
1
Introduction and Overview

This is the second volume of our two-volume book on factorization algebras as
they apply to quantum field theory. In Volume 1, we focused on the theory of
factorization algebras while keeping the quantum field theory to a minimum.
Indeed, we only ever discussed free theories. In Volume 2, we will focus on the
factorization algebras associated with interacting classical and quantum field
theories.

In this introduction, we will state in outline the main results that we prove
in this volume. The centerpiece is a deformation quantization approach to
quantum field theory, analogous to that for quantum mechanics, and the
introduction to the first volume provides an extensive motivation for this
perspective, which is put on solid footing here. Subsequently we explore
symmetries of field theories that fit into this approach, leading to classical
and quantum versions of the Noether theorem in the language of factorization
algebras.

Remark: Throughout the text, we refer to results from the first volume in the
style “see Chapter I.2” to indicate the second chapter of Volume 1. ♦

1.1 The Factorization Algebra of Classical Observables

We will start with the factorization algebra associated with a classical field
theory. Suppose we have a classical field theory on a manifold M, given by
some action functional, possibly with some gauge symmetry. To this data we
will associate a factorization algebra of classical observables. The construction
goes as follows. First, for every open subset U ⊂ M, consider the space EL(U)

of solutions to the Euler–Lagrange equations on U, modulo gauge. We work in
perturbation theory, which means we consider solutions that live in the formal
neighborhood of a fixed solution. We also work in the derived sense, which
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2 Introduction and Overview

means we “impose” the Euler–Lagrange equations by a Koszul complex. In
sophisticated terms, we take EL(U) to be the formal derived stack of solutions
to the equations of motion. As U varies, the collection EL(U) forms a sheaf of
formal derived stacks on M.

The factorization algebra Obscl of classical observables of the field theory
assigns to an open U, the dg commutative algebra O(EL(U)) of functions
on this formal derived stack EL(U). This construction is simply the derived
version of functions on solutions to the Euler–Lagrange equations, and hence
provides a somewhat sophisticated refinement for classical observables in the
typical sense.

It takes a little work to set up a theory of formal derived geometry that
can handle formal moduli spaces of solutions to nonlinear partial differential
equations like the Euler–Lagrange equations. In the setting of derived geom-
etry, formal derived stacks are equivalent to homotopy Lie algebras (i.e., Lie
algebras up to homotopy, often modeled by dg Lie algebras or L∞ algebras).
The theory we develop in Chapter 3 takes this characterization as a definition.
We define a formal elliptic moduli problem on a manifold M to be a sheaf
of homotopy Lie algebras satisfying certain properties. Of course, for the
field theories considered in this book, the formal moduli of solutions to the
Euler–Lagrange equations always define a formal elliptic moduli problem.
We develop the theory of formal elliptic moduli problems sufficiently to define
the dg algebra of functions, as well as other geometric concepts.

1.2 The Factorization Algebra of Quantum Observables

In Chapter 8, we give our main construction. It gives a factorization algebra
Obsq of quantum observables for any quantum field theory in the sense of
Costello (2011b). A quantum field theory is, by that definition, something
that lives over C[[�]] and reduces modulo � to a classical field theory. The
factorization algebra Obsq is then a factorization algebra over C[[�]], and
modulo � it reduces to a factorization algebra quasi-isomorphic to the algebra
Obscl of classical observables.

The construction of the factorization algebra of quantum observables is a
bit technical. The techniques arise from the approach to quantum field theory
developed in Costello (2011b). In that book a quantum field theory is defined
to be a collection of functionals I[L] on the fields that are approximately
local. They play a role analogous to the action functional of a classical field
theory. These functionals depend on a “length scale” L, and when L is close to
zero the functional I[L] is close to being local. The axioms of a quantum field
theory are:
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(i) As L varies, I[L] and I[L′] are related by the operation of “renormal-
ization group flow.” Intuitively, if L′ > L, then I[L′] is obtained from
I[L] by integrating out certain high-energy fluctuations of the fields.

(ii) Each I[L] satisfies a scale L quantum master equation (the quantum
version of a compatibility with gauge symmetry).

(iii) When we reduce modulo � and send L → 0, then I[L]
becomes the interaction term in the classical Lagrangian.

The fact that I[L] is never local, just close to being local as L → 0, means
that we have to work a bit to define the factorization algebra. The essential
idea is simple, however. If U ⊂ M, we define the cochain complex Obsq(U)

to be the space of first-order deformations {I[L] + εO[L]} of the collection of
functionals I[L] that define the theory. We ask that this first-order deformation
satisfies the renormalization group flow property modulo ε2. This condition
gives a linear expression for O[L] in terms of any other O[L′]. This idea
reflects the familiar intuition from the path integral that observables are first-
order deformations of the action functional.

The observables we are interested in do not need to be localized at a point,
or indeed given by the integral over the manifold of something localized at a
point. Therefore, we should not ask that O[L] becomes local as L → 0. Instead,
we ask that O[L] becomes supported on U as L → 0.

Moreover, we do not ask that I[L] + εO[L] satisfies the scale L quantum
master equation (modulo ε2). Instead, its failure to satisfy the quantum
master equation defines the differential on the cochain complex of quantum
observables.

With a certain amount of work, we show that this definition defines a
factorization algebra Obsq that quantizes the factorization algebra Obscl of
classical observables.

1.3 The Physical Importance of Factorization Algebras

Our key claim is that factorization algebras encode, in a mathematically clean
way, the features of a quantum field theory that are important in physics.

This formalism must thus include the most important examples of quantum
field theories from physics. Fortunately, the techniques developed in Costello
(2011b) give a cohomological technique for constructing quantum field the-
ories, which applies easily to many examples. For instance, the Yang–Mills
theory and the φ4 theory on R4 were both constructed in Costello (2011b).
(Note that we work throughout on Riemannian manifolds, not Lorentzian
ones.)
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As a consequence, each theory has a factorization algebra on R4 that
encodes its observables.

1.3.1 Correlation Functions from Factorization Algebras

In the physics literature on quantum field theory, the fundamental objects are
correlation functions of observables. The factorization algebra of a quantum
field theory contains enough data to encode the correlation functions. In this
sense, its factorization algebra encodes the essential data of a quantum field
theory.

Let us explain how this encoding works. Assume that we have a field theory
on a compact manifold M. Suppose that we work near an isolated solution
to the equations of motion, that is, one that admits no small deformations.
(Strictly speaking, we require that the cohomology of the tangent complex
to the space of solutions to the equations of motion is zero, which is a little
stronger, as it means that there are also no gauge symmetries preserving this
solution to the equations of motion.) Some examples of theories where we have
an isolated solution to the equations of motion are a massive scalar field theory,
on any compact manifold, or a massless scalar field theory on the four-torus T4

where the field has monodromy −1 around some of the cycles. In each case,
we can include an interaction, such as the φ4 interaction.

Since the classical observables are functions on the space of solution to the
equations of motion, our assumption implies H∗(Obscl(M)) = C. A spectral
sequence argument then lets us conclude that H∗(Obsq(M)) = C[[�]].

If U1, . . . ,Un ⊂ M are disjoint open subsets of M, the factorization algebra
structure gives a map

〈−〉 : H∗(Obsq(U1))⊗ · · · ⊗ H∗(Obsq(Un)) → H∗(Obsq(M)) = C[[�]].

If Oi ∈ H∗(Obsq(Ui)) are observables on the open subsets Ui, then 〈O1 · · ·On〉
is the correlation function of these observables.

Consider again the φ4 theory on T4, where the φ field has monodromy
−1 around one of the four circles. In the formalism of Costello (2011b), it is
possible to construct the φ4 theory on R4 so that the Z/2 action sending φ to
−φ is preserved. By descent, the theory – and hence the factorization algebra –
exists on T4 as well. Thus, this theory provides an example where the quantum
theory can be constructed and the correlation functions defined.

1.3.2 Factorization Algebras and Renormalization Group Flow

Factorization algebras provide a satisfying geometric understanding of the RG
flow, which we discuss in detail in Chapter 9 but sketch now.
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In Costello (2011b), a scaling action of R>0 on the collection of theories
on Rn was given. It provides a rigorous version of the RG flow as defined by
Wilson.

There is also a natural action by scaling of the group R>0 (under multiplica-
tion) on the collection of translation-invariant factorization algebras on Rn. Let
Rλ : Rn → Rn denote the diffeomorphism that rescales the coordinates, and
let F be a translation-invariant factorization algebra on Rn. Then the pullback
R∗
λF is a new factorization algebra on Rn.
We show that the map from theories on Rn to factorization algebras on

Rn intertwines these two R>0 actions. Thus, this simple scaling action on
factorization algebras is the RG flow.

In order to define have a quantum field theory with finitely many free
parameters, it is generally essential to only consider renormalizable quantum
field theories. In Costello (2011b), it was shown that for any translation-
invariant field theory on Rn, the dependence of the field theory on the scalar
parameter λ ∈ R>0 is via powers of λ and of log λ. A strictly renormalizable
theory is one in which the dependence is only via log λ, and the quantizations
of the Yang–Mills theory and φ4 theory constructed in Costello (2011b) both
have this feature.

We can translate the concept of renormalizability into the language of
factorization algebras. For any translation-invariant factorization algebra F on
Rn, there is a family of factorization algebras Fλ = R∗

λF on Rn. Because this
family depends smoothly on λ, a priori it defines a factorization algebra over
the base ring C∞(R>0) of smooth functions of the variable λ. We say this
family is strictly renormalizable if it arises by extension of scalars from a
factorization algebra over the base ring C[log λ] of polynomials in log λ.
The factorization algebras associated with the Yang–Mills theory and the φ4

theory both have this feature.
In this way, we formulate via factorization algebras the concept of renormal-

izability of a quantum field theory.

1.3.3 Factorization Algebras and the Operator
Product Expansion

One disadvantage of the language of factorization algebras is that the fac-
torization algebra structure is often very difficult to describe explicitly. The
reason is that for an open set U, the space Obsq(U) of quantum observables
on U is a very large topological vector space, and it is not obvious how one
can give it a topological basis. To extract more explicit computations, we
introduce the concept of a point observable in Chapter 10. The space of point
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observables is defined to be the limit limr→0 Obsq(D(0,r)) of the space of
quantum observables on a disc of radius r around the origin, as r → 0. Point
observables capture what physicists call local operators; however, we eschew
the term operator as our formalism does not include a Hilbert space on which
we can operate.

Given two point observables O1 and O2, we can place O1 at 0 and O2 at x
and then use the factorization product on sufficiently small discs centered at 0
and x to define a product element

O1(0) ·O2(x) ∈ Obsq(Rn).

The operator product is defined by expanding the product O1(0) · O2(x) as a
function of x and extracting the “singular part.” It is not guaranteed that such
an expansion exists in general, but we prove in Chapter 10 that it does exist to
order �. This order � operator product expansion can be computed explicitly,
and we do so in detail for several theories in Chapter 10. The methods exhibited
there provide a source of concrete examples in which mathematicians can
rigorously compute quantities of quantum field theory.

That chapter also contains the longest and most detailed example in this
book. It has recently become clear (Costello 2013b; Costello et al. 2019)
that one can understand quantum groups, such as the Yangian and related
algebras, using Feynman diagram computations in quantum field theory. The
general idea is that one should take a quantum field theory that has one
topological direction, so that the factorization product in this direction gives us
a (homotopy) associative algebra. By taking the Koszul dual of this associative
algebra, one finds a new algebra that in certain examples is a quantum group.
For the Yangian, the relevant Feynman diagram computations are given in
Costello et al. (2019). We present in detail an example related to a different
infinite-dimensional quantum group, following Costello (2017). We perform
one-loop Feynman diagram computations that reproduce the commutation
relations in this associative algebra. (We chose this example as the relevant
Feynman diagram computations are considerably easier than those that lead to
the Yangian algebra in Costello et al. 2019.)

1.4 Poisson Structures and Deformation Quantization

In the deformation quantization approach to quantum mechanics, the asso-
ciative algebra of quantum operators reduces, modulo �, to the commutative
algebra of classical operators. But this algebra of classical operators has a little
more structure: It is a Poisson algebra. Deformation quantization posits that
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1.4 Poisson Structures and Deformation Quantization 7

the failure of the algebra of quantum operators to be commutative is given, to
first order in �, by the Poisson bracket.

Something similar happens in our story. Classical observables are given
by the algebra of functions on the derived space of solutions to the Euler–
Lagrange equations. The Euler–Lagrange equations are not just any partial
differential equations (PDEs), however: They describe the critical locus of
an action functional. The derived critical locus of a function on a finite-
dimensional manifold carries a shifted Poisson (or P0) structure, meaning that
its dg algebra of functions has a Poisson bracket of degree 1. In the physics lit-
erature, this Poisson bracket is sometimes called the BV bracket or antibracket.

This feature suggests that the space of solutions to the Euler–Lagrange
equations should also have a P0 structure, and so the factorization algebra
Obscl of classical observables has the structure of a P0 algebra. We show that
this guess is indeed true, as long as we use a certain homotopical version of P0

factorization algebras.
Just as in the case of quantum mechanics, we would like the Poisson bracket

on classical observables to reflect the first-order deformation into quantum
observables. We find that this behavior is the case, although the statement is
not as nice as that in the familiar quantum mechanical case.

Let us explain how it works. The factorization algebra of classical observ-
ables has compatible structures of dg commutative algebra and shifted Poisson
bracket. The factorization algebra of quantum observables has, by contrast,
no extra structure: it is simply a factorization algebra valued in cochain
complexes. Modulo �2, the factorization algebra of quantum observables lives
in an exact sequence:

0 → �Obscl → Obsq mod �2 → Obscl → 0.

The boundary map for this exact sequence is an operator, for every open
U ⊂M,

D : Obscl(U) → Obscl(U).

This operator is a cochain map of cohomological degree 1. Because Obsq is not
a factorization algebra valued in commutative algebras, D is not a derivation
for the commutative algebra structure on Obscl(U).

We can measure the failure of D to be a derivation by the expression

D(ab)− (−1)|a|aDb − (Da)b.

We find that this quantity is the same, up to homotopy, as the shifted Poisson
bracket on classical observables.
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We should view this identity as being the analog of the fact that the failure
of the algebra of observables of quantum mechanics to be commutative is
measured, modulo �2, by the Poisson bracket. Here, we find that the failure
of the factorization algebra of quantum observables to have a commutative
algebra structure compatible with the differential is measured by the shifted
Poisson bracket on classical observables.

This analogy has been strengthened to a theorem by Safronov (2018) and
Rozenblyum (unpublished). Locally constant factorization algebras on R are
equivalent to homotopy associative algebras. Safronov and Rozenblyum show
that locally constant P0 factorization algebras on R are equivalent to ordinary,
unshifted Poisson algebras. Therefore a deformation quantization of a P0

factorization algebra on R into a plain factorization algebra is precisely the
same as a deformation of a Poisson algebra into an associative algebra; in this
sense, our work recovers the usual notion of deformation quantization.

1.5 The Noether Theorem

The second main theorem we prove in this volume is a factorization-algebraic
version of the Noether theorem. The formulation we find of the Noether
theorem is significantly more general than the traditional formulation. We will
start by reminding the reader of the traditional formulation before explaining
our factorization-algebraic generalization.

1.5.1 Symmetries in Classical Mechanics

The simplest version of the Noether theorem applies to classical mechanics.
Suppose we have a classical-mechanical system with a continuous symme-

try given by a Lie algebra g. Let A be the Poisson algebra of operators of the
system, which is the algebra of functions on the phase space. Then, the Noether
theorem, as traditionally phrased, says that there is a central extension ĝ of g
and a map of Lie algebras

ĝ→ A

where A is given the Lie bracket coming from the Poisson bracket. This map
sends the central element in ĝ to a multiple of the identity in A. Further, the
image of ĝ in A commutes with the Hamiltonian.

From a modern point of view, this is easily understood. The phase space of
the classical mechanical system is a symplectic manifold X, with a function H
on it, which is the Hamiltonian. The algebra of operators is the Poisson algebra
of functions on X. If a Lie algebra g acts as symmetries of the classical system,
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1.5 The Noether Theorem 9

then it acts on X by symplectic vector fields preserving the Hamiltonian
function. There is a central extension of g that acts on X by Hamiltonian vector
fields, assuming that H1(X) = 0.

At the quantum level, the Poisson algebra of functions on X is upgraded
to a noncommutative algebra (which we continue to call A), which is its
deformation quantization. The quantum version of the Noether theorem says
that if we have an action of a Lie algebra g acting on the quantum mechanical
system, there is a central extension ĝ of g (possibly depending on �) and a
Lie algebra map ĝ → A. This Lie algebra map lifts canonically to a map of
associative algebras

Uĝ→ A,

sending the central element to 1 ∈ A.

1.5.2 The Noether Theorem in the Language
of Factorization Algebras

Let us rewrite the quantum-mechanical Noether theorem in terms of factor-
ization algebras on R. As we saw in Section I.3.2, factorization algebras on
R satisfying a certain local-constancy condition are the same as associative
algebras. When translation invariant, these factorization algebras on R are the
same as associative algebras with a derivation. A quantum mechanical system
is a quantum field theory on R, and so has as a factorization algebra Obsq

of observables. Under the equivalence between factorization algebras on R

and associative algebra, the factorization algebra Obsq becomes the associative
algebra A of operators, and the derivation becomes the Hamiltonian.

Similarly, we can view Uc(g) as being a translation-invariant factorization
algebra on R, where the translation action is trivial. In Section I.3.6, we give
a general construction of a factorization algebra – the factorization envelope –
associated with a sheaf of dg Lie algebras on a manifold. The associative
algebra Uc(g) is, when interpreted as a factorization algebra on R, the twisted
factorization envelope of the sheaf �∗

R
⊗ g of dg Lie algebras on R. We write

this twisted factorization envelope as Uc(�
∗
R
⊗ g).

The Noether theorem then tells us that there is a map of translation-invariant
factorization algebras

Uc(�
∗
R
⊗ g) → Obsq

on R. We have simply reformulated the Noether theorem in factorization-
algebraic language. This rewriting will become useful shortly, however, when
we state a far-reaching generalization of the Noether theorem.
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1.5.3 The Noether Theorem in Quantum Field Theory

Let us now phrase our general theorem. Suppose we have a quantum field
theory (QFT) on a manifold X, with factorization algebra Obsq of observables.
The usual formulation of the Noether theorem starts with a field theory with
some Lie algebra of symmetries. We will work more generally and ask that
there is some sheaf L of homotopy Lie algebras on X that acts as symmetries of
our QFT. (Strictly speaking, we work with sheaves of homotopy Lie algebras
of a special type, which we call local L∞ algebras. A local L∞ algebra is
a sheaf of homotopy Lie algebras whose underlying sheaf is the smooth
sections of a graded vector bundle and whose structure maps are given by
multidifferential operators.) Our formulation of the Noether theorem then takes
the following form.

Theorem 1.5.1 In this situation, there is a canonical �-dependent (shifted)
central extension of L, and a map of factorization algebras,

Uc(L) → Obsq ,

from the twisted factorization envelope of L to the factorization algebra of
observables of the quantum field theory.

Let us explain how a special case of this statement recovers the traditional
formulation of the Noether theorem, under the assumption (merely to simplify
the notation) that the central extension is trivial.

Suppose we have a theory with a Lie algebra g of symmetries. One can show
that this implies the sheaf �∗

X ⊗ g of dg Lie algebras also acts on the theory.
Indeed, this sheaf is simply a resolution of the constant sheaf with stalk g.

The factorization envelope U(L) assigns the Chevalley–Eilenberg chain
complex C∗(Lc(U)) to an open subset U ⊂ X. This construction implies that
there is a map of pre-cosheaves Lc[1] → U(L). Applied to L = �∗

X ⊗ g, we
find that a g-action on our theory gives a cochain map

�∗
c(U)⊗ g[1] → Obsq(U)

for every open. In degree 0, this map �1
c⊗g→ Obsq can be viewed as an n−1-

form on X valued in observables. This n − 1 form is the Noether current. (The
other components of this map contain important homotopical information.)

If X = M × R, where M is compact and connected, we get a map

g = H0(M)⊗ H1
c (R)⊗ g→ H0(Obsq(U)).

This map is the Noether charge.
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We have seen that specializing to observables of cohomological degree 0 and
the sheaf L = �∗ ⊗ g, we recover the traditional formulation of the Noether
theorem in quantum field theory. Our formulation, however, is considerably
more general.

1.5.4 The Noether Theorem Applied to Two-Dimensional
Chiral Theories

As an example of this general form of the Noether theorem, let us consider the
case of two-dimensional chiral theories with symmetry group G.

In this situation, the symmetry Lie algebra is not simply the constant sheaf
with values in g but the sheaf �

0,∗
� ⊗ g, the Dolbeault complex on � valued

in g. In other words, it encodes the sheaf of g-valued holomorphic functions.
This sheaf of dg Lie algebra acts on the sheaf of fields �1/2,∗(�,R) in the
evident way.

Our formulation of the Noether theorem then tells us that there is some
central extension of �0,∗

� ⊗ g and a map of factorization algebras

Uc

(
�

0,∗
� ⊗ g

)
→ Obsq

from the twisted factorization envelope to the observables of the system of free
fermions.

In Section I.5.5, we calculated the twisted factorization algebra of �0,∗
� ⊗ g,

and we found that it encodes the Kac–Moody vertex algebra at the level
determined by the central extension.

Thus, in this example, our formulation of the Noether theorem recovers
something relatively familiar: In any chiral theory with an action of G, we
find a copy of the Kac–Moody algebra at an appropriate level.

1.6 Brief Orienting Remarks toward the Literature

Since we began this project in 2008, we have been pleased to see how themes
that animated our own work have gotten substantial attention from others:

• Encoding classical field theories, particularly in the BV formalism, using
L∞ algebras (Hohm and Zwiebach 2017; Jurčo et al. 2019b,a).

• The meaning and properties of derived critical loci (Vezzosi 2020; Joyce
2015; Pridham 2019).
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• The role of shifted symplectic structures in derived geometry and enlarged
notions of deformation quantization (Pantev et al. 2013; Calaque et al.
2017; Ben-Bassat et al. 2015; Brav et al. 2019; Pridham 2017; Melani and
Safronov 2018a,b; Safronov 2017; Toën 2014).

• Factorization algebras as a natural tool in field theory, particularly for
topological field theories (Scheimbauer 2014; Kapranov et al. 2016; Benini
et al. 2019, 2020; Beem et al. 2020).

We are grateful to take part in such a dynamic community, where we benefit
from others’ insights and critiques and we also have the chance to share our
own. This book does not document all that activity, which is only partially
represented by the published literature anyhow; we offer only a scattering of
the relevant references, typically those that played a direct role in our own
work or in our learning, and hence exhibit an unfortunate but hard-to-avoid
bias toward close collaborators or interlocutors.

Our work builds, of course, upon the work and insights of generations of
mathematicians and physicists who precede us. As time goes on, we discover
how many of our insights appear in some guise in the past. In particular, it
should be clear how much Albert Schwarz and Maxim Kontsevich shaped our
views and our approach by their vision and by their results, and how much we
gained from engaging with the work of Alberto Cattaneo, Giovanni Felder, and
Andrei Losev.

There is a rich literature on BRST and BV methods in physics that we hope
to help open up to mathematicians, but we do not make an attempt here to
survey it, a task that is beyond us. We recommend Henneaux and Teitelboim
(1992) as a point for jumping into that literature, tracking who cites it and
whom it cites. A nice starting point to explore current activity in Lorentzian
signature is Rejzner (2016), where these BRST/BV ideas cross-fertilize with
the algebraic quantum field theory approach.
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