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Abstract

Adaptation-relevant predictions of climate change are often derived by combining climate model simulations in a
multi-model ensemble. Model evaluation methods used in performance-based ensemble weighting schemes have
limitations in the context of high-impact extreme events.We introduce a locally time-invariant method for evaluating
climate model simulations with a focus on assessing the simulation of extremes. We explore the behavior of the
proposed method in predicting extreme heat days in Nairobi and provide comparative results for eight additional
cities.

Impact Statement

Adaptation to climate change requires predictions of how the frequency and severity of extreme events will
change in the future. Here, we consider the occurrence of extreme heat days in cities, which pose serious societal
risks including exceedance of human heat stress thresholds.We propose amethod for combiningmultiple climate
model simulations that optimizes predictions of such extreme events, and demonstrate the advantages of this
method for nine cities.

1. Introduction

1.1. Background

Climate change is increasing the frequency and severity of extreme weather events, including high-
temperature extremes (Pörtner et al., 2022). The occurrence of heat extremes exceeding human heat stress
thresholds is associated with increased mortality and morbidity, particularly in rapidly urbanizing
developing economies (Tuholske et al., 2021). People particularly exposed and vulnerable to heat stress
risk include the urban poor, those in informal housing, the elderly, those with chronic health conditions,
and outdoor workers (Cardona et al., 2012). Reliable predictions of future changes in the frequency,
intensity, and distribution of high-temperature extremes are particularly critical for cities—impacts are
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amplified by urban heat island effects and high population density, but city-scale adaptation measures
have been demonstrated to significantly reduce risk (Estrada et al., 2017). Here, we predict extreme heat
days, defined as days on which average temperature exceeds the 90th percentile of local historically
observed temperatures in accordance with several other analyses of changing extreme heat risk (Morak
et al., 2013; Seneviratne et al., 2014). We introduce a method of evaluating the skill of climate models in
simulating observed extreme heat days and derive a multi-model ensemble scheme with a focus on
predicting these extremes.

The latest general circulationmodels (GCMs) effectively reproduce observed large-scale trends and
provide robust predictions of global average changes, but exhibit significant uncertainty in the local
regime and for prediction of extremes (Flato et al., 2014). A growing sector of “climate services” aims
to bridge the gap between seasonal local weather forecasting and long-term mean climatology to
provide decadal to multi-decadal predictions for use in impact assessment and development of
adaptation strategies (Meehl et al., 2009). Deriving decision-relevant information from GCMs
typically involves combining predictions from several models in a multi-model ensemble. The
multi-model approach aims to provide more skillful and robust predictions by utilizing the various
strengths of different models, as well as an estimate of structural model uncertainty (Stainforth et al.,
2007).

Themost straightforward andwidely usedmethod of combining predictions frommultiplemodels is to
calculate a multi-model mean (MMM), which has been found to outperform any individual model for a
range of tasks (Weigel et al., 2008). However, an equal-weighted ensemble does not take into account
model skill in simulating the historically observed quantity of interest, and assumes each model is an
independent estimate. Modeling groups often share assumptions and biases, leading to overconfident
predictions (Tebaldi and Knutti, 2007). Alternative methods involving unequal independence-based or
skill-based weighting of ensemble members include reliability ensemble averaging (Giorgi and Mearns,
2003), independence-weighted mean (Bishop and Abramowitz, 2013), and Bayesian model averaging
(BMA) (Raftery et al., 2005).

In Section 2, we introduce a novel method for the evaluation of model simulations which optimizes a
skill-based weighting. Here, BMA is used to derive a predictive probability distribution of future
temperatures by assigning skill-based weights to each climate model. The approach to model evaluation
proposed here could be incorporated into any other skill-based model weighting approach—for a review
of schemes used to derive probabilistic predictions from climate model projections for impact assessment
and adaptation planning, see Brunner et al. (2020).

1.2. Related work

The problem addressed in this work is the measurement of similarity between a simulated and observed
time series in the context of climate model evaluation. A similar problem is faced in many other contexts
where comparing two time series either according to Euclidean distance or by comparing summary
statistics is found to be insufficient. Dynamic timewarping (DTW) algorithms allow non-linear alignment
between series in contexts where an informative measure should consider the similarity between the
“shape” of two signals rather than local temporal synchronization. For example, in the field of automatic
speech recognition where DTWoriginates, a measure should register similarity between the same speech
pattern spoken at different speeds (Rabiner and Juang, 1993). In climatology, DTW has been applied to
measure similarity between local climates to develop a global climate classification scheme (Netzel and
Stepinski, 2017).

As discussed further in Section 2, strictly order-preserving alignments such as DTW and its
extensions lack flexibility. An alternative approach is to use a divergence metric to calculate a distance
between two distributions—disregarding the temporal structure of data allows extremes to be com-
pared. Optimal transport-based divergence methods have been applied to climate model evaluation, for
instance, ranking models according to the Wasserstein distance from observed climate (Vissio et al.,
2020).
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Some existing methods share the motivation of the work presented in this paper toward developing a
flexible time-series similarity measure that also incorporates temporal structure (Zhang et al., 2020).
However, the authors are not aware of any application of such methods for climate model evaluation.

2. Methodology

2.1. Model evaluation

Since GCMs simulate climate, they are not expected to provide synchronous simulations of weather at a
specific location under future climate conditions, but it is assumed that they can yield informative statistics
of future weather at some aggregate scale. Pointwise evaluation of daily simulations against historical
observations requires a climate model to predict weather. Given sequences of T daily simulations from a
climatemodelA and historical observationsB against which they are to be evaluated, we cannot expect the
time series to match under a daily pointwise error measure such as the root-mean-squared error (RMSE):

rmse A,Bð Þ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

PT�1
t = 0 At�Btð Þ2

q
:

We expect this error to be high even for GCMs that are skilled in reproducing large-scale patterns.
RMSE implicitly assumes the two time series to be aligned by comparing the predictions for individual
days t. Summary statistics aim to avoid this issue by introducing some degree of time invariance by
binning data intomonthly, seasonal, or longer periods.Model error can then be calculated per time bin, for
instance, by comparing the simulated and observed average or variance for each period, or by counting-
based error measures such as comparing simulated and observed histograms to assess simulated
variability. Within each bin, simulations could be permuted freely in time to yield the same measure of
skill. This enables models to be evaluated without placing the expectation that they should simulate
weather.

However, these summary statistics share two problems. First, they introduce artificial time boundaries
by binning into periods to be evaluated independently. It is unclear how boundaries should be chosen
optimally (e.g., at the start or middle of each month) and in a way that minimizes loss of accuracy
introduced by rapidly changing weather conditions. Second, model precision is reduced. This method of
introducing time invariance blurs the model outputs to the resolution of the bins. This is problematic for
localized extreme event prediction tasks, where retaining precision may be important.

We propose an evaluation method to reduce the inaccuracy introduced through summary statistics
while conserving the time invariance required to avoid the implicit requirement to predict weather. We
assume a weather window size w of time steps within which we cannot expect simulated data points to be
aligned with observed data points. To construct a metric that is locally time-invariant, we introduce a
permutation πw to the standard RMSE measure before calculating differences in

Lw
πw A,Bð Þ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

XT�1

t = 0

At�Bπw tð Þ
� �2

vuut : (1)

The permutation is constrained to locally reorder the time series within the weather window—that is,
every At can be compared to the values between Bt�w and Btþw. Note that this construction is symmetric
with respect toA andB. The final metricLw is given by choosing the locally constrained permutation that
minimizes the RMSE in

Lw A,Bð Þ≔Lw
π∗w

A,Bð Þ
with π∗w ∈ arg minπwLw

πw A,Bð Þ: (2)

Intuitively, we compare the simulations with observations under the assumption that the model was able
to predict the weather as well as possible. See Figure 1 for a graphical representation of the algorithm.
Since πw is a permutation, the data points in either time series can only be used once, preventing themetric
from inventing new data.

Environmental Data Science e26-3

https://doi.org/10.1017/eds.2023.13 Published online by Cambridge University Press

https://doi.org/10.1017/eds.2023.13


Introducing local time invariance through πw solves a similar problem to calculating summary statistics
by binning, but it ismore precise: by design, there are no boundaries of bins since thewhole time series can
be considered at once. As a consequence, theweather window sizew can be chosen to be smaller than a bin
width since no effects at the boundaries or effects due to bad placement of boundaries need to be
considered. We solve the minimization problem via bipartite matching with the following cost matrix,
here illustrating the case w= 1, where pairs at distance greater than w are assigned infinite cost to prevent
matching:

C1 A,Bð Þ=
A0�B0ð Þ2 A0�B1ð Þ2 ∞ ∞ …

A1�B0ð Þ2 A1�B1ð Þ2 A1�B2ð Þ2 ∞ …

∞ A2�B1ð Þ2 A2�B2ð Þ2 A2�B3ð Þ2 …

⋮ ⋱ ⋮

… AT�1�BT�2ð Þ2 AT�1�BT�1ð Þ2

0
BBBBBBBB@

1
CCCCCCCCA

: (3)

For details of the bipartite matching algorithm used to solve the minimization problem, see
Cormen et al. (2022). The metric is locally temporally invariant in the sense that within a time
window w, we have relaxed the assumption that simulations must be meaningfully ordered or aligned
with respect to observations. We note that local invariance properties are not preserved under
composition of permutations, —that is, πw1 πw2 A,Bð Þð Þ≠πw1þw2 A,Bð Þ, and that the metric Lw is
defined according to the single locally constrained permutation that minimizes error as indicated
in Equation (2)).

2.2. Bayesian model averaging

Given an ensemble of K plausible modelsM1,…,MK predicting a quantity y, and training data yT , BMA
provides a method of conditioning on the entire ensemble of models rather than selecting a single “best”
model. Here, following an established BMA approach for combining weather forecast models (Raftery

et al., 2005), the predictive distribution for y is given by p yð Þ=PK
k = 1p yjMkð Þp MkjyTð Þ, where p yjMkð Þ is

the predictive distribution of an individualmodelMk and p MkjyTð Þ is the posterior probability ofMk given
the training data yT . The BMA prediction is then a weighted average of individual model predictions with

weights given by the posterior probability of each model, where
PK

k = 1p MkjyTð Þ= 1.

1

Figure 1. The locally time-invariant skill metric L is used to compare a simulated time series A to a
reference time seriesB. Instead of calculating the pairwise least-squares error, we propose adding a slack
in either direction for reference points with which each simulated data point can be matched. In this
illustration, a slack of one time step in either direction is added, as represented by the green shapes. We
then find an optimal bipartite matching π that minimizes the sum of distances between the time series. On
the left, data points are compared out of order in overlapping windows to calculate distance between A
andB. On the right, we emphasize that the bipartite matching enforces the constraint that no data point in
either time series can be used twice.
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3. Data

Daily mean surface temperature simulations from the historical experiment of five GCMs from the latest
phase of the Coupled Model Intercomparison Project (CMIP6) were used to demonstrate the method
presented here: GFDL-ESM4, IPSL-CM6A-LR, MPI-ESM1-2-HR, MRI-ESM2-0, and UKESM1-0-LL.
For details of the model variants used, see Appendix A of the Supplementary Material. These models were
selected for the Inter-Sectoral Impacts Model Intercomparison Project, meeting criteria of structural
independence, process representation, and historical simulation for a range of tasks. The subset was also
found to span the range of climate sensitivity to atmospheric forcing exhibited in CMIP6 (Lange, 2021).
ERA5, a high-resolution global gridded observational reanalysis, was used as a reference dataset (Hersbach
et al., 2020). ERA5 hourly surface temperatures were resampled to provide daily mean temperatures.

A daily mean temperature time series for the grid cell containing Nairobi, Kenya was selected from
each GCM and the ERA5 reference dataset. Studies have indicated increasing heat stress risk in East
African cities in recent decades (Li et al., 2021); persistent CMIP model biases in simulating climate
features in the region have also been noted (Ongoma et al., 2018), making understanding of model
uncertainty in this region important. Data were split into a training period of January 1, 1979 to December
31, 1996 and a testing period of January 1, 1997 to December 31, 2014. For each model, a simple mean-
shift bias correction1 was applied by calculating the mean error of simulated temperatures relative to
ERA5 for the testing period, and subtracting this error from all model data. For the additional experiments
described in Section 4, the same approach was used to select GCM and ERA5 reference data for eight
other cities: Paris, Chicago, Sydney, Tokyo, Kolkata, Kinshasa, Shenzhen, and Santo Domingo.

A repository containing code to download GCM data, demonstrate the locally time-invariant permu-
tation method, and reproduce the results presented here is made available and can be accessed online.

4. Results

The permutation-based method for model evaluation introduced in Section 2 was demonstrated to derive
multi-model ensemble predictions of daily mean temperature in nine cities. For the training period, a
permutation πw was applied to each simulated time serieswith reference to ERA5.BMAwas then applied to
derive individual model weights and the expected value of the weighted BMA predictive distribution. This
method was tested for w = 3, 15, and 31 (corresponding to matching intervals of 7, 31, and 61 days). These
three permutation-based BMAmethods are denoted by BMA (π3), BMA (π15), and BMA (π30) in Table 1.

Abbreviations: BMA, Bayesian model averaging; MMM, multi-model mean.
Three baseline methods were also implemented for comparison: a simple MMM approach, standard

BMAwithout permutation, and a modified BMA approach (denoted BMA [threshold]) where only the
simulation of observed extreme heat dayswas consideredwhen calculating themodelweights. The results
from each of these sixmethods for the city of Nairobi are shown in Table 1. The results in Table 1 show the
valuation according to the predicted number of extreme heat days and RMSE in predicted mean
temperature for these days. Additionally, the locally time-invariant skill metricL15 for the extreme heat
days in the test period is shown.

Figure 2a,c shows a short sample time series of the reference and ensemble simulation data from the
test period, showing the predictions given by MMM, standard BMA (Figure 2a), and BMA (π15)
(Figure 2c), with a ±2-standard-deviation region shaded for the BMA methods. Figure 2b,d shows a
cross-section for a single day from this time series indicating the BMA and BMA (π15) predictive
distributions as a combination of the weighted ensemble members. These experiments were repeated for
eight other cities. The results from each of the six methods is compared for each city in Figure 3.

A summary plot ranking the best-performing method across these experiments is shown in Figure 4.
The individual model weights calculated by each of the six methods for each city are shown in Figure 5.

1 Bias correction is not the focus of this work—for a critical discussion of bias correction of systematic errors in post-processing
climate model outputs for impact assessment, see Ehret et al. (2012).
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Table 1. Results from six multi-model ensemble methods for Nairobi, evaluated against ERA5
reference data. For each method, the predicted number of extreme heat days n in the train and test
periods, and RMSE for daily mean temperature predictions for these extreme heat days are shown.
The locally time-invariant skillL15 for predicted temperature for extreme heat days in the test period is

also shown.

Ensemble method n (train) n (test) RMSE (train) RMSE (test) L15 (test)

BMA (π3) 721 967 1.17 1.31 0.80
BMA (π15) 707 994 1.10 1.29 0.79
BMA (π30) 672 963 1.08 1.31 0.83
BMA 632 870 1.28 1.32 0.84
BMA (threshold) 726 973 1.24 1.31 0.81
MMM 561 891 1.40 1.36 0.86
ERA5 657 1,162

(a) (b)

(c) (d)

Figure 2. Left: Sample daily mean temperature time series from Nairobi for a period where observed daily
average temperatures exceed historical 90th quantile threshold for several consecutive days, showing
individual ensemble members, ERA5 reference, multi-model mean baseline, Bayesian model averaging
(BMA) (a), and BMA (π15) (c) predictions. The shaded region indicates the ±2 standard deviations fromBMA
predictions. The dotted vertical line indicates the date of cross-section shown right. Right: Cross-section of
BMA (b) and BMA (π15) (d) predictive distributions and individual BMA-weighted ensemble members for
1 day. In this example, BMA (π15) has assigned greater weight to amodel that predicted a higher temperature.
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To aid the interpretation of thesemodel weights, the distribution of the data from eachmodel alongside the
ERA5 reference for the training period is shown in Figure 6. (Note that a mean-shift bias correction has
been applied to the distributions as described in Section 3.)

5. Discussion

The results from the six methods applied to derive multi-model ensemble predictions of daily average
temperature for Nairobi (Table 1) indicate that all BMA approaches outperformed the MMM baseline

(a) RMSE in daily mean

temperature for all days

R
M

S
E

(b) RMSE in daily mean temperature

for extreme heat days

Figure 3. Evaluation of six multi-model ensemble methods for experiments across nine cities, showing
(a): RMSE for predicting daily average temperature for all days; and (b): RMSE for predicting daily
average temperature for extreme heat days.

(a) RMSE in daily average

temperature for all days

R
an

k

(b) RMSE in daily average

temperature for extreme heat days

(c) Error in number of extreme

heat days

Figure 4. Summary of rankings of six multi-model ensemble methods for experiments across nine cities,
ranked by (a): RMSE in predicting daily average temperature for all days; (b): RMSE in predicting daily
average temperature for extreme heat days; and (c): absolute error for predicting number of extreme heat
days. In each case, the best-performing method is rank 1.
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both in predicting the number of extreme heat days n in the test period, and RMSE for these days. BMA
after applying a π15 permutation was the best-performing method for predicting both n and RMSE of
extreme heat days by a small margin. Experiments applying permutations across a range of window sizes
πw indicated that the window size w= 15 (corresponding to an allowed matching interval of 31 days)
tended to perform well consistently. Consequently, an additional evaluation of each ensemble method in
terms ofL15 is also shown in Table 1, indicating that BMA (π15) performs best according to this metric.

Further experiments across eight other cities (Figure 3) indicate that while the MMM and standard
BMA approaches performed well in predicting RMSE for all days in the test period, the ensemble
methods more tailored toward predicting extreme heat days—BMA (threshold), BMA (π3), BMA (π15),
and BMA (π30)—outperformed these baselines across all locations for predicting the RMSE of extreme
heat days. In general, we note that RMSE for predicting extreme heat days decreases with w up to a point,
and then begins to increase for larger values (see BMA π30ð Þ in Figure 3b). Comprehensive experiments
into the effect of window size would be required to draw stronger conclusions regarding the optimal value
for a given geographical location.

The rankings of each ensemble method (Figure 4) similarly indicate that while standard BMA and
MMM approaches consistently performed well for predicting RMSE for all days, the permutation-based
approaches and BMA (threshold), which considered only extreme heat days when assigning model
weights, performed better for predicting RMSE for extreme heat days. The permutation-based methods
outranked other methods for predicting the number of extreme heat days, including the BMA (threshold)

Figure 5.Climatemodel weights calculated from five Bayesianmodel averagingmethods for experiments
from nine cities.
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approach, suggesting that the introduction of the local temporal invariance before the model evaluation
has led to a better-informed model weighting. These results indicate that there is a need to customize
multi-model ensemble schemes for the prediction of extremes. We note that the effect sizes in the results
presented here are small, and the analysis of their consistency across other locations and test periods is an
area for future study.

The weights assigned to individual models by the five BMAmethods are shown in Figure 5. To aid the
interpretation of these weights, the distribution of each simulation and the ERA5 reference for the test
period is shown in Figure 6. For some cities, it is apparent that low model weights have been assigned
where the simulated distribution differs significantly from the reference distribution—see, for example,
MRI-EM2-0 and MPI-ESM1-2-HR for Nairobi, and IPSL-CM6A-LR and MRI-ESM2-0 for Kinshasa.

In several cities, model weights vary substantially between standard BMA and the other approaches
(see Shenzhen and Tokyo), again highlighting the need to modify model weighting schemes for optimal
prediction of extremes. In general, it can be noted that while standard BMA assigns relatively even
weightings to each model in the ensemble, the permutation-based approaches impose greater sparsity on
the ensemble. Relaxing the assumption of temporal alignment during the model evaluation, therefore,
allows a stronger distinction to be made regarding which models should be considered skillful for a
particular location.

Repetition of these experiments using alternative realizations of each model (i.e., a different “run” of
the same climate model using the same parameters and initial conditions, simulating an alternative
pathway given the inherent randomness of the climate system) yielded some variance in the assignation of
model weights but broad consistency in the ranking of ensemble methods—results for ensemble methods

Figure 6.Distributions of daily average temperature for test period from each general circulation model
simulation and the ERA5 reference for nine cities.
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applied to an alternative set of model realizations for Nairobi is provided in Figure 7 in Appendix B of the
Supplementary Material. The method has been demonstrated here for daily average temperature predic-
tion—however, the same reasoning could also be extended to other simulated climate variables in
future work.

6. Conclusion

We present a novel permutation-based method for the evaluation of climate model simulations that
introduces local temporal invariance. This enables us to relax the assumption that simulated extremes
should be temporally aligned or ordered without reducing the temporal precision of models. This
evaluation method is tested within a BMA multi-model ensemble weighting scheme to derive probabil-
istic predictions of extreme heat days for nine cities. Our results highlight the need for model evaluation
methods tailored for assessing the simulation of extremes when producing multi-model ensemble
projections for impact assessment and adaptation planning. We find that the incorporation of the local
temporal invariance during the model evaluation enables a more skillful model weighting to be derived,
yielding improved prediction of the number of extreme heat days and RMSE for these days compared to
standard BMA. We highlight directions for future work, including the advancement of the methodology
presented here and approaches to tailor ensemble methods for the predictions of extreme events.
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