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Abstract Let H∞(Ω, X) be the space of bounded analytic functions f(z) =
∑∞

n=0 xnzn from a proper
simply connected domain Ω containing the unit disk D := {z ∈ C : |z| < 1} into a complex Banach space
X with ‖f‖H∞(Ω,X) ≤ 1. Let φ = {φn(r)}∞n=0 with φ0(r) ≤ 1 such that

∑∞
n=0 φn(r) converges locally

uniformly with respect to r ∈ [0, 1). For 1 ≤ p, q < ∞, we denote

Rp,q,φ(f,Ω, X) = sup

{
r ≥ 0 : ‖x0‖p φ0(r) +

( ∞∑
n=1

‖xn‖φn(r)

)q

≤ φ0(r)

}

and define the Bohr radius associated with φ by

Rp,q,φ(Ω, X) = inf
{
Rp,q,φ(f,Ω, X) : ‖f‖H∞(Ω,X) ≤ 1

}
.

In this article, we extensively study the Bohr radius Rp,q,φ(Ω, X), when X is an arbitrary Banach space,
and X = B(H) is the algebra of all bounded linear operators on a complex Hilbert space H. Furthermore,
we establish the Bohr inequality for the operator-valued Cesáro operator and Bernardi operator.

Keywords: Banach space; operator valued; simply connected domains; Bohr radius; Cesáro operator;
Bernardi operator

2000 Mathematics subject classification: Primary 46E40; 47A56; 47A63;
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1. Introduction

Let H∞(D,C) be the space of bounded analytic functions from the unit disk D := {z ∈
C : |z| < 1} into the complex plane C, and we denote ‖f‖∞ := sup|z|<1 |f(z)|. The
remarkable theorem of Harald Bohr of a universal constant r = 1/3 for functions in
H∞(D,C) is as follows.
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Theorem A. Let f ∈ H∞(D,C) with the power series f(z) =
∑∞

n=0 anz
n. If

‖f‖∞ ≤ 1, then

∞∑
n=0

|an|rn ≤ 1 (1.1)

for |z| = r ≤ 1/3, and the constant 1/3, referred to as the classical Bohr radius, is the
best possible.

The Bohr’s theorem has become popular when Dixon [19] has used it to disprove
a long-standing conjecture that if the non-unital von Neumann’s inequality holds for
a Banach algebra, then it is necessarily an operator algebra. It is important to note
that Equation (1.1) can be written in the following equivalent form:

|a0|φ0(r) +
∞∑

n=1

|an|φn(r) ≤ φ0(r) (1.2)

for r ≤ R := 1/3, where φn(r) = rn and R is the smallest root of the equation
φ0(r) = 2

∑∞
n=1 φn(r) in (0, 1). We observe that {φn(r)}∞n=0 is a sequence of non-negative

continuous functions in [0, 1) such that the series
∑∞

n=0 φn(r) converges locally uniformly
with respect to r ∈ [0, 1). This fact leads to the following question.

Question 1.3. Can we establish the inequality (1.2) for any sequence {ψn(r)}∞n=0 of
non-negative continuous functions in [0, 1) such that the series

∑∞
n=0 ψn(r) converges

locally uniformly with respect to r ∈ [0, 1).

We give the affirmative answer to this question in Theorem 1.3. In order to generalize
the inequality (1.2), we first need to introduce some basic notations. Let G denote the
set of all sequences φ = {φn(r)}∞n=0 of non-negative continuous functions in [0, 1) such
that the series

∑∞
n=0 φn(r) converges locally uniformly with respect to r ∈ [0, 1). Now

we want to define a modified Bohr radius associated with φ ∈ G.

Definition 1.1. Let f ∈ H∞(D,C) with f(z) =
∑∞

n=0 anz
n such that ‖f‖∞ ≤ 1 in

D. For φ ∈ G, we denote

Rφ(f,C) = sup

{
r ≥ 0 :

∞∑
n=0

|an|φn(r) ≤ φ0(r)

}
. (1.4)

Define Bohr radius associated with φ by

Rφ(C) = inf {Rφ(f,C) : ‖f‖∞ ≤ 1} . (1.5)

Clearly, Rφ(C) coincides with the classical Bohr radius 1/3 for φn(r) = rn for r ∈ [0, 1).
In this article, we are interested in studying the operator-valued analogue of the Bohr
radius Rφ(C), which we discuss in Definition 1.2.
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Over the past two decades, there has been significant interest on several variations of
Bohr inequality (1.1) (see [1-4, 6-8, 10, 12, 13, 15-18, 23, 30, 33]). In 2000, Djkaov and
Ramanujan [20] extensively studied the best possible constant rp, for 1 ≤ p < ∞, such
that ( ∞∑

n=0

|an|p(rp)np
)1/p

≤ ‖f‖∞ , (1.6)

where f(z) =
∑∞

n=0 anz
n. For p=1, rp coincides with the classical Bohr radius 1/3. Using

Haussdorf–Young’s inequality, it is easy to see that rp = 1 for p ∈ [2,∞). Computing the
precise value of rp for 1 < p < 2 is difficult in general. This fact leads to estimate the
value of rp. The following best known estimate has been obtained in [20]

1 +

(
2

p

) 1
2−p


p−2
p

≤ rp ≤ inf
0≤a<1

(1− ap)1/p

((1− a2)p + ap(1− ap))
1/p

. (1.7)

For further generalization of Equation (1.1), replacingH∞-norm by the Hp-norm, we refer
to [11]. Paulsen et al. [32] have considered the another modification of Equation (1.1)
and have shown that

|a0|2 +
∞∑

n=1

|an|
(
1

2

)n

≤ 1, (1.8)

where f(z) =
∑∞

n=0 anz
n and ‖f‖∞ ≤ 1. Moreover, the constant 1/2 is sharp. Several

authors have extended the inequality (1.8) to harmonic mappings in the unit disk and
obtained several interesting results. For more intriguing aspects of Equation (1.8) for har-
monic mappings, we refer to [22, 28, 29] and references therein. Using the same approach
in [32], Blasco [14] has extended Equation (1.8) for the range of p ∈ [1, 2] and has
shown that

|a0|p +
∞∑

n=1

|an|
(

p

p+ 2

)n

≤ 1. (1.9)

The constant p/(p+ 2) is sharp.
The study of Bohr radius has also been extended for functions defined on a proper

simply connected domain of the complex plain. Throughout this paper, Ω stands for a
simply connected domain containing the unit disk D. LetH(Ω) denote the class of analytic
functions in Ω, and let B(Ω) be the class of functions f ∈ H(Ω) such that f(Ω) ⊆ D. The
Bohr radius BΩ for the class B(Ω) is defined by (see [24])

BΩ := sup

{
r ∈ (0, 1) :Mf (r) ≤ 1 for all f(z) =

∞∑
n=0

anz
n ∈ B(Ω), z ∈ D

}
,

https://doi.org/10.1017/S0013091523000688 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091523000688


116 V. Allu and H. Halder

where Mf (r) :=
∑∞

n=0 |an|rn is the associated majorant series of f ∈ B(Ω) in D. It is
easy to see that when Ω = D, BD = 1/3, which is the classical Bohr radius for the class
B(D).
For 0 ≤ γ < 1, we consider the following disk defined by

Ωγ :=

{
z ∈ C :

∣∣∣∣z + γ

1− γ

∣∣∣∣ < 1

1− γ

}
.

Clearly, Ωγ contains D and Ωγ reduces to D for γ=0. In 2010, Fournier and Ruscheweyh
[24] studied Bohr inequality (1.1) for the class B(Ωγ).

Theorem 1.1. ([24]). For 0 ≤ γ < 1, let f ∈ B(Ωγ), with f(z) =
∑∞

n=0 anz
n in D.

Then,

∞∑
n=0

|an|rn ≤ 1 for r ≤ ργ :=
1 + γ

3 + γ
.

Moreover,
∑∞

n=0 |an|ρnγ = 1 holds for a function f(z) =
∑∞

n=0 anz
n in B(Ωγ) if, and

only if, f(z) = c with |c| = 1.

The main aim of this paper is to study the vector-valued analogue of Equations (1.4),
(1.5) and (1.9) on simply connected domains and its connection with Banach space and
Hilbert space theories. For discussing this, we first need to introduce some basic notation
and give some definitions. Let H∞(D, X) be the space of bounded analytic functions
from D into a complex Banach space X, and we write ‖f‖H∞(D,X) = sup|z|<1 ‖f(z)‖. For
p ∈ [1,∞), Hp(D, X) denotes the space of analytic functions from D into X such that

‖f‖Hp(D,X) = sup
0<r<1

(∫ 2π

0

∥∥f(r eit)∥∥p dt

2π

)1/p

<∞. (1.10)

Throughout this paper, B(H) stands for the space of bounded linear operators on a
complex Hilbert space H. For any T ∈ B(H), ‖T‖ denotes the operator norm of T. Let
T ∈ B(H). Then the adjoint operator T ∗ : H → H of T defined by 〈Tx, y〉 = 〈x, T ∗y〉 for
all x, y ∈ H. T is said to be normal if T ∗T = TT ∗, self-adjoint if T ∗ = T , and positive

if 〈Tx, x〉 ≥ 0 for all x ∈ H. The absolute value of T is defined by |T | := (T ∗T )
1/2

,
while S1/2 denotes the unique positive square root of a positive operator S. Let I be the
identity operator on H.
Now we define the vector-valued analogue of Definition 1.1 on arbitrary simply con-

nected domain containing the unit disk D. Let H∞(Ω, X) be the space of bounded
analytic functions from Ω into a complex Banach space X and ‖f‖H∞(Ω,X) =

supz∈Ω ‖f(z)‖.
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Definition 1.2. Let f ∈ H∞(Ω, X) be given by f(z) =
∑∞

n=0 xnz
n in D with

‖f‖H∞(Ω,X) ≤ 1. For φ ∈ G, we denote

Rφ(f,Ω, X) = sup

{
r ≥ 0 :

∞∑
n=0

‖xn‖φn(r) ≤ φ0(r)

}
. (1.11)

Define Bohr radius associated with φ by

Rφ(Ω, X) = inf
{
Rφ(f,Ω, X) : ‖f‖H∞(Ω,X) ≤ 1

}
. (1.12)

It is important to note that for Ω = Ωγ and φn(r) = rn, by embedding C into X, from
Theorem 1.1, Rφ(Ωγ , X) ≤ (1 + γ)/(3 + γ) for every complex Banach space X. Clearly,
Rφ(D, X) ≤ 1/3. However, this notion is not much significant in the finite-dimensional
case for dimension greater than one. As usual, for 1 ≤ p < ∞, Cm

p stands for the space

Cm endowed with the norm ‖w‖p = (
∑m

i=1 |wi|p)
1/p

and ‖w‖∞ = sup1≤i≤m |wi|, where
w = (w1, w2, . . . , wm) ∈ Cm. In [14], Blasco has shown that Rφ(D,Cm

p ) = 0 for φn = rn

in [0, 1) when 1 ≤ p ≤ ∞. By considering the same functions as in [14], we show that,
for m ≥ 2, Rφ(D,Cm

p ) need not be always non-zero for all φ ∈ G. In particular, we see
that Rφ(D,Cm

p ) becomes zero for some particular choices of φ. For m =1, we observe
that ‖w‖p = ‖w‖∞ for 1 ≤ p < ∞ for any w ∈ C. Thus, Rφ(D,Cm

p ) = Rφ(D,Cm
∞). In

the following proposition, we show that Rφ(D,Cm) > 0 for m =1 under some suitable
conditions on φn(r).

Proposition 1.13. Let φ = {φn(r)}∞n=0 ∈ G.

(1) For m ≥ 2, Rφ(D,Cm
∞) = 0 when r= 0 is the only zero of φ1(r) in [0, 1).

(2) For 1 ≤ p < ∞ and m ≥ 2, Rφ(D,Cm
p ) = 0 when φ0(r) = 1 and φ1(r) = α rβ for

r ∈ [0, 1) and α, β ∈ (0,∞).
(3) For m= 1, let f ∈ H∞(D,C) be given by f(z) =

∑∞
n=0 xnz

n in D with
‖f(z)‖H∞(D,C) ≤ 1. Also let φ = {φn(r)}∞n=0 ∈ G satisfy the inequality

φ0(r) > 2
∞∑

n=1

φn(r) for r ∈ [0, R), (1.14)

where R is the smallest root in (0, 1) of the equation

φ0(x) = 2
∞∑

n=1

φn(x). (1.15)

Then, we have Rφ(D,C) ≥ R. That is, Rφ(D,C) > 0.
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Proof. It is sufficient to prove for the case m =2.
(1) We consider the function f(z) = (1, z) = e1 + e2z, z ∈ D, where e1 = (1, 0) and

e2 = (0, 1). Clearly, ‖f‖H∞(D,C2∞) = sup|z|<1 ‖f(z)‖∞ = 1. Then from Equation (1.11),

we have

Rφ(f,D,C2
∞) = sup {r ≥ 0 : ‖x0‖∞ φ0(r) + ‖x1‖∞ φ1(r) ≤ φ0(r)} ,

where x0 = e1 and x1 = e2. Clearly, ‖x0‖∞ = ‖x1‖∞ = 1. Then

‖x0‖∞ φ0(r) + ‖x1‖∞ φ1(r) = φ0(r) + φ1(r) ≤ φ0(r) (1.16)

only when φ1(r) ≤ 0 for r ∈ [0, 1). Thus, to obtain Rφ(f,D,C2
∞), we need to find the

supremum of all such r such that φ1(r) ≤ 0 for r ∈ [0, 1). Since φ ∈ G, each φn(r) is
non-negative for all r ∈ [0, 1). Therefore, Equation (1.16) holds only when φ1(r) = 0
for r ∈ [0, 1). By the hypothesis, we have φ1(r) = 0 if, and only if, r =0, which yields
that Equation (1.16) holds only for r =0. Thus, Rφ(f,D,C2

∞) = 0 and so Rφ(D,C2
∞) = 0.

This shows that Rφ(D,Cm
∞) = 0.

(2) For 1 < p <∞, using the fact lims→∞ s1/p − (s− 1)1/p = 0, for each ε> 0, one can
easily find a value δ ∈ (0, 1) such that

1− (1− δ)1/p < αεβ δ1/p. (1.17)

We now consider the function

f(z) =
(
(1− δ)1/p, δ1/p z

)
= (1− δ)1/pe1 + δ1/p e2z.

It is easy to see that

‖f‖H∞(D,C2p)
= sup

|z|<1

‖f(z)‖p = sup
0<r<1

(
((1− δ) + δrp)1/p

)
= 1,

and hence Equation (1.11) becomes

Rφ(f,D,C2
p) = sup

{
r ≥ 0 : ‖x0‖p φ0(r) + ‖x1‖p φ1(r) ≤ φ0(r)

}
. (1.18)

In view of the assumptions φ0(r) = 1 and φ1(r) = αrβ , we have

‖x0‖p φ0(r) + ‖x1‖p φ1(r) = (1− δ)1/p + δ1/pαrβ . (1.19)

Using Equation (1.19) in Equation (1.18), we obtain

Rφ(f,D,C2
p) = sup{r ≥ 0 : (1− δ)1/p + δ1/pαrβ ≤ 1}. (1.20)

Therefore, Equations (1.17) and (1.20) show that Rφ(f,D,C2
p) ≤ ε. Hence, Rφ(D,C2

p) = 0
for 1 < p <∞. Thus, Rφ(D,Cm

p ) = 0.
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Now for p=1, using the fact lims→∞
√
s −

√
s− 1 = 0, for each ε> 0, one can easily

find a value δ ∈ (0, 1) such that

1−
√
1− δ < αεβ

√
δ. (1.21)

We consider the following function

f(z) =

√
1− δ

2
(1, 1) +

√
δ

2
(1,−1)z =

1

2

(√
1− δ +

√
δz,

√
1− δ −

√
δz
)
.

A simple computation shows that

‖f(z)‖1 =
1

2

(∣∣∣√1− δ +
√
δz
∣∣∣+ ∣∣∣√1− δ −

√
δz
∣∣∣)

≤ 1√
2

(∣∣∣√1− δ +
√
δz
∣∣∣2 + ∣∣∣√1− δ −

√
δz
∣∣∣2)1/2

= 1.

By the similar lines of argument as above for the case 1 < p < ∞, we obtain
Rφ(f,D,C2

1) ≤ ε, and hence Rφ(D,C2
1) = 0. Thus, Rφ(D,Cm

1 ) = 0.
(3) Let H∞(D,C) with ‖f(z)‖H∞(D,C) = supz∈D |f(z)| ≤ 1. Then, by Weiner’s

inequality, we have |xn| ≤ 1− |x0|2 for n ≥ 1. Using this inequality, we obtain

|x0|φ0(r) +
∞∑

n=1

|xn|φn(r) ≤ |x0|φ0(r) +
(
1− |x0|2

)( ∞∑
n=1

φn(r)

)
(1.22)

≤ |x0|φ0(r) + 2(1− |x0|)
∞∑

n=1

φn(r) ≤ φ0(r),

provided

2
∞∑

n=1

φn(r) < φ0(r). (1.23)

Now, by the given assumption (1.14), the inequality (1.23) holds for r ∈ [0, R), where R is
the smallest root in (0, 1) of φ0(r) = 2

∑∞
n=1 φn(r). Thus, we obtain that Equation (1.22)

holds for r ∈ [0, R). Hence, Rφ(f,D,C) ≥ R and so Rφ(D,C) ≥ R. Since R ∈ (0, 1), we
have Rφ(D,C) > 0. �

Remark 1.1.

(1) If φ = {φn(r)}∞n=0 with φn(r) = rn, then each φn is non-negative in [0, 1) and so φ ∈
G. Clearly, φ1(r) = r has only zero at r =0 in [0, 1). In view of Proposition 1.13(1),
the corresponding Bohr radius associated with φ is Rφ(D,Cm

∞) = 0. Furthermore,
it is easy to see that φ0(r) = 1 and φ1(r) = α rβ with α = β = 1, and hence by
Proposition 1.13(2), we have Rφ(D,Cm

p ) = 0 for 1 ≤ p <∞ and m ≥ 2.
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(2) Similarly, when φ = {φn(r)}∞n=0 with φn(r) = (n+1)rn, nrn, n2rn, Proposition 1.13
gives the corresponding Bohr radius associated with φ, Rφ(D,Cm

∞) = 0 and
Rφ(D,Cm

p ) = 0 for 1 ≤ p <∞ and m ≥ 2.

The above fact leads us to consider the vector-valued analogue of Equation (1.8) in
a simply connected domain for a given Banach space X and parameters 0 < p, q <
∞. We define a modified Bohr radius, which need not be zero for all φ ∈ G even for
infinite-dimensional Banach spaces.

Definition 1.3. Let f ∈ H∞(Ω, X) be given by f(z) =
∑∞

n=0 xnz
n in D with

‖f‖H∞(Ω,X) ≤ 1. For φ = {φn(r)}∞n=0 ∈ G with φ0(r) ≤ 1, 1 ≤ p, q <∞, we denote

Rp,q,φ(f,Ω, X) = sup

{
r ≥ 0 : ‖x0‖p φ0(r) +

( ∞∑
n=1

‖xn‖φn(r)

)q

≤ 2φ0(r)

}
. (1.24)

Define Bohr radius associated with φ by

Rp,q,φ(Ω, X) = inf
{
Rp,q,φ(f,Ω, X) : ‖f‖H∞(Ω,X) ≤ 1

}
. (1.25)

Clearly, R1,1,φ(Ω, X) = Rφ(Ω, X). For p1 ≤ p2 and q1 ≤ q2, we have the following
inclusion relation:

Rp1,q1,φ
(Ω, X) ≤ Rp2,q2,φ

(Ω, X). (1.26)

Finding the exact value of Rp,q,φ(Ω, X) is very difficult in general, even for Ω = D and
X = C1

2. In 2002, Paulsen et al. [32] proved that R2,1,φ(D,C) = 1/2 for φ = {φn(r)}∞n=0

with φn(r) = rn. Later, for the same φ, Blasco [14] has shown thatR2,1,φ(D,C) = p/(p+2)
for 1 ≤ p ≤ 2. By considering the same example as in Proposition 1.13, we have the
following interesting result.

Proposition 1.27. Let φ = {φn(r)}∞n=0 ∈ G. For m ≥ 2 and 1 ≤ p, q < ∞,
Rp,q,φ(D,Cm

∞) = 0 when r= 0 is the only zero of φ1(r) in [0, 1).

It is important to note that Cm
∞ is not a Hilbert space. Indeed, let x = (1, 0, . . . , 0)

and y = (0, 1, . . . , 0) be in Cm
∞. Then ‖x‖∞ = ‖y‖∞ = ‖x+ y‖∞ = ‖x− y‖∞ = 1 and

‖x+ y‖2∞ + ‖x− y‖2∞ = 2 6= 4 = 2 ‖x‖2∞ +2 ‖y‖2∞. Hence, Parallelogram law is violated.
Blasco [14] has shown that for m ≥ 2, Rp,p,φ(D,Cm

2 ) > 0 if, and only if, p ≥ 2 when
φn(r) = rn. It is worth mentioning that X = Cm

2 is a Hilbert space with the inner
product 〈.〉, where ‖x‖2 =

√
〈x, x〉. This fact leads us to the following question.

Question 1.28. Does the radius Rp,q,φ(D,B(H)) have to be always positive for 2 ≤
p ≤ q?

We give an affirmative answer to the Question 1.28 in the following form. In the
following theorem, we show that Rp,p,φ(Ω,B(H)) is strictly positive for p ≥ 2. Then
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by the inclusion relation (1.26), we obtain that Rp,q,φ(D,B(H)) is strictly positive for
2 ≤ p ≤ q.

Theorem 1.2. Let B(H)) be complex Hilbert space with H being one-dimensional and
f ∈ H∞(D,B(H)) be given by f(z) =

∑∞
n=0Anz

n in D with An ∈ B(H) for n ∈ N ∪ {0}
and ‖f(z)‖H∞(D,B(H)) ≤ 1. Also let, for p ≥ 2, φ = {φn(r)}∞n=0 ∈ G with

∑∞
n=1 φ

2
n(r)

converges locally uniformly in [0, 1) and satisfies the inequality

φ0(r) > 2
∞∑

n=1

φ2n(r) for r ∈ [0, R(p)), (1.29)

where R(p) is the smallest root in (0, 1) of the equation

φ0(x) = 2
∞∑

n=1

φ2n(x). (1.30)

Then, for p ≥ 2, we have Rp,p,φ(D,B(H)) ≥ R(p). That is, Rp,p,φ(D,B(H)) > 0 for
p ≥ 2.

Proof. In view of the inclusion relation (1.26), it is enough to show that
R1,2,φ(D,B(H)) > 0. By the given assumption, f is in the unit ball of H∞(D,B(H)),

i.e., ‖f‖H∞(D,B(H)) ≤ 1. In particular, we have ‖f‖2H2(D,B(H)) =
∑∞

n=0 ‖An‖2 ≤ 1. Using
Cauchy–Schwarz inequality, we obtain

‖A0‖φ0(r) +

( ∞∑
n=1

‖An‖φn(r)

)2

≤ ‖A0‖φ0(r) +

( ∞∑
n=1

‖An‖2
)( ∞∑

n=1

φ2n(r)

)
(1.31)

≤ ‖A0‖φ0(r) + (1− ‖A0‖2)
∞∑

n=1

φ2n(r) ≤ φ0(r)

≤ ‖A0‖φ0(r) + 2(1− ‖A0‖)
∞∑

n=1

φ2n(r) ≤ φ0(r),

provided

2
∞∑

n=1

φ2n(r) < φ0(r). (1.32)

Now, by the given assumption (1.29), the inequality (1.32) holds for r ∈ [0, R(p)),
where R(p) is the smallest root in (0, 1) of φ0(r) = 2

∑∞
n=1 φ

2
n(r). Thus, we obtain

that Equation (1.31) holds for r ∈ [0, R(p)). Hence, R1,2,φ(f,D,B(H)) ≥ R(p) and so
R1,2,φ(D,B(H)) ≥ R(p). Since R(p) ∈ (0, 1), we have R1,2,φ(D,B(H)) > 0. Therefore, by
the inclusion relation (1.26), for p ≥ 2, we obtain Rp,p,φ(D,B(H)) > 0. This completes
the proof. �
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Remark 1.2. By the virtue of the inclusion relation (1.26) and Theorem 1.2, we
conclude that Rp,q,φ(D,B(H)) > 0 for 2 ≤ p ≤ q under the same assumption on φ as in
Theorem 1.2.

As we have discussed, the existence of the ‘strictly’ positive radius Rp,q,φ(D,B(H)) for
2 ≤ p ≤ q, it is natural to ask the following question.

Question 1.33. Does the radius Rp,q,φ(D,B(H)) have to be always positive for 1 ≤
p, q < 2?

We give the affirmative answer to the Question 1.33. We prove that Rp,q,φ(D,B(H)) is
strictly positive for 1 ≤ p, q < 2. Although finding the exact value of Rp,q,φ(D,B(H)) for
1 ≤ p, q < 2 is very much complicated, we can find a good estimate of the Bohr radius
Rp,q,φ(Ω,B(H)) on simply connected domain Ω containing D. In the following theorem,
we show that Rp,1,φ(Ω,B(H)) is strictly positive for 1 ≤ p ≤ 2. Then by the inclusion
relation (1.26), we obtain that Rp,q,φ(D,B(H)) is strictly positive for 1 ≤ p, q < 2. Let
f : Ω → B(H) be a bounded analytic function, i.e., f ∈ H∞(Ω,B(H)) with f(z) =∑∞

n=0Anz
n in D such that An ∈ B(H) for all n ∈ N ∪ {0}. We denote

λH := λH(Ω) := sup
f∈H∞(Ω,B(H))

‖f(z)‖≤1

{
‖An‖

‖I − |A0|2‖
: A0 6≡ f(z) =

∞∑
n=0

Anz
n, z ∈ D

}
. (1.34)

Theorem 1.3. For fixed p ∈ [1, 2]. Let f ∈ H∞(Ω,B(H)) be given by f(z) =∑∞
n=0Anz

n in D, where A0 = α0I for |α0| < 1 and An ∈ B(H) for all n ∈ N ∪ {0}
with ‖f‖H∞(Ω,B(H)) ≤ 1. If φ = {φn(r)}∞n=0 ∈ G satisfies the inequality,

pφ0(r) > 2λH

∞∑
n=1

φn(r) for r ∈ [0, RΩ(p)), (1.35)

then the following inequality

Mf (φ, p, r) := ‖A0‖p φ0(r) +
∞∑

n=1

‖An‖φn(r) ≤ φ0(r) (1.36)

holds for |z| = r ≤ RΩ(p), where RΩ(p) is the smallest root in (0, 1) of the equation

pφ0(r) = 2λH

∞∑
n=1

φn(r). (1.37)

Then, RΩ(p) ≤ Rp,1,φ(Ω,B(H)). That is, Rp,1,φ(Ω,B(H)) > 0 for 1 ≤ p ≤ 2.
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Proof. Let f ∈ H∞(Ω,B(H)) be given by f(z) =
∑∞

n=0Anz
n in D with

‖f(z)‖H∞(Ω,B(H)) ≤ 1. We note that A0 = α0I. Then, by Equation (1.34), we have

‖An‖ ≤ λH
∥∥I − ∣∣A2

0

∣∣∥∥ = λH

∥∥∥I − |α0|2 I
∥∥∥ = λH(1− |α0|2) for n ≥ 1. (1.38)

Using Equation (1.38), we obtain

Mf (φ, p, r) ≤ |α0|p φ0(r) + λH(1− |α0|2)
∞∑

n=1

φn(r)

= φ0(r) + λH(1− |α0|2)

( ∞∑
n=1

φn(r)−
(1− |α0|p)

λH(1− |α0|2)
φ0(r)

)
.

To obtain the inequality (1.36), we now estimate the lower bound of (1− |α0|p)/λH(1−
|α0|2). Let

B(x) =
(1− xp)

λH(1− x2)
for x ∈ [0, 1).

For p=2, we have B(x) = 1/λH. For p ∈ [1, 2), let η(x) = (2− p)xp + pxp−2 − 2. Then
B′(x) = −(1/λH)x η(x)/(1−x2)2 for x ∈ (0, 1). We note that η′(x) = −p(2−p)xp−3(1−
x2) < 0 for x ∈ (0, 1) and p ∈ [1, 2), which shows that η is decreasing function in (0, 1)
and thus η(x) > η(1) = 0 for x ∈ (0, 1). Therefore, B′(x) < 0 in (0, 1), i.e., B is decreasing
in [0, 1) and hence

B(x) ≥ lim
x→1−

B(x) =
p

2λH
for p ∈ [1, 2).

Thus, B(x) ≥ p/2λH for p ∈ [1, 2], which leads to

Mf (φ, p, r) ≤ φ0(r) + λH

(
1− |α0|2

)( ∞∑
n=1

φn(r)−
p

2λH
φ0(r)

)
,

and hence by Equation (1.35), we obtain Mf (φ, p, r) ≤ φ0(r) for |z| = r ≤ RΩ(p). Thus,
RΩ(p) ≤ Rp,1,φ(Ω,B(H)). �

Remark 1.3. By the virtue of the inclusion relation (1.26) and Theorem 1.3, we
conclude that Rp,q,φ(D,B(H)) > 0 for 1 ≤ p, q ≤ 2 under the same assumption on φ as
in Theorem 1.3.

When p=1 and φn(r) = rn, Theorem 1.3 gives the following result, which is an
analogue of classical Bohr inequality for operator-valued analytic functions in a simply
connected domain.
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Corollary 1.39. Let f ∈ H∞(Ω,B(H)) be given by f(z) =
∑∞

n=0Anz
n in D, where

A0 = α0I for |α0| < 1 and An ∈ B(H) for all n ∈ N∪{0} with ‖f‖H∞(Ω,B(H)) ≤ 1. Then

∞∑
n=0

‖An‖ rn ≤ 1 for r ≤ 1

1 + 2λH
. (1.40)

As a consequence of Theorem 1.3, we wish to find the Bohr radius Rp,1,φ(Ωγ ,B(H))
for the shifted disk Ωγ . For this, we need to compute the precise value of λH, which in
turn is equivalent to study the coefficient estimates for the functions f ∈ H∞(Ω,B(H))
of the form f(z) =

∑∞
n=0Anz

n in D with ‖f‖H∞(Ω,B(H)) ≤ 1. To obtain the coefficient

estimates, we shall make use of the following lemma from [9].

Lemma 1.41. ([9]). Let B(z) be an analytic function with values in B(H) and
satisfying ‖B(z)‖ ≤ 1 on D. Then

(1− |a|)n−1

∥∥∥∥B(n)(a)

n!

∥∥∥∥ ≤ ‖I −B(a)∗B(a)‖1/2 ‖I −B(a)B(a)∗‖1/2

1− |a|2

for each a ∈ D and n = 1, 2, . . ..

Using Lemma 1.41, we obtain the following coefficient estimates.

Lemma 1.42. Let f : Ωγ → B(H) be analytic function with an expansion f(z) =∑∞
n=0Anz

n in D such that An ∈ B(H) for all n ∈ N ∪ {0} and A0 is normal. Then

‖An‖ ≤
∥∥I − |A0|2

∥∥
1 + γ

for n ≥ 1.

Proof. Let ψ : D → Ωγ be analytic function defined by ψ(z) = (z− γ)/(1− γ). Then,
we see that the composition g = f ◦ ψ : D → B(H) is analytic and

g(z) = f(ψ(z)) =
∞∑

n=0

An

(1− γ)n
(z − γ)n for |z − γ| < 1− γ.

We note that g(γ) = f(0) = A0 is normal and

g(n)(z)

n!
= f (n)

(
z − γ

1− γ

)
1

(1− γ)n
. (1.43)

For z = γ, from Equation (1.43), we obtain

(1− γ)n
g(n)(γ)

(n!)2
=
f (n)(0)

n!
= An for n ≥ 1. (1.44)
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As g(γ) = A0 is normal, using Equation (1.44), Lemma 1.41 gives

‖An‖ ≤ (1− γ)n
∥∥∥∥g(n)(γ)n!

∥∥∥∥ ≤
∥∥I − |g(γ)|2

∥∥
1 + γ

=

∥∥I − |A0|2
∥∥

1 + γ
for n ≥ 1.

This completes the proof. �

For Ω = Ωγ , by making use of Lemma 1.42 and Equation (1.34), we obtain

λH = λH(Ωγ) ≤
1

1 + γ
. (1.45)

Now, we are in a position to find the Bohr radius Rp,1,φ(Ωγ ,B(H)) for the shifted disk Ωγ .

Theorem 1.4. Fix p ∈ [1, 2]. Let f ∈ H∞(Ωγ ,B(H)) be given by f(z) =
∑∞

n=0Anz
n

in D with ‖f‖H∞(Ωγ,B(H)) ≤ 1, where A0 = α0I for |α0| < 1 and An ∈ B(H) for all

n ∈ N ∪ {0}. If φ = {φn(r)}∞n=0 ∈ G satisfies the inequality

φ0(r) >
2

p(1 + γ)

∞∑
n=1

φn(r) for r ∈ [0, R(p, γ)), (1.46)

then the inequality (1.36) holds for |z| = r ≤ R(p, γ), where R(p, γ) is the smallest root
in (0, 1) of the equation

φ0(x) =
2

p(1 + γ)

∞∑
n=1

φn(x). (1.47)

Moreover, when φ0(x) < (2/(p(1+γ)))
∑∞

n=1 φn(x) in some interval (R(p, γ), R(p, γ) + ε)
for ε> 0, then the constant R(p, γ) cannot be improved further. That is, Rp,1,φ(Ωγ ,H) =
R(p, γ).

Proof. For Ω = Ωγ , λH = 1/(1 + γ), the condition (1.35) becomes

φ0(r) >
2

p(1 + γ)

∞∑
n=1

φn(r) for r ∈ [0, R(p, γ)),

where R(p, γ) is the smallest root in (0, 1) of the equation

φ0(x) =
2

p(1 + γ)

∞∑
n=1

φn(x).

By the virtue of Theorem 1.3, the required inequality (1.36) holds for r ∈ [0, R(p, γ)).
This gives that Rp,1,φ(Ωγ ,H) ≥ R(p, γ). Our next aim is to show that Rp,1,φ(Ωγ ,H) =
R(p, γ). For this, it is enough to show that the radius R(p, γ) cannot be improved further.
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That is, ‖A0‖p φ0(r) +
∑∞

n=1 ‖An‖φn(r) > φ0(r) holds for any r > R(p, γ), i.e., for any
r ∈ (R(p, γ), R(p, γ) + ε). To show this, we consider the following function

Fa(z) =

(
a− γ − (1− γ)z

1− aγ − a(1− γ)

)
I for z ∈ Ωγ and a ∈ (0, 1). (1.48)

Define ψ1 : D → D by ψ1(z) = (a − z)/(1 − az) and ψ2(z) : Ωγ → D by ψ2(z) =
(1−γ)z+γ. Then, the function fa = ψ1 ◦ψ2 maps Ωγ univalently onto D. Thus, we note
that Fa(z) = fa(z)I is analytic in Ωγ and ‖Fa(z)‖ ≤ |fa(z)| ≤ 1. A simple computation
shows that

Fa(z) =

(
a− γ − (1− γ)z

1− aγ − a(1− γ)

)
I = A0 −

∞∑
n=1

Anz
n for z ∈ D,

where a ∈ (0, 1) and

A0 =
a− γ

1− aγ
I and An =

(
1− a2

a(1− aγ)

(
a(1− γ)

1− aγ

)n)
I for n ≥ 1. (1.49)

For the function Fa, we have

‖A0‖p φ0(r) +
∞∑

n=1

‖An‖φn(r) (1.50)

=

(
a− γ

1− aγ

)p

φ0(r) + (1− a2)
∞∑

n=1

an−1(1− γ)n

(1− aγ)n+1
φn(r)

= φ0(r) + (1− a)

(
2

∞∑
n=1

φn(r)− p(1 + γ)φ0(r)

)

+ (1− a)

( ∞∑
n=1

an−1(1 + a)(1− γ)n

(1− aγ)n+1
φn(r)− 2

∞∑
n=1

φn(r)

)

+

(
p(1 + γ)(1− a) +

(
a− γ

1− aγ

)p

− 1

)
φ0(r)

= φ0(r) + (1− a)

(
2

∞∑
n=1

φn(r)− p(1 + γ)φ0(r)

)
+O((1− a)2)

as a→ 1−. Also, we have that 2
∑∞

n=1 φn(r) > p(1+γ)φ0(r) for r ∈ (R(p, γ), R(p, γ)+ε).
Then it is easy to see that the last expression of Equation (1.50) is strictly greater than
φ0(r) when a is very close to 1, i.e., a → 1− and r ∈ (R(p, γ), R(p, γ) + ε), which shows
that the constant R(p, γ) cannot be improved further. This completes the proof. �

The following are the consequences of Theorem 1.4.
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Corollary 1.51. For ψn(r) = rn for n ∈ N ∪ {0}. Let f be as in Theorem 1.4, then

‖A0‖p +
∞∑

n=1

‖An‖ rn ≤ 1 for |z| = r ≤ R1(p, γ) :=
p(1 + γ)

p(1 + γ) + 2
(1.52)

and the constant R1(p, γ) cannot be improved. Furthermore, if we consider complex
valued analytic function f ∈ B(Ωγ) such that f(z) =

∑∞
n=0 anz

n in D, then from
Equation (1.52), we deduce that

|a0|p +
∞∑

n=1

|an|rn ≤ 1 for |z| = r ≤ R1(p, γ) :=
p(1 + γ)

p(1 + γ) + 2
. (1.53)

We note that when Ωγ = D, i.e., γ=0, Equation (1.53) holds for R1(p) := p/(p + 2),
which has been independently obtained in [14].

Corollary 1.54. Let ψn(r) = (n+ 1)rn for n ∈ N ∪ {0}. Let f be as in Theorem 1.4.
Then we have the following sharp inequality

‖A0‖p +
∞∑

n=1

(n+ 1) ‖An‖ rn ≤ 1 for |z| = r ≤ R2(p, γ) := 1−

√
2

p(1 + γ) + 2
.

An observation shows that

∞∑
n=1

nrn =
r

(1− r)2
and

∞∑
n=1

n2rn =
r(1 + r)

(1− r)3
. (1.55)

Using Equation (1.55) and Theorem 1.4, we obtain the following corollary.

Corollary 1.56. Let ψ0(r) = 1 and ψn(r) = nkrn for n ≥ 1 and k = 1, 2. Then the
following sharp inequalities hold

‖A0‖p +
∞∑

n=1

n ‖An‖ rn ≤ 1 for |z| = r ≤ R3(p, γ) :=
p(1 + γ) + 1−

√
2p(1 + γ) + 1

p(1 + γ)

and

‖A0‖p +
∞∑

n=1

n2 ‖An‖ rn ≤ 1 for |z| = r ≤ R4(p, γ),

where R4(p, γ) is the smallest positive root of the equation Gp,γ(r) := p(1 + γ)(1− r)3 −
2r(1 + r) = 0 in (0, 1).

From Tables 1–4, for fixed values of p, we observe that Bohr radius
R1(p, γ), R2(p, γ), R3(p, γ), and R4(p, γ) are monotonic increasing in γ ∈ [0, 1). In these

https://doi.org/10.1017/S0013091523000688 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091523000688


128 V. Allu and H. Halder

Table 1. Values of R1(1, γ), R1(1.5, γ), R1(1.7, γ) and R1(2, γ) for various values of γ ∈ [0, 1).

γ R1(1, γ) R1(1.5, γ) R1(1.7, γ) R1(2, γ)

[0, 0.2) [0.3333 ↗ 0.3750) [0.4285 ↗ 0.4736) [0.4594 ↗ 0.5050) [0.5000 ↗ 0.5454)

[0.2, 0.4) [0.3750 ↗ 0.4118) [0.4736 ↗ 0.5122) [0.5050 ↗ 0.5434) [0.5454 ↗ 0.5833)

[0.4, 0.6) [0.4118 ↗ 0.4444) [0.5122 ↗ 0.5454) [0.5434 ↗ 0.5762) [0.5833 ↗ 0.6154)

[0.6, 0.8) [0.4444 ↗ 0.4736) [0.5454 ↗ 0.5744) [0.5762 ↗ 0.6047) [0.6154 ↗ 0.6428)

[0.8, 1) [0.4736 ↗ 0.5000) [0.5744 ↗ 0.6000) [0.6047 ↗ 0.6296) [0.6428 ↗ 0.6666)

Table 2. Values of R2(1, γ), R2(1.4, γ), R2(1.8, γ) and R2(2, γ) for various values of γ ∈ [0, 1).

γ R1(1, γ) R1(1.4, γ) R1(1.8, γ) R1(2, γ)

[0, 0.2) [0.1835 ↗ 0.2094) [0.2330 ↗ 0.2628) [0.2745 ↗ 0.3066) [0.2928 ↗ 0.3258)

[0.2, 0.4) [0.2094 ↗ 0.2330) [0.2628 ↗ 0.2893) [0.3066 ↗ 0.3348) [0.3258 ↗ 0.3545)

[0.4, 0.6) [0.2330 ↗ 0.2546) [0.2893 ↗ 0.3132) [0.3348 ↗ 0.3598) [0.3545 ↗ 0.3798)

[0.6, 0.8) [0.2546 ↗ 0.2745) [0.3132 ↗ 0.3348) [0.3598 ↗ 0.3822) [0.3798 ↗ 0.4023)

[0.8, 1) [0.2745 ↗ 0.2928) [0.3348 ↗ 0.3545) [0.3822 ↗ 0.4023) [0.4023 ↗ 0.4226)

Table 3. Values of R3(1, γ), R3(1.5, γ), R3(1.8, γ) and R3(2, γ) for various values of γ ∈ [0, 1).

γ R3(1, γ) R3(1.5, γ) R3(1.8, γ) R1(2, γ)

[0, 0.2) [0.2679 ↗ 0.2967) [0.3333 ↗ 0.3640) [0.3640 ↗ 0.3951) [0.3820 ↗ 0.4132)

[0.2, 0.4) [0.2967 ↗ 0.3218) [0.3640 ↗ 0.3903) [0.3951 ↗ 0.4216) [0.4132 ↗ 0.4396)

[0.4, 0.6) [0.3218 ↗ 0.3441) [0.3903 ↗ 0.4132) [0.4216 ↗ 0.4444) [0.4396 ↗ 0.4624)

[0.6, 0.8) [0.3441 ↗ 0.3640) [0.4132 ↗ 0.4334) [0.4444 ↗ 0.4645) [0.4624 ↗ 0.4823)

[0.8, 1) [0.3640 ↗ 0.3820) [0.4334 ↗ 0.4514) [0.4645 ↗ 0.4823) [0.4823 ↗ 0.5000)

tables, the notation (Ri(p, γ1) ↗ Ri(p, γ2)] means that the value of Ri(p, γ) is monoton-
ically increasing from lim

γ→γ+1
= Ri(γ1) to Ri(γ2) when γ1 < γ ≤ γ2, where i =1, 2,

3 and 4. Figures 1 and 2 are devoted to the graphs of Gp,γ(r) for different values of p
and γ.

2. Bohr inequality for Cesáro operator

In this section, we study the Bohr inequality for the operator-valued Cesáro operator.
For α ∈ C with Reα > −1, we have

1

(1− z)α+1
=

∞∑
k=0

Cα
k z

k where Cα
k =

(α+ 1) · · · (α+ k)

k!
.
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Table 4. Values of R4(1, γ), R4(1.3, γ), R4(1.6, γ) and R4(2, γ) for various values of γ ∈ [0, 1).

γ R4(1, γ) R4(1.3, γ) R4(1.6, γ) R4(2, γ)

[0, 0.2) [0.2068 ↗ 0.2264) [0.2353 ↗ 0.2558) [0.2588 ↗ 0.2799) [0.2848 ↗ 0.3064)

[0.2, 0.4) [0.2264 ↗ 0.2436) [0.2558 ↗ 0.2737) [0.2799 ↗ 0.2982) [0.3064 ↗ 0.3250)

[0.4, 0.6) [0.2436 ↗ 0.2588) [0.2737 ↗ 0.2894) [0.2982 ↗ 0.3141) [0.3250 ↗ 0.3412)

[0.6, 0.8) [0.2588 ↗ 0.2724) [0.2894 ↗ 0.3034) [0.3141 ↗ 0.3284) [0.3412 ↗ 0.3555)

[0.8, 1) [0.2724 ↗ 0.2848) [0.3034 ↗ 0.3160) [0.3284 ↗ 0.3412) [0.3555 ↗ 0.3684)
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Figure 1. The graph of G1,γ(r) and G1.3,γ(r) in (0, 1) when γ = 0, 0.2, 0.4, 0.6, 0.8, 1.

Figure 2. The graph of G1.6,γ(r) and G2,γ(r) in (0, 1) when γ = 0, 0.2, 0.4, 0.6, 0.8, 1.

Comparing the coefficient of zn on both sides of the following identity

1

(1− z)α+1
.

1

1− z
=

1

(1− z)α+2
,

we obtain

Cα+1
n =

n∑
k=0

Cα
k i.e.,

1

Cα+1
n

n∑
k=0

Cα
k = 1. (2.1)
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This property leads to consider the Cesáro operator of order α or α-Cesáro operator
(see [34]) on the space H(D) of analytic functions f(z) =

∑∞
n=0 anz

n in D, which is
defined by

Cαf(z) :=
∞∑

n=0

(
1

Cα+1
n

n∑
k=0

Cα
k ak

)
zn. (2.2)

A simple computation with power series gives the following integral form (see [34])

Cαf(z) := (α+ 1)

1∫
0

f(tz)
(1− t)α

(1− tz)α+1
dt (2.3)

with Reα > −1. For α=0, Equations (2.2) and (2.3) give the classical Cesáro operator

Cf(z) := C0f(z) =
∞∑

n=0

(
1

n+ 1

n∑
k=0

ak

)
zn =

1∫
0

f(tz)

1− tz
dt, z ∈ D. (2.4)

In 1932, Hardy and Littlehood [25] considered the classical Cesáro operator, and later,
several authors have studied the boundedness of this operator on various function
spaces (see [5]). In 2020, Bermúdez et al. [35] extensively studied the Cesáro mean and
boundedness of Cesáro operators on Banach spaces and Hilbert spaces.
In the same spirit of the definitions (2.2) and (2.3), we define the Cesáro operator on

the space of analytic functions f : D → B(H) by

Cα
Hf(z) :=

∞∑
n=0

(
1

Cα+1
n

n∑
k=0

Cα
k Ak

)
zn = (α+ 1)

1∫
0

f(tz)
(1− t)α

(1− tz)α+1
dt, (2.5)

where f(z) =
∑∞

n=0Anz
n in D and An, Bn ∈ B(H) for all n ∈ N ∪ {0}. In [26] and [27],

Kayumov et al. have established an analogue of the Bohr theorem for the classical Cesáro
operator Cf(z) and α-Cesáro operator Cα

Hf(z), respectively. For an analytic function
f : D → B(H) with f(z) =

∑∞
n=0Anz

n in D, where An, Bn ∈ B(H) for all n ∈ N ∪ {0},
we define the Bohr’s sum by

Cα
f (r) :=

∞∑
n=0

(
1

Cα+1
n

n∑
k=0

Cα
k ‖Ak‖

)
rn for |z| = r. (2.6)

Now we establish the counterpart of the Bohr theorem for Cα
Hf(z).

Theorem 2.1. Let f : Ωγ → B(H) be an analytic function with ‖f(z)‖ ≤ 1 in Ωγ

such that f(z) =
∑∞

n=0Anz
n in D, where A0 = α0I for |α0| < 1 and An ∈ B(H) for all
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n ∈ N ∪ {0}. Then for α > −1, we have

Cα
f (r) ≤ (α+ 1)

∞∑
n=0

rn

α+ n+ 1
=

(α+ 1)

rα+1

r∫
0

tα

1− t
dt (2.7)

for |z| = r ≤ R(γ, α), where R(γ, α) is the smallest root in (0, 1) of Cγ,α(r) = 0, where

Cγ,α(r) = (3 + γ)(1 + α)
∞∑

n=0

rn

α+ n+ 1
− 2

1− r
.

The constant R(γ, α) cannot be improved further.

Proof. Let α-Cesáro operator Cα
Hf(z) be expressed in the following equivalent form

Cα
Hf(z) =

∞∑
n=0

Anφn(z), (2.8)

where φn(z) can be obtained by collecting the terms involving only An in the right hand
side of Equation (2.5). Then it is easy to see that

φn(z) =
∞∑

k=n

Cα
k−n

Cα+1
k

zk (2.9)

and hence by using the definition of Cα
k , for α-Cesáro operator Cα

Hf(z), we obtain

φ0(z) =
∞∑
k=0

Cα
k

Cα+1
k

zk = (α+ 1)
∞∑
k=0

zk

k + α+ 1
, z ∈ D. (2.10)

It is easy to see that

Cα
f (r) =

∞∑
n=0

‖An‖φn(r). (2.11)

By setting f(z) = f1(z) := (1/(1 − z))I in Equation (2.8), using Equations (2.1) and
(2.5), we obtain

∞∑
n=0

Iφn(z) = Cα
Hf1(z) =

(
1

1− z

)
I. (2.12)

By using Equations (2.11) and (2.12), we obtain

Cα
f (r) =

∞∑
n=0

Iφn(r) =
1

1− r
. (2.13)
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Table 5. Values of R(γ, 0), R(γ, 10), R(γ, 20) and R(γ, 30) for various values of γ ∈ [0, 1).

γ R(γ, 0) R(γ, 10) R(γ, 20) R(γ, 30)

[0, 0.3) [0.5335 ↗ 0.6054) [0.9860 ↗ 0.9876) [0.9937 ↗ 0.9943) [0.9961 ↗ 0.9966)

[0.3, 0.5) [0.6054 ↗ 0.6434) [0.9876 ↗ 0.9885) [0.9945 ↗ 0.9949) [0.9966 ↗ 0.9968)

[0.5, 0.7) [0.6434 ↗ 0.6756) [0.9885 ↗ 0.9892) [0.9949 ↗ 0.9952) [0.9968 ↗ 0.9970)

[0.7, 0.9) [0.6756 ↗ 0.7031) [0.9892 ↗ 0.9899) [0.9952 ↗ 0.9955) [0.9970 ↗ 0.9972)

[0.9, 1) [0.7031 ↗ 0.7153) [0.9899 ↗ 0.9902) [0.9955 ↗ 0.9956) [0.9972 ↗ 0.9973)

Thus, Equation (1.47) with p=1 takes the following form

(α+ 1)
∞∑
k=0

xk

k + α+ 1
=

2

1 + γ

(
1

1− x
− (α+ 1)

∞∑
k=0

xk

k + α+ 1

)
,

which is equivalently

(3 + γ)(α+ 1)
∞∑
k=0

xk

k + α+ 1
=

2

1− x
.

Now the inequality (2.7) follows from Theorem 1.4. Sharpness part follows from
Theorem 1.4. This completes the proof. �

From Table 5, for fixed values of α, we observe that Bohr radius R(γ, α) is monotonic
increasing in γ ∈ [0, 1). In Table 5, the notation (R(γ1, α) ↗ R(γ2, α)] means that the
value of R(γ, α) is monotonically increasing from lim

γ→γ+1
= R(γ1, α) to R(γ2, α) when

γ1 < γ ≤ γ2. Figures 3 and 4 are devoted to the graphs of Cγ,α(r) for various values of
γ and α.

Corollary 2.14. Let f : Ωγ → D be an analytic function with f(z) =
∑∞

n=0 anz
n in

D. Then for α > −1, the inequality (2.7) holds for |z| = r ≤ R(γ, α), where R(γ, α) is as
in Theorem 2.1. In particular, for α= 0, we have

C0
f (r) ≤

1

r
ln

(
1

1− r

)
(2.15)

for |z| = r ≤ R0(γ), where R0(γ) is the smallest root in (0, 1) of Cγ(r) = 0, where

Cγ(r) = (3 + γ)(1− r) ln

(
1

1− r

)
− 2r.

The constant R0(γ) cannot be improved further.
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Figure 3. The graph of Cγ,0(r) and Cγ,10(r) in (0, 1) when γ = 0, 0.3, 0.5, 0.7, 0.9, 1.

Figure 4. The graph of Cγ,20(r) and Cγ,30(r) in (0, 1) when γ = 0, 0.3, 0.5, 0.7, 0.9, 1.

For Ωγ = D, i.e., γ=0, using Corollary 2.14, we obtain the Bohr inequality for the
Cesáro operator for analytic functions f : D → D.

Corollary 2.16. Let f : D → D be an analytic function with f(z) =
∑∞

n=0 anz
n in D.

Then for α > −1, the inequality (2.7) holds for |z| = r ≤ R(0, α), where R(0, α) is as in
Theorem 2.1. In particular, for α= 0, we have

C0
f (r) ≤

1

r
ln

(
1

1− r

)
(2.17)

for |z| = r ≤ R0(0), where R0(0) is the smallest root in (0, 1) of C0(r) = 0, where

C0(r) = 3(1− r) ln

(
1

1− r

)
− 2r.

The constant R0(0) cannot be improved further.

https://doi.org/10.1017/S0013091523000688 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091523000688


134 V. Allu and H. Halder

3. Bohr inequality for Bernardi operator

In similar fashion to the Bohr-type radius problem for the operator-valued α-Cesáro
operator, we also study the Bohr-type radius problem for the operator-valued Bernardi
operator. For f : D → B(H) analytic function with f(z) =

∑∞
n=mAnz

n in D, where
An ∈ B(H) for all n ≥ m and m ≥ 0 is an integer with β > −m, we define Bernardi
operator by

Lβ,H[f ](z) := (1 + β)
∞∑

n=m

An

n+ β
zn = (1 + β)

1∫
0

f(zt) tβ−1 dt for z ∈ D.

For f(z) =
∑∞

n=m anz
n is complex-valued analytic function in D, Lβ,H reduces to

complex-valued Bernardi operator Lβ (see [31]). For β=1 and m =0, we obtain the
well-known Libera operator (see [31]) defined by

L[f ](z) := 2
∞∑

n=0

an
n+ 1

zn = 2

1∫
0

f(tz) dt for z ∈ D.

For β=0, m =1 and g(z) =
∑∞

n=1 bnz
n, we obtain the well-known Alexander operator

(see [21]) defined by

J [g](z) :=

1∫
0

g(tz)

t
dt =

∞∑
n=1

bn
n
zn for z ∈ D,

which has been extensively studied in the univalent function theory.
In this section, we study Bohr inequality for Barnardi operator Lβ,H[f ] when analytic

functions f : Ω → B(H) for f(z) =
∑∞

n=mAnz
n in D. Before going to establish Bohr

inequality for the operator Lβ,H, we prove the following results, which are more general
versions of Theorem 1.3 and Theorem 1.4.

Theorem 3.1. Fix m ∈ N ∪ {0}. Let f ∈ H∞(Ω,B(H)) be given by f(z) =∑∞
n=mAnz

n in D with ‖f(z)‖H∞(Ω,B(H)) ≤ 1, where Am = αmI for |αm| < 1 and

An ∈ B(H) for all n ≥ m. If φ = {φn(r)}∞n=m ∈ G satisfies the inequality

pφm(r) > 2λH

∞∑
n=m+1

φn(r) for r ∈ [0, RΩ(p)), (3.1)

then the following inequality

Mf (φ, p,m, r) := ‖Am‖p φm(r) +
∞∑

n=m+1

‖An‖ φn(r) ≤ φm(r) (3.2)
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holds for |z| = r ≤ RΩ(p,m), where RΩ(p,m) is the smallest root in (0, 1) of the
equation

pφm(r) = 2λH

∞∑
n=m+1

φn(r). (3.3)

Proof. Let f ∈ H∞(Ω,B(H)) be of the form f(z) =
∑∞

n=mAnz
n in D with

‖f(z)‖H∞(Ω,H) ≤ 1. Then we have Am = αmI. We observe that f(z) = zmh(z),

where h : Ω → B(H) is analytic function of the form h(z) =
∑∞

n=mAnz
n−m in D

with ‖h(z)‖H∞(Ω,H) ≤ 1. Then, in view of Definition (1.34), we have

‖An‖ ≤ λH

∥∥∥I − |Am|2
∥∥∥ = λH

∥∥∥I − |αm|2 I
∥∥∥ = λH(1− |αm|2) for n ≥ m+ 1. (3.4)

Using Equation (1.38), we obtain

Mf (ψ, p,m, r) ≤ |αm|p ψm(r) + λH(1− |αm|2)
∞∑

n=m+1

ψn(r)

= ψm(r) + λH(1− |αm|2)

( ∞∑
n=m+1

ψn(r)−
(1− |αm|p)

λH(1− |αm|2)
ψm(r)

)
.

Since |αm| < 1, from the proof of Theorem 1.3, we have (1 − |αm|p)/λ(H(1 − |αm|2)) ≥
p/2λH for p ∈ (0, 2], which leads to

Mf (ψ, p,m, r) ≤ ψm(r) + λH

(
1− |αm|2

)( ∞∑
n=1

ψn(r)−
p

2λH
ψm(r)

)

and hence by Equation (3.1), we obtain Mf (ψ, p,m, r) ≤ ψm(r) for
|z| = r ≤ RΩ(p,m). �

Theorem 3.2. Let f ∈ H∞(Ωγ ,B(H)) be of the form f(z) =
∑∞

n=mAnz
n in D with

‖f‖H∞(Ωγ,B(H)) ≤ 1, where Am = αmI for |αm| < 1 and An ∈ B(H) for all n ≥ m+ 1.

If φ = {φn(r)}∞n=m ∈ G satisfies the following inequality

φm(r) >
2

p(1 + γ)

∞∑
n=m+1

φn(r) for r ∈ [0, R(p,m, γ)), (3.5)

then the inequality (3.2) holds for |z| = r ≤ R(p,m, γ), where R(p,m, γ) is the smallest
root in (0, 1) of the equation

φm(x) =
2

p(1 + γ)

∞∑
n=m+1

φn(x). (3.6)
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Moreover, when φm(x) < (2/p(1 + γ))
∑∞

n=m+1 φn(x) in some interval
(R(p,m, γ), R(p,m, γ) + ε) for ε> 0, then the constant R(p,m, γ) cannot be improved
further.

Proof. For Ω = Ωγ , λH = 1/(1 + γ), the condition (3.1) becomes

φm(r) >
2

p(1 + γ)

∞∑
n=m+1

φn(r) for r ∈ [0, R(p,m, γ)),

where R(p,m, γ) is the smallest root in (0, 1) of the equation

φm(x) =
2

p(1 + γ)

∞∑
n=m+1

φn(x).

Then, by the virtue of Theorem 1.3, the required inequality (3.2) holds for r ∈
[0, R(p,m, γ)). Our aim is to show that the radius R(p,m, γ) cannot be improved fur-
ther. That is, ‖Am‖p φm(r)+

∑∞
n=m+1 ‖An‖φn(r) > φm(r) holds for any r > R(p,m, γ),

i.e., for any r ∈ (R(p, γ), R(p, γ) + ε). To show this, we consider the function Fa,m :
Ωγ → B(H) defined by Fa,m(z) = zmFa(z), where Fa is defined by Equation (1.48).
From the proof of Theorem 1.3, ‖Fa(z)‖ ≤ 1, and hence ‖Fa,m(z)‖ ≤ 1. Since
Fa(z) = A0 −

∑∞
n=1Anz

n in D, where A0, An are as in Equation (1.49), then

Fa,m(z) =

(
a− γ

1− aγ

)
Izm − (1− a2)

∞∑
n=m+1

(
an−m−1(1− γ)n−m

(1− aγ)n−m+1

)
Izn for z ∈ D.

For the function Fa,m, we have

‖Am‖p φm(r) +
∞∑

n=m+1

‖An‖φn(r) (3.7)

=

(
a− γ

1− aγ

)p

φm(r) + (1− a2)
∞∑

n=m+1

an−1(1− γ)n

(1− aγ)n+1
φn(r)

= φm(r) + (1− a)

(
2

∞∑
n=m+1

φn(r)− p(1 + γ)φm(r)

)

+ (1− a)

( ∞∑
n=m+1

an−m−1(1 + a)(1− γ)n−m

(1− aγ)n−m+1
φn(r)− 2

∞∑
n=m+1

φn(r)

)

+

(
p(1 + γ)(1− a) +

(
a− γ

1− aγ

)p

− 1

)
φm(r)

= φm(r) + (1− a)

(
2

∞∑
n=m+1

φn(r)− p(1 + γ)φm(r)

)
+O((1− a)2)
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as a→ 1−. Also, we have that

2
∞∑

n=m+1

φn(r) > p(1 + γ)φm(r)

for r ∈ (R(p,m, γ), R(p,m, γ) + ε). It is easy to see that the last expression of
Equation (3.7) is strictly greater than φm(r) when a is very close to 1, i.e., a → 1−

and r ∈ (R(p,m, γ), R(p,m, γ) + ε). This shows that the constant R(p,m, γ) cannot be
improved further. This completes the proof. �

Now we are in a position to establish Bohr inequality for Barnardi operator Lβ,H[f ]
for analytic functions f : Ωγ → B(H) of the form f(z) =

∑∞
n=mAnz

n in D.

Theorem 3.3. Let β > −m and f : Ωγ → B(H) be an analytic function with ‖f(z)‖ ≤
1 in Ωγ such that f(z) =

∑∞
n=mAnz

n in D, where Am = αmI for |α0| < 1 and An ∈ B(H)
for all n ∈ m, then

Mβ,H(r) :=
∞∑

n=m

‖An‖
n+ β

rn ≤ 1

m+ β
rm (3.8)

for |z| = r ≤ R(m,β, γ), where R(m,β, γ) is the smallest root in (0, 1) of Bm,β,γ(r) = 0,
where

Bm,β,γ(r) =
2

1 + γ

∞∑
n=m+1

rn

n+ β
− rm

m+ β
. (3.9)

The constant R(m,β, γ) is the best possible.

Proof. We note that Mβ,H(r) can be expressed in the following form

Mβ,H(r) :=
∞∑

n=m

‖An‖
n+ β

rn =
∞∑

n=m

‖An‖φn(r) with φn(r) =
rn

n+ β

and hence the condition (3.5) becomes

rm

m+ β
>

2

1 + γ

∞∑
n=m+1

rn

n+ β
for r ∈ [0, R(m,β, γ)),

where R(m,β, γ) is the smallest root of the Equation (3.9). Now the inequality (3.8)
follows from Theorem 3.2. The sharpness of the constant R(m,β, γ) follows from
Theorem 3.2. This completes the proof. �
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Table 6. Values of R(0, 1, γ), R(0, 2, γ), R(1, 2, γ) and R(4, 0, γ) for various values of γ ∈ [0, 1).

γ R(0, 1, γ) R(0, 2, γ) R(1, 2, γ) R(4, 0, γ)

[0, 0.2) [0.5828 ↗ 0.6419) [0.4742 ↗ 0.5789) [0.4317 ↗ 0.4833) [0.4090 ↗ 0.4587)

[0.2, 0.4) [0.6419 ↗ 0.6912) [0.5289 ↗ 0.5759) [0.4833 ↗ 0.5282) [0.4587 ↗ 0.5021)

[0.4, 0.6) [0.6912 ↗ 0.7324) [0.5759 ↗ 0.6168) [0.5282 ↗ 0.5675) [0.5021 ↗ 0.5403)

[0.6, 0.8) [0.7324 ↗ 0.7672) [0.6168 ↗ 0.6525) [0.5675 ↗ 0.6023) [0.5403 ↗ 0.5743)

[0.8, 1) [0.7672 ↗ 0.7968) [0.6525 ↗ 0.6838) [0.6023 ↗ 0.6331) [0.5743 ↗ 0.6045)

Remark 3.1. We observe that Equation (3.9) can also be written in the following
form

Bm,β,γ(r) =
2

1 + γ

∞∑
n=1

rn+m

n+m+ β
− rm

m+ β
.

Thus, the root R(m,β, γ) of Bm,β,γ(r) = 0 is same as that of Lm,β,γ(r) = 0, where

Lm,β,γ(r) =
2

1 + γ

∞∑
n=1

rn

n+m+ β
− 1

m+ β
. (3.10)

Therefore, Equation (3.10) yields that the roots of Lm,β,γ(r) = 0 are same when the
corresponding sums m + β of m and β are the same. That is, for each fixed i ∈ N,
if R(mi, βi, γ) is the root of Lmi,βi,γ

(r) = 0, then R(mi, βi, γ) = R(mj , βj , γ) when
mi + βi = mj + βj . For instance, R(0, 1, γ) = R(1, 0, γ) = R(2,−1, γ), R(0, 2, γ) =
R(1, 1, γ).

From Table 6, for fixed values of m and β, we observe that Bohr radius R(m,β, γ)
is monotonic increasing in γ ∈ [0, 1). In Table 6, the notation (R(m,β, γ1) ↗
R(m,β, γ2)] means that the value of R(m,β, γ) is monotonically increasing from
lim

γ→γ+1
R(m,β, γ) = R(m,β, γ1) to R(m,β, γ2) when γ1 < γ ≤ γ2. Figures 5 and 6

are devoted to the graphs of Bm,β,γ(r) for various values of m,β and γ.

Corollary 3.11. Let f be as in Theorem 3.3 with m= 0 and β= 1. Then

∞∑
n=0

‖An‖
n+ 1

rn ≤ 1

for |z| = r ≤ R(0, 1, γ), where R(0, 1, γ) is the smallest root in (0, 1) of

2

1 + γ

∞∑
n=1

rn

n+ 1
= 1. (3.12)
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0

Figure 5. The graph of B0,1,γ(r) and B0,2,γ(r) in (0, 1) when γ = 0, 0.2, 0.4, 0.6, 0.8, 0.9, 1.

Figure 6. The graph of B1,2,γ(r) and B4,0,γ(r) in (0, 1) when γ = 0, 0.2, 0.4, 0.6, 0.8, 0.9, 1.

The constant R(0, 1, γ) is the best possible.

Corollary 3.13. Let f be as in Theorem 3.3 with m=1 and β=0. Then

∞∑
n=1

‖An‖
n

rn ≤ r

for |z| = r ≤ R(1, 0, γ), where R(1, 0, γ) is the smallest root in (0, 1) of

2

1 + γ

∞∑
n=2

rn

n
= r. (3.14)

The constant R(1, 0, γ) is the best possible.
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