errors follow in a similar fashion from conditional independence
given �. In other words, the assumption that latent variable true scores exist with uncorrelated
errors is always true.

For given latent variable true scores with uncorrelated errors, the lower bound theorem,
attributed to Guttman (1945) by Lord and Novick (1968, p. 87), says that alpha is less than or
equal to the reliability. The proof has been given in many texts and will not be repeated here.
The following proposition illuminates that the latent variable true scores are so ambiguous that
we can always assume that they are such that the reliability is greater than or equal to alpha; the
restriction of uncorrelated errors is trivially satisfied if there are no further restrictions on the true
scores. Let X+ := �i Xi and T+ := �i Ti and Rel(X+) := Var(T+)/Var(X+) .

Proposition 1. If a set of random variables X1, X2, ..., X J has covariance matrix C and
Var(X+) > 0, then there exist latent variable true scores T1, T2, ..., TJ such that the errors
are uncorrelated and such that α ≤ Rel(X+) holds for these true scores.

Proof. Define Ti := Xi , then Ei = 0 and therefore Cov(Ei , E j ) = 0 for all i, j = 1, ..., J .
Because Ei = 0, we have Rel(X+) = 1, and it follows that α ≤ Rel(X+) . The existence C of
is merely required in order to assure that all relevant moments exist. ��

Note that it can even be assumed that the reliability is equal to 1 without contradicting the
CTT restrictions; there is no way to disprove this assumption. The additional restriction that the
true scores be stochastic subject true scores, i.e. T = E(X |S) , does not change this if the within-
subject distribution is left unspecified or not estimable. Thus, in practical applications outside GT,
after only a single test administration, without further model restrictions, one can always assume
true scores such that alpha is a lower bound to the thus defined reliability.
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3. Discussion

Coefficient alpha is typically used in a single test administrationwith a subjects x items design,
and it was argued that in these designs the definition of true scores is ambiguous if the “syntactic”
definition of Lord and Novick (1968, p. 30) is being used. Various CTT true score concepts have
been discussed, and they all have limitations in this design (these points are certainly not new, and
they are paraphrases of arguments brought up by psychometricians in personal communication,
including the late Roderick P. McDonald):

• The stochastic subject true scores, which are used by Lord and Novick (1968) are ill-
defined. They are defined by a within-subject distribution of scores on one item, while
we typically have only one observation from this distribution. Consequently, they are
indistinguishable from latent variable true scores in this design.

• The latent variable true scores suffer from indeterminacy. For items with finite range, one
can always assume the existence of true scores as latent variables Tj with the restrictions
E(Ei |Tj ) = 0 and Cov(Ei , Tj ) = 0 and Cov(Ei , E j ) = 0. These true scores become
meaningful only if further restrictions are added, as in factor analysis, or if further data are
added, as in GT.

Consequently, a test can have multiple reliabilities, depending on the universe of generalization—
which remains implicit in CTT—and the model restrictions—such as the number of common
factors. In contrast, the domain sampling true score, called the universe score in GT, is based on
a distribution from which multiple observations are available, namely the various item scores of
the subject. The domain sampling true scores thus have a much stronger empirical anchor than
the other true scores. This true score also has a disadvantage:

• The domain sampling true scores assume that items are randomly sampled from a large
domain, which is usually “not true in any strict sense” (Cronbach and Shavelson 2004, p.
404)

Cronbach and Shavelson dismiss this criticism on the same grounds as used by Sijtsma and Pfadt
(in press) to dismiss criticism on the use of alpha despite violations of essential -equivalence,
namely that models “never fit the data perfectly”.

Everything considered, my evaluation is that the best true scores are either 1) latent variable
true scores in the context of a latent variable model with undisputed empirical validity for the
given test and with sufficient restrictions to allow consistent estimation of the reliability or 2)
domain sampling true scores. In the context of an undisputedly valid latent variable model, one
should presumably prefer the measure entailed by the model, such as McDonald’s omega. If the
undisputed model implies essential -equivalence, this measure can be coefficient alpha, and in
that case both the GT and the CTT interpretation of alpha are defensible. Otherwise, if the model
implies uncorrelated errors, then the lower bound theorem would apply, but why would anyone
use alpha if the undisputed model entails a consistent estimate that is different from alpha? Such
a model can, in theory, have correlated errors, and then coefficient alpha can be greater than the
reliability. Coefficient alpha would be useful in situations without such undisputed models, and
in these situations, the domain sampling true scores would be best. For this reason, I advocate
the interpretation of coefficient alpha as an estimate for the coefficient of generalizability in a
subjects x items design, and I recommend to take this as the default interpretation in teaching and
empirical research where the coefficient is reported.

The discussion of Sijtsma and Pfadt (in press) about the Bentler (2009)model can be analysed
by noting that both the common factor and the sum of the common factor and the specific factor are
latent variable true scores. Therefore, I agree with Sijtsma and Pfadt’s conclusion that reliability

Downloaded from https://www.cambridge.org/core. 09 Jan 2025 at 12:24:06, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


JULES L. ELLIS 875

based on the common factor model is a CTT reliability. It is a nice illustration of the fact that a
test can have two different reliabilities that both fit within the CTT definition of reliability.
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