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Abstract
This paper focuses on simulating turbulent flow over propagating waves by solving the full Navier–Stokes equations
in a moving frame. A careful comparison of flow statistics with previous experimental and numerical results
demonstrates, to some extent, the rationality of simplifying wind waves as turbulent flow over moving wave
boundaries. The phase-averaging method is then applied to investigate the momentum and energy transfers between
turbulent wind and waves propagating at slow, intermediate and fast speeds. The results suggest that the dominant
mechanism for producing Reynolds shear stress (RSS) and turbulent kinetic energy (TKE) is related to the wave age.
Slow waves produce RSS and TKE similar to a two-dimensional shear turbulence. However, a fast wave enhances
the streamwise Reynolds normal stress, the windward side’s negative RSS and the gradient of both streamwise
and vertical velocities, leading to additional RSS and TKE productions that can be ignored under the slow wave
regimes. A strengthening wave–turbulence exchange is also found for fast waves. The intermediate wave can be
regarded as a transitional condition determining this change.

Impact Statement
The wind–wave problem has long been an open question due to the elusiveness of its strongly coupled dynam-
ics, hindering our deeper understanding of environmental complex interface flow. This research advances
our understanding of turbulent flow over propagating waves through a comprehensive simulation approach
employing the full Navier–Stokes equations in a moving frame. Through validations against both experi-
mental and numerical data, the study rationalizes the representation of wind waves as turbulent flow over
moving wave boundaries to a certain extent. The findings elucidate distinct wind–wave dynamical behaviours
in Reynolds shear stress production and kinetic energy transfer. The study also reveals the different domi-
nant mechanisms dictating momentum flux and kinetic energy productions, contingent upon a transitional
condition: intermediate wave.

1. Introduction

The interaction between turbulent wind and water surface waves plays a significant role in shaping
the characteristics of both wind and waves. This dynamic process primarily occurs near the air–sea
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interface and governs the exchange of mass, momentum and energy between the upper ocean and
lower atmosphere. Therefore, gaining a comprehensive understanding of these dynamics, particularly
regarding momentum and energy transfers, is essential for enhancing our insight into the intricate
interactions between wind and waves.

Wind waves can be classified as slow, intermediate and fast waves based on their wave ages (charac-
terized by the ratio of the surface wave’s phase velocity c to the friction velocity u𝜏), corresponding to
c/u𝜏 ≤ 15, c/u𝜏 ≈ 15 and c/u𝜏 ≥ 15, respectively. Due to the universality of growing wind waves, the
slow wave regime has received significant attention in understanding momentum transfer. Experimental
(Snyder et al. 1981; Fairall et al. 1996; Hristov, Miller & Friehe 2003; Donelan et al. 2006; Babanin
et al. 2007; Longo & Losada 2012; Buckley & Veron 2016; Vollestad, Ayati & Jensen 2019) and numer-
ical (Sullivan, McWilliams & Moeng 2000; Yang & Shen 2009; Druzhinin, Troitskaya & Zilitinkevich
2012; Akbarzadeh & Borazjani 2019; Åkervik & Vartdal 2019) methods were employed to investigate
how momentum is transferred in this regime. In general, a slow wave extracts momentum from turbu-
lent wind through the interaction of wave-correlated pressure against the surface-wave slope (Åkervik
& Vartdal 2019). This process is accompanied by variations in turbulent stress and wave-induced stress.
Belcher & Hunt (1993) discovered that the turbulent stress exhibits wave-coherent characteristics, with
positive–negative variation along the wave. This behaviour is similar to what is observed in stationary
wavy wall turbulence (Hudson, Dykhno & Hanratty 1996; Cherukat et al. 1998; Yang & Shen 2010;
Hamed et al. 2015; Zhang, Wang & Liu 2022a; Zhang et al. 2022b). Consequently, it leads to the
typical asymmetrical flow acceleration over the wave, which creates favourable conditions for wave
growth (Sullivan &McWilliams 2010). Additionally, studies were carried out to examine the changes in
wave-induced stress at the critical height, where the wave-coherent velocity matches the phase velocity
(Sullivan et al. 2000; Hristov et al. 2003; Grare, Lenain & Melville 2013a). It was observed that, in
the case of slow waves, the wave-induced stress beneath the critical height is primarily positive, but it
decreases and becomes negative above the critical height (Yousefi, Veron & Buckley 2020a). However,
fast waves exhibit a different distribution of turbulent and wave-induced stresses. Yang & Shen (2010)
numerically showed that fast waves result in a more symmetric distribution of turbulent stress. Fur-
thermore, Hristov et al. (2003) observed a symmetrical wave-induced stress pattern above a fast wave,
suggesting the presence of a distinct flow regime under the fast wave condition. Given the frequent
occurrence of fast waves in the ocean environment, arising from the nonlinear interactions between slow
waves or generated by local tsunami-induced waves propagating into the light-wind region (Åkervik &
Vartdal 2019), the fast wave-induced momentum transfer requires further investigation and discussion.

The energy transfer between wind and surface waves has received considerable attention due to
its critical role in determining wind–wave interaction and evolution. However, compared with the
investigation of momentum transport above wind waves, there are fewer studies on kinetic energy
transfer. Understanding the energy transfer involves analysing the conservation equation of kinetic
energy, which includes mean, wave-induced and turbulent kinetic energy (TKE) components (Reynolds
& Hussain 1972). The production terms in this conservation equation are essential for comprehending
how energy is exchanged between different forms. Additionally, the terms associated with production,
transport and dissipation play a significant role in balancing the kinetic energy. Despite efforts to study
kinetic energy transfer above wind waves (Rutgersson & Sullivan 2005; Hara & Sullivan 2015; Yousefi,
Veron & Buckley 2021), several questions still need to be answered.

Given the direct effect of TKE on energy transfer between wave-coherent and turbulent motions,
previous studies paidmuch attention to the TKE variation, whichwas found to be relevant to thewave age
(Shen et al. 2003; Sullivan et al. 2008). Since the turbulent flow over a slow wave is qualitatively similar
to the stationarywavywall turbulence, there is no doubt that the TKE is approximately consistent for both
scenarios. Hara & Sullivan (2015) and Husain et al. (2019) noted that the TKE in a slow wave condition
features a wave-coherent pattern. The intensified TKE observed on the leeward side of the wave is related
to the strong shear layer behind the crest (Yang & Shen 2010). However, a higher wave age weakens the
TKE peak and shifts it upstream (Shen et al. 2003; Buckley & Veron 2019), demonstrating the wave age
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dependency. Moreover, it is unsurprising that the TKE production is intensified behind the wave crest
in a slow wave, the same as that of stationary wavy wall turbulence. Studies, through evaluating the
TKE production profiles, suggest that the same trend can be found for both slow and fast wave regimes
(Smedman et al. 1999): it is positive at all heights, reaches a peak near the wave surface and decreases
vertically, agreeing basically with that of turbulent shear flow over a flat wall (Mansour, Kim & Moin
1988; Antonia et al. 1992). This indicates the energy transfer from wave-coherent shear to turbulence. It
is known that the TKE production results from the interaction between different components of the work
done by the turbulent stress on the velocity gradient. Therefore, further evaluation of these components
should be conducted to physically reveal the TKE production mechanism.

The complexity of wind–wave energy transfer lies in the additional conservation equation of wave-
induced kinetic energy (WKE), which describes the energy balance of wave-induced motion. In
wind–wave interactions, the WKE production is vital in determining the energy transfer between wave-
coherent and wave-induced motions. Hara & Sullivan (2015) pointed out that the WKE production
cannot be ignored, although it is less than the TKE production, indicating the critical role of the WKE
production in wind waves. It is also revealed that the WKE production is confined to the region near
the surface wave (Rutgersson & Sullivan 2005; Hara & Sullivan 2015), mainly within the wave bound-
ary layer (WBL). Yousefi et al. (2021) recently conducted experiments investigating the energy transfer
above wind-generated waves and evaluated the WKE production in detail. They pointed out that the
WKE production showed inverse features above and below theWBL, indicating different energy transfer
mechanisms. It is inferred that the WKE or WKE production depends on wave age, as the wave-induced
motion is strengthened with the increase of wave age. Due to the wave orbital velocity-induced motion,
the WKE production is composed of the work done by wave-induced stress on the velocity gradient.
However, how these components interact to determine the production of WKE under different wave
regimes remains unclear.

Despite the production term, the WKE budget attaches a term depicting the wave–turbulence
exchange, which also appears in the TKE budget. This term is characterized by the interaction between
turbulent stress and wave-induced shear (Reynolds & Hussain 1972; Hara & Belcher 2004; Yousefi
et al. 2021). Makin & Kudryavtsev (1999) pointed out that the TKE production consists of two sources:
mean motion and wave-induced motion, with the latter presenting the wave–turbulence exchange. This
indicates that the wave–turbulence exchange cannot be ignored when evaluating the macro-TKE pro-
duction. Generally, the wave–turbulence exchange for a slow mechanically generated wave is positive
above the height of kz ≈ 0.1 (where k is the wavenumber and z is the vertical coordinate), leading
to the energy transferred from wave to turbulence. However, according to the numerical results, Rut-
gersson & Sullivan (2005) found that, for a slow wave, the transport of wave–turbulence exchange is
mainly in the opposite direction above the height of kz ≈ 0.1, from turbulence to wave perturbation.
They attributed the difference to the effect of the Reynolds number. The recent experimental results by
Yousefi et al. (2021) suggest that the energy transfer between wave and turbulence shows an alternated
positive–negative pattern along the wave; energy is transferred from turbulence to wave upwind of the
wave crests and fromwave to turbulence downwind. They also pointed out that a small amount of energy
flows from turbulence to wave within the thin region above the wave. Notably, studies have put more
effort into the wave–turbulence exchange for slow waves due to the complex dynamics. However, the
fast wave-induced wave–turbulence exchanges still need further revelation.

It is worth noting that for wind–wave problems, a two-phase air–water flow model is the best way
to replicate the wind–wave boundary layer flow due to the strong wind–wave coupling. However, these
kinds of investigations mainly focus on wave breaking, dissipation and wave growth (Chen et al. 1999;
Song & Sirviente 2004; Iafrati 2011; Deike, Popinet & Melville 2015; Wu & Deike 2021; Wu, Popinet
& Deike 2022) while paying little attention to the turbulent flow dynamics. To our knowledge, the one-
phase models were widely used in turbulent airflow over stationary wavy or prescribed moving wave
boundaries (Sullivan et al. 2000; Kihara et al. 2007; Yang & Shen 2010; Druzhinin et al. 2012; Sullivan,
McWilliams&Patton 2014; Sullivan et al. 2018;Cao&Shen 2021), providing deep insight into turbulent
structures and momentum transfer above wind waves. Because of the strong coupling of the wind–wave
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problem, whether a one-way coupling method, such as the turbulent flow over moving boundaries, is
suitable still needs to be clarified. In addition, the fast wave-induced momentum transfer mechanism and
detailed energy transfer, including the TKE, WKE and wave–turbulence exchange between wind and
waves under different wave regimes, need further revelation. Based on these motivations, the present
paper simplifies wind waves as turbulent flow over a prescribing moving wave boundary concerning
the momentum and energy transfers in the wind–wave interaction for different wave ages. The rest of
the paper is structured as follows. Section 2 describes the mathematical formulation of the problem
and numerical method. The momentum flux budget and Reynolds shear stress (RSS) production are
presented in § 3. Section 4 shows the energy transfer in wind–wave interactions. The main conclusions
are then summarized in § 5. For brevity and clarity, the derivations of the kinetic energy budgets and
some verifications and discussions are included in the supplementary material available at https://doi.
org/10.1017/flo.2024.22.

2. Mathematical formulation and numerical method

The present study simplifies the surface wave as a moving wave boundary. A small-amplitude surface
wave propagating with phase velocity c can be expressed as

𝜂(x, z, t) = a cos(k(x − ct)), (2.1)

where a is the wave amplitude and k = 2𝜋/𝜆x denotes the wavenumber (𝜆x is the wavelength in the
direction of propagation). The turbulent flow above the propagating wave can be described through the
three-dimensional incompressible Navier–Stokes equations

𝜕ui

𝜕xi
= 0, (2.2)

𝜕ui

𝜕t
+ uj

𝜕ui

𝜕xj
= −

1
𝜌

𝜕p
𝜕xi

+ 𝜈
𝜕2ui

𝜕xj𝜕xj
+ 𝛱𝛿1i, (2.3)

where (x1, x2, x3) = (x, y, z) (with tensor notation i the ith component), respectively, denote the stream-
wise, spanwise and vertical coordinates, (u1, u2, u3) = (u, v,w) represent the corresponding velocity
components, and repeated indices are implicitly summed over. Here p is the pressure, 𝛱 is the external
force transformed as a pressure gradient driving the flow, 𝛿1i is the Kronecker delta with 𝛿11 = 1 and
𝛿12 = 𝛿13 = 0, 𝜈 is the kinematic viscosity and 𝜌 is the fluid density.

2.1. Mesh motion equation

The mesh motion equations are coupled to the conservation equations of fluid motion to simulate the
moving wavy boundary. It is assumed that the disturbance of the propagating wave on the whole field
decreases with the increase of the distance from the moving boundary, and the disturbance at infinity is
zero. Therefore, for the entire computational domain, the mesh motion can be described by the diffusion
equation governing the grid point displacement,

K
𝜕2Dw,j

𝜕xi𝜕xi
= 0, for j = 1, 2, 3, (2.4)

where (Dw,1, Dw,2, Dw,3) represent the displacement components for the wth grid point in the stream-
wise, spanwise and vertical directions, respectively. Here, K denotes the diffusive coefficient related to
the position of the grid point that can be defined by K = l−w, where l is the average distance from the
wall to every grid point, namely the inverse distance.
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2.2. The Navier–Stokes equations in a moving frame

The grid point displacement at the boundary can be determined according to (2.1). Hence, the dis-
placement of each grid point can be calculated by (2.4). The displacement vector for the wth grid
point is Dt+Δt

w,i − Dt
w,i from t to t + Δt, and the velocity vector of the moving grid point is thus

uw,i = (Dt+Δt
w,i − Dt

w,i)/Δt. The fluid motion coupled with the mesh motion can be described by the
Navier–Stokes equations in a moving frame:

𝜕 (ui − uw,i)

𝜕xi
= 0, (2.5)

𝜕ui

𝜕t

����
𝜍

+ (uj − uw,j)
𝜕ui

𝜕xj
= −

1
𝜌

𝜕p
𝜕xi

+ 𝜈
𝜕2ui

𝜕xj𝜕xj
+ 𝛱𝛿1i. (2.6)

Compared with the equations in the stationary coordinate frame, the mesh motion would introduce the
time change rate of the velocity in the new coordinate frame 𝜍 , which is independent of the Lagrangian
and Eulerian coordinate systems. The mesh motion also introduces the velocity vector of the moving
coordinate frame uw = (uw,1, uw,2, uw,3) in the mass conservation equation and the nonlinear terms of
the momentum conservation equations.

The integral conservation equation of a general tensorial property 𝜓 on a control volume V bounded
by a closed surface S with arbitrary motion is

d
dt

∫
V
𝜌𝜓 dV +

∮
S
𝜌n · (u − uw)𝜓 dS = −

∮
S
𝜌n · q𝜓 dS +

∫
V

S𝜓 dV , (2.7)

where u is the fluid velocity, uw is the velocity vector of the control volume, q𝜓 denotes the volume
source, S𝜓 is the surface source and n is the unit normal vector pointing outward on the boundary
surface of a grid (Jasak & Tuković 2006). Replacing 𝜓 with the fluid velocity vector u can lead to the
integral conservation momentum equations under the moving coordinate frame,

d
dt

∫
V
𝜌u dV +

∮
S
𝜌n · (u − uw)u dS = −

∮
S
𝜌n · qu dS +

∫
V

Su dV . (2.8)

The second-order finite volume discretization of (2.8) for a structural grid, achieved using the midpoint
rule, can convert the surface integral into the sum of area parts. After discretization, the momentum
equations can be expressed as

(𝜌PuPVP)
t+Δt − (𝜌PuPVP)

t

Δt
+
∑

f
𝜌f (F − FS)uf = −

∑
f

Sf · 𝜌qu + SuVP, (2.9)

where the subscriptP denotes the grid point, f the face value,VP the grid volume,F = Sf ·uf the fluid flux
with Sf = nSf , and the mesh motion flux is FS. As described in (2.9), the introduced time change rate for
the time term is converted to the mesh motion flux, which should meet the need for space conservation,

d
dt

∫
V
dV −

∮
S

n · uw dS = 0. (2.10)

Equation (2.10) should be satisfied for every time step, with its discretizing form expressed as

Vt+Δt
P − Vt

P
Δt

−
∑

f
FS = 0. (2.11)

It is noted that the mesh motion flux FS is determined by the volume swept by the moving surface f
during the current time step, not by the mesh velocity uw.
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The present paper uses the finite volume method to solve the governing equations. The Open-
FOAM (open field operation and manipulation) solver is used to accomplish the simulation. It is noted
that we here directly solve the full Navier–Stokes equations without a turbulent model, which can be
regarded as an approximation of direct numerical simulation (DNS), termed the quasi-DNS. The DNS
requires fine mesh, resolving the Kolmogorov scale. However, quasi-DNS loosens this constraint, as
verified by Komen et al. (2017) (figures 3 and 5 in their paper). Therefore, to accomplish the simulation
accurately, we use a relatively fine mesh (discussed in the supplementary material for grid conver-
gence). In the current solver, the convection terms in the momentum equations are spatially discretized
by the second-order upwind difference scheme, and the second-order backward implicit scheme is
adopted for time stepping. The finite volume method based on the standard pressure velocity coupling
method and PIMPLE algorithm is a variant of the PISO (pressure-implicit with splitting of operators)
method to solve the governing equations. The PIMPLE algorithm combines the SIMPLE (semi-implicit
method for pressure-linked equations) strategy and the PISO algorithm and regards each time step as
a steady-state flow (Gatin et al. 2017; Gimenez et al. 2019). The standard PISO algorithm is used
for the last step when the solution is obtained according to the steady-state algorithm to a certain
extent.

2.3. Simulation configuration

The turbulent flow over a propagating wave is simplified as channel flow with a translating wavy
bottom, driven by the external force transformed as a pressure gradient to ensure the fixed bulk velocity
U0 =

∬
U dx dz/

∬
dx dz, where U is the instantaneous velocity, which is the same as the numerical

study by Åkervik & Vartdal (2019). The Reynolds number based on the bulk velocity and wavelength is
Re = U0𝜆x/𝜈 ≈ 7300 to provide fully developed turbulence. The corresponding wave friction Reynolds
numbers Re𝜏 = u𝜏𝜆x/𝜈 are shown in table 1. In the wind–wave turbulent boundary layer flow, the
wave slope and wave age determine the dynamics of wind–wave interactions. The former is defined
by the ratio of amplitude a to the wavelength 𝜆x (or the product of amplitude a and wavenumber
k). It is noted that the present paper considers the Airy waves with the phase speed c, as described
in (2.1). The Airy wave is the linear water wave solution and requires a small wave slope (Yang
& Shen 2010). The wave slope in the present study is thus ak = 0.1, 0.13, 0.15, 0.20, 0.25. Three
regimes of wind–wave conditions are considered: slow (c/u𝜏 = 2.01, 3.28, 3.43, 3.69); intermediate
(c/u𝜏 = 16.36, 16.77, 17.25); and fast (c/u𝜏 = 35.80, 42.83, 58.93, 63.65) waves. The size of the
computational domain is (x, y, z) = (2𝜆x, 𝜆x, 0.5𝜆x), which is verified to be large enough (see the sup-
plementary material). The grid points are evenly spaced in both streamwise and spanwise directions.
In the vertical direction, the grid points are clustered at the wavy wall boundary through exponential
transformation to enhance the accuracy for the boundary layer, in which the first layer of the grid
meets the need of Δ𝜁+w < 1, where + denotes the normalization scaled by viscous unit, namely Δ𝜁+w =
Δ𝜁wu𝜏/𝜈. Here, we used wave-following curvilinear coordinate (𝜉, 𝜁) = (x, (z − 𝜂)/H) to show the
dimensionless grid scales, where 𝜂 is the wave elevation and H denotes the height of the physical
domain (Yang & Shen 2017; Cao, Deng & Shen 2020). The high grid resolution (HGR) and super
high grid resolution (SHGR) cases are used for grid convergence, and cases S4 and S5 are used
to compare with the numerical results by Yang & Shen (2010, 2017), discussed in the supplemen-
tary material. The total number of grid points for case SHGR is Nx × Ny × Nz = 401 × 201 × 151,
while the other cases use Nx × Ny × Nz = 251 × 126 × 76, with the dimensionless grid scale being
shown in table 1. It is seen that the grid scale reaches a quasi-DNS (Komen et al. 2017) but cannot
reach the Kolmogorov scale. Still, the grid convergence in the supplementary material demonstrates
the suitability of the chosen grid scale. The periodic conditions are applied along the streamwise and
spanwise directions. The propagating wave boundary is applied to the bottom wall, while the upper
wall is set to be a slip wall. After the full development of the turbulent flow, the statistical averaging
begins.
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Table 1. Parameter settings. The HGR and SHGR cases are used for the verification of grid convergence.
The present study considers five wave slopes: ak = 0.1, 0.13, 0.15, 0.2, 0.25. The cases are divided into
slow wave (S1–S5), intermediate wave (I1–I3) and fast wave (F1–F4).

Case ak c/u𝜏 (Δ𝜉+,Δy+,Δ𝜁+w) Re𝜏

HGR 0.13 2.37 (4.45, 4.45, 0.55) 557
SHGR 0.13 2.37 (2.78, 2.78, 0.55) 557
S1 0.13 3.69 (4.45, 4.45, 0.55) 557
S2 0.15 3.43 (4.79, 4.79, 0.59) 600
S3 0.20 3.28 (5.01, 5.01, 0.63) 627
S4 0.25 2.01 (5.63, 5.63, 0.70) 704
S5 0.10 2.01 (3.78, 3.78, 0.47) 473
I1 0.13 17.25 (3.37, 3.37, 0.42) 422
I2 0.15 16.36 (3.33, 3.33, 0.42) 417
I3 0.20 16.77 (3.25, 3.25, 0.41) 407
F1 0.13 35.80 (2.03, 2.03, 0.25) 254
F2 0.15 42.83 (1.70, 1.70, 0.21) 212
F3 0.20 58.93 (1.17, 1.17, 0.15) 147
F4 0.20 63.65 (1.03, 1.03, 0.13) 129

2.4. Phase-averaging decomposition

To separate the effects ofwavemotion and turbulentmotion,we use the phase-averagingmethod to obtain
the disturbance feature caused by the waves, which had been widely used in previous investigations
of wind waves (Sullivan et al. 2000; Kihara et al. 2007; Yang & Shen 2010, 2017; Yousefi et al.
2020a, 2021; Wu et al. 2022). The instantaneous quantity can be decomposed into phase-averaging
and fluctuating components, and the phase-averaging quantity (also called the wave-coherent quantity)
can further be decomposed into ensemble-averaged and wave-induced quantities. The wave-induced
quantity represents the disturbance of waves to the above macroscopic flow. Hence, the instantaneous
quantity can be decomposed into three parts (triple decomposition):

fi(x, z, t) = 〈 fi(𝜑, z)〉 + f ′i (x, z, t) = fi(z) + f̃i(𝜑, z) + f ′i (x, z, t), (2.12)

〈 fi(𝜑, z)〉 = lim
N→∞

1
N

N−1∑
n=0

fi(𝜑 + 2n𝜋, z), (2.13)

fi (z) = lim
M→∞

1
M

M−1∑
m=0

〈
fi
(
𝜑 +

2𝜋m
M

, z
)〉

. (2.14)

Here f̃i (𝜑, z) is the wave-induced quantity, determined by the difference between the phase-averaging
quantity 〈 fi (𝜑, z)〉 and the ensemble-averaged quantity fi(z), and f ′i (x, z, t) represents the turbulent fluc-
tuation. It is worth noting that the present study only considers the single wave. The triple decomposition
is a suitable way to separate the flow fields. In the real marine environment, the broad-banded wave
fields are common, which means the failure of this decomposition. Hristov, Friehe & Miller (1998)
pointed out that the waves in the open ocean are continuously spread throughout spectral scales. Tak-
ing a period of the most energetic (peak) mode in the wave spectrum as the characterized period and
conducting phase-averaging leads to a strong attenuation due to the destructive interference of multiple
modes. They proposed a novel approach, employing an eikonal-like representation of the wave field
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based on the concept of an analytic signal and the Hilbert transform to identify the wave-coherent com-
ponent. For monochromatic signals of wave profiles, the results filtered by this method are equivalent
to those obtained by phase-averaging.

2.5. Verification of the numerical model

To verify the numerical model, figure 1 shows the comparisons of momentum statistics with the
experimental results by Yousefi et al. (2020a, b) and numerical results by Yang & Shen (2010, 2017).
All quantities are scaled by the friction velocity. We have used the friction velocity determined by
extrapolating the ensemble-averaged RSS from the outer layer based on the physical essence of the
friction velocity. The downward shifted logarithmic and linear laws comparedwith the flat-wall boundary
layer flow (FWBL) in figure 1(a) agree well with the experimental and other simulation results. In the
supplementarymaterial, we also compare the results of channel flowwith the direct numerical simulation
results by Lee &Moser (2015, 2018). Figure 1(b) shows the balance of momentum flux for case S1. The
RSS and wave-induced shear stress (WSS) trends agree qualitatively with Åkervik & Vartdal (2019)
(pressure-driven turbulent flow), although the wave friction Reynolds number (Re𝜏 = 557) for case
S1 is different from that in Åkervik & Vartdal (2019) (Re𝜏 = 200, 260, 395, 950). It is noted that
the Reynolds number is an essential parameter for the scenarios of wind–wave interactions. Åkervik
& Vartdal (2019) provides insights into the friction Reynolds number effect, which covers a range of
wave ages and Reynolds numbers, that the budget of momentum flux shows similar pattern for low- and
high-friction Reynolds numbers for different wave ages. In fact, the wave age can be written as a ratio of
Reynolds number, namely c/u𝜏 = 2𝜋(c/k𝜈)(𝜈/u𝜏𝜆x) = 2𝜋(Rew/Re𝜏), where Rew is the wave Reynolds
number. Since the present results are normalized by the friction velocity, we do not pay much attention
to the friction Reynolds number effect. It is also found that the viscous shear stress (VSS) agrees well
with Yousefi et al. (2020b). Figure 1(c) indicates a slight discrepancy compared with experimental
results, which is attributed to the different coordinate frame, as reported in figure 13 by Yousefi et al.
(2020a). Figure 1(d) shows consistency with the numerical results by Yang & Shen (2010). It is noted
that Yang & Shen (2010) considered the stress-driven turbulent Couette flow over a progressive surface
wave train, which differs from the pressure-driven turbulent flow in the current study. Therefore, the
RSS is close to the wall stress of the upper plane, whereas the present RSS is nearly reduced to zero.
Still, the RSS variation in the near wave region is approximately consistent for both cases. Furthermore,
we plot the RSS and VSS along the wave propagation direction at the same height as Yang & Shen
(2010) and Yousefi et al. (2020a) (the RSS locates at the height 𝜁/𝜆x ≈ 0.1, and the VSS is obtained by
averaging stress measurements between 284 and 664 µm above the air–water interface corresponding
to the region of 𝜁+ ≈ 3.38–7.5 in the present study), as shown in figure 1(e, f ). We see both RSS
and VSS basically agree with the previous investigations. It is noted that we use a common method
to determine the friction velocity adopted in previous studies (Hamed et al. 2015; Bopp 2018), that
the total wind stress can be determined by extrapolating turbulent stress from the outer layer since
it matches the sum of turbulent, wave-coherent and viscous stress in that region. To address this, we
simulated additional slow wave cases to highlight the wind stress partition. Figure 2 shows the form
drag and viscous stress normalized by 𝜌u2𝜏 , where u𝜏 is determined by this method. For comparison,
the data from many previous studies are also plotted (Banner 1990; Banner & Peirson 1998; Sullivan
et al. 2000; Caulliez et al. 2008; Peirson & Garcia 2008; Savelyev 2009; Grare et al. 2013b; Peirson
et al. 2014; Bopp 2018; Sullivan et al. 2018; Buckley et al. 2020; Funke et al. 2021). Figure 2 suggests
that the mean form drags fall within the region overlapping with findings from Peirson et al. (2014)
and Funke et al. (2021). The viscous stress also falls into the region very close to that observed in
previous studies. Moreover, it approaches the dashed line determined by subtracting form drag from
the total wind stress. Therefore, the extrapolating RSS from the outer layer to the surface waves can be
a viable approach for calculating total wind stress. By evaluating these turbulent high-order statistics,
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Figure 1. Comparisons of the momentum statistics between the present study and other numerical
and experimental results: EXP, experimental results by Yousefi et al. (2020a) and Yousefi, Veron &
Buckley (2020b) for ak = 0.13 and c/u𝜏 = 3.69; DNS1, numerical results by Yang & Shen (2017) for
ak = 0.25 and c/u𝜏 = 2; DNS2, numerical results by Yang & Shen (2010) for ak = 0.1 and c/u𝜏 = 2.
(a) Velocity profiles (the law of flat wall boundary layer flow is also shown by the black doubled dotted
dashed line). (b) Vertical profiles of the shear stress (momentum flux) components (the dashed line
denotes the extrapolation of RSS from the outer layer). Comparisons of RSS and WSS with (c) EXP
and (d) DNS results. The discrepancy with EXP is ascribed to the different coordinate frames (it can
be seen in figure 13 of Yousefi et al. (2020a)). (e) The comparison of RSS with DNS2 along the wave
propagation direction, located at the height 𝜁/𝜆x ≈ 0.1. ( f) The comparison of VSS with EXP along the
wave propagation direction.

form drag and viscous stress, it is inferred that the present numerical model can provide rational and
reliable data.

3. Momentum transfer and RSS production

Figure 3 shows the budgets of momentum flux for cases S1, I1 and F1, along with the extrapolation
of RSS profiles from the outer layer. As the wave age increases, the RSS decreases, whereas the WSS
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Figure 2. (a) Mean form drag and (b) viscous stress. The data from previous studies are also plotted
(Banner 1990; Banner & Peirson 1998; Sullivan et al. 2000; Caulliez, Makin & Kudryavtsev 2008;
Peirson & Garcia 2008; Savelyev 2009; Grare et al. 2013b; Peirson, Walker & Banner 2014; Bopp
2018; Sullivan et al. 2018; Buckley, Veron & Yousefi 2020; Funke et al. 2021).

transitions from negative to slightly positive values and eventually becomes strongly positive. This
transition is highly related to the wave vertical motion (see the supplementary material). The turbulent
flow over slow waves shares in common with the stationary two-dimensional wavy wall turbulence.
Using the dispersive shear stress filtered by double-averaging (spatial and temporal averaging) in rough
wall turbulence for reference, we can see some similarities, that the negativeWSS in figure 3(a) suggests
a form effect, approximately equivalent to the effect of dispersive shear stress in studies of rough wall
turbulence. It is noted that Dey et al. (2020) considered the flow over two-dimensional dunes, which
is relatively like the present wavy surface. We observe a same trend of dispersive shear stress as the
present slow WSS. However, as the wave propagates quickly, the wave motion can provide enough
perturbation to disturb the upper turbulent flow. The WSS becomes positive to achieve the momentum
transfer from wave to wind. Therefore, we infer that from slow to fast waves, the transition from form
effect to motion effect dominates the variation of WSS. The VSS also intensifies in cases with high
wave age and dominates within the region of 𝜁+ < 10. The variation of momentum flux demonstrates
that fast waves degenerate RSS, with strengthened WSS and VSS balancing this deficit.
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Figure 3. Budgets of the shear stress, including the RSS, WSS and VSS (the dashed lines denote the
extrapolation of the RSS profiles from the outer layer). Here (a) S1 with ak = 0.13 and c/u𝜏 = 3.69;
(b) I1 with ak = 0.13 and c/u𝜏 = 17.25; (c) F1 with ak = 0.13 and c/u𝜏 = 35.80.

Furthermore, we discuss how the RSS is produced. The RSS production is written as (see the
supplementary material)

P13 = −〈u′u′〉
𝜕〈w〉
𝜕x︸����������︷︷����������︸

R1131

−〈u′w′〉
𝜕〈w〉
𝜕z︸�����������︷︷�����������︸

R1333

−〈u′w′〉
𝜕〈u〉
𝜕x︸����������︷︷����������︸

R1311

−〈w′w′〉
𝜕〈u〉
𝜕z︸�����������︷︷�����������︸

R3313

, (3.1)

where R1131 denotes the streamwise Reynolds normal stress (SRNS) performing work on the streamwise
gradient of vertical velocity, R1333 (R1311) denotes the work done by RSS on the vertical gradient of
vertical velocity (streamwise gradient of streamwise velocity), and R3313 denotes the vertical Reynolds
normal stress (VRNS) performing work on the vertical gradient of streamwise velocity.

Figure 4 shows the contour ofP+
13 and its components scaled by u4𝜏/𝜈. It shows that as a primary factor,

R+
3313 contributes to the RSS production in case S1 in figure 4(a). In other words, the VRNS interacts

with the vertical gradient of the wave-coherent streamwise velocity to determine the RSS production in
a slow wave condition. For case I1, as shown in figure 4(b), both R+

1333 and R+
3313 negatively contribute to

the RSS production near the crest, whereas R+
1131 intensifies above the trough. As shown in figure 4(c),

fast waves further amplify this pattern.
Figure 5 shows the ensemble-averaged profiles of P̄+

13 and its components non-dimensionalized by
u4𝜏/𝜈. Figure 5(a) indicates that the terms related to the SRNS and RSS can be ignored for slow waves.
This is approximately equivalent to two-dimensional shear turbulence with a positive mean strain rate
since the RSS is produced via the interaction between VRNS and the vertical gradient of the streamwise
velocity. With the increase of wave age, as shown in figure 5(b), P̄+

13 is reduced and approximately
governed by the interaction between R̄+

1131, R̄+
1333 and R̄+

3313, with the strength of R̄+
1131 (favourable to the

RSS production) lower than the sum of R̄+
1333 and R̄+

3313 (both of which are against the RSS production).
However, a fast wave, as shown in figure 5(c), enhances the component R̄+

1131, thus leading to the rapid
transformation of P̄+

13 along the vertical direction. It is noted that the contour results in figure 4 do
not clearly reflect the contribution of these components especially for the intermediate and fast waves.
We attribute this to the ensemble-averaging conduction, which would eliminate some contributions of
positive R+

1131. Therefore, the contribution of R̄+
1131 is not much higher than that of R̄+

1333 and R̄+
3313.

It can be inferred that the RSS production for a slow wave exhibits similarities to two-dimensional
shear turbulencewith a positivemean strain rate. However, as thewave age increases, theRSS is produced
in a complex manner between SRNS, VRNS and RSS-related production terms. The intermediate wave
age can be regarded as a transition because R̄+

1131 cannot counteract R̄+
1333.
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Figure 4. The RSS production and its components for cases (a) S1 with ak = 0.13 and c/u𝜏 = 3.69;
(b) I1 with ak = 0.13 and c/u𝜏 = 17.25; (c) F1 with ak = 0.13 and c/u𝜏 = 35.80. The red dashed line is
the critical height. Here, R+
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of vertical velocity, R+

1333 (R+
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of vertical velocity (streamwise gradient of streamwise velocity) and R+
3313 is the contribution by VRNS

performing work on the vertical gradient of streamwise velocity.
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Figure 5. The profiles of RSS production and its components for cases (a) S1 with ak = 0.13 and
c/u𝜏 = 3.69; (b) I1 with ak = 0.13 and c/u𝜏 = 17.25; (c) F1 with ak = 0.13 and c/u𝜏 = 35.80. The
solid line denotes the total RSS production, the dashed line is the contribution of R̄+

1131, the dotted line
is the contribution of R̄+

1333, the dotted dashed line is the contribution of R̄+
1311, and the double-dotted

dashed line is the contribution of R̄+
3313.

4. Energy transfer in wind–wave interactions

4.1. Energy transfer between wave-coherent, and turbulent and wave-induced motions (TKE or
WKE production)

This section discusses the energy transfer between phase-averaged (wave-coherent), wave-induced and
turbulent motions.We here use the two-dimensional statistical field; consequently, Tt (denotes the energy
transfer between wave-coherent and turbulent motions) and Tw (denotes the energy transfer between
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wave-coherent and wave-induced motions) can be expanded as (see the supplementary material)

Tt = −〈u′u′〉
𝜕〈u〉
𝜕x︸����������︷︷����������︸

Tt,11

−〈u′w′〉
𝜕〈u〉
𝜕z

− 〈u′w′〉
𝜕〈w〉
𝜕x︸�������������������������������︷︷�������������������������������︸

Tt,13

−〈w′w′〉
𝜕〈w〉
𝜕z︸�����������︷︷�����������︸

Tt,33

, (4.1)

Tw = −ũũ
𝜕〈u〉
𝜕x︸�����︷︷�����︸

Tw,11

−ũw̃
𝜕〈u〉
𝜕z

− ũw̃
𝜕〈w〉
𝜕x︸���������������������︷︷���������������������︸

Tw,13

−w̃w̃
𝜕〈w〉
𝜕x︸������︷︷������︸

Tw,33

, (4.2)

where Tt,11 (Tt,13 or Tt,33) is TKE production through SRNS (RSS or VRNS) performing work on
the velocity gradient, and Tw,11 (Tw,13 or Tw,33) is WKE production through wave-induced streamwise
normal stress (WSS or wave-induced vertical normal stress) performing work on velocity gradient.

Figure 6 shows the total and components of TKE production caused by the interaction between
turbulent stresses and phase-averaged shear (also known as the energy transfer between wave-coherent
and turbulent motions), with all components normalized by u4𝜏/𝜈. A slow wave in figure 6(a) generates
locally enhanced turbulent production on the leeward side. Conversely, slightly negative production
occurs above the windward side, where acceleration induces a favourable pressure gradient, which
agrees well with Yousefi et al. (2021). However, an intermediate wave in figure 6(e) sharply decreases
this production on the leeward side while intensifying it on the windward side. A fast wave in figure 6(i)
further strengthens the turbulent production on the windward side but decreases it into a negative value
on the leeward side, which denotes turbulent consumption, where energy is transferred from turbulence
to wave-coherent motion.

For the wave ages considered in the present study, T+
t,11 and T+

t,13 dominate the total production.
Specifically, a negative (positive) T+

t,11 on the leeward (windward) side and a positive (negative) T+
t,13

on the leeward (windward) side can be observed across different wave regimes. It is noted that Yousefi
et al. (2021), by orthogonal curvilinear coordinate frame, showed that T+

t,13 is always positive. But our
simulation results agree with those of Hudson et al. (1996), Yang & Shen (2010, 2017) and Buckley
& Veron (2019) under the Cartesian coordinate frame. By adjusting the relative magnitude of T+

t,11
and T+

t,13, the waves determine whether turbulence is generated or consumed. In figure 6(a–c), T+
t,11

competes with T+
t,13, with T+

t,11 < T+
t,13 (T+

t,11 > T+
t,13) prevailing on the leeward (windward) side in a

slow wave. But when the wave becomes fast, as shown in figure 6( j,k), T+
t,11 is always stronger than

T+
t,13 on both sides. In other words, T+

t,13 negatively contributes to T+
t , with normal stress playing a

vital role in the energy transfer between wave-coherent and turbulent motions. The intermediate wave
in figure 6( f,g) can be regarded as the transitional condition, where the competition starts to change.
Overall, a fast wave enhances the streamwise Reynolds normal stress, the windward side’s negative RSS
and the velocity gradient, as shown in the supplementary material, to produce additional energy transfer
between wave-coherent and turbulent motions.

To further investigate the energy transfer between wave-coherent and wave-induced motions, we
present the contours of total and components of WKE production (non-dimensionalized by u4𝜏/𝜈)
in figure 7. The positive (negative) total WKE production T+

w denotes that the wave-induced motion
produces (disrupts) kinetic energy. Figure 7(a) shows that wave-induced motion generates (disrupts)
kinetic energy on the windward (leeward) side for a slow wave. However, the rising wave age in
figure 7(e,i) results in a relatively symmetrical distribution and strengthened WKE production.

The components of WKE production in figure 7 reveal an intriguing energy production mechanism.
A slow wave leads to a typical interaction between T+

w,11 and T+
w,13, as shown in figure 7(b,c), where

T+
w is determined through the near wave’s WSS and the upper wave-induced streamwise normal stress,

with the rare T+
w,33 contribution in figure 7(d). This agrees with Yousefi et al. (2021), who found that

T+
w,11 and T+

w,13 contribute to the total wave production for high winds (corresponding to slow waves).
Nevertheless, a fast wave transforms another interaction mechanism shown in figure 7( j–l): both T+

w,13
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Figure 6. Energy transfer between wave-coherent and turbulent motions. The total and components
of TKE production (T+

t , T+
t,11, T

+
t,13, T

+
t,33) are plotted for (a–d) slow wave (S1 with ak = 0.13 and

c/u𝜏 = 3.69), (e–h) intermediate wave (I1 with ak = 0.13 and c/u𝜏 = 17.25) and (i–l) fast wave
(F1 with ak = 0.13 and c/u𝜏 = 35.80). The red dashed line is the critical height.

and T+
w,33 contribute to WKE production. Similarly, the intermediate wave in figure 7( f–h) is treated as

the transitional condition, where this interaction mechanism starts to change.

4.2. Energy transfer between turbulence and waves (wave–turbulence exchange)

As described in the supplementary material, Wt represents the energy transfer between wave and
turbulence (Reynolds & Hussain 1972; Hara & Belcher 2004; Yousefi et al. 2021), which means
waves produce or disrupt the TKE, called wave–turbulence exchange. While Ww denotes the WKE
transportation, indicating the wave motion generated by the wave-induced shear. As emphasized by
Yousefi et al. (2021), W̄w redistributes wave-induced motions. It can be incorporated into the transport
term of the kinetic energy density of the wave-induced flow. Some previous studies suggest that W̄w is
negligible compared with other transport terms (Makin & Kudryavtsev 1999; Hara & Belcher 2004;
Hara & Sullivan 2015). Therefore, we only show Wt here and the WKE transportation Ww is discussed
in the supplementary material. Following § 4.1 and expanding Wt as

Wt = −〈u′u′〉
𝜕ũ
𝜕x︸�������︷︷�������︸

Wt,11

−〈u′w′〉
𝜕ũ
𝜕z

− 〈u′w′〉
𝜕w̃
𝜕x︸�������������������������︷︷�������������������������︸

Wt,13

−〈w′w′〉
𝜕w̃
𝜕z︸���������︷︷���������︸

Wt,33

, (4.3)

where Wt,11 (Wt,13 or Wt,33) is wave–turbulence exchange through SRNS (RSS or VRNS) performing
work on the wave-induced velocity gradient.
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Figure 7. Energy transfer between wave-coherent and wave-induced motions. The total and components
of WKE production (T+

w, T+
w,11, T

+
w,13, T

+
w,33) are plotted for (a–d) slow wave (S1 with ak = 0.13 and

c/u𝜏 = 3.69), (e–h) intermediate wave (I1 with ak = 0.13 and c/u𝜏 = 17.25), and (i–l) fast wave
(F1 with ak = 0.13 and c/u𝜏 = 35.80). The red dashed line is the critical height.

Figure 8 shows W+
t and its components rescaled by u4𝜏/𝜈. A positive value represents that the energy

is transferred from waves to turbulence, whereas a negative value means the other way around. It is
typical for all wave regimes that waves inject (extract) energy into (from) turbulence on the windward
(leeward) side, as shown in figure 8(a,e,i). Notably, the enhanced positive W+

t on the windward side for
a slow wave extends downstream, resulting from the combination of turbulent stress and wave-induced
strain rate. Figure 8(a–d) present that a slow wave determines W+

t primarily through W+
t,11 and W+

t,13.
However, as the wave age increases in figures 8(e–h) and 8(i–l), W+

t is mainly governed by W+
t,11. This

arises due to the strengthening of SRNS and wave-induced velocity gradient by a fast wave (see the
supplementary material), thus facilitating wave–turbulence exchange.

4.3. Correlation between energy transfer and wave regimes

We further correlate the energy transfer with the wave regimes. Firstly, the averaging of W+
t leads to

W̄+
t = −〈u′

i u
′
j〉S̃ĳ

+

= −ũ′
i u

′
j S̃ĳ

+

and T̄+
t = M̄+

t +W̄+
t (detailed information can be seen in the supplementary

material), which means the energy transferred into turbulence can be divided into ensemble-averaged
and wave-induced parts. Similarly, T̄+

w = M̄+
w + W̄+

w denotes that the energy transferred into wave motion
includes the terms of ensemble-averaged production and transportation.

We integrated the profiles of M̄+
t , M̄+

w and W̄+
t along the vertical direction to obtain the local-

averaged energy transfer. We also defined the total energy as TE = M̄+
t + M̄+

w + W̄+
t . The normalized

energy components can be expressed as Lt
M =

∫
M̄+

t d𝜁/
∫

TE d𝜁 , Lw
M =

∫
M̄+

w d𝜁/
∫

TE d𝜁 and
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Figure 8. Energy transfer between turbulence and waves (wave–turbulence exchange). The total and
components (W+

t ,W+
t,11,W

+
t,13,W

+
t,33) are plotted for (a–d) slow wave (S1 with ak = 0.13 and c/u𝜏 =

3.69), (e–h) intermediate wave (I1 with ak = 0.13 and c/u𝜏 = 17.25) and (i–l) fast wave (F1 with
ak = 0.13 and c/u𝜏 = 35.80). The red dashed line is the critical height.

Lt
W =

∫
W̄+

t d𝜁/
∫

TE d𝜁 , respectively. Figure 9(a) shows the normalized energy components vary as a
function of the wave age. As the wave age increases, the normalized mean TKE production decreases,
while the normalized WKE production shows the reverse trend. The normalized wave–turbulence
exchange is slightly enhanced with the rising wave age. It is seen that the WKE production contributes
negatively to the total energy for the slow wave condition. This energy deficit is balanced through the
mean TKE production enhancement. However, an intermediate wave partitions the total energy into
nearly equal WKE and mean TKE productions, potentially demonstrating the intermediate wave age as
a transition, repartitioning kinetic energy. Then, the WKE contributes more to the total energy than the
mean TKE for a fast wave. Notably, the wave–turbulence exchange in the present study is positive and
thus can be added into the mean TKE production term and merged as total TKE production. We show
Lt

M + Lt
W and Lw

M in figure 9(b). A transitional variation of TKE and WKE productions at intermediate
wave age can be clearly observed.

4.4. Wave growth rate

Following Cao & Shen (2021), the wave-induced pressure can lead to a form drag on the wave surface.
This form drag would result in the growth of wave, usually characterized as wave growth rate parameter
𝛽, which is defined as

𝛽 =
2Fp

(ak)2
, where Fp =

∫ 𝜆x

0
p̃+

𝜕𝜂

𝜕x
dx. (4.4)
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Figure 9. (a) Normalized energy components. (b) Normalized total TKE (TKE produced by
wave-coherent and wave-induced motions) and WKE productions.
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Figure 10. Wave growth rate varying with the wave age.

Here the + denotes normalization by 𝜌u2𝜏 . Figure 10 shows the wave growth rate parameter 𝛽 varying
with wave age. For comparison, we plot some experimental and numerical results from Plant (1982),
Mastenbroek et al. (1996), Cohen (1997) and Cao & Shen (2021). It is seen that the wave growth rate
falls into the region overlapping with previous studies, which further verifies the present numerical
model. Moreover, a transition of 𝛽 from positive to negative can be found near the intermediate waves.

5. Concluding remarks

The present paper has investigated the turbulent flow over propagating waves with different wave ages
by solving the full Navier–Stokes equations in a moving coordinate frame. After carefully verifying the
numerical model, phase-averaging was conducted to extract the ensemble-averaged, wave-induced and
turbulent fields and then to emphasize the momentum and energy transfer mechanisms of wind waves.

The careful verification of the numerical model with previous experiments and numerical simulations
suggests that simplifyingwindwaves as turbulent flow overmoving boundaries is rational to some extent,
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even for strongly forced cases (strong coupling of wind waves or slow wave regimes). The dominant
mechanism of momentum flux and kinetic energy transfers is related to the wave age. We find that the
RSS and TKE productions for slow waves can be equivalent to the two-dimensional shear turbulence
with a positive strain rate. Aswave age increases, a fast wave, however, enhances the SRNS andwindward
side’s negative RSS, as well as the gradient of both streamwise and vertical velocities. This results in
additional productions of RSS and TKE that can be ignored under the slow wave regimes. Nevertheless,
these additional productions play a negative contribution, namely suppressing the turbulence. The
intermediate wave can be regarded as a transitional condition determining this change.

The energy transfers between wave-coherent, wave-induced and turbulent motions are complex.
Specifically, on the leeward side of a slow wave, kinetic energy is transferred from wave-induced to
wave-coherent motions and then to turbulence. Meanwhile, wave-coherent motion injects kinetic energy
into both wave-induced and turbulent motions on the windward side. For fast waves on the leeward side,
turbulence is consumed and transferred into wave-coherent kinetic energy, facilitating wave-induced
motion. On the windward side, wave-coherent motion transfers energy into turbulence and suppresses
wave-induced motion. The wave–turbulence exchange describes an energy transfer between wave-
induced and turbulent motions. Increasing wave age would immensely facilitate this exchange due to
the amplification of SRNS and gradient of wave-induced velocity.

The present study reveals in detail how kinetic energy transfers betweenwave-coherent, wave-induced
and turbulent motions, potentially conducive to predicting kinetic energy repartition at different wave
regimes. However, there remain some unresolved aspects. Since wind waves, especially for growing
conditions, are strong coupling processes, a two-phase air–water interface flow model is more suitable
for simulation, which should be constructed in future studies. Furthermore, it should be acknowledged
that the flow dynamics of wind–wave interactions is affected by the Reynolds number, which merits
further investigation in future work.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/flo.2024.22. Raw data are available
from the corresponding author (Z.W. and Q.Q.L.).
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