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Linear homeomorphisms of function spaces
and the position of a space in its
compactification
Mikołaj Krupski
Abstract. An old question of Arhangel’skii asks if the Menger property of a Tychonoff space X is pre-
served by homeomorphisms of the space Cp(X) of continuous real-valued functions on X endowed
with the pointwise topology. We provide affirmative answer in the case of linear homeomorphisms.
To this end, we develop a method of studying invariants of linear homeomorphisms of function
spaces Cp(X) by looking at the way X is positioned in its (Čech–Stone) compactification.

1 Introduction

The present paper is concerned mainly with two classical covering-type properties
of a topological space X, the Menger property and the Hurewicz property, and their
connections with the linear-topological structure of the space Cp(X) of continuous
real-valued functions on X equipped with the pointwise topology. All spaces under
consideration are assumed to be Tychonoff.

An old question of Arhangel’skii (cf. [2, Problem II.2.8] or [24, Problem 4.2.12]) asks
if the Menger property1 of a space X is preserved by homeomorphisms of its function
space Cp(X). One of the main results of this paper is the following theorem, which
settles this question in the case of linear homeomorphisms.
Theorem 1.1 Suppose that Cp(X) and Cp(Y) are linearly homeomorphic. Then X is a
Menger space if and only if Y is a Menger space.

Let us recall that a topological space X is Menger (resp., Hurewicz) if for every
sequence (Un)n∈N of open covers of X, there is a sequence (Vn)n∈N such that for every
n, Vn is a finite subfamily of Un and the family ⋃n∈N Vn covers X (resp., every point
of X is contained in ⋃Vn for all but finitely many n’s). These classical notions go back
to early works of Witold Hurewicz and Karl Menger. Since then, they were studied by
many authors and found numerous applications (see [19] and the references therein).
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1There is inconsistency in the terminology that is used in the literature. What we (and most of the

modern authors) call the Menger property by some authors is called the Hurewicz property. In this
paper, by the Hurewicz property, we mean something else.
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2 M. Krupski

Clearly,

σ-compact ⇒ Hurewicz ⇒ Menger ⇒ Lindelöf.

It is known that no implication above is reversible. There has been a lot of work done
on the interplay between the linear topological structure of a function space Cp(X)
and topological properties of underlying space X; we refer the interested reader to the
monograph [24]. One of the major results in this area of research is the following deep
theorem of Velichko [28] (the theorem below was further generalized by Bouziad [7]
to arbitrary Lindelöf numbers).

Theorem 1.2 (Velichko) Suppose that Cp(X) and Cp(Y) are linearly homeomorphic.
Then X is Lindelöf if and only if Y is Lindelöf.

At the other extreme, it is relatively easy to show that σ-compactness of X is
determined by the linear-topological structure of the function space Cp(X) (see, e.g.,
[27, Theorem 6.9.1]) (actually more is true: σ-compactness of X can be characterized
by a certain topological property of Cp(X); see [15] or [2, Section III.2]). For the
Hurewicz property, the following theorem was proved by Zdomskyy [29, Corollary 7].

Theorem 1.3 (Zdomskyy) Suppose that Cp(X) and Cp(Y) are linearly homeomor-
phic. Then X is a Hurewicz space if and only if Y is a Hurewicz space.

Regarding the Menger property, analogous assertion is provided by our Theorem
1.1. Though, some partial results were known before. In [29], Zdomskyy showed that in
the linear case, the answer to Arhangel’skii’s question mentioned above, is affirmative
under an additional set-theoretic assumption u < g (see [29, Corollary 7]). More
recently, Sakai [18] gave a partial solution in ZFC2 (see [18, Theorem 2.5]).

In the proof of Theorem 1.1, Velichko’s Theorem 1.2 plays an important role. This is
because of the following observation essentially due to Telgársky (see [23, Proposition
2]; cf. [5, Proposition 8]).

Proposition 1.4 A space X is Menger if and only if X is Lindelöf and every separable
metrizable continuous image of X is Menger.

Analogous fact is also true for the Hurewicz property (see [11, Theorem 3.2]
or [5, Proposition 31]). A space X is called projectively Menger (resp., projectively
Hurewicz) provided every separable metrizable continuous image of X is Menger
(resp., Hurewicz). According to Theorem 1.2 and Proposition 1.4, Theorem 1.1 reduces
to the following result, which we prove in this paper.

Theorem 1.5 Suppose that Cp(X) and Cp(Y) are linearly homeomorphic. Then X is
projectively Menger if and only if Y is projectively Menger.

We also prove a similar theorem for the projective Hurewicz property.

Theorem 1.6 Suppose that Cp(X) and Cp(Y) are linearly homeomorphic. Then X is
projectively Hurewicz if and only if Y is projectively Hurewicz.

2The abbreviation ZFC stands for “Zermelo–Fraenkel set theory with the axiom of choice.”
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Linear homeomorphisms of function spaces 3

From Theorem 1.6, we immediately get Zdomskyy’s Theorem 1.3 as a corollary. The
above results answer questions asked in [18] by Sakai.

Our approach relies on the fact that the (projective) properties of Menger and
Hurewicz of a space X can be conveniently expressed in terms of the Čech–Stone
compactification βX of X. We develop a method of studying invariants of linear
homeomorphisms of function spaces Cp(X) by looking at the way X is positioned
in its Čech–Stone compactification.

2 Notation and auxiliary results

In this section, we collect some notation and auxiliary results that we shall use
throughout the paper.

2.1 Hyperspaces and set-valued maps

For a topological space X, byK(X), we denote the set of all nonempty compact subsets
of X. We endow K(X) with the Vietoris topology, i.e., the topology generated by basic
open sets of the form

⟨U⟩ = {K ∈K(X) ∶ ∀U ∈ U K ∩U ≠ ∅ and K ⊆ ⋃U},

where U = {U1 , . . . , Un} is a finite collection of open subsets of X.
For an integer n ≥ 1, we put [X]≤n = {K ∈K(X) ∶ ∣K∣ ≤ n} and [X]n =

[X]≤n/[X]≤n−1, i.e., [X]≤n ([X]n) is the subspace of K(X) consisting of all at
most (precisely) n-element subsets of X.

A set-valued map ϕ ∶ X →K(Y) is lower semi-continuous if the set

ϕ−1(U) = {x ∈ X ∶ ϕ(x) ∩U ≠ ∅}

is open, for every open U ⊆ Y .
Let us note the following simple fact.

Lemma 2.1 For a space X and a compact space Z, let ϕ ∶ X →K(Z) be a lower semi-
continuous map. If K is a compact Gδ-subset of Z, then the set ϕ−1(K) = {x ∈ X ∶ ϕ(x) ∩
K ≠ ∅} is Gδ in X.

Proof The set K is compact Gδ , so there is a sequence U1 , U2 , . . . of open subsets of
Z such that Un+1 ⊆ Un+1 ⊆ Un , for every n ≥ 1, and K = ⋂∞n=1 Un = ⋂∞n=1 Un . Since the
map ϕ is lower semi-continuous, it suffices to check that

ϕ−1(K) =
∞

⋂
n=1

ϕ−1(Un).

Pick x ∈ ⋂∞n=1 ϕ−1(Un), i.e., for every n ≥ 1, we have ϕ(x) ∩Un ≠ ∅. The map ϕ has
compact values and Z is compact. Hence, the intersection of the (decreasing) family
{ϕ(x) ∩Un ∶ n = 1, 2, . . .} of nonempty closed subsets of Z must be nonempty, i.e., we
have ϕ(x) ∩ ⋂∞n=1 Un = ϕ(x) ∩ K ≠ ∅. This gives x ∈ ϕ−1(K). The converse inclusion
is obvious. ∎
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If ϕ ∶ X →K(Y) is a set-valued map and A ⊆ X, then we define the image ϕ(A) of
A under ϕ as

ϕ(A) = ⋃{ϕ(x) ∶ x ∈ A}.

A subset S of Y that meets all values of ϕ ∶ X →K(Y) is called a section of ϕ. The
following theorem can be attributed to Bouziad (cf. [6, Theorem 6]).

Theorem 2.2 Suppose that X is a Gδ subspace of a compact space. If C is compact, then
every lower semi-continuous function ϕ ∶ C →K(X) admits a compact section.

Proof This is a direct consequence of [6, Theorem 2] and [8, Theorem 4.1]. ∎

2.2 The k-Porada game

Let us recall the description of a certain topological game that will be of great
importance in the proof of Theorem 1.1. The game defined below is so-called
k-modification (instead of points one considers compact sets) of a game introduced
in [17]. It was studied in [23] and, more recently, in [13]. Our terminology follows [23].
Let Z be a space, and let X ⊆ Z be a subspace of Z.

The k-Porada game on Z with values in X is a game with ω-many innings, played
alternately by two players: I and II. Player I begins the game and makes the first move
by choosing a pair (K0 , U0), where K0 ⊆ X is nonempty compact and U0 is an open
set in Z that contains K0. Player II responds by choosing an open (in Z) set V0 such
that K0 ⊆ V0 ⊆ U0. In the second round of the game, player I picks a pair (K1 , U1),
where K1 is a nonempty compact subset of V0 and U1 is an open subset of Z with K1 ⊆
U1 ⊆ V0. Player II responds by picking an open (in Z) set V1 such that K1 ⊆ V1 ⊆ U1.
The game continues in this way and stops after ω many rounds. Player II wins the
game if ∅ ≠ ⋂n∈N Un(= ⋂n∈N Vn) ⊆ X. Otherwise, player I wins.

The game described above is denoted by kP(Z , X).

2.3 Strategies

Denote by TY the collection of all nonempty open subsets of the space Y. A strat-
egy of player I in the game kP(Z , X) is a map σ defined inductively as follows:
σ(∅) ∈K(X) × TZ . If the strategy σ is defined for the first n moves, then an
n-tuple (V0 , V1 , . . . , Vn−1) ∈ Tn

Z is called admissible if K0 ⊆ V0 ⊆ U0 and K i ⊆ Vi ⊆
U i , and (K i , U i) = σ(V0 , . . . Vi−1) for i ∈ {1, . . . , n − 1}. For any admissible n-tuple
(V0 , . . . , Vn−1), we choose a pair (Kn , Un) ∈K(Vn−1) × TVn−1 with Kn ⊆ Un and we
set

σ(V0 , . . . , Vn−1) = (Kn , Un).

A strategy σ of player I in the game kP(Z , X) is called winning if player I wins
every run of the game kP(Z , X) in which she plays according to the strategy σ .

We will need the following simple, though a little technical lemma concerning the
game kP(Z , X).

Lemma 2.3 Suppose that X ⊆ Z where Z is compact. Assume that there is a countable
family {Fi ∶ i = 1, 2, . . .} consisting of compact subsets of Z and satisfying ⋃∞i=1 Fi ⊇ X.
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If σ is a winning strategy of player I in the game kP(Z , Z/X), then for every k ∈ N and
every admissible tuple (V0 , . . . , Vk), there exists m > k and open sets Vk+1 , . . . , Vm such
that the tuple (V0 , . . . , Vm) is admissible and σ(V0 , . . . , Vm) = (Km+1 , Um+1) satisfies
Km+1 ∩⋃∞i=1 Fi ≠ ∅.

Proof Striving for a contradiction, suppose that for some admissible (k + 1)-tuple
(V0 , . . . , Vk), we have

For every m > k, if (V0 , . . . , Vk , . . . , Vm) is admissible and
σ(V0 , . . . , Vm) = (Km+1 , Um+1), then Km+1 ∩⋃{Fi ∶ i ≥ 1} = ∅.(*)

We recursively define sets Vm , for m > k, as follows: If the sets V0 , . . . , Vm−1 are
already defined in such a way that the tuple (V0 , . . . , Vm−1) is admissible, we consider
the pair (Km , Um) = σ(V0 , . . . , Vm−1). Let

V ′m = Um ∩ (Z/F(m−k)).

By (*), Km ⊆ V ′m . Let Vm be an open set in Z satisfying

Km ⊆ Vm ⊆ Vm ⊆ V ′m .

It is clear that the tuple (V0 , . . . , Vm) is admissible and we can proceed with our
recursive construction.

In this way, we define a play in the game kP(Z , Z/X) in which player I applies her
strategy and fails. Indeed, we have ⋂∞m=0 Vm ≠ ∅, because Vm+1 ⊆ Vm+1 ⊆ Vm ⊆ Z and
Z is compact. Moreover, X ∩⋂∞m=0 Vm = ∅, because Vk+i ∩ Fi = ∅ and X ⊆ ⋃∞i=1 Fi .

∎
From the previous lemma, we can easily deduce the following proposition.

Proposition 2.4 Suppose that X ⊆ Z where Z is compact. Assume that there is a
countable family {Fi ∶ i = 1, 2, . . .} consisting of compact subsets of Z and satisfying
⋃∞i=1 Fi ⊇ X.

If player I has a winning strategy in the game kP(Z , Z/X), then player I has a winning
strategy σ ′ in this game such that every compact set played by player I according to the
strategy σ ′, meets ⋃∞i=1 Fi .

Proof Let σ be an arbitrary winning strategy of player I in the game kP(Z , Z/X). We
will define a strategy σ ′ recursively. Consider (K0 , U0) = σ(∅). Let V0 be an arbitrary
open set in Z such that K0 ⊆ V0 ⊆ U0. By Lemma 2.3, there is m0 and sets V1 , . . . , Vm0

such that the tuple (V0 , . . . , Vm0) is admissible and if σ(V0 , . . . , Vm0) = (Km0 , Um0),
then Km0 ∩⋃∞i=1 Fi ≠ ∅. We define

σ ′(∅) = (Km0 , Vm0).

If V 0 = Vm0+1 is an open set in Z with Km0 ⊆ V 0 ⊆ Um0 , then the tuple
(V0 , . . . , Vm0 , Vm0+1) is admissible for σ . Hence, by Lemma 2.3, there is m1 > m0 +
1 and sets Vm0+2 , . . . , Vm1 such that the tuple (V0 , . . . , Vm1) is admissible and if
σ(V0 , . . . , Vm1) = (Km1 , Um1), then Km1 ∩⋃∞i=1 Fi ≠ ∅. We define

σ ′(V 0) = (Km0 , Vm0)
and so on. ∎
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2.4 Position of a space in its compactification

It was already observed by Smirnov [21] that the Lindelöf property of a Tychonoff
space X can be conveniently characterized by the way X is placed in its compactifica-
tion bX of X (cf. [9, Problem 3.12.25]).

A similar characterization of the Hurewicz property were obtained by Just et al. [10]
(for the subsets of the real line), Banakh and Zdomskyy [4] (for separable metrizable
spaces), and Tall [22] (the general case). We have the following theorem (see [22,
Theorem 6]).

Theorem 2.5 For any Tychonoff space X, the following conditions are equivalent:
(1) X has the Hurewicz property.
(2) For every compactification bX of X and every σ-compact subset F of the remainder

bX/X, there exists a Gδ-subset G of bX such that F ⊆ G ⊆ bX/X.
(3) There exists a compactification bX of X such that for every σ-compact subset F of

the remainder bX/X, there exists a Gδ-subset G of bX such that F ⊆ G ⊆ bX/X.

Let X be a space, and let bX be a compactification of X. It was proved in [23] that
the k-Porada game on bX with values in bX/X, characterizes the Menger property of
X (cf. Remark 2.7). We have the following theorem.

Theorem 2.6 [23, Theorem 2] If X ⊆ Z, where Z is compact, then the following two
conditions are equivalent:
(1) X has the Menger property.
(2) Player I has no winning strategy in the k-Porada game kP(Z , Z/X).

Remark 2.7 It is perhaps worth mentioning here that Theorem 2 in [23] asserts
actually that the game kP(Z , Z/X) is equivalent to the Menger game. It is well known,
however (see, e.g., [20, Theorem 13] or [3, Theorem 2.32]), that a topological space X
is Menger if and only if player I has no winning strategy in the Menger game.

It was recently observed by Krupski and Kucharski [14] that one can obtain similar
characterizations for the projective properties of Hurewicz and Menger. As usual, by
βX, we denote the Čech–Stone compactification of X. A subset A of a topological
space Z is called zero-set if A = f −1(0) for some continuous function f ∶ Z → [0, 1].
Vedenissov’s lemma (see [9, Corollary 1.5.12]) asserts that if Z is a normal space (in
particular compact), then A is a zero-set if and only if A is closed Gδ-subset of Z.

The proof of the following assertion is quite easy to derive from Theorem 2.5.

Proposition 2.8 For any Tychonoff space X, the following conditions are equivalent:
(1) X is projectively Hurewicz.
(2) For every subset F of βX/X being a countable union of zero-sets in βX, there exists

a Gδ subset G of βX such that F ⊆ G ⊆ βX/X.

In order to formulate a respective result for the projective Menger property, we
need the following modification of the k-Porada game. Let Z be a compact space, and
let X ⊆ Z be a subspace of Z. The z-Porada game on Z with values in X (denoted by
zP(Z , X)) is played as kP(Z , X) with the only difference that compact sets played
by player II are required to be additionally zero-sets in Z. A strategy for player I in
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the game zP(Z , X) is defined analogously with obvious modifications. We have the
following proposition (see [14]).

Proposition 2.9 The following two conditions are equivalent:
(1) X has the projective Menger property.
(2) Player I has no winning strategy in the z-Porada game zP(βX , βX/X).

Let us also note the following simple fact.

Lemma 2.10 Let Z be a compact space. If L ⊆ G where L is compact and G is a Gδ-
subset of Z, then there exists a zero-set L′ such that L ⊆ L′ ⊆ G.

We omit the obvious proof of the above lemma.

3 The support map

Let φ ∶ Cp(X) → Cp(Y) be continuous and linear. For y ∈ Y , we define the support of y
with respect to φ as the set suppφ(y) of all x ∈ X satisfying the condition that for every
neighborhood U of x, there is f ∈ Cp(X) such that f [X/U] ⊆ {0} and φ( f )(y) ≠ 0
(see [1] and [27, Section 6.8]).

The following fact is well known (see [27, Lemmas 6.8.1 and 6.8.2]).

Lemma 3.1 Let φ ∶ Cp(X) → Cp(Y) be continuous and linear. Then:
(1) suppφ(y) a finite subset of X.
(2) If f ∈ Cp(X) satisfies f [suppφ(y)] ⊆ {0}, then φ( f )(y) = 0.
(3) If φ is surjective, then suppφ(y) ≠ ∅ for every y ∈ Y.
(4) The multivalued map y ↦ suppφ(y) is lower semi-continuous.

Let R = R ∪ {∞} be the one-point compactification of R, and let Z be a Tychonoff
space. For a function f ∈ Cp(Z), the function f̃ ∶ βZ → R is the continuous extension
of f over the Čech–Stone compactification βZ of Z (i.e., f̃ is continuous and f̃ ↾
Z = f ). Since the addition is not defined for all pairs of points in R, the sum of two
functions f̃ and g̃ may not be well defined. However, we have the following lemma.

Lemma 3.2 Let r1 , . . . , rn ∈ Cp(Z) be a finite collection of continuous functions, and
let z ∈ βZ. Let r = r1 +⋯+ rn . If for every i ≤ n, r̃ i(z) ∈ R, then r̃(z) = r̃1(z) +⋯ +
r̃n(z).

Proof For i ≤ n, define Wi = {x ∈ βZ ∶ ∣r̃ i(x) − r̃ i(z)∣ < 1}. Note that this set is well
defined because r̃ i(z) ∈ R. It is also open by continuity of r̃ i . The set W = ⋂n

i=1 Wi is an
open neighborhood of z in βZ, and for every x ∈ W , the quantity r̃1(x) +⋯ + r̃n(x)
is a well-defined real number. Thus, (r̃1 +⋯+ r̃n) ↾ W is a well-defined continuous
function on W. Since r(x) = r1(x) +⋯ + rn(x) for x ∈ Z and Z is dense in W, we
must have r̃(x) = r̃1(x) +⋯ + r̃n(x), for x ∈ W . In particular, r̃(z) = r̃1(z) +⋯ +
r̃n(z). ∎

It will be convenient to introduce the following definition.

Definition 3.1 Let φ ∶ Cp(X) → Cp(Y) be a linear continuous map, and let y ∈
Y . An open set U ⊆ βX is called y-effective if every function f ∈ Cp(X) such that
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f [X/U] ⊆ {0} satisfies φ̃( f )(y) = 0. An open set U ⊆ βX is called y-ineffective if it
is not y-effective.

For y ∈ βY , we set

sφ(y) = {x ∈ βX ∶ every open neighborhood of x is y-ineffective}.

Remark 3.3 We should point out that the idea of considering the set sφ(y) is not
new. The same concept (for spaces of bounded continuous functions) was used, e.g.,
by Valov in [25, 26].

Directly from the definition, we get the following.

Lemma 3.4 The set sφ(y) is closed in βX; hence, it is compact.

Lemma 3.5 If y ∈ Y, then sφ(y) = suppφ(y).

Proof The inclusion ⊇ is clear. Suppose that there is x ∈ sφ(y)/ suppφ(y). Since
suppφ(y) is finite (see Lemma 3.1), there is an open neighborhood U of x in
βX such that U ∩ suppφ(y) = ∅. Let f ∈ Cp(X) be such that f [X/U] ⊆ {0}. Then
f [suppφ(y)] ⊆ {0} and hence φ( f )(y) = 0, by Lemma 3.1. This means that U ∋ x is
y-effective, contradicting x ∈ sφ(y). ∎

Lemma 3.6 Let φ ∶ Cp(X) → Cp(Y) be a linear continuous map. Let y ∈ βY, and let
U be an open set in βX such that sφ(y) ⊆ U. If f ∈ Cp(X) satisfies f [U ∩ X] ⊆ {0},
then φ̃( f )(y) = 0.

Proof Fix f ∈ Cp(X) with f [U ∩ X] ⊆ {0}. We have sφ(y) ⊆ U , so if x ∈ βX/U ,
then there exists an open neighborhood Ux of x in βX which is y-effective. For each
x ∈ βX/U , let Vx be an open neighborhood of x in βX satisfying Vx ⊆ Vx ⊆ Ux . The
family {Vx ∶ x ∈ βX/U} covers the compact set βX/U . Let {Vx1 , . . . , Vxn} be its finite
subcover. Let

F = Vx1 ∪⋯∪ Vxn .

For i = 1, . . . , n, let g i ∶ βX → [0, 1] be a continuous function that satisfies

g i[Vx i ] = {1} and g i[βX/Ux i ] = {0}.

For i = 1, . . . , n, there exists a function f i ∈ Cp(βX) such that

f i(x) =
⎧⎪⎪⎨⎪⎪⎩

g i(x)
g1(x)+⋯+gn(x) , for x ∈ F ,
0, for x ∈ βX/(Ux1 ∪⋯∪Uxn).

Let h i = f ⋅ ( f i ↾ X) be the product of the functions f and f i ↾ X. The function h i has
the following property:

If x ∈ X/Ux i , then h i(x) = 0.(*)

Indeed, if x ∈ F/Ux i , then f i(x) = g i(x)/(g1(x) +⋯ + gn(x)) = 0, because g i(x) = 0
for x ∉ Ux i . Hence, h i(x) = f (x) ⋅ f i(x) = 0. On the other hand, if x ∉ F, then x ∈ U ,
so f (x) = 0. Hence, h i(x) = f (x) ⋅ f i(x) = 0 too.
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Linear homeomorphisms of function spaces 9

Each set Ux i is y-effective; thus, φ̃(h i)(y) = 0, for every i = 1, . . . , n, by (*). Let
h = h1 +⋯+ hn . We can apply Lemma 3.2 with r = φ(h) and r i = φ(h i), obtaining

φ̃(h)(y) = 0.

We claim that h = f . Indeed, if x ∉ F, then x ∈ U . Thus, f (x) = 0, by our assump-
tion on f. It follows that for such x and for all i ∈ {1, . . . , n}, we have h i(x) = f (x) ⋅
f i(x) = 0. Thus, h(x) = h1(x) +⋯ + hn(x) = 0 = f (x) for x ∉ F. Now, suppose that
x ∈ F. We have

h(x) = h1(x) +⋯ + hn(x) = f (x) ⋅ ( f1(x) +⋯ + fn(x))

= f (x) ⋅
n
∑
i=1

g i(x)
g1(x) +⋯ + gn(x) = f (x). ∎

Corollary 3.7 If φ ∶ Cp(X) → Cp(Y) is a linear continuous surjection, then for every
y ∈ βY, the set sφ(y) is nonempty.

Proof Take y ∈ βY and suppose that sφ(y) = ∅. Then ∅ is an open set containing
sφ(y). Let g ∈ Cp(Y) be such that g̃(y) = 1. Since φ is onto, there is f ∈ Cp(X) with
φ( f ) = g. Clearly, f [∅] ⊆ {0}, so

g̃(y) = φ̃( f )(y) = 0,

by Lemma 3.6, which is a contradiction. ∎
Proposition 3.8 Let φ ∶ Cp(X) → Cp(Y) be a continuous surjection. The set-valued
map sφ ∶ βY →K(βX), given by the assignment y ↦ sφ(y), is lower semi-continuous.

Proof By Lemma 3.4 and Corollary 3.7, the map s is well defined. Let U ⊆ βX be
open. We need to show that the set

s−1
φ (U) = {y ∈ βY ∶ sφ(y) ∩U ≠ ∅}

is open in βY . Pick y0 ∈ s−1
φ (U) and take x0 ∈ sφ(y0) ∩U witnessing sφ(y0) ∩U ≠ ∅.

Let V be an open neighborhood of x0 such that V ⊆ U . Since x0 ∈ sφ(y0), the set
V ∋ x0 is y0-ineffective. Therefore, there is f ∈ Cp(X) such that f [X/V] ⊆ {0} and
φ̃( f )(y0) ≠ 0. Consider the open set

W = {y ∈ βY ∶ φ̃( f )(y) ≠ 0}.

Clearly, y0 ∈ W . We claim that W ⊆ s−1
φ (U). Take y ∈ W . If sφ(y) ∩U = ∅, then

sφ(y) ⊆ βX/V , the set βX/V is open in βX, and f [X/V] ⊆ {0}. Hence, φ̃( f )(y) = 0,
by Lemma 3.6. A contradiction with y ∈ W .

It follows that y0 ∈ W ⊆ s−1
φ (U), where W is open. Since y0 was chosen arbitrarily,

the set s−1
φ (U) is open. ∎

Corollary 3.9 For every integer n ≥ 1, the set Ỹn = {y ∈ βY ∶ ∣sφ(y)∣ ≤ n} is closed in
βY.

Proof Let y ∈ βY/Ỹn . Then sφ(y) has at least n + 1 elements, so there are distinct
x1 , . . . , xn+1 ⊆ sφ(y). Let V1 , . . . , Vn+1 be pairwise disjoint open subsets of βX such
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10 M. Krupski

that x i ∈ Vi , for i = 1, . . . , n + 1. By lower semi-continuity of sφ (cf. Proposition 3.8),
the set W = ⋂n+1

i=1 s−1
φ (Vi) is open and clearly y ∈ W . For any z ∈ W , the set sφ(z)meets

n + 1 pairwise disjoint sets Vi . Hence, y ∈ W ⊆ βY/Ỹn . ∎

Similarly, from lower semi-continuity of the support map y ↦ suppφ(y) (see
Lemma 3.1), it follows that the set

Yn = {y ∈ Y ∶ ∣ suppφ(y)∣ ≤ n}

is closed in Y. Also, since sφ(y) = suppφ(y) for y ∈ Y (cf. Lemma 3.5), we have
Yn ⊆ Ỹn .

4 Technical lemmata

In this section, we will use some ideas from Okunev [16] (see also [12]). Let Z be a
Tychonoff space. For ε > 0 and a finite set F = {z1 , . . . , zk} ⊆ βZ, we set

OZ(F , ε) = { f ∈ Cp(Z) ∶ ∣ f̃ (z i)∣ < ε, i = 1, . . . , k}.

For a point z ∈ βZ and ε > 0, let

ŌZ(z, ε) = { f ∈ Cp(Z) ∶ ∣ f̃ (z)∣ ≤ ε}.

Note that for z ∈ Z, the set ŌZ(z, ε) is closed in Cp(Z), whereas for z ∈ βZ/Z, it is
dense and has empty interior in Cp(Z).

Let φ ∶ Cp(X) → Cp(Y) be a linear homeomorphism. By linearity, φ(0) = 0, where
0 is the constant function equal to 0 in the respective space.

For positive integers k and m, we define the set

Zm ,k = {(y, F) ∈ Y × [X]≤k ∶ φ (OX (F , 1
m )) ⊆ ŌY(y, 1)} .

We should remark that, in [16], sets Zm ,k are defined in a slightly different way, i.e., the
product Xk is used instead of the hyperspace [X]≤k . However, our (cosmetic) change
does not affect the arguments from [16].

Now, for positive integers k and m, let Sm ,k be the closure of Zm ,k in the (compact)
space βY × [βX]≤k . Recall that [βX]≤k is endowed with the Vietoris topology (cf.
Section 2.1). We have the following (cf. [16, Lemma 1.4]) (we reproduce the proof here
for the convenience of the reader).

Lemma 4.1 If (y, F) ∈ Sm ,k , then φ (OX (F , 1
m )) ⊆ ŌY(y, 1).

Proof Otherwise, there is f ∈ Cp(X)with ∣ f̃ (x)∣ < 1
m for each x ∈ F and ∣φ̃( f )(y)∣ >

1. The set

U = {A ∈ [βX]≤k ∶ f̃ (A) ⊆ (− 1
m , 1

m )}

is open in [βX]≤k and F ∈ U . Similarly, the set

V = {z ∈ βY ∶ ∣φ̃( f )(z)∣ > 1}
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is an open neighborhood of y in βY . Since (y, F) ∈ Sm ,k , the open set V ×U has
a nonempty intersection with Zm ,k . This, however, contradicts the definition of
Zm ,k . ∎

For k, m ≥ 1, define

Cm ,k = πβY(Sm ,k),

where πβY ∶ βY × [βX]≤k → βY is the projection onto the first factor. Clearly, Cm ,k is
closed in βY .

Recall that Yn = {y ∈ Y ∶ ∣ suppφ(y)∣ ≤ n}. We set

Am ,n = Yn ∩ Cm ,n .

Lemma 4.2 If y ∈ Yn , then for some m ≥ 1, (y, suppφ(y)) ∈ Zm ,n and thus y ∈ Am ,n .

Proof Take y ∈ Yn . By continuity of φ, there is a finite set F = {x1 , . . . , xk} ⊆ X and
m ≥ 1 with

OX (F , 1
m ) ⊆ φ−1 (ŌY(y, 1)) .

We will check that the number m does the job. To this end, consider a function f ∈
Cp(X) satisfying

∣ f (x)∣ < 1
m , for every x ∈ suppφ(y).

Striving for a contradiction, suppose that ∣φ( f )(y)∣ > 1, and let g ∈ Cp(X) be such
that g ↾ suppφ(y) = f ↾ suppφ(y) and g(x) = 0, for every x ∈ F/ suppφ(y). Since g
and f agree on suppφ(y), we have φ(g)(y) = φ( f )(y) > 1 (see Lemma 3.1). On the
other hand,

g ∈ OX (F , 1
m ) ⊆ φ−1 (ŌY(y, 1)) ,

a contradiction. ∎

Proposition 4.3 Y = ⋃∞n=1 An ,n and An ,n ⊆ Am ,m for m ≥ n.

Proof Let y ∈ Y . By Lemma 3.1, Y = ⋃∞n=1 Yn , so y ∈ Yn , for some n ≥ 1. From Lemma
4.2, we infer that y ∈ Cm ,n for some m. Note that if m ≤ k, then Cm ,n ⊆ Ck ,n , so we can
assume that m > n, for otherwise y ∈ Cn ,n and we are done. Since Yn ⊆ Yk for k ≥ n,
we have y ∈ Yk for all k ≥ n. In particular, y ∈ Ym . So y ∈ Ym ∩ Cm ,n , where m > n.
But clearly, m > n implies Cm ,n ⊆ Cm ,m , whence y ∈ Am ,m . This gives the equality Y =
⋃∞n=1 An ,n . The inclusion An ,n ⊆ Am ,m , for m ≥ n, is clear. ∎

Let Bm ,n be the closure of Am ,n in βY . Since Yn ⊆ Ỹn and both Ỹn and Cm ,n are
closed in βY , we infer that

Bm ,n ⊆ Ỹn ∩ Cm ,n .

In particular, if y ∈ Bm ,n , then the set sφ(y) is at most n-element subset of βX.

Lemma 4.4 If y ∈ Bm ,n , then φ (OX (sφ(y), 1
m )) ⊆ ŌY(y, 1).
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12 M. Krupski

Proof Pick f ∈ Cp(X) such that ∣ f̃ (x)∣ < 1
m for x ∈ sφ(y). The set U = {x ∈ βX ∶

∣ f̃ (x)∣ < 1
m } is open in βX and sφ(y) ⊆ U . Let V be an open subset of βX satisfying

sφ(y) ⊆ V ⊆ V ⊆ U .(4.1)

Since y ∈ Bm ,n ⊆ Cm ,n , there is F ∈ [βX]≤n with (y, F) ∈ Sm ,n . Let g̃ ∈ Cp(βX) be a
function satisfying

g̃ ↾ V = f̃ ↾ V and g̃(x) = 0 for each x ∈ F/V .

Denote by g the function g̃ ↾ X, i.e., the restriction of g̃ to X. Clearly, g ∈ OX (F , 1
m ),

so by Lemma 4.1, we have

∣φ̃(g)(y)∣ ≤ 1.(4.2)

Further, ( f̃ − g̃) ↾ V = 0. So from (4.1) and Lemma 3.6, we infer that

̃φ( f − g)(y) = 0.(4.3)

By linearity of φ, we get

φ( f − g) + φ(g) = φ( f ).

Inequality (4.2) and equation (4.3) ensure that Lemma 3.2 can be applied with r =
φ( f ), r1 = φ( f − g), and r2 = φ(g), whence

∣φ̃( f )(y)∣ = ∣ ̃φ( f − g)(y) + φ̃(g)(y)∣ ≤ ∣ ̃φ( f − g)(y)∣ + ∣φ̃(g)(y)∣ ≤ 1,

by (4.2) and (4.3). ∎

From the previous lemma, we get the following.

Proposition 4.5 For every y ∈ Bm ,n/Am ,n , the set sφ(y) ∩ (βX/X) is nonempty.

Proof Let y ∈ Bm ,n/Am ,n . Since Am ,n is closed in Y and Bm ,n is the closure of Am ,n in
βY , we have y ∈ βY/Y . So the set ŌY (y, 1

m ) has empty interior in Cp(Y). By Lemma
4.4, we have

φ (OX (sφ(y), 1
m )) ⊆ ŌY(y, 1).

Now, if sφ(y) were a subset of X, then the set φ (OX (sφ(y), 1
m )) would be open,

contradicting emptiness of the interior of ŌY (y, 1). ∎

Proposition 4.6 Let φ ∶ Cp(X) → Cp(Y) be a linear homeomorphism. If y ∈ Bm ,n ,
then there exists x ∈ sφ(y) with y ∈ sφ−1(x).

Proof Since Bm ,n ⊆ Ỹn , the set sφ(y) is at most n-element. Thus, K = ⋃{sφ−1(x) ∶
x ∈ sφ(y)} is compact, being a finite union of compact sets sφ−1(x).

Striving for a contradiction, suppose that y ∉ K. Let U be an open set in βY with
K ⊆ U and y ∉ U . Let V be an open set in βY with

K ⊆ V ⊆ V ⊆ U .
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Let f ∈ Cp(βY) satisfies f (V) ⊆ {0} and f (y) = 2. From Lemma 3.6 (applied to
the map φ−1), we get

̃φ−1( f ↾ Y)(x) = 0, for every x ∈ sφ(y).

Combining this with Lemma 4.4, we get

∣ ̃φ(φ−1( f ↾ Y))(y)∣ = ∣ f (y)∣ ≤ 1,

which contradicts f (y) = 2. ∎

5 The main results

Let M be a separable metrizable space, and let h ∶ Y → M be a continuous surjection.
Since M is separable metrizable, it has a metrizable compactification bM. Let h̃ ∶ βY →
bM be a continuous extension of h. Denote by d a metric on bM that generates the
topology of bM.

For a natural number k ≥ 1, we define sets

Ek = {y ∈ Y ∶ (∀a, b ∈ h(sφ−1(sφ(y)))) a ≠ b ⇒ d(a, b) ≥ 1
k },

Fk = {y ∈ βY ∶ (∀a, b ∈ h̃(sφ−1(sφ(y)))) a ≠ b ⇒ d(a, b) ≥ 1
k }.

It is easy to prove the following.

Lemma 5.1 The sets Ek and Fk have the following properties:
(i) The set Ek is closed in Y, for every k ≥ 1.

(ii) The set Fk is closed in βY, for every k ≥ 1.
(iii) ⋃∞k=1 Ek = Y.
(iv) If k ≤ r, then Ek ⊆ Er .

Proof Let y ∈ Y/Ek . By Lemma 3.5, sφ(y) = suppφ(y), so y ∉ Ek means that there
are distinct a, b ∈ h(suppφ−1(suppφ(y))) with d(a, b) < 1

k . Let ε > 0 be such that

ε < 1
2k

− d(a, b)
2

and ε < d(a, b)
2

.(5.1)

For x ∈ {a, b}, let Bx be an ε-ball in the space M, centered at x.
The set

Vx = h−1(Bx)

is open in Y and

Vx ∩ suppφ−1(suppφ(y)) ≠ ∅,(5.2)

for x ∈ {a, b}. Since the map suppφ−1 is lower semi-continuous, the set

Wx = supp−1
φ−1(Vx)

is open in X and, by (5.2),

suppφ(y) ∩Wx ≠ ∅.
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It follows that, for x ∈ {a, b}, the set

Ux = supp−1
φ (Wx)

is an open neighborhood of y in Y. Put

U = Ua ∩Ub .

If z ∈ U , then

Vx ∩ suppφ−1(suppφ(z)) ≠ ∅,

and hence there is

ξx ∈ Bx ∩ h(suppφ−1(suppφ(z))),

for x ∈ {a, b}. By (5.1), the balls Ba and Bb are disjoint, so ξa ≠ ξb and

d(ξa , ξb) < 2ε + d(a, b) < 1
k

,

by (5.1). This shows that U ∩ Ek = ∅ and finishes the proof of (i). The proof of (ii) is
analogous.

Assertion (iii) follows from the fact that for y ∈ Y we have sφ(y) = suppφ(y) ⊆ X
(Lemma 3.5) and thus the set sφ−1(sφ(y)) = suppφ−1(suppφ(y)) is finite, by Lemma
3.1.

Assertion (iv) is clear. ∎

Now, for n ≥ 1, let

Hn = An ,n ∩ En

and let Hn be the closure of Hn in βY . The sets Hn and Hn have the following
properties.

Observation 5.2 ⋃∞n=1 Hn = Y and Hn ⊆ Hn+1 for all n ≥ 1.

Proof This follows immediately from Proposition 4.3 and Lemma 5.1(iii) and (iv).
∎

Observation 5.3 If y ∈ Hn/Hn , then sφ(y) ∩ (βX/X) ≠ ∅.

Proof Since Hn is closed in Y, we have Hn/Hn ⊆ Bn ,n/An ,n . So it is enough to apply
Proposition 4.5. ∎

Observation 5.4 For every y ∈ Hn , we have y ∈ sφ−1(sφ(y)).

Proof According to Lemma 5.1, we have

Hn = An ,n ∩ En ⊆ Bn ,n ∩ Fn .

Hence, our assertion follows from Proposition 4.6. ∎

Observation 5.5 For every y ∈ Hn and for all distinct a, b ∈ h̃(sφ−1(sφ(y))), we have
d(a, b) ≥ 1

n .
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Proof Again, by Lemma 5.1, we have Hn ⊆ Bn ,n ∩ Fn . So the assertion follows from
the definition of the set Fn . ∎

For each n ≥ 1, we define a set-valued mapping en ∶ Hn →K(βX) by the formula

en(y) = {x ∈ sφ(y) ∶ h̃(y) ∈ h̃(sφ−1(x))}.

Note that the set en(y) is finite because the set sφ(y) is finite for y ∈ Hn . Also, en(y)
is nonempty, by Observation 5.4. So the map en is well defined.

Lemma 5.6 For every n ≥ 1, the map en ∶ Hn →K(βX) is lower semi-continuous.

Proof Take an open set U ⊆ βX. Pick y ∈ e−1
n (U) and take x0 ∈ en(y) ∩U witness-

ing en(y) ∩U ≠ ∅.
We need to show that there is an open set W in βY with

y ∈ W ∩ Hn ⊆ e−1
n (U).

Denote by B the ball in bM of radius 1
2n centered at h̃(y). Since the map sφ−1 ∶

βX →K(βY) is lower semi-continuous (see Proposition 3.8), the set

V = {x ∈ βX ∶ sφ−1(x) ∩ h̃−1(B) ≠ ∅} ∩U

is open in βX and x0 ∈ V .
We set

W = {z ∈ βY ∶ sφ(z) ∩ V ≠ ∅} ∩ h̃−1(B).

Note that W is open in βY (by Proposition 3.8) and y ∈ W because x0 ∈ V ∩
en(y) ⊆ V ∩ sφ(y).

We claim that W is as required. Indeed, pick z ∈ W ∩ Hn . We have

h̃(z) ∈ B and(5.3)

sφ(z) ∩ V ≠ ∅.(5.4)

Let x1 be a witness for (5.4), i.e.,

x1 ∈ sφ(z) ∩U and(5.5)

sφ−1(x1) ∩ h̃−1(B) ≠ ∅.(5.6)

By (5.6), there is z′ ∈ sφ−1(x1) such that

h̃(z′) ∈ B.(5.7)

On the other hand, since z ∈ Hn , we infer from Observation 5.4 that there is x2 ∈ sφ(z)
(possibly x2 = x1) such that z ∈ sφ−1(x2). By (5.3) and (5.7), we must have

h̃(z) = h̃(z′).(5.8)

https://doi.org/10.4153/S0008414X23000779 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X23000779


16 M. Krupski

For otherwise a = h̃(z) and b = h̃(z′) would be distinct elements of h̃(sφ−1(sφ(z))
satisfying

d(a, b) ≤ d (a, h̃(y)) + d (h̃(y), b) < 1/2n + 1/2n = 1/n,

by definition of B. However, this would contradict z ∈ Hn , by Observation 5.5.
Now, (5.8) gives h̃(z) ∈ h̃(sφ−1(x1)). But this means that x1 ∈ en(z) and thus by

(5.5), x1 ∈ en(z) ∩U . In particular, the latter set is nonempty. ∎
Remark 5.7 Clearly, the sets Hn and Hn and the map en depend on the function
h ∶ Y → M. In what follows, we will always be given a function h ∶ Y → M. The sets
Hn , Hn and the map en will be associated with the given function h.

It will be convenient to use the following notation. For a continuous map f ∶ S →
T between topological spaces S and T and a set A ⊆ S, we denote by f #(A) the set
T/ f (S/A). It is straightforward to verify the following.

Proposition 5.8 Suppose that f ∶ S → T is a continuous map between topological
spaces S and T. Then:
(a) If S is compact and U ⊆ S is open, then f #(U) is open in T.
(b) For any t ∈ T and A ⊆ S, if t ∈ f #(A), then f −1(t) ⊆ A.
(c) For any A ⊆ S and B ⊆ T, if f −1(B) ⊆ A, then B ⊆ f #(A).

We are ready now to present proofs of the results announced in the Introduction.

Proof of Theorem 1.6 By symmetry, it is enough to show that the projective
Hurewicz property of X implies the projective Hurewicz property of Y. Suppose that X
is projectively Hurewicz and fix a continuous surjection h ∶ Y → M that maps Y onto
a separable metrizable space M. Let bM be a metrizable compactification of M, and
let h̃ ∶ βY → bM be a continuous extension of h. Denote by d a metric on bM that
generates the topology of bM. Note that

If A ⊆ bM/M , then h̃−1(A) ⊆ βY/Y .(5.9)

In order to prove that M is Hurewicz, we will employ Theorem 2.5. For this purpose,
take a σ-compact set F ⊆ bM/M. Write F = ⋃∞i=1 K i , where each K i is compact and
K i ⊆ K i+1. We need to show that there is a Gδ-subset G of bM with F ⊆ G ⊆ bM/M.

If no K i intersects ⋃∞n=1 h̃(Hn), then we are done because the complement of the
latter union in bM is a Gδ-subset of bM/M (by Observation 5.2 and surjectivity of
h ∶ Y → M). So suppose that, for some i, the set K i meets⋃∞n=1 h̃(Hn) and let i0 be the
first such i. Since the family {K i ∶ i = 1, 2, . . .} is increasing, K i meets⋃∞n=1 h̃(Hn), for
every i ≥ i0. In order to find the required Gδ-set G, it suffices to find such set for the
family {K i ∶ i ≥ i0}, i.e., it is enough to find a Gδ-subset G′ of bM such that⋃∞i=i0

K i ⊆
G′ ⊆ bM/M. This is because the set⋃i0−1

i=1 K i is contained in a Gδ-subset of bM/M (the
complement of ⋃∞n=1 h̃(Hn) in bM) and the union of two Gδ-sets is Gδ .

For each i ≥ i0, there is a positive integer n i such that the compact set

K′n i
= h̃−1(K i) ∩ Hn i

is nonempty. By Observation 5.2, we can additionally require that n i0 < n i0+1 < ⋅ ⋅ ⋅ .
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Let i ≥ i0. Since bM is metrizable, the set K i is Gδ in bM. It follows from
Proposition 3.8 and Lemma 2.1 that the set

G i = s−1
φ−1 (h̃−1(K i)) = {x ∈ βX ∶ sφ−1(x) ∩ h̃−1(K i) ≠ ∅}

is a Gδ-set in βX. In addition, by (5.9) and Lemmas 3.5 and 3.1, we have G i ⊆ βX/X.
The map en i restricted to K′n i

is lower semi-continuous (by Lemma 5.6), and note
that if y ∈ K′n i

, then en i (y) ⊆ G i ⊆ βX/X (by definition of en i ). Thus, we may consider
the map en i ↾ K′n i

as a (lower semi-continuous) map into K(G i). By Theorem 2.2, this
map admits a compact section, i.e., there is a compact set L i ⊆ G i such that

L i ∩ en i (y) ≠ ∅, for every y ∈ K′n i
.

In particular, since en i (y) ⊆ sφ(y), we have

L i ∩ sφ(y) ≠ ∅, for every y ∈ K′n i
.(5.10)

Using Lemma 2.10, we can enlarge the set L i to a zero-set in βX contained in G i .
Clearly, this is still a section of en i , so without loss of generality we can assume that
each L i is a zero-set.

The space X is projectively Hurewicz and L = ⋃∞i=i0
L i ⊆ βX/X, where all L i ’s are

zero-sets in βX. Hence, by Proposition 2.8, there is a Gδ-set P in βX with

L ⊆ P ⊆ βX/X .(5.11)

We can write

P =
∞

⋂
i=i0

Pi ,

where the sets Pi are open in βX and form a decreasing sequence, i.e., Pi ⊇ Pi+1.
For i ≥ i0, we infer from the lower semi-continuity of the map sφ , that the set

Vi = s−1
φ (Pi) = {y ∈ βY ∶ sφ(y) ∩ Pi ≠ ∅}

is open in βY and Vi ⊇ Vi+1. For each i ≥ i0, we set

Wi = Vi ∪ (βY/Hn i ).

Clearly, Wi is open in βY and Wi ⊇ Wj for i ≤ j (because Vi ⊇ Vj and Hn i ⊆ Hn j ).
Moreover, by (5.10) and (5.11), we have h̃−1(K i) ⊆ Wi , for every i ≥ i0. Fix an arbitrary
i ≥ i0. If j ≥ i, then K i ⊆ K j , so h̃−1(K i) ⊆ h̃−1(K j) ⊆ Wj . If i0 ≤ j < i, then h̃−1(K i) ⊆
Wi ⊆ Wj . Therefore, for every i ≥ i0, we have

h̃−1(K i) ⊆
∞

⋂
j=i0

Wj .(5.12)

We claim that the set G′ = ⋂∞i=i0
h̃#(Wi) is the Gδ-set we are looking for. First, note

that G′ is indeed a Gδ-set in bM, by Proposition 5.8(a). From (5.12) and Proposition
5.8(c), we get

∞

⋃
i=i0

K i ⊆
∞

⋂
i=i0

h̃#(Wi).
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It remains to show that ⋂∞i=i0
h̃#(Wi) ⊆ bM/M. Suppose that this is not the case and

fix a ∈ M ∩⋂∞i=i0
h̃#(Wi). Since the map h ∶ Y → M is surjective, there is y ∈ Y such

that h(y) = h̃(y) = a. By Proposition 5.8 (b), h̃−1(a) ⊆ ⋂∞i=i0
Wi . Thus,

y ∈ Y ∩
∞

⋂
i=i0

Wi = Y ∩
∞

⋂
i=i0

(Vi ∪ (βY/Hn i )) .

On the other hand, it follows from Observation 5.2 that y ∈ Hn i for all but finitely
many i’s. Hence, we must have

y ∈ Vi = s−1
φ (Pi), for all but finitely many i’s.

In addition, y ∈ Y , so the set sφ(y) = suppφ(y) is a finite subset of X (cf. Lemmata
3.8 and 3.1). Therefore, there must be x ∈ suppφ(y) ⊆ X such that the set {i ∶ x ∈ Pi}
is infinite. Since Pi0 ⊇ Pi0+1 ⊇ ⋅ ⋅ ⋅ , we get x ∈ X ∩ P, which contradicts (5.11). ∎

Let us remark that Theorem 1.3 follows immediately from Theorems 1.6 and 1.2 and
[11, Theorem 3.2] (cf. [5, Proposition 31]).

Now, we present a proof of Theorem 1.5. Conceptually, the proof is virtually the
same as the previous one. It is more technical though. This is because in place of
Theorem 2.5, we need to use Theorem 2.6, i.e., instead of dealing with σ-compact
subsets of the remainder bM/M, we need to work with strategies in the game
kP(bM , bM/M), which is a more complicated task.

Proof of Theorem 1.5 By symmetry, it is enough to show that the projective Menger
property of X implies that Y is projectively Menger. To this end, suppose that X is
projectively Menger and let us fix a continuous surjection h ∶ Y → M that maps Y
onto a separable metrizable space M. Let bM be a metrizable compactification of M,
and let h̃ ∶ βY → bM be a continuous extension of h. Denote by d a metric on bM that
generates the topology of bM. Note that

if A ⊆ bM/M , then h̃−1(A) ⊆ βY/Y .(5.13)

In order to prove that M is Menger, we will employ Theorem 2.6. For this purpose,
suppose that σ is a strategy for player I in the k-Porada game kP(bM , bM/M). We
need to show that the strategy σ is not winning. Since h is surjective, we have M ⊆
⋃∞n=1 h̃(Hn), by Observation 5.2. So applying Proposition 2.4, we may, without loss of
generality, assume that

every compact set played according to σ meets
∞

⋃
n=1

h̃(Hn).(5.14)

Using σ , we will recursively define a strategy τ for player I in the z-Porada game
zP(βX , βX/X) (cf. Proposition 2.9). In addition, with each open set Vi played by
player II in his (i + 1)st move in the game zP(βX , βX/X) (where the strategy τ is
applied by player I), we will associate a set V ′i played by player II in his (i + 1)st move
in kP(bM , bM/M) (where the strategy σ is applied by player I).
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Let (K0 , U0) = σ(∅) be the first move played by player I according to σ . By (5.14),
there exists n0 such that the compact set

K′n0
= h̃−1(K0) ∩ Hn0

is nonempty. Since bM is metrizable, the set K0 being compact is Gδ in bM. It follows
from Proposition 3.8 and Lemma 2.1 that the set

G0 = s−1
φ−1 (h̃−1(K0)) = {x ∈ βX ∶ sφ−1(x) ∩ h̃−1(K0) ≠ ∅}

is a Gδ-set in βX. In addition, by (5.13) and Lemmas 3.5 and 3.1, we have G0 ⊆ βX/X.
The map en0 restricted to K′n0

is lower semi-continuous (by Lemma 5.6), and note
that if y ∈ K′n0

, then en0(y) ⊆ G0 ⊆ βX/X (by definition of en0 ). Thus, we may consider
the map en0 ↾ K′n0

as a (lower semi-continuous) map intoK(G0). By Theorem 2.2, this
map admits a compact section, i.e., there is a compact set L0 ⊆ G0 such that

L0 ∩ en0(y) ≠ ∅, for every y ∈ K′n0
.

In particular, since en0(y) ⊆ sφ(y), we have

L0 ∩ sφ(y) ≠ ∅, for every y ∈ K′n0
.(5.15)

Using Lemma 2.10, we can enlarge the set L0 to a zero-set in βX contained in G0.
Clearly, this is still a section of en0 , so without loss of generality we can assume that
each L0 is a zero-set in βX.

We define

τ(∅) = (L0 , βX).

Let V0 be the first move of player II in zP(βX , βX/X), i.e., V0 is an arbitrary open
set in βX containing L0. Consider the following subset W0 of bM:

W0 = h̃# (s−1
φ (V0) ∪ (βY/Hn0)) .

Since sφ is lower semi-continuous, it follows from Proposition 5.8(a) that W0 is open
in bM. Moreover, since L0 ⊆ V0, we infer from (5.15) that K′n0

= h̃−1(K0) ∩ Hn0 ⊆
s−1

φ (V0) and thus h̃−1(K0) ⊆ s−1
φ (V0) ∪ (βY/Hn0). Hence, by Proposition 5.8(c), we

get K0 ⊆ W0. Define

V ′0 = W0 ∩U0 .

Clearly, K0 ⊆ V ′0 ⊆ U0, so V ′0 is a legal move of player II in kP(bM , bM/M). Let
(K1 , U1) = σ(V ′0) be the response of player I, consistent with her strategy. By (5.14)
and Observation 5.2, there is n1 > n0 such that the compact set

K′n1
= h̃−1(K1) ∩ Hn1 .

is nonempty. Arguing as before, we note that the set

G1 = s−1
φ−1 (h̃−1(K1))

is Gδ in βX and G1 ⊆ βX/X. Again, since en1(y) ⊆ G1, for y ∈ K′n1
, we infer that

the map en1 ↾ K′n1
(i.e., en1 restricted to Kn1 ) maps the compact set K′n1

lower
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semi-continuously into K(G1). By Theorem 2.2, this map admits a compact section
L1. Again, using Lemma 2.10, we can assume that L1 is a zero-set in βX.

We define

τ(V0) = (L1 , V0).

Let V1 be an arbitrary open set in βX satisfying L1 ⊆ V1 ⊆ V0 (the next move of
player II in zP(βX , βX/X)). We set

W1 = h̃# (s−1
φ (V1) ∪ (βY/Hn1)) .

The lower semi-continuity of sφ and Proposition 5.8(a) imply that W0 is open in bM.
Arguing as before, we get that K1 ⊆ W1. Let V ′1 be an open set in bM satisfying

K1 ⊆ V ′1 ⊆ V ′1 ⊆ W1 ∩U1 .

We continue our construction following this pattern. In this way, we define a
strategy τ for player I in the game zP(βX , βX/X). Moreover, a play

τ(∅), V0 , τ(V0), V1 , τ(V0 , V1), . . .

in zP(βX , βX/X) generates the play

σ(∅), V ′0 , σ(V ′0), V ′1 , σ(V ′0 , V ′1 ), . . .

in kP(bM , bM/M), where

V ′k ⊆ h̃# (s−1
φ (Vk) ∪ (βY/Hnk) and(5.16)

V ′k+1 ⊆ V ′k .(5.17)

The numbers n0 < n1 < ⋅ ⋅ ⋅ < nk < ⋅ ⋅ ⋅ form an increasing sequence.
By our assumption, the space X is projectively Menger; hence, by Proposition 2.9,

there is a play

τ(∅), V0 , τ(V0), V1 , τ(V0 , V1), . . .

in which player I applies her strategy τ and fails, i.e.,

∅ ≠
∞

⋂
k=0

Vk ⊆ βX/X .(5.18)

The above play generates the play

σ(∅), V ′0 , σ(V ′0), V ′1 , σ(V ′0 , V ′1 ), . . .

in kP(bM , bM/M). We claim that player II wins this run of the game and thus σ is
not winning for player I.

Indeed, otherwise M ∩⋂∞k=0 V ′k ≠ ∅ (note that (5.17) guarantees that the inter-
section of the family {V ′k ∶ k = 0, 1, . . .} is nonempty by compactness). Fix a ∈ M ∩
⋂∞k=0 V ′k . Since h ∶ Y → M is surjective, there is y ∈ Y with h(y) = a. Applying (5.16)
and Proposition 5.8(b), we get

h̃−1(a) ⊆ s−1
φ (Vk) ∪ (βY/Hnk) ,
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for every k. On the other hand, it follows from Observation 5.2 that y ∈ Hnk for all but
finitely many k’s. Hence, we must have

y ∈ s−1
φ (Vk), for all but finitely many k’s.

In addition, y ∈ Y , so the set sφ(y) = suppφ(y) is a finite subset of X (cf. Lemmata 3.8
and 3.1). Therefore, there must be x ∈ suppφ(y) ⊆ X such that the set {k ∶ x ∈ Vk} is
infinite. Since V0 ⊇ V1 ⊇ ⋅ ⋅ ⋅ , we get x ∈ X ∩⋂∞k=0 Vk , which contradicts (5.18). ∎

Proof of Theorem 1.1 By symmetry, it is enough to show that the Menger property
of X implies the Menger property of Y. Suppose that X is Menger. Then X is Lindelöf,
so by Velichko’s Theorem 1.2, the space Y is Lindelöf too. Moreover, since X is Menger,
it is projectively Menger (cf. Proposition 1.4), so according to Theorem 1.5, the space
Y is projectively Menger. The result follows now from Proposition 1.4. ∎
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