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1. Introduction

Let K be a finite extension of Qp. Let OK be the ring of integers in K, and let X be a

regular, proper and flat scheme over OK of dimension d. We denote by XK its generic

fibre and by i :Xs →X its special fibre. It is a classical result that for any integer m> 0,

we have a perfect duality of motivic cohomology with finite coefficients

Hi
et(XK,Z/m(n))×H2d−i

et (XK,Z/m(d−n))→H2d
et (XK,Z/m(d))→ Z/m.

However, this does not lift to a duality of integral groups [12]. For example, even
for a curve XK , the dual of H1

et(XK,Q/Z) ∼= H2
et(XK,Z) has both contributions from

H3
et(XK,Z(2)) as well as from H4

et(XK,Z(2)). The examples H1
et(XK,Z(1)) ∼= K×, or

H2
et(XK,Z(1)) ∼= Pic(XK), which are both extensions of a finitely generated group by

a finitely generated Zp-module, also suggest that the cohomology groups are topological

groups. Thus, our goal is to construct topological cohomology groups which agree with

étale cohomology groups with finite coefficients but satisfy a Pontryagin duality. More
generally, we conjecture the existence of a cohomology theory on the category of separated

schemes of finite type over Spec(OK), whose main expected properties are outlined in

the last section of this paper.
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Its existence was suggested by the ‘Weil-Arakelov cohomology’ of arithmetic schemes,
which is conditionally defined in [2] for proper regular schemes over Spec(Z). The aim of

this paper is to give a possible construction of such groups.

Let LCA be the quasi-abelian category of locally compact abelian groups and FLCA⊆
LCA the full subcategory consisting of locally compact abelian groups of finite ranks in

the sense of [14]. We consider the bounded derived category Db(LCA) and Db(FLCA),

respectively, [14]. The category Db(FLCA) is a closed symmetric monoidal category

with internal homomorphisms RHom(−,−) and tensor product ⊗L. Assuming certain
expected properties of Bloch’s cycle complex Z(n), we construct for any n ∈ Z complexes

in Db(LCA) fitting in an exact triangle

RΓar(Xs,Ri!Z(n))→RΓar(X ,Z(n))→RΓar(XK,Z(n)), (1)

and we define

RΓar(−,R/Z(n)) :=RΓar(−,Z(n))⊗LR/Z.

We expect that this theory satisfies duality and many other properties (see Section 6).

To obtain unconditional results, we give an alternative construction, which conjecturally

agrees with the above construction of the triangle (1) for n = 0,d and show that this
triangle belongs to Db(FLCA). Then we prove Theorem 1.2 below under the following

hypothesis.

Hypothesis 1.1. The reduced scheme (Xs)
red is a simple normal crossing scheme, and

the complex RΓW (Xs,Z
c(0)) is a perfect complex of abelian groups, where Zc(0) denotes

the Bloch cycle complex in its homological notation [9] and RΓW (Xs,−) denotes Weil-
étale cohomology.

The homology groups of the complex RΓW (Xs,Z
c(0))[1] are called arithmetic homology

with compact support and denoted by Hc
i (Xs,ar,Z) in [10]. For d ≤ 2, the complex

RΓW (Xs,Z
c(0)) is perfect, and perfectness, in general, follows from a special case of

Parshin’s conjecture [10, Proposition 4.2].

Theorem 1.2. Suppose that either d≤ 2 or that Xs satisfies Hypothesis 1.1. Then there

is a trace map H2d
ar (XK,R/Z(d))→ R/Z and an equivalence

RΓar(XK,R/Z(n))
∼−→RHom(RΓar(XK,Z(d−n)),R/Z[−2d])

in Db(FLCA), for n= 0,d.

Combining Theorem 1.2 with a consequence of Sato’s work [22], we obtain

Corollary 1.3. Suppose that X/OK has good or strictly semistable reduction, and
suppose that RΓW (Xs,Z

c(0)) is a perfect complex of abelian groups. Then there is a perfect

pairing of locally compact abelian groups

Hi
ar(XK,R/Z(n))×H2d−i

ar (XK,Z(d−n))→H2d
ar (XK,R/Z(d))→ R/Z

for n= 0,d and any i ∈ Z.
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In a forthcoming paper, we will give applications of this result to class field theory of
schemes over local fields.

2. Locally compact abelian groups

In this section, we define and study the derived ∞-categories Db(LCA) and Db(FLCA).

We also introduce a certain profinite completion functor.

2.1. Derived ∞-categories

Let A be an additive category. Let Cb(A) be the differential graded category of bounded
complexes of objects in A, and let N ⊂Cb(A) be a full subcategory which is closed under

the formation of shifts and under the formation of mapping cones. If Ndg(−) denotes

the differential graded nerve [18, Construction 1.3.1.6], then Ndg(C
b(A)) is a stable ∞-

category and Ndg(N ) is a stable ∞-subcategory of Ndg(C
b(A)) [18, Proposition 1.3.2.10].

The Verdier quotient is defined [20, Theorem I.3.3] as the Dyer-Kan localisation

Ndg(C
b(A))/Ndg(N ) := Ndg(C

b(A))[W−1],

where W is the set of arrows in Ndg(C
b(A)) whose cone lies in Ndg(N ). The

∞-category Ndg(C
b(A))[W−1] is stable. Moreover, the functor Ndg(C

b(A)) →
Ndg(C

b(A))/Ndg(N ) is exact and induces an equivalence from the category of exact

functors Ndg(C
b(A))/Ndg(N ) → E to the category of exact functors Ndg(C

b(A)) → E ,
which sends all objects of Ndg(N ) to zero objects in E , for any (small) stable ∞-category
E . Finally, we have an equivalence of categories

h(Ndg(C
b(A))/Ndg(N ))
 h(Ndg(C

b(A)))/h(Ndg(N ))),

where h(−) denotes the homotopy category and the right-hand side is the classical Verdier
quotient. Note that the homotopy category of a stable ∞-category is triangulated [18,

Theorem 1.1.2.14].

If A is a quasi-abelian category in the sense of [23], we define its bounded derived

∞-category

Db(A) := Ndg(C
b(A))/Ndg(N )
Ndg(C

b(A))[S−1],

where N ⊂ Cb(A) is the full subcategory of strictly acyclic complexes and S is the set of

strict quasi-isomorphisms. The homotopy category

Db(A) := h(Db(A))

is equivalent to the bounded derived category of the quasi-abelian category A in the sense

of [23].

2.2. The category Db(LCA).

We denote by LCA the quasi-abelian category of locally compact abelian groups. A
morphism of locally compact abelian groups f :A→B has a kernel Ker(f) = f−1(0) and

a cokernel Coker(f) = B/f(A), where f(A) is the closure of f(A) in B. The morphism

f is said to be strict if the map Coker(Ker(f)) → Ker(Coker(f)) is an isomorphism in
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LCA. Then f is strict if and only if the induced monomorphism f : A/Ker(f)→ B is a

closed embedding. Let FLCA⊂ LCA be the quasi-abelian category [14, Corollary 2.11] of
locally compact abelian groups of finite ranks in the sense of [14, Definition 2.6]. Recall

that A ∈ LCA has finite ranks if the R-vector spaces of continuous morphisms Hom(R,A)

and Hom(A,R) are finite dimensional and p :A→A is strict with finite kernel and cokernel

for any prime number p.
Let Db(LCA) and Db(FLCA) be the bounded derived ∞-category of LCA and FLCA,

respectively. Then Db(LCA) and Db(FLCA) are stable ∞-categories in the sense of [18],

whose homotopy categories are the bounded derived categories Db(LCA) and Db(FLCA)
as defined in [14], respectively. It is more convenient to work with the derived ∞-category

Db(LCA) rather than with its homotopy category. For example, let Fun(Δ1,Db(LCA))

be the ∞-category of arrows in Db(LCA). Taking the mapping fibre (or cofibre) of a
morphism defines a functor (see [18, Remark 1.1.1.7])

Fib : Fun(Δ1,Db(LCA)) −→ Db(LCA)

C → C ′ �−→ C×C′ 0
.

Let TA be the quasi-abelian category of topological abelian groups, and define Db(TA)
and Db(TA) as above. The inclusions FLCA⊂ LCA⊂TA send strict quasi-isomorphisms

to strict quasi-isomorphisms, hence, induce functors

Db(FLCA)→Db(LCA)→Db(TA).

The functor disc : TA→Ab, sending a topological abelian group to its underlying discrete

abelian group, sends strict quasi-isomorphisms to usual quasi-isomorphisms. This yields

a functor

disc :Db(TA)→Db(Ab).

Recall that the Pontryagin dualXD :=Hom(X,R/Z) of the locally compact abelian group

X is the group of continuous homomorphisms X →R/Z endowed with the compact-open

topology and that Pontryagin duality gives an isomorphism of locally compact groups

X
∼→XDD.

The functor (−)D sends strict quasi-isomorphisms to strict quasi-isomorphisms and

locally compact compact abelian groups of finite ranks to locally compact groups of
finite ranks. We obtain equivalences of ∞-categories

Db(LCA)op −→ Db(LCA)

X �−→ XD

and

Db(FLCA)op −→ Db(FLCA)

X �−→ XD .

In [14], the authors define functors

RHomLCA(−,−) : Db(LCA)op×Db(LCA)→Db(TA)
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and

RHomFLCA(−,−) : Db(FLCA)op×Db(FLCA)→Db(FLCA).

The construction of the functor RHomFLCA(−,−) actually gives a functor of stable ∞-

categories

RHom(−,−) :Db(FLCA)op×Db(FLCA)→Db(FLCA).

Indeed, let I (respectively, P) be the additive category of divisible (respectively,

codivisible) locally compact abelian groups I (respectively, P) of finite ranks, such that
IZ = 0 (such that PS1 = 0) (see [14, Definition 3.2]). Define

Db(I) := Ndg(C
b(I))/Ndg(NI),

where NI ⊂ Cb(I) is the dg-subcategory of strictly acyclic bounded complexes. We define
similarly

Db(P) := Ndg(C
b(P))/Ndg(NP).

The exact functor

Ndg(C
b(I))→Ndg(C

b(FLCA))→Db(FLCA)

induces an exact functor

Db(I)→Db(FLCA) (2)

of stable ∞-categories which induces an equivalences between the corresponding homo-
topy categories by [14, Corollary 3.10]. It follows that (2) is an equivalence of stable

∞-categories. Similarly, Db(P)→Db(FLCA) is an equivalence. We may, therefore, define

RHom(−,−) :Db(FLCA)op×Db(FLCA)
∼←Db(P)op×Db(I)→Db(FLCA)

since the functor

Cb(P)op×Cb(I) −→ Cb(FLCA)

(P,I) �−→ Hom•(P,I) := Tot(Hom(P,I))

sends a pair of strict quasi-isomorphisms to a strict quasi-isomorphism [14, Corollary 3.7].

Here, Hom(P,I) is the double complex of continuous maps endowed with the compact-

open topology and Tot denotes the total complex. Note that the Pontryagin dual XD is
given by the functor

RHom(−,R/Z) : Db(FLCA)op −→ Db(FLCA)

X �−→ XD .

Following [14], we define the derived topological tensor product

Db(FLCA)×Db(FLCA) −→ Db(FLCA)

(X,Y ) �−→ X⊗LY :=RHom(X,Y D)D
. (3)

Lemma 2.1. The functor Db(FLCA)→Db(LCA) is an exact and fully faithful functor

of stable ∞-categories.
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Proof. The functor

Ndg(C
b(FLCA))→Ndg(C

b(LCA))→Db(LCA)

induces an exact functor Db(FLCA) → Db(LCA) by [20, Theorem I.3.3(i)]. It

remains to check that this functor is fully faithful. The functors RHomLCA(−,−) and

RHomFLCA(−,−) induce the same functor

Db(FLCA)op×Db(FLCA)→Db(TA)

by [14, Remark 4.9]. Moreover, for anyX,Y ∈Db(FLCA), we have [14, Proposition 4.12(i)]

disc(H0(RHomLCA(X,Y )))
HomDb(LCA)(X,Y )

and similarly1

disc(H0(RHomFLCA(X,Y )))
HomDb(FLCA)(X,Y ).

Therefore, the map

HomDb(FLCA)(X,Y )→HomDb(LCA)(X,Y )

is an isomorphism of abelian groups, that is, Db(FLCA) → Db(LCA) is fully faithful.

Hence,

Db(FLCA)→Db(LCA) (4)

is an exact functor of stable ∞-categories which induces a fully faithful functor between

the corresponding homotopy categories. It follows that (4) is fully faithful.

Therefore, we may identify Db(FLCA) with its essential image in Db(LCA). The stable

∞-category Db(LCA) is endowed with a t-structure by [23, Section 1.2.2], since a t-

structure on a stable ∞-category is defined as a t-structure on its homotopy category [18,
Definition 1.2.1.4]. We denote its heart by LH(LCA). It is an abelian category containing

LCA as a full subcategory This also applies to Db(FLCA), and we denote LH(FLCA)

the heart of the corresponding t-structure.

Remark 2.2. By [23, Corollary 1.2.21], an object in LH(LCA) can be represented by

a monomorphism E1 → E0 in LCA, where E0 is in degree zero. A common example
appearing below is a monomorphism Za → Zp. Its cokernel in LCA is trivial, but for the

underlying discrete abelian groups the cokernel is

(⊕l �=pQl/Zl)⊕ (Q/Z)a−1⊕D

with D uniquely divisible.

Remark 2.3. It follows from [14, Corollary 2.11] and [23, Proposition 1.2.19] that the

fully faithful functor Db(FLCA)→Db(LCA) is t-exact. Therefore, the induced functor

LH(FLCA) ↪→LH(LCA) is exact and fully faithful.

1One may adapt the proof of [14, Proposition 4.12(i)] to this case using [14, Corollary 3.10(iii)].
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Notation 2.4. For any X ∈Db(LCA) and any i ∈ Z, we consider

Hi(X) := τ≥0τ≤0(X[i]) ∈ LH(LCA).

In view of Remark 2.3, we identify LH(FLCA) with a full subcategory of LH(LCA).

Lemma 2.5. Let X ∈ Db(LCA). Then X ∈ Db(FLCA) if and only if Hi(X) ∈
LH(FLCA) for any i ∈ Z.

Proof. If X → Y → Z is a fibre sequence in Db(LCA), such that X,Z ∈ Db(FLCA),

then Y ∈Db(FLCA). Indeed, a stable subcategory is closed under extensions. Let X ∈
Db(LCA), such that Hi(X) ∈ LH(FLCA) for any i. Note that Hi(X) = 0 for all but
finitely many i ∈ Z. Therefore, X has a finite exhaustive filtration with i -graded piece

Hi(X)[−i] ∈Db(FLCA), so that X belongs to Db(FLCA) by induction.

The converse follows from the fact that the inclusion functor Db(FLCA)→Db(LCA)
is t-exact by Remark 2.3.

Recall that Pontryagin duality gives an equivalence

Db(LCA)op −→ Db(LCA)

X �−→ XD .

Lemma 2.6. Let X ∈Db(LCA), such that Hi(X) ∈ LH(LCA) belongs to LCA for any

i ∈ Z. Then for any i ∈ Z, we have a canonical isomorphism in LCA

Hi(XD)
 (H−i(X))D.

Proof. Let

X = [· · · →Xi−1 di−1
X→ Xi di

X→ Xi+1 → ·· · ]

be an object of Db(LCA), such that Hi(X)∈LH(LCA) belongs to LCA for any i∈Z. We

first observe that the differentials diX all are strict morphisms. By [23, Proposition 1.2.19],

the object Hi(X) of LH(LCA) is given by the complex [0→Coim(di−1
X )

δ→Ker(diX)→ 0],

where Ker(diX) sits in degree 0 and δ is a monomorphism. Since Hi(X)∈ LCA, the map δ
is strict by [23, Proposition 1.2.29], that is, δ is a closed embedding. Since Ker(diX) ↪→Xi

is a closed embedding as well, so is the map Coim(di−1
X ) =Xi−1/Ker(di−1

X )→Xi. Hence,

di−1
X is strict.
We set Y :=XD so that Y −i = (Xi)D and d−i

Y : Y −i → Y −i+1 is the map d−i
Y = (di−1

X )D.

The differentials d∗X are all strict morphisms, hence, so are their duals d∗Y . We have the

following isomorphisms of locally compact abelian groups:

Hi(X)D 

(
Coker(Coim(di−1

X )
δ→Ker(diX))

)D

(5)


Ker
(
Coker((diX)D)→ Im((di−1

X )D)
)

(6)


Ker
(
Coker(d−i−1

Y )→ Im(d−i
Y )

)
(7)


Ker
(
Coker(d−i−1

Y )→ Y −i+1
)

(8)
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Ker
(
Y −i/d−i−1

Y (Y −i−1)→ Y −i+1
)

(9)


Ker(d−i
Y )/d−i−1

Y (Y −i−1) (10)


Ker(d−i
Y )/Coim(d−i−1

Y ) (11)


H−i(Y ), (12)

where the kernels, cokernels, images and coimages are all computed in LCA. The

isomorphism (5) is valid by [23, Proposition 1.2.29] since the map δ is strict, and (6)
holds since Pontryagin duality (−)D : LCAop → LCA is an equivalence of categories

with kernels and cokernels. The identification (7) is given by definition of the maps

d∗Y , and (8) holds since Im(d−i
Y ) → Y −i+1 is a monomorphism. We have (9) in view

of Coker(d−i−1
Y ) = Y −i/d−i−1

Y (Y −i−1), which is valid since d−i−1
Y (Y −i−1) is closed in

Y −i, as d−i−1
Y is strict. The isomorphism of locally compact abelian groups (10) is

clear; (11) holds since Coim(d−i−1
Y )→ d−i−1

Y (Y −i−1) = Im(d−i−1
Y ) is an isomorphism in

LCA since d−i−1
Y is strict. Finally, (12) holds by [23, Propositions 1.2.19 and 1.2.29]

since Coim(d−i−1
Y ) → Ker(d−i

Y ) is strict; indeed, Y −i−1/Ker(d−i−1
Y ) → Y −i is a closed

embedding, hence, so is Y −i−1/Ker(d−i−1
Y )→Ker(d−i

Y ).

The inclusion Ab⊂ LCA as discrete objects induces an exact functor

i :Db(Ab)→Db(LCA).

Proposition 2.7. The exact functor i : Db(Ab) → Db(LCA) is fully faithful and left

adjoint to

disc :Db(LCA)→Db(Ab).

Proof. The functor

Cb(Ab)
i→ Cb(LCA)

disc→ Cb(Ab)

is isomorphic to the identity functor of Cb(Ab). We obtain a natural transformation

IdDb(Ab)
∼→ disc◦ i. (13)

Similarly, there is a natural transformation

i◦disc→ IdDb(LCA).

Let X ∈Db(Ab), and let Y ∈Db(LCA). Let F
∼→X be a bounded flat resolution, and

let Y
∼→ D be a strict quasi-isomorphism, where D is a bounded complex of divisible

locally compact abelian groups. Then F is a bounded complex of codivisible2 discrete

groups F i (in particular, such that F i
S1 = 0). Therefore, we have

RHomLCA(i(X),Y )
Hom•(F,D) := Tot(Hom(F,D))

2A ∈ LCA is said to be codivisible if AD is divisible.
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by [14, Corollary 4.7], where Hom(F,D) is the double complex of continuous maps

endowed with the compact-open topology and Tot denotes the total complex. We obtain

disc(RHomLCA(i(X),Y ))
 disc(Hom•(F,D))


Hom•(F,disc(D))


RHom(X,disc(Y )).

In view of [14, Proposition 4.12], we have

H0(disc(RHomLCA(i(X),Y [−n])))
 disc(H0 (RHomLCA(i(X),Y [−n])))


HomDb(LCA)(i(X),Y [−n])


 π0(MapDb(LCA)(i(X),ΩnY ))


 πn(MapDb(LCA)(i(X),Y )),

where Ω(−) := 0×(−) 0 is the loop space functor. Similarly, we have

H0(RHom(X,disc(Y [−n])))
 πn(MapDb(Ab)(X,disc(Y ))).

Hence, the map

MapDb(LCA)(i(X),Y )→MapDb(Ab)(X,disc(Y ))

is an equivalence of ∞-groupoids. The result then follows from [17, Proposition 5.2.2.8]

and from the fact that the unit transformation (13) is an equivalence.

Definition 2.8. An object X ∈ Db(LCA) lies in the essential image of the functor i :
Db(Ab)→Db(LCA) if and only if the counit map i◦disc(X)→X is an equivalence. Such

an object X ∈Db(LCA) is called discrete.

Lemma 2.9. Let X,Y ∈ Db(Ab). If iX and iY belong to Db(FLCA), then there is a

canonical map

i(RHom(X,Y ))→RHom(iX,iY ).

Moreover, if X,Y are perfect complexes of abelian groups, then this map is an equivalence.

Proof. Let P
∼→ iX and iY

∼→ I be strict quasi-isomorphisms, where P ∈ Cb(P)

(respectively, I ∈ Cb(I)). We denote by P δ := disc(P ) and Iδ := disc(P ) the underlying

complexes of discrete abelian groups. Then the maps P δ ∼→ X and Y
∼→ Iδ are quasi-

isomorphisms in the usual sense. Hence, we have Hom•(X,Iδ) 
 RHom(X,Y ), where

Hom• denotes the total complex of the double complex of morphisms of abelian groups.

We denote by Hom•(P,I) the total complex of the double complex of continuous

morphisms endowed with the compact-open topology. Then we have morphisms

RHom(X,Y )
Hom•(X,Iδ)→Hom•(iX,I)→Hom•(P,I)
RHom(iX,iY ).

Suppose now that X and Y are perfect complexes of abelian groups. We may suppose

that Xn is a finitely generated free abelian group for all n ∈ Z, zero for almost all n and

similarly for Y. We have a strict quasi-isomorphism

iY
∼→ I := Tot[Y ⊗R→ Y ⊗R/Z],
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where [Y ⊗R→ Y ⊗R/Z] is seen as a double complex of locally compact abelian groups

and Tot is the total complex. Then iX ∈ Cb(P) and I ∈ Cb(I), and we have a strict

quasi-isomorphism

iHom•(X,Y )
∼→Hom•(iX,I).

We obtain

iRHom(X,Y )
 iHom•(X,Y )
∼→Hom•(iX,I)
RHom(iX,iY ).

2.3. Profinite completion

Definition 2.10. We define a functor

(−)⊗̂Ẑ : Db(Ab) −→ Db(LCA)

X �−→ (i(colimRHom(X,Z/m)))D,

where we compute RHom(X,Z/m) and the colimit colimRHom(X,Z/m) over m in the

∞-category Db(Ab). We define similarly

(−)⊗̂Zp : Db(Ab) −→ Db(LCA)

X �−→ (i(colimRHom(X,Z/p•)))D.

For any X ∈Db(LCA), we define3

RHom(X,Z/m) := Fib(XD m−→XD)

and

X⊗LZ/m := Cofib(X
m−→X).

Proposition 2.11. Let X ∈ Db(Ab). Suppose that RHom(i(X),Z/m) ∈ Db(LCA) is

discrete for any m. Then we have an equivalence

X⊗̂Ẑ
 lim←−
(
i(X)⊗LZ/m

)
,

where the limit is computed in the ∞-category Db(LCA) and an equivalence

disc(X⊗̂Ẑ)
X⊗̂Ẑ := lim←−(X⊗LZ/m) ∈Db(Ab).

Proof. The co-unit map

i◦discRHom(i(X),Z/m)→RHom(i(X),Z/m)

is an equivalence by assumption. Moreover, we have

RHom(X,Z/m)
 discRHom(i(X),Z/m),

3This is compatible with the definition given in Section 2.2, which is only valid if X ∈
Db(FLCA).
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hence,

iRHom(X,Z/m)
∼→RHom(i(X),Z/m).

We obtain

X⊗̂Ẑ := (i(colimRHom(X,Z/m)))D


 (colim(iRHom(X,Z/m)))D


 lim
(
(iRHom(X,Z/m))D

)

 lim

(
RHom(i(X),Z/m)D

)

 lim

(
i(X)⊗LZ/m

)
since the left adjoint functor i commutes with arbitrary colimits and since (−)D

transforms colimits into limits. Hence, we have

disc(X⊗̂Ẑ)
 disc
(
lim(i(X)⊗LZ/m)

)

 lim

(
disc(i(X)⊗LZ/m)

)

 lim

(
Cofib(disc◦ i(X)

m−→ disc◦ i(X))
)


 lim
(
X⊗LZ/m

)
since the right adjoint functor disc commutes with arbitrary limits.

Remark 2.12. Suppose that X ∈Db(Ab) is, such that, the cohomology groups of X⊗L

Z/m are all finite. Then RHom(i(X),Z/m) is discrete.

Remark 2.13. We have

X⊗̂Ẑ
RHom
(
icolimRHom(X⊗LZ/m,Q/Z),R/Z

)
.

Lemma 2.14. We have a canonical map iX →X⊗̂Ẑ in Db(LCA).

Proof. The composite map

i(RHom(X,Z/m))
∼→ i◦disc(RHom(iX,Z/m))→RHom(iX,Z/m)

→RHom(iX,R/Z)
 (iX)D

induces

i(colimRHom(X,Z/m))
 colim i(RHom(X,Z/m))→ (iX)D.

We obtain

iX
∼→ (iX)DD → (i(colimRHom(X,Z/m)))

D
=:X⊗̂Ẑ.
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Remark 2.15. Let X be an object of Db(Ab) whose image iX ∈Db(LCA) belongs to
Db(FLCA). Then one may consider iX⊗LẐ and iX⊗LẐp, where ⊗L is the tensor product

(3) in Db(FLCA). There are canonical maps iX⊗LẐ→X⊗̂Ẑ and iX⊗LZp →X⊗̂Zp but

those maps are not equivalences, in general. For example, we have

Qp/Zp⊗LZp 
Qp/Zp and Q⊗LZp 
Qp,

while

Qp/Zp⊗̂Zp 
 Zp[1] and Q⊗̂Zp 
 0.

Notation 2.16. In the next sections, given X ∈Db(Ab), we often simply denote by X

its image iX in Db(LCA). In particular, for X,Y ∈Db(Ab), we denote by RHom(X,Y ) ∈
Db(Ab)⊆Db(LCA) the usual RHom seen as an object of Db(LCA).

3. Duality for schemes over finite fields

Let Y be a proper scheme over a finite field. If Y is smooth, then the Weil-étale

cohomology RΓW (Y ,Z) of [8] is a perfect complex of abelian groups. In general, the Weil-h
cohomology RΓWh(Y ,Z) of [8] is a perfect complex of abelian groups provided resolution

of singularities [8, Definition 2.4] holds (see Proposition 3.2 below). We show that if Y is

a simple normal crossing scheme, then the Weil-étale cohomology RΓW (Y ,Z) is a perfect
complex of abelian groups, and that the canonical map RΓW (Y ,Z)→RΓWh(Y ,Z) is an

equivalence under resolution of singularities. In Section 3.3, we show that RΓW (Y ,Z) is

dual to RΓW (Y ,Zc(0)) under the assumption that RΓW (Y ,Zc(0)) is perfect, where Zc(0)

is the cycle complex.

3.1. Finite generation of cohomology

Definition 3.1. Let k be a finite field with algebraic closure k̄ and Wk be its Weil group.

For a scheme Y over k, we let Ȳ = Y ×k k̄. For a scheme Y of finite type Y over k, we

define the Wh-cohomology of the constant sheaf Z to be

RΓWh(Y ,Z) :=RΓ(Wk,RΓeh(Ȳ ,Z)).

Proposition 3.2. Let Y be a proper scheme over a finite field k. Assume resolution

of singularities for schemes over k of dimension ≤ dim(Y ) [8, Definition 2.4]. Then

RΓWh(Y ,Z) is a perfect complex of abelian groups.

Proof. To prove perfectness of RΓWh(Y ,Z), one first reduces to the smooth and
projective case by [8, Proposition 3.2], in which case, one can conclude with loc. cit.

Theorem 4.3 and [16].

Definition 3.3. Let k be a field, and let Y be a pure dimensional proper scheme over k

with irreducible components Yi, i=1, . . . ,c. Then Y is said to be a simple normal crossing

scheme if for all I ⊆ {1, . . . ,c}, YI =
⋂

i∈I Yi is regular of codimension |I|−1 in Y.

In fact, for all the results in this paper, we only need that (YI)
red is regular.
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Lemma 3.4. Consider a Cartesian square

Y ′ i′−−−−→ T ′

q

⏐⏐	 ⏐⏐	π

Y
i−−−−→ T

of schemes of finite type over a field k with i a closed embedding and π finite, such that
π|T ′−Y ′ is an isomorphism to T −Y . Then there is a distinguished triangle

RΓet(T,Z)→RΓet(T
′,Z)⊕RΓet(Y ,Z)→RΓet(Y

′,Z).

In particular, if k is a finite field, we obtain a triangle

RΓW (T,Z)→RΓW (T ′,Z)⊕RΓW (Y ,Z)→RΓW (Y ′,Z).

Proof. To get the first triangle, noting that i∗ and π∗ are exact, it suffices to show that
the exact sequence

0→ Z→ π∗Z⊕ i∗Z→ (π ◦ i′)∗Z→ 0

of étale sheaves on T is exact. But this follows by considering stalks at points t ∈ T . If

t �∈ Y , then the sequence reduces to the isomorphism Z∼= π∗Z, and if t ∈ Y , then Z∼= i∗Z
and π∗Z∼= (π ◦ i′)∗Z.
The second triangle can be obtained by applying RΓ(W,−) to the first triangle after

base extension to the algebraic closure.

Proposition 3.5. If T red is a strict normal crossing scheme, then RΓW (T,Z) is a perfect
complex of abelian groups. Under resolution of singularities, we have a quasi-isomorphic

RΓW (T,Z)
RΓWh(T,Z).

Proof. Since étale cohomology with coefficients in Z does not change if we replace T by

T red, we can assume that T is reduced. We proceed by induction on dimension of T and
the number of irreducible components of T. If the number of components is one, then T red

is smooth and proper and the result follows from [8, Theorem 4.3]. In general, let T =

∪i∈ISi and set Y = S1 and T ′ = ∪i�=1Si. Then the hypotheses of Lemma 3.4 are satisfied,

Y is smooth, T ′ is a normal crossing scheme with fewer irreducible components and Y ′

a normal crossing scheme of smaller dimension. Hence, we obtain the first statement on

perfectness and the second statement by comparing with the corresponding triangle for

Wh-cohomology.

Note that we can haveH2
W (T,Z) �=H2

Wh(T,Z) for normal proper surfaces [8, Proposition

8.2].

3.2. Finite generation of homology

For later use, we record the following conditional results on finite generation of homology.

Recall the following conjecture from [10].

Conjecture Pn(X): For the smooth and proper scheme X over a finite field, the group

CHn(X,i) is torsion for all i > 0.
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Conjecture Pn(X) is known for all n if X is a curve. In general, it is a particular case

of Parshin’s conjecture, which is equivalent to the statement Pn(X) for all n. Parshin’s

conjecture, in turn, is implied by the Beilinson-Tate conjecture [6, Theorem 1.2]. By
the projective bundle formula, conjecture Pn(X) for all X of dimension, at most, d

implies conjecture Pn−1(X) for all X of dimension d− 1. The following proposition is

[10, Proposition 4.2].

Proposition 3.6. If conjecture P0(X) holds for all smooth and proper schemes of

dimension, at most, dimY , then the cohomology groups of RΓW (Y ,Zc(0)) are finitely
generated and vanish for almost all indices.

If Y is a simple normal crossing scheme, then it suffices to assume that P0(YI) holds
for all multiple intersections YI .

Proposition 3.7. If resolution of singularities and conjecture P−1(X) holds for all

schemes of dimension, at most, d− 1, then the cohomology groups of RΓWh(Xs,Z(d))

are finite and vanish for almost all indices.

Proof. Using blow-up squares and induction on the dimension, it suffices to prove

the statement for smooth and proper schemes T of dimension, at most, d− 1. By [8,
Corollary 5.5], the Weil-eh cohomology groups agree with Weil-étale cohomology groups.

By conjecture P−1(T ), they are torsion, hence, finite by comparison with étale cohomology

groups.

3.3. Duality

Theorem 3.8. Let Y be a simple normal crossing scheme over a finite field k, such that
RΓW (Y ,Zc(0)) is a perfect complex of abelian groups. Then there is a perfect pairing

RΓW (Y ,Z)⊗LRΓW (Y ,Zc(0))→ Z[−1]

of perfect complexes of abelian groups.

Proof. Let f : Y → Spec(k) = s be the structure morphism. The pushforward map [9,

Corollary 3.2]

Rf∗Z
c(0)Y → Zc(0)s 
 Z[0]

induces a trace map

RΓW (Y ,Zc(0))→RΓW (s,Z)→ Z[−1].

We consider the map

RΓW (Y ,Z)−→RHom(RΓW (Y ,Zc(0)),Z[−1]) (14)

induced by the pairing

RΓW (Y ,Z)⊗LRΓW (Y ,Zc(0))→RΓW (Y ,Zc(0))→RΓW (s,Zc(0))→ Z[−1],

which, in turn, is induced by the obvious pairing Z⊗L Zc(0)→ Zc(0). In order to show

that the morphism of perfect complexes (14) is an equivalence, it is enough to show that
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(14)⊗L Z/mZ is an equivalence for any integer m. But (14)⊗L Z/mZ may be identified

with the canonical map

RΓet(Y ,Z/mZ)−→RHom(RΓet(Y ,Zc(0)/m),Q/Z[−1]) (15)

since we have an equivalence of lax symmetric monoidal functors

RΓW (Y ,−)⊗L
ZZ/mZ
RΓet(Y ,(−)⊗L

ZZ/mZ).

But (15) is an equivalence by [9, Theorem 5.1]. Hence, (14) is an equivalence as well.

4. The complexes RΓar(XK,Z(n)) in Db(LCA)

Under the assumption that the pair (X ,n) satisfies Hypothesis 4.1 below, we give in

Section 4.2 a construction of complexes in a fibre sequence in Db(LCA)

RΓar(Xs,Ri!Z(n))→RΓar(X ,Z(n))→RΓar(XK,Z(n)), (16)

where

RΓar(Xs,Ri!Z(n)) :=RΓW (Xs,Ri!Z(n))

is defined below. Hypothesis 4.1 is known for n = 0,1 and arbitrary X , hence, this

construction is unconditional in those cases.

In Sections 4.3 and 4.4, we give an alternative definition of the triangle (16) for n= 0
and n = d := dim(X ), respectively, which is expected to coincide with the conditional

definition of Section 4.2.

In Section 4.5, we show that these complexes, in fact, belong to Db(FLCA) under some

conditions. In Section 4.6, we show that the cohomology of these complexes consists of
locally compact abelian groups for n= 0,d.

4.1. Notation

Let p be a prime number, let K/Qp be a finite extension, let OK be its ring of integers and

let K̄/K be an algebraic closure. We denote by Kun the maximal unramified extension
of K inside K̄. Let X/OK be a regular, proper and flat scheme over Spec(OK). Suppose

that X is connected of Krull dimension d. Let Xs be its special fibre, where s ∈ Spec(OK)

is the closed point. We consider the following diagram.

XKun

j̄ ��

��

XOKun

��

Xs̄
ī��

��
XK

j �� X Xs.
i��

For any n ≥ 0, we denote by Z(n) Bloch’s cycle complex in its cohomological notation
considered as a complex of étale sheaves. For any n < 0, we define

Z(n) :=Q/Z(n)[−1] := (⊕l �=pcolimμ⊗n
l• ⊕ j!colimμ⊗n

p• )[−1].
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For any n∈Z, we set Z/m(n) :=Z(n)⊗LZ/m. We denote by Gκ(s) 
 Ẑ and by Wκ(s) 
Z

the Galois group and the Weil group of the finite field κ(s), respectively. We define Weil-

étale cohomology groups

RΓW (XK,Z(n)) :=RΓ(Wκ(s),RΓet(XKun,Z(n))),

RΓW (X ,Z(n)) :=RΓ(Wκ(s),RΓet(XOKun ,Z(n))),

RΓW (Xs,Ri!Z(n)) :=RΓ(Wκ(s),RΓet(Xs̄,Rī!Z(n)).

If one replaces Wκ(s) by Gκ(s), one obtains étale motivic cohomology RΓet(XK,Z(n)),
RΓet(X ,Z(n)) and RΓet(Xs,Ri!Z(n)). Applying RΓ(Wκ(s),−) to the fibre sequence

RΓet(Xs̄,Rī!Z(n))→RΓet(XOKun ,Z(n))→RΓet(XKun,Z(n)),

we obtain the fibre sequence

RΓW (Xs,Ri!Z(n))→RΓW (X ,Z(n))→RΓW (XK,Z(n)). (17)

4.2. Uniform conditional definition

Recall from Definition 3.1 the eh-motivic cohomology RΓeh(−,Z(n)) and Wh-motivic

cohomology

RΓWh(Xs,Z(n)) :=RΓ(Wκ(s),RΓeh(Xs,Z(n))).

Hypothesis 4.1. We have a reduction map

ī∗ :RΓet(XOKun ,Z(n))→RΓeh(Xs̄,Z(n)),

and the complexes RΓet(X ,Z(n)), RΓeh(Xs,Z(n)) and RΓet(Xs,Ri!Z(n)) are cohomolog-

ically bounded.

Definition 4.2. Under hypothesis 4.1, we apply the functor RΓ(Wκ(s),−) to the
reduction map ī∗, and we obtain a map

RΓW (X ,Z(n))→RΓWh(Xs,Z(n)). (18)

We denote the cofibre of (18) by CW (X ,n), so that we have a cofibre sequence

RΓW (X ,Z(n))→RΓWh(Xs,Z(n))→ CW (X ,n) (19)

in Db(Ab).

Proposition 4.3. Assume Hypothesis 4.1. Then there exist RΓar(X ,Z(n)) ∈Db(LCA)

and RΓar(XK,Z(n)) ∈Db(LCA) endowed with fibre sequences

RΓar(X ,Z(n))→RΓWh(Xs,Z(n))→ CW (X ,n)⊗̂Ẑ (20)

and

RΓW (Xs,Ri!Z(n))→RΓar(X ,Z(n))→RΓar(XK,Z(n))

in Db(LCA).
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Proof. Composing the morphism in Db(Ab)

RΓWh(Xs,Z(n))→ CW (X ,n)

and the morphism in Db(LCA)

CW (X ,n)→ CW (X ,n)⊗̂Ẑ

given by Lemma 2.14, we obtain a morphism in Db(LCA)

RΓWh(Xs,Z(n))→ CW (X ,n)⊗̂Ẑ. (21)

We define RΓar(X ,Z(n)) as the fibre of (21), and we obtain the fibre sequence (20) in
Db(LCA). Lemma 2.14 gives a map from (19) to (20), hence, a map

RΓW (X ,Z(n))→RΓar(X ,Z(n)).

Then we define RΓar(XK,Z(n)) ∈Db(LCA) as the cofibre of the composite map

RΓW (Xs,Ri!Z(n))→RΓW (X ,Z(n))→RΓar(X ,Z(n)).

Remark 4.4. Since Z(0) ∼= Z and Z(1) ∼= Gm[−1], Hypothesis 4.1 holds for n = 0 and

n = 1, so that RΓar(X ,Z(n)) and RΓar(XK,Z(n)) are unconditionally defined in these
cases.

4.3. Working definition for the Tate twist n= 0.

We assume that X red
s is a simple normal crossing scheme. To obtain unconditional

definitions for n=0, we replace RΓWh(Xs,Z) by RΓW (Xs,Z) in the construction of Section

4.2. In view of Corollary 3.5, this will agree with the definition of Section 4.2 provided

that resolution of singularities for schemes of dimension, at most, dim(Xs) exist.

There is a canonical map

RΓW (X ,Z)→RΓW (Xs,Z),

whose cofibre we again denote by CW (X ,0). Following the construction of Section 4.2, we

define RΓar(X ,Z)∈Db(LCA) and RΓar(XK,Z)∈Db(LCA) endowed with fibre sequences

RΓar(X ,Z)→RΓW (Xs,Z)→ CW (X ,0)⊗̂Ẑ

and

RΓW (Xs,Ri!Z)→RΓar(X ,Z)→RΓar(XK,Z)

in Db(LCA). We used bold letters for the complexes defined in Section 4.2 in order to

distinguish them from the complexes defined in this section.

Proposition 4.5. If X red
s is a simple normal crossing scheme, then the map

RΓar(X ,Z)→RΓW (Xs,Z)
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is an equivalence. For arbitrary X , the map

RΓar(X ,Z)→RΓWh(Xs,Z)

is an equivalence.

Proof. By proper base change, the map

RΓet(X ,Z/m)→RΓet(Xs,Z/m)

is an equivalence, hence, CW (X ,0)⊗L Z/m 
 0. We obtain CW (X ,0)⊗̂Ẑ 
 0. The first
equivalence of the proposition follows. The second equivalence is obtained the same way,

in view of the fact that

RΓet(X ,Z/m)→RΓet(Xs,Z/m)→RΓeh(Xs,Z/m)

is an equivalence, again, by proper base change.

Proposition 4.6. If X red
s is a simple normal crossing scheme, then there is a canonical

map of fibre sequences

RΓW (Xs,Ri!Z) �� RΓar(X ,Z)

��

�� RΓar(XK,Z)

��
RΓW (Xs,Ri!Z) �� RΓar(X ,Z) �� RΓar(XK,Z).

If resolution of singularities for schemes over κ(s) of dimension, at most, d− 1 [8,

Definition 2.4] exists, then this morphism of fibre sequences is an equivalence.

Proof. This follows from Corollary 3.5 and Proposition 4.5.

In particular, we obtain that

RΓar(X ,Z)
∼−→RΓar(X ,Z)

is an equivalence if d≤ 3.

Notation 4.7. If X red
s is a simple normal crossing scheme, we denote by RΓar(X ,Z)

and RΓar(XK,Z) the complexes defined above. In view of Proposition 4.6, we set

RΓar(X ,Z) := RΓar(X ,Z) and RΓar(XK,Z) := RΓar(XK,Z) for arbitrary regular X of
dimension, at most, 3 or when we are assuming resolution of singularities.

4.4. Working definition for the Tate twist n= d.

The complex RΓW (X ,Z(d)) is not known to be bounded below. However, the complex

RΓW (X ,Q/Z(d))
RΓet(X ,Q/Z(d))

is bounded, as can be seen by duality, hence, the cohomology groups Hi
W (X ,Z(d)) are

Q-vector spaces for i� 0. In particular, for a < b� 0, the map

τ>aRΓW (X ,Z(d))→ τ>bRΓW (X ,Z(d))
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induces an equivalence

(τ>aRΓW (X ,Z(d)))⊗̂Ẑ
∼−→ (τ>bRΓW (X ,Z(d)))⊗̂Ẑ.

Definition 4.8. Let a� 0. We define

RΓar(X ,Z(d)) := (τ>aRΓW (X ,Z(d)))⊗̂Ẑ.

If RΓW (Xs,Z
c(0)) is cohomologically bounded, we define RΓar(XK,Z(d)) as the cofibre

of the composite map

RΓW (Xs,Ri!Z(d))→ τ>aRΓW (X ,Z(d))→RΓar(X ,Z(d))

in Db(LCA).

Remark 4.9. On the connected, d -dimensional and regular scheme X , we have Z(d)X =

Zc(0)X [−2d] by definition. By [9, Corollary 7.2], we have Ri!Zc(0)X = Zc(0)Xs , hence,

Ri!Z(d)X = Zc(0)Xs [−2d].

Proposition 4.10. Suppose that X satisfies Hypothesis 4.1 for n = d, and suppose
that RΓW (XK,Z(d)) and RΓW (Xs,Z

c(0)) are cohomologically bounded. Then there is a

canonical map of fibre sequences

RΓW (Xs,Ri!Z(d)) �� RΓar(X ,Z(d))

��

�� RΓar(XK,Z(d))

��
RΓW (Xs,Ri!Z(d)) �� RΓar(X ,Z(d)) �� RΓar(XK,Z(d)).

If RΓWh(Xs,Z(d)) has finite cohomology groups, then this morphism of fibre sequences is
an equivalence.

Cohomological boundedness of RΓW (XK,Z(d)) in negative degrees is a special case of

the Beilinson-Soulé conjecture stating that there is no negative motivic cohomology, and

in positive degrees, it follows for finite cohomological dimension reasons (see Propositions
3.6 and 3.7 for the other boundedness conditions).

Proof. If RΓW (XK,Z(d)) and RΓW (Xs,Ri!Z(d))
RΓW (Xs,Z
c(0))[−2d] are cohomolog-

ically bounded, then the same holds for RΓW (X ,Z(d)) by the localisation triangle

· · · →RΓW (Xs,Ri!Z(d))→RΓW (X ,Z(d))→RΓW (XK,Z(d))→ ·· · .

In this case, RΓW (X ,Z(d))
∼→ τ>aRΓW (X ,Z(d)) is an equivalence for a << 0, hence,

RΓar(X ,Z(d))
RΓW (X ,Z(d))⊗̂Ẑ.

In view of (19) and (20), we obtain a map of fibre sequences

RΓar(X ,Z(d)) ��

��

RΓWh(Xs,Z(d))

��

�� CW (X ,d)⊗̂Ẑ

RΓar(X ,Z(d)) �� RΓWh(Xs,Z(d))⊗̂Ẑ �� CW (X ,d)⊗̂Ẑ

https://doi.org/10.1017/S1474748022000469 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748022000469


444 T. H. Geisser and B. Morin

since (−)⊗̂Ẑ is an exact functor. If the cohomology of RΓWh(Xs,Z(d)) consists of finite

groups, then the middle vertical map

RΓWh(Xs,Z(d))→RΓWh(Xs,Z(d))⊗̂Ẑ

in the above diagram is an equivalence by Proposition 2.11 and the two fibre sequences

are equivalent.

Remark 4.11. It follows from Proposition 2.11 and Remark 2.12 that we have

disc(RΓar(X ,Z(d)))
Rlim(τ>aRΓW (X ,Z(d))⊗LZ/m)


RlimRΓW (X ,Z/m(d))


RlimRΓet(X ,Z/m(d))

=:RΓet(X ,Ẑ(d)),

where we denote Z/m(d) := Z(d)⊗LZ/m.

4.5. Finite ranks

Lemma 4.12. If X is normal, then we have an isomorphism

Hj
et(Xs,Ri!Q/Z)∼=Hj+1

et (Xs,Ri!Z)

of abelian groups of finite ranks for all j ∈ Z.

Proof. The isomorphism follows because normality of X implies that Q∼=Rj∗j
∗Q, hence,

Ri!Q∼= 0. Since Hj
et(Xs,Ri!Q/Z) is torsion and discrete, it is both of finite Z-rank and of

finite S1-rank. It remains to see that it is of finite p-rank for any prime number p. But

Hj
et(Xs,Ri!Z/pZ) is a finite group for any j ∈ Z, because of the fibre sequence

RΓet(Xs,Ri!Z/pZ)→RΓet(X ,Z/pZ)→RΓet(XK,Z/pZ),

and classical finiteness results in étale and Galois cohomology.

Proposition 4.13. a) Assume that X red
s is a simple normal crossing scheme, or assume

resolution of singularities for schemes over κ(s) of dimension, at most, d−1 [8, Definition
2.4]. Then RΓar(X ,Z) and RΓar(XK,Z) belong to Db(FLCA).

b) Assume that RΓW (Xs,Z
c(0)) is a perfect complex of abelian groups. Then

RΓar(X ,Z(d)) and RΓar(XK,Z(d)) belong to Db(FLCA).

Proof. a) Under the hypothesis, the complexes RΓW (Xs,Z) and RΓWh(Xs,Z) are perfect

complexes of abelian groups by Propositions 3.2 and 3.5, respectively, hence, they belong

to Db(FLCA) by Lemma 2.5. The result for RΓar(X ,Z) then follows from Proposition
4.5 (using Notation 4.7), and the result for RΓar(XK,Z) follows from Proposition 4.6 and

Lemma 4.12.

b) By the proof of Proposition 5.4, RΓar(X ,Z(d)) is (up to a shift) dual to
RΓet(Xs,Ri!Q/Z). Hence, the result follows from Lemmas 2.5 and 4.12. The statement

for RΓar(XK,Z(d)) follows from the statement for RΓar(X ,Z(d)) together with the

perfectness of RΓW (Xs,Ri!Z(d))
RΓW (Xs,Z
c(0))[−2d] by hypothesis.
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4.6. The topology on cohomology groups

Recall from Section 4.1 that X denotes a regular connected scheme which is proper and

flat over OK . We refer to [1, Section 2.16] for the following definition.

Definition 4.14. Let Xs,i,i ∈ I be the irreducible components of Xs. We set Xs,J =

∩i∈JXs,i for any nonempty subset J ⊆ I. We say that X/OK has strictly semistable

reduction if Xs is reduced, Xs,i is a divisor on X and for each nonempty J ⊆ I, the
scheme Xs,J is smooth over κ(s) and has codimension |J | in X .

If X/OK has strictly semistable reduction, then Xs is a simple normal crossing scheme
over κ(s), in the sense of Definition 3.3.

Theorem 4.15. Suppose that X/OK has strictly semistable reduction. Then for any
i ∈ Z, the map

Hi
et(X ,Qp(d))→Hi

et(XK,Qp(d)) (22)

is injective.

Proof. Since X/OK has strictly semistable reduction, the morphism X → Spec(OK) is

log smooth with respect to the log structures associated with Xs and s, respectively, where
s is the closed point of Spec(OK), and Xs is a normal crossing divisor on X . Therefore,

the results of [22] apply. We have isomorphisms

Hi
et(X ,Qp(d))
Hi

et(X ,QS
p (d))

compatible with the map (22), where

RΓet(X ,QS
p (d)) :=RlimRΓet(X ,Tr(d))⊗Zp

Qp

is the complex studied in [21] and [22]. Indeed, this follows from the equivalences

RΓ(Xet,Tr(d))
RHom(RΓXs
(Xet,Z/p

r),Z/pr)[−2d−1]


RΓ(Xet,Z/p
r(d)),

given by [21, Theorem 10.1.1] and [9, Proof of Theorem 7.5] and from the fact that (22)
is induced by the dual of the map

RΓ(XK,et,Z/p
r)[−1]→RΓXs

(Xet,Z/p
r).

Hence, we are reduced to show that the map

Hi
et(X ,QS

p (d))→Hi
et(XK,Qp(d))

is injective. By [22, Proposition 3.4(1)], [22, Section 4.1] and [22, Theorem 5.3], there is
a morphism of spectral sequences from

Hi
f (GK,Hj

et(XK̄,Qp(d)))⇒Hi+j
et (X ,QS

p (d))

to

Hi(GK,Hj
et(XK̄,Qp(d)))⇒Hi+j

et (XK,Qp(d)),
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where the first spectral sequence degenerates into isomorphisms

Hj
et(X ,QS

p (d))
∼→H1

f (GK,Hj−1
et (XK̄,Qp(d))).

Since we have [22, Proposition 5.10(1)]

H0
f (GK,Hj

et(XK̄,Qp(d))) =H0(GK,Hj
et(XK̄,Qp(d))) = 0

for any j ∈ Z, we obtain a commutative square

Hj
et(X ,QS

p (d)) ��



��

Hj
et(XK,Qp(d))

��
H1

f (GK,Hj−1
et (XK̄,Q(d))) �� H1(GK,Hj−1

et (XK̄,Qp(d))),

where the vertical maps are edge morphisms of the corresponding spectral sequences.

Here, the left vertical map is an isomorphism and the lower horizontal map is injective.
It follows that the upper horizontal map is injective as well.

Lemma 4.16. Suppose that Xs is a simple normal crossing scheme. Then the group

Hi
et(X ,Ẑ′(d)) :=Hi(Rlimp�mRΓet(X ,Z(d))⊗LZ/m)

is finite for any i ∈ Z.

Proof. By definition, we have Z(d) ∼= Zc(0)[−2d], and by [9, Proposition 7.10 a)] and

Gabber’s purity theorem [4, Section 8], we have

Zc/m(0)[−2d]∼=Rf !Zc/m(0)[−2d]∼=Rf !Z/m[−2d]∼= μ⊗d
m

on X for any m prime to p. Moreover, by the proper base change theorem

RΓet(X ,μ⊗d
m )
RΓet(Xs,μ

⊗d
m ).

Thus, it suffices to show that the cohomology of the right-hand side of

RΓet(X ,Ẑ′(d))
Rlimp�mRΓet(Xs,μ
⊗d
m )

if finite. By the analog of Proposition 3.4 and induction on the number of irreducible

components of Xs, it suffices to show that the cohomology RΓet(Y ,Zl(d)) of each

connected component Y of each X (i)
s is finite for all l �= p and zero for almost all l.

Since Y is smooth and proper, this is known for the extension Ȳ to the algebraic closure

by Gabber’s theorem [5], [24], and this extends to Y by a weight argument because

d > dimY , hence, the Frobenius does not have eigenvalue one on RΓet(Y ,Zl(d)).

Theorem 4.17. a) Suppose that (Xs)
red is a simple normal crossing scheme. Then for

any i ∈ Z, the object Hi
ar(XK,Z) ∈ LH(LCA) is a discrete abelian group. More precisely,

Hj
ar(XK,Z) ∈ LH(LCA) is an extension of a torsion abelian group by a finitely generated

abelian group.

b) Suppose that X/OK has strictly semistable reduction, and suppose that

RΓW (Xs,Z
c(0)) is a perfect complex of abelian groups. Then for any i ∈ Z, the object
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Hi
ar(XK,Z(d)) is a locally compact abelian group. More precisely, Hi

ar(XK,Z(d)) is an

extension of a finitely generated abelian group by a finitely generated Zp-module endowed

with the p-adic topology.

Proof. a) We have a long exact sequence in the abelian category LH(LCA)

· · · →Hj
ar(X ,Z)→Hj

ar(XK,Z)→Hj+1
W (Xs,Ri!Z)→ ·· · ,

where Hj+1
W (Xs,Ri!Z)
Hj

W (Xs,Ri!Q/Z) is a discrete torsion abelian group (see the proof

of Proposition 5.4) and Hj
ar(X ,Z) 
 Hj

W (Xs,Z) is a discrete finitely generated abelian

group by Proposition 3.5. Hence, Hj
ar(XK,Z) ∈ LH(LCA) is an extension of a torsion

abelian group by a finitely generated abelian group. It follows that Hj
ar(XK,Z) ∈ LCA

since LCA⊂ LH(LCA) is stable under extensions [23, Proposition 1.2.29(c)].

b) We have a long exact sequence in LH(LCA)

Hj
W (Xs,Ri!Z(d))→Hj

ar(X ,Z(d))→Hj
ar(XK,Z(d))→Hj+1

W (Xs,Ri!Z(d)),

where Hj
W (Xs,Ri!Z(d)) is a discrete finitely generated abelian group by assumption.

Moreover, Hj
ar(X ,Z(d)) ∈ LH(LCA) is the group (see Remark 4.11)

Hj
et(X ,Ẑ(d))


∏
l

Hj
et(X ,Zl(d)) :=

∏
l

Hj(Rlim(RΓet(X ,Z(d))⊗LZ/l•))

which by Lemma 4.16 is the product of a finite group and the finitely generated Zp-module
Hj

et(X ,Zp(d)) endowed with the p-adic topology. If we can show that the image of the

map Hj
W (Xs,Ri!Z(d))→Hj

et(X ,Ẑ(d)) is finite, then it will follow that Hj
ar(XK,Z(d)) is

an extension of a finitely generated abelian group by a profinite abelian group. Since we

have an isomorphism of finitely generated Zp-modules

Hj
W (Xs,Ri!Z(d))⊗ZZp 
Hj

et(Xs,Ri!Zp(d)),

it is enough to show that the image of the map

Hj
et(Xs,Ri!Zp(d))→Hj

et(X ,Zp(d))

is finite, or equivalently, that the map

Hj
et(Xs,Ri!Qp(d))→Hj

et(X ,Qp(d))

is the zero map. This follows from Theorem 4.15 by the localisation sequence.

5. Duality theorems

The goal of this section is to prove various duality theorems. In particular, we prove
Theorem 1.2 and Corollary 1.3 of the Introduction. Throughout this section, we use the

notation and definitions introduced in Sections 4.3 and 4.4 and we assume the following,

Hypothesis 5.1. At least one of the following conditions holds:

• we have d≤ 2;
• the scheme (Xs)

red is a simple normal crossing scheme and RΓW (Xs,Z
c(0)) is a

perfect complex of abelian groups.
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In view of Proposition 3.6, d ≤ 2 implies that RΓW (Xs,Z
c(0)) is a perfect complex of

abelian groups.

5.1. Duality with Z-coefficients

Theorem 5.2. Assume Hypothesis 5.1. Then there is a perfect pairing

RΓar(XK,Z(d))⊗LRΓar(XK,Z)−→ Z[−2d]

in Db(FLCA).

The rest of Section 5.1 is devoted to the proof of Theorem 5.2. We assume Hypothesis

5.1 throughout.

Proof. Recall from Proposition 4.13 that RΓar(XK,Z(n)) belongs to Db(FLCA) for n=
0,d, so that the tensor product

RΓar(XK,Z(d))⊗LRΓar(XK,Z),

defined in Section 2, makes sense. Moreover, the equivalence Ri!Zc(0)X 
 Zc(0)Xs of

Remark 4.9 and the pushforward map Rf∗Z
c(0)Xs → Zc(0)s 
 Z[0] of [9, Corollary 3.2]

induce trace maps

RΓW (Xs,Ri!Z(d))
RΓW (Xs,Z
c(0)[−2d])→RΓW (s,Z[−2d])→ Z[−2d−1]

and

RΓet(Xs,Ri!Z/m(d))→RΓet(s,Z/m[−2d])→ Z/m[−2d−1].

We start with the following,

Proposition 5.3. The canonical product map Z⊗L Z(d) → Z(d) in the derived ∞-
category of étale sheaves over XOKun and XKun induce perfect pairings

RΓet(Xs,Ri!Z/m)⊗LRΓet(X ,Z/m(d))→RΓet(Xs,Ri!Z/m(d))→ Z/m[−2d−1]

and

RΓet(Xs,Ri!Z/m(d))⊗LRΓet(X ,Z/m)→RΓet(Xs,Ri!Z/m(d))→ Z/m[−2d−1]

for any m.

Proof. Consider the commutative square

RΓet(X ,Z)⊗LRΓet(X ,Z(d))

��

�� RΓet(X ,Z(d))

��
RΓet(XK,Z)⊗LRΓet(X ,Z(d)) �� RΓet(XK,Z(d)).

Taking the fibres of the vertical arrows induces the product map

RΓet(Xs,Ri!Z)⊗LRΓet(X ,Z(d))→RΓet(Xs,Ri!Z(d)), (23)

and the product map

RΓet(Xs,Ri!Z(d))⊗LRΓet(X ,Z)→RΓet(Xs,Ri!Z(d)) (24)
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is obtained similarly. By [9, Theorem 7.5] applied to F = Z/m, the pairing

RΓet(Xs,Ri!Z/m)⊗LRΓet(X ,Z/m(d))→RΓet(Xs,Ri!Z/m(d))→ Z/m[−2d−1],

induced by (23), is perfect. The pairing induced by (24)

RΓet(Xs,Ri!Z/m(d))⊗LRΓet(X ,Z/m)→RΓet(Xs,Ri!Z/m(d))→ Z/m[−2d−1]

is perfect as well, since it reduces, by purity and proper base change, to

RΓet(Xs,Z
c/m[−2d])⊗LRΓet(Xs,Z/m)→RΓet(Xs,Z

c/m[−2d])→ Z/m[−2d−1]

which is perfect by [9, Theorem 5.1] applied to F = Z/m.

For n= 0 or n= d, consider the product map

RΓet(Xs̄,Rī!Z(n))⊗LRΓet(XOKun ,Z(d−n))→RΓet(Xs̄,Rī!Z(d)).

This product map is induced by the obvious product maps Z⊗L Z(d) → Z(d) in the

derived ∞-category of étale sheaves over XOKun and XKun , as in the proof of Proposition

5.3. Applying RΓ(Wκ(s),−) and composing with the trace map, we obtain

RΓW (Xs,Ri!Z(n))⊗LRΓW (X ,Z(d−n))→RΓW (Xs,Ri!Z(d))→ Z[−2d−1]. (25)

This yields the morphisms

RΓW (X ,Z(d))→RHom(RΓW (Xs,Ri!Z),Z[−2d−1]),

which, in turn, induce

τ>aRΓW (X ,Z(d))→RHom(RΓW (Xs,Ri!Z),Z[−2d−1]) (26)

for a� 0, since the right-hand side is bounded. Composing (26) with the canonical map

(see Lemma 2.9)

RHom(RΓW (Xs,Ri!Z),Z[−2d−1])→RHom(RΓW (Xs,Ri!Z),Z[−2d−1]),

we obtain

τ>aRΓW (X ,Z(d))→RHom(RΓW (Xs,Ri!Z),Z[−2d−1]). (27)

Proposition 5.4. The map (27) factors through an equivalence

RΓar(X ,Z(d))
∼→RHom(RΓW (Xs,Ri!Z),Z[−2d−1]) (28)

in Db(FLCA).

Proof. One has

RΓar(X ,Z(d)) := τ>aRΓW (X ,Z(d))⊗̂Ẑ


 (hocolimRHom(RΓW (X ,Z/m(d)),Q/Z))D


 (hocolimRHom(RΓet(X ,Z/m(d)),Q/Z))D


RHom(hocolimRHom(RΓet(X ,Z/m(d)),Q/Z[−2d−1]),R/Z[−2d−1])
∼→RHom(hocolimRΓet(Xs,Ri!Z/m),R/Z[−2d−1])
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RHom(RΓW (Xs,Ri!Q/Z),R/Z[−2d−1])


RHom(RΓW (Xs,Ri!Z[1]),R/Z[−2d−1])


RHom(RΓW (Xs,Ri!Z),Z[−2d−1]),

where we use Proposition 5.3, the vanishing

RHom(RΓW (Xs,Ri!Z[1]),R)
 0

proven in Lemma 5.5 below and Ri!Q
 0.

Lemma 5.5. We have

RHom(RΓW (Xs,Ri!Z[1]),R)
RHom(R,RΓW (Xs,Ri!Z[1]))
 0.

Proof. As observed above, we have RΓW (Xs,Ri!Z[1]) 
 RΓW (Xs,Ri!Q/Z). Since

RHom(R,−) and RHom(−,R) are exact functors, and using the t-structure onDb(FLCA),
we may suppose that RΓW (Xs,Ri!Q/Z) is cohomologically concentrated in one degree.

Hence, one is reduced to show that

RHom(A,R)
RHom(R,A)
 0

for any torsion discrete abelian group of finite ranks A. This follows from [14, Proposition

4.15 (i) and (vii)].

Corollary 5.6. We have

RHom(RΓar(X ,Z(d)),R)
RHom(R,RΓar(X ,Z(d)))
 0.

Proof. In the proof of Proposition 5.4, we have shown that RΓar(X ,Z(d)) is, up to a

shift, Pontryagin dual to RΓW (Xs,Ri!Z[1]). Hence, the corollary follows from Lemma
5.5, since RHom(X,Y )
RHom(Y D,XD) for any X,Y ∈Db(FLCA).

Similarly, we have the

Proposition 5.7. The map

RΓW (Xs,Ri!Z(d))→RHom(RΓW (X ,Z),Z[−2d−1]), (29)

induced by (25), factors through an equivalence

RΓW (Xs,Ri!Z(d))
∼−→RHom(RΓar(X ,Z),Z[−2d−1]). (30)

Proof. Recall from Remark 4.9 that we have

Ri!Z(d) =Ri!Zc(0)[−2d]
 Zc(0)[−2d].

If X red
s is a simple normal crossing scheme, we may, therefore, identify the map

RΓW (Xs,Ri!Z(d))[2d]
∼−→RHom(RΓar(X ,Z),Z[−2d−1])[2d] (31)

with the composite morphism

RΓW (Xs,Z
c(0))

∼→RHom(RΓW (Xs,Z),Z[−1])
∼→RHom(RΓW (Xs,Z),Z[−1]),
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which is an equivalence of perfect complexes of abelian groups by Proposition 3.5,
Theorem 3.8 and Lemma 2.9. If d≤ 2, we may identify (31) with the morphism

RΓW (Xs,Z
c(0))

∼→RHom(RΓWh(Xs,Z),Z[−1])
∼→RHom(RΓWh(Xs,Z),Z[−1]),

which is an equivalence of perfect complexes of abelian groups by Proposition 3.2 and

[11, Theorem 4.2] (using the fact that for a curve, étale and eh-cohomology agree).

Note that, if d≤ 2, then the following diagram in Db(LCA)

RΓW (Xs,Ri!Z(d))




������
�����

�����
�����

��
(30) ��

(29)

��

RHom(RΓar(X ,Z),Z[−2d−1])

RHom(RΓW (X ,Z),Z[−2d−1]) RHom(RΓWh(Xs,Z),Z[−2d−1])��




��

commutes. If X red
s is a simple normal crossing scheme, then the same diagram with

RΓWh(Xs,Z) replaced by RΓW (Xs,Z) commutes as well.

We now combine Propositions 5.4 and 5.7 to prove our result for the generic fibre.

Proposition 5.8. There is an equivalence

RΓar(XK,Z(d))
∼→RHom(RΓar(XK,Z),Z[−2d]),

such that, for any m, there is a commutative square

RΓar(XK,Z(d))
∼ ��

��

RHom(RΓar(XK,Z),Z[−2d])

��
RΓet(XK,Z/m(d))

∼ �� RHom(RΓet(XK,Z/m),Q/Z[−2d]),

where the lower horizontal map is induced by duality for the usual étale cohomology of

the variety XK .

Proof. We start with the commutative diagram:

RΓet(Xs̄,Rī!Z)⊗LRΓet(XOKun ,Z(d))

������
����

����
����

��

RΓet(Xs̄,Rī!Z)⊗LRΓet(Xs̄,Rī!Z(d)) ��

��

��

RΓet(Xs̄,Rī!Z(d))

RΓet(XOKun ,Z)⊗LRΓet(Xs̄,Rī!Z(d))

���������������������
,
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where the map

RΓet(Xs̄,Rī!Z)⊗LRΓet(Xs̄,Rī!Z(d))→RΓet(Xs̄,Rī!Z(d))

is induced by the map Z⊗LZ(d)→ Z(d) over XOKun as follows. Consider the morphism

ī∗Rī!Z→ Z→RHomXOKun
(Z(d),Z(d))

→RHomXOKun
(̄i∗Rī!Z(d),Z(d))
 ī∗RHomXs̄

(Rī!Z(d),Rī!Z(d)),

and apply ī∗, whereHom denotes the internal Hom in the category of sheaves on the small

étale site of the corresponding scheme. Applying RΓ(Wκ(s),−) to the diagram above, we

obtain the following commutative diagram in D(Ab), where tr is the trace map:

RΓW (Xs,Ri!Z)⊗LRΓW (X ,Z(d))

������
�����

�����
�����

RΓW (Xs,Ri!Z)⊗LRΓW (Xs,Ri!Z(d)) ��

��

��

RΓW (Xs,Ri!Z(d))
tr �� Z[−2d−1]

RΓW (X ,Z)⊗LRΓW (Xs,Ri!Z(d))

���������������������
.

It gives the following commutative diagram in D(Ab)

RΓW (Xs,Ri!Z(d)) ��

��

RHom(RΓW (X ,Z),Z[−2d−1])

��
RΓW (X ,Z(d)) ��

��

RHom(RΓW (Xs,Ri!Z),Z[−2d−1])

τ>aRΓW (X ,Z(d))

���������������������
.

We obtain the following commutative diagram

RΓW (Xs,Ri!Z(d))
(29) ��

��

RHom(RΓW (X ,Z),Z[−2d−1])

��
τ>aRΓW (X ,Z(d))

(27) �� RHom(RΓW (Xs,Ri!Z),Z[−2d−1])

��
RHom(RΓW (Xs,Ri!Z),Z[−2d−1])
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in the derived ∞-category Db(LCA), where the lower-right map is given by Lemma 2.9.
By construction of the maps (28) and (30), we obtain the following commutative diagram

RHom(RΓar(X ,Z),Z[−2d−1])

��
RΓW (Xs,Ri!Z(d)) ��

��

(30)
��������������������

RHom(RΓW (X ,Z),Z[−2d−1])

��
τ>aRΓW (X ,Z(d))

��

�� RHom(RΓW (Xs,Ri!Z),Z[−2d−1])

RΓar(X ,Z(d))

(28)

���������������������
,

hence, the upper square in the commutative square

RΓW (Xs,Ri!Z(d))
(30)

∼
��

��

RHom(RΓar(X ,Z),Z[−2d−1])

��
RΓar(X ,Z(d))

(28)

∼
��

��

RHom(RΓW (Xs,Ri!Z),Z[−2d−1])

��
RΓar(XK,Z(d)) �� RHom(RΓar(XK,Z),Z[−2d]).

It follows that the diagram is an equivalence of cofibre sequences in Db(LCA). Tensoring
the upper commutative square with Z/m gives a square equivalent to the commutative

square

RΓet(Xs,Ri!Z/m(d)) ��

��

RHom(RΓet(X ,Z/m),Q/Z[−2d−1])

��
RΓet(X ,Z/m(d)) �� RHom(RΓet(Xs,Ri!Z/m),Q/Z[−2d−1]),

where the horizontal maps are induced by the perfect pairings of Proposition 5.3. This

yields the commutative square of Proposition 5.8.

It remains to prove that

RΓar(XK,Z)→RHom(RΓar(XK,Z(d)),Z[−2d])

is an equivalence.

Lemma 5.9. The map

RΓar(XK,Z)→RHom(RHom(RΓar(XK,Z),Z),Z)

is an equivalence.
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Proof. We have

RΓar(X ,Z)
RHom(RHom(RΓar(X ,Z),Z),Z)

by Lemma 2.9, since RΓar(X ,Z) is a perfect complex of abelian groups by Propositions

3.2, 3.5 and 4.5. In view of the cofibre sequence

RΓW (Xs,Ri!Z)→RΓar(X ,Z)→RΓar(XK,Z),

one is reduced to check that the map

RΓW (Xs,Ri!Z)→RHom(RHom(RΓW (Xs,Ri!Z),Z),Z)

is an equivalence. Recall from the proof of Proposition 5.4 that we have

RHom(RHom(RΓW (Xs,Ri!Z),Z),Z)


RHom(RΓar(X ,Z(d))[2d+1],Z)


RHom(RΓar(X ,Z(d))[2d+1],R/Z[−1])


RΓar(X ,Z(d))D[−2d−2]


 (hocolimRHom(RΓW (X ,Z/m(d)),Q/Z))DD[−2d−2]


 hocolimRHom(RΓW (X ,Z/m(d)),Q/Z[−2d−1])[−1]


RΓW (Xs,Ri!Q/Z)[−1]


RΓW (Xs,Ri!Z),

where the second equivalence follows from Corollary 5.6.

Consider the pairing

RΓar(XK,Z(d))⊗LRΓar(XK,Z)−→ Z[−2d] (32)

induced by the equivalence of Proposition 5.8. The induced map

RΓar(XK,Z(d))
∼→RHom(RΓar(XK,Z),Z[−2d]) (33)

is (tautologically) the equivalence of Proposition 5.8. Moreover, the map

RΓar(XK,Z)
∼→RHom(RΓar(XK,Z(d)),Z[−2d]) (34)

induced by (32) is an equivalence as well. Indeed, applying RHom(−,Z[−2d]) to (33) and

using Lemma 5.9, we obtain the composite equivalence

RΓar(XK,Z)
∼→RHom(RHom(RΓar(XK,Z),Z[−2d]),Z[−2d])

∼→RHom(RΓar(XK,Z(d)),Z[−2d]),

which is, up to equivalence, the map (34).

5.2. Pontryagin duality

Recall that we denote by FLCA the category of locally compact abelian group of finite

ranks in the sense of [14]. It follows from (3) and Proposition 4.13 that the following

definition makes sense.
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Definition 5.10. Assume Hypothesis 5.1. For n= 0,d, we define

RΓar(XK,R/Z(n)) :=RΓar(XK,Z(n))⊗LR/Z;

RΓar(X ,R/Z(n)) :=RΓar(X ,Z(n))⊗LR/Z.

Corollary 5.11. Assume Hypothesis 5.1. Then one has equivalences

RΓar(XK,R/Z)
∼−→RHom(RΓar(XK,Z(d)),R/Z[−2d])

and

RΓar(XK,Z)
∼−→RHom(RΓar(XK,R/Z(d)),R/Z[−2d])

in Db(FLCA).

Proof. By Theorem 5.2 and [14, Remark 4.3(ii)], we have

RΓar(XK,Z(d))
∼→RHom(RΓar(XK,Z),Z[−2d])
∼→RHom(RΓar(XK,Z),RHom(R/Z,R/Z[−2d])


RHom(RΓar(XK,Z)⊗LR/Z,R/Z[−2d])

:=RHom(RΓar(XK,R/Z),R/Z[−2d]).

Applying the functor RHom(−,R/Z[−2d]) and using Pontryagin duality, we obtain the
first equivalence of the corollary.

Similarly, we have

RΓar(XK,Z)
∼→RHom(RΓar(XK,Z(d)),Z[−2d])


RHom(RΓar(XK,Z(d))⊗LR/Z,R/Z[−2d])

:=RHom(RΓar(XK,R/Z(d)),R/Z[−2d]).

Corollary 5.12. Suppose that X/OK has strictly semistable reduction, and suppose that
RΓW (Xs,Z

c(0)) is a perfect complex of abelian groups. Then for any i ∈ Z, we have an

isomorphism of locally compact groups

Hi
ar(XK,R/Z)

∼−→H2d−i
ar (XK,Z(d))D

and an isomorphism of discrete groups

Hi
ar(XK,Z)

∼−→H2d−i
ar (XK,R/Z(d))D.

Proof. In view of Theorem 4.17 and Lemma 2.6, the equivalence in Db(FLCA)

RΓar(XK,R/Z)
∼−→RΓ(XK,Z(d))D[−2d]

induces isomorphisms

Hi
ar(XK,R/Z)

∼−→Hi(RΓ(XK,Z(d))D[−2d])
H2d−i
ar (XK,Z(d))D
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of locally compact abelian groups. Similarly, the equivalence in Db(FLCA)

RΓar(XK,R/Z(d))
∼−→RΓ(XK,Z)D[−2d]

induces isomorphisms

Hi
ar(XK,R/Z(d))

∼−→Hi(RΓ(XK,Z)D[−2d])
H2d−i
ar (XK,Z)D

of compact abelian groups.

Remark 5.13. Corollary 5.11 as well as Corollary 5.12 can be extended to Tate twists
n > d, or equivalently, n < 0. Let X be a regular, proper and flat scheme over OK .

Assume that X is connected of Krull dimension d, and let n > d. We, moreover, assume

that RΓet(XK,Z(n)) is bounded4 .
Then we define

RΓar(XK,Z(n)) :=RΓet(XK,Z(n))⊗̂Ẑ
 lim←−
(
RΓet(XK,Z(n))⊗LZ/m

)
,

where the limit is computed in the ∞-category Db(LCA) (see Proposition 2.11 and

Remark 2.12).
Dually, we define

RΓar(XK,Z(d−n)) :=RΓet(XK,Q/Z(d−n))[−1]


 lim−→RΓet(XK,Z/mZ(d−n))[−1]


 lim−→RΓet(XK,μ⊗d−n
m )[−1],

where the colimit is computed in the ∞-category Db(LCA) (see Proposition 2.7). Here,
we follow the abuse of Notation 2.16. We have

RΓar(XK,R(d−n)) :=RΓar(XK,Z(d−n))⊗LR
 0,

hence,

RΓar(XK,R/Z(d−n))
RΓet(XK,Q/Z(d−n))
 lim−→RΓet(XK,μ⊗d−n
m ).

Poincaré duality for étale cohomology of XK together with Tate duality for Galois

cohomology of the local field K gives an equivalence

RΓet(XK,μ⊗n
m )

∼−→RHom(RΓet(XK,μ⊗d−n
m ),R/Z[−2d])

of discrete complexes in Db(FLCA). We obtain an equivalence

RΓet(XK,Z(n))
∼−→RHom(RΓet(XK,R/Z(d−n)),R/Z[−2d])

in Db(FLCA) and an isomorphism of compact groups of finite ranks

Hi
ar(XK,Z(n))

∼−→H2d−i
ar (XK,R/Z(d−n))D

for any i ∈ Z.

4This rather strong condition can be avoided using the trick of Definition 4.8.
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Remark 5.14. It might also be possible, although probably not so trivial, to prove the
analogue of Corollaries 5.11 and 5.12 in the case n = 1,d = 2. We refer to the work of

Karpuk [15, Theorem 4.2.2] for a first step in this direction. It would be interesting to

translate Karpuk’s result in the LCA-language used in this paper, in order to obtain a
perfect Pontryagin duality between locally compact abelian groups of finite ranks.

6. The conjectural picture

Let K/Qp be a finite extension. We conjecture the existence of a cohomology theory on

the category of separated schemes of finite type over Spec(OK), with values inDb(FLCA),
which we denote by

RΓar(−,A(n))

for any A ∈ FLCA and any n ∈ Z. Furthermore, we conjecture that the conclusion of

Theorem 1.2 holds in full generality: For any smooth proper scheme XK over K of pure
dimension d−1, any Tate twist n ∈ Z and any A ∈ FLCA, there is an equivalence

RΓar(XK,AD(n))
∼−→RHom(RΓar(XK,A(d−n)),R/Z[−2d])

in Db(FLCA), which is induced by a trace map H2d
ar (XK,R/Z(d)) → R/Z, where AD

denotes the Pontryagin dual of A. Similarly, for any regular proper flat scheme X/OK of
pure Krull dimension d, any n ∈ Z and any A ∈ FLCA, there is an equivalence

RΓar(X ,AD(n))
∼−→RHom(RΓar(Xs,Ri!A(d−n)),R/Z[−2d−1]) (35)

in Db(FLCA), which is induced by a trace map H2d+1
ar (Xs,Ri!R/Z(d))→ R/Z.

However, we do not expect the analog of Corollary 1.3 to be true in general, since

the groups Hi
ar(XK,Z(n)) cannot be expected to be locally compact for arbitrary Tate

twist n, as one can see from [13] for n = 1. Instead, they could be seen as condensed

abelian groups in the sense of Clausen-Scholze, or, more precisely, as objects of the heart

LH(FLCA) of the left t-structure on Db(FLCA) in the sense of [14] and [23]. In contrast,
we do expect isomorphisms of compact abelian groups

Hi
ar(X ,A(n))
H2d+1−i

ar (Xs,Ri!AD(d−n))D

for any i,n ∈ Z and any compact A ∈ FLCA. Concerning the relationship between

RΓar(−,A(n)) and known cohomology theories, we expect the following, for X , a regular
proper flat scheme over Spec(OK) of pure Krull dimension d.

• For any n ∈ Z and any positive integer m, we have

RΓar(XK,Z/m(n))
RΓet(XK,Z/m(n)),

where the right-hand side denotes étale cohomology with coefficients in Z/m(n)

μ⊗n
m . In particular, for any prime l, one has equivalences

RΓar(XK,Zl(n))
RΓar(XK,Z(n))⊗̂Zl 
RΓet(XK,Zl(n)),

where (−)⊗̂Zl :=Rlim(−⊗LZ/l•) is the l -adic completion functor.
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• The canonical map

RΓar(−,Z(n))⊗LA
∼→RΓar(−,A(n))

is an equivalence for (−) = X ,Xs and any ring object A, and for (−) = XK , if A
has no topological p-torsion5. For example, the map

RΓar(XK,Z(n))⊗LA
∼→RΓar(XK,A(n))

is an equivalence for A= R and A=Ql if l �= p.
• For any n ∈ Z, we have

RΓar(Xs,Z(n))
RΓWh(Xs,Z(n)),

where RΓWh(Xs,Z(n)) is motivic Wh-cohomology in the sense of [8] (see Section
4.2). Moreover, the cofibre

Car(X ,n) := Cofib(RΓar(X ,Z(n))→RΓar(Xs,Z(n)))

is a perfect complex of Zp-modules, such that

Car(X ,n)⊗LQ
RΓ(XK,Ω<n
XK/K), (36)

where the right-hand side denotes de Rham cohomology modulo, the n-step of the
Hodge filtration. Finally, Car(X ,n)
 0 for any n≤ 0.

• For any n ∈ Z, we have equivalences

RΓar(X ,Z(n))⊗LZp 
RΓar(X ,Zp(n))


RΓet(X ,Z(n))⊗̂Zp

=:RΓet(X ,Zp(n)), (37)

where RΓet(X ,Z(n)) denotes étale motivic cohomology, as defined in Section
4.1. Note that RΓet(X ,Z(n))⊗̂Qp is equivalent to the syntomic cohomology of
Fontaine-Messing [3], at least if X/OK is smooth and 0≤n<p−1 (see [7, Theorem
1.3] and [2, Proposition 7.21, Remark 7.23]). For general regular proper flat X and
arbitrary n≥ 0, a conjectural syntomic description of RΓet(X ,Z(n))⊗̂Qp is given
by [2, Corollary 7.17].

• For any n ∈ Z, one has

RΓar(Xs,Ri!Z(n))
RΓW (Xs,Ri!Z(n)),

where the right-hand side is defined as in Section 4.1.
– Let n≥ 1. On the one hand, Bloch’s cycle complex Z(n), seen as a complex of
étale sheaves over X , is expected6 to satisfy

τ≤n+1Ri!Z(n)
 Zc(d−n)[−2d].

5The locally compact group A has a unique filtration by closed subgroups with graded pieces
AS1 , AA and AZ of type S1, A and Z, respectively. Then AA is the direct sum of a finite
dimensional R-vector space and topological torsion group Atoptor, which, in turn, has a
topological p-torsion component Ap (see [14, Section 2]). We say that A has no topological
p-torsion if Ap = 0.

6This is known, at least, if X/OK is smooth by [7, Theorem 1.2.1].
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Here, Zc(d−n) denotes Bloch’s cycle complex in its homological notation as
in [9]. On the other hand, we expect

Hi
W (Xs,τ

>n+1Ri!Z(n))
Hi
et(Xs,τ

>n+1Ri!Z(n))
∼→H2d+1−i(Car(X ,d−n))D (38)

for any i ∈ Z, where H2d+1−i(Car(X ,d−n)) is a finitely generated Zp-module.
In particular, we have

RΓW (Xs,τ
>n+1Ri!Z(n))⊗LQp 
 0.

Thus, we expect

RΓar(Xs,Ri!Z(n))⊗LQp 
RΓW (Xs,Z
c(d−n))⊗LQp[−2d]


RΓW (Xs,Z
c(d−n))⊗̂Qp[−2d] (39)


RΓet(Xs,Z
c(d−n))⊗̂Qp[−2d]

=:RΓet(Xs,Q
c
p(d−n))[−2d] (40)

for any n≥ 1. The equivalence (39) is justified by the fact that RΓW (Xs,Z
c(d−

n)) is expected to be a perfect complex of abelian groups. We also expect7 an
equivalence

RΓW (Xs,Z
c(d−n))

∼−→RHom(RΓWh(Xs,Z(d−n)),Z[−1])

of perfect complexes of abelian groups.

– Suppose now that n≤ 0. Then we have

Hi
ar(Xs,Ri!Z(n))
Hi

W (Xs,Ri!Z(n))


Hi
et(Xs,Ri!Z(n))

∼→H2d+1−i
ar (X ,R/Z(d−n))D


H2d+2−i
ar (X ,Z(d−n))D,

where H2d+1−i
ar (X ,R/Z(d−n)) is isomorphic to H2d+1−i(Car(X ,d−n)) up to

finite groups. Hence, we have

RΓar(Xs,Ri!Z(n))⊗LQp 
 0 for any n≤ 0. (41)

• For any n ∈ Z, one has

RΓar(Xs,Ri!Z(n))⊗̂Qp 
RΓar(Xs,Ri!Qp(n))


RΓW (Xs,Ri!Z(n))⊗̂Qp


RΓet(Xs,Ri!Z(n))⊗̂Qp

=:RΓet(Xs,Ri!Qp(n)).

Note that for any n ≤ 0, the complex RΓar(Xs,Ri!Qp(n)) is nontrivial by (35),
(36) and the fact that RΓar(Xs,Qp(d−n))
 0 as d−n > dim(Xs). Therefore, the

7See Theorem 3.8 for a special case.
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map

RΓar(Xs,Ri!Z(n))⊗LQp →RΓar(Xs,Ri!Z(n))⊗̂Qp (42)

is expected to be an equivalence if and only if one has

n≥ 1 and RΓet(Xs,τ
>n+1Ri!Z(n))⊗̂Qp 
 0. (43)

Now we observe that (43) holds if and only if n ≥ d. This condition is indeed
sufficient by [9, Corollary 7.2 (a)]. By (38) and by the de Rham description (36)
of Car(X ,d−n), the condition n≥ d is also necessary for (43) to hold. Hence, the
map (42) is an equivalence if and only if n≥ d. Moreover, it follows from (36) and
(38) that

dimQp
Hn+1(RΓar(Xs,τ

>n+1Ri!Z(n))⊗̂Qp)

= corankp
(
Hn+2

ar (Xs,τ
>n+1Ri!Z(n))

)
= rankZp

H2d+1−n−2(Car(X ,d−n))

= dimQp
H2d−1−n(XK,Ω<d−n

XK/K)

= 0

for any n≥ 1, since

2d−1−n > dim(XK)+(d−n−1) = 2d−2−n.

Hence, the map (42) is an equivalence in cohomological degrees ≤n+1, for any n≥
1. For n≤ 0, the left- (respectively, right-) hand side of (42) vanishes (respectively,
is concentrated in cohomological degrees > n+1). Hence, (42) is an equivalence
in cohomological degrees ≤ n+1, for any Tate twist n ∈ Z.

• For any n≥ 0, one has an equivalence

RΓar(XK,Z(n))⊗LQp 
RΓsyn(XK,n), (44)

where the right-hand side is the Nekovar-Niziol syntomic cohomology [19]. Indeed,
by (37), (40) and (41), one has a cofibre sequence

RΓet(Xs,Q
c
p(d−n))[−2d]→RΓet(X ,Qp(n))→RΓar(XK,Z(n))⊗LQp,

where the left map is induced by the adjunction maps τ≤n+1Ri!Z(n)→ Ri!Z(n)
and Ri∗Ri! → Id. But RΓsyn(XK,n) lies in the same cofibre sequence by [2,
Corollaries 7.13 and 7.17], hence, (44) follows for any n≥ 0. For n< 0, the left-hand
side of (44) vanishes. The induced map

RΓsyn(XK,n)
RΓar(XK,Z(n))⊗LQp →RΓar(XK,Z(n))⊗̂Qp 
RΓet(XK,Qp(n))
(45)

is an equivalence if and only if n≥ d, as (42) is an equivalence if and only if n≥ d.
For any Tate twist n≥ 0, the map (45) is an equivalence in cohomological degrees
≤ n, as (42) is an equivalence in cohomological degrees ≤ n+1.
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• We have

dimQl
Hi

ar(XK,Ql(n)) = dimRH
i
ar(XK,R(n))

for any i,n∈Z and any prime l �= p. In particular, the left-hand side is independent
on l �= p.
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