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Abstract

We present an affine-invariant random walk for drawing uniform random samples from
a convex body K⊂R

n that uses maximum-volume inscribed ellipsoids, known as John’s
ellipsoids, for the proposal distribution. Our algorithm makes steps using uniform sam-
pling from the John’s ellipsoid of the symmetrization of K at the current point. We show
that from a warm start, the random walk mixes in Õ

(
n7
)

steps, where the log factors hid-
den in the Õ depend only on constants associated with the warm start and desired total
variation distance to uniformity. We also prove polynomial mixing bounds starting from

any fixed point x such that for any chord pq of K containing x,
∣∣∣log |p−x|

|q−x|
∣∣∣ is bounded

above by a polynomial in n.
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1. Introduction

Drawing random samples from a convex body in K ⊂R
n is an important problem for vol-

ume computation and optimization which has generated a large body of research. Usually K
is specified by a membership oracle which certifies whether or not a test point x ∈R

n is con-
tained in K. Given such an oracle, geometric random walks are then used to explore K in such
a way that, after a sufficient number of steps, the walk has ‘mixed’, in the sense that the current
point is suitably close to a point uniformly drawn from K in terms of statistical distance. To
use such walks, an assumption that B(r) ⊂K ⊂B(R) is often made, where B(r) represents the
Euclidean ball of radius r > 0. One common example of such geometric walks is the ball walk,
which generates the next point by uniformly randomly sampling from a ball of radius δ � r/

√
n

centered at the current point, and mixes in Õ
(
n
(
R2/δ2

))
steps from an M-warm start (i.e., the

starting distribution has a density bounded above by a constant M [5]). Here and elsewhere,
the Õ(·) notation suppresses polylogarithmic factors as well as constants depending only on
the error parameters. Another example is the hit-and-run walk, where the next point is chosen
uniformly at random from a random chord in K which intersects the current point. Hit-and-run
mixes in O

(
n3(R/r)2 log(R/(dε))

)
, where the starting point is at distance d from the boundary

and ε is the desired distance to stationarity [11]. Affine-invariant walks (i.e., geometric walks
whose mixing time is invariant to such affine transformations) are another class of random
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474 A. GUSTAFSON AND H. NARAYANAN

walks which avoid the problem of rounding. One such random walk is known as the Dikin
walk [6], which uses uniform sampling from Dikin ellipsoids to make steps. Given a polytope
with m inequality constraints, the Dikin walk mixes in Õ(mn) steps from a warm start. This
random walk was extended to general convex bodies equipped with a ν-self-concordant bar-
rier in [13], and mixes in Õ

(
n3ν2

)
steps from a warm start. For the case of a polytope, this

implies that the Dikin walk equipped with the Lee–Sidford (LS) barrier [8] mixes in Õ
(
n5
)

steps from a warm start, though at each step one must additionally compute the LS barrier,
which requires O

(
nnz(A) + n2

)
arithmetic operations, where nnz(A) is the number of non-zero

entries in the matrix A which defines the polytope. A significantly improved analysis of this
walk was performed by [2], whose algorithm reaches a total variation distance of ε from the

uniform measure in O
(

n2.5 log4
(

2m
n

)
log

(M
ε

))
steps from an M-warm start. Very recently, it

was shown in [7] that for certain ‘strongly self-concordant’ barriers there is a Dikin walk that
mixes in Õ(nν̃), where ν̃ is related to the self-concordance parameter of the barrier.

In this paper we introduce another affine-invariant random walk akin to the Dikin walk
which uses uniform sampling from John’s ellipsoids of a certain small radius of appropriately
symmetrized convex sets to make steps. We show that this walk mixes to achieve a total vari-
ation distance ε in O

(
n7 log ε−1

)
steps from a warm start. The type of convex body K is not

specified (i.e., need not be a polytope) in our analysis of the mixing time, but one must have
access to the John’s ellipsoid of the current symmetrization of the convex body. While this
dependence on the dimension is admittedly steep, a significant feature of this walk is that its
mixing time from a warm start, or alternatively a ‘central point’ such as the center of mass, can
be bounded above by a quantity that has absolutely no dependence on any parameter associated
with the body apart from its dimension.

Notation: We will denote a large universal constant by C and a small universal constant by c.
Let π0 be a measure that is absolutely continuous with respect to the uniform measure π on K.
Let πt denote the measure after t steps of the Markov chain.

Our main theorems at the end of this paper are the following.

Theorem 1: Let r = cn− 5
2 be the radius of the John’s ellipsoids in the walk. Let ε > 0 and

M = sup π0(A)
π (A) . After t(ε) = Cn7 log(M/ε) steps of John’s walk, we have dTV

(
πt(ε), π

)
� ε.

Theorem 2: Let r = cn− 5
2 be the radius of the John’s ellipsoids in the walk. For all chords

pq of K containing x, assume |p−x|
|q−x| ∈ (

η, η−1
)

for some parameter 0 < η < 1 that measures
the centrality of x in K. Then there is a random geometrically distributed time τ with mean
bounded above by C such that for ε > 0, after t(ε) + τ = Cn7

(
n log

(√
n/(rη)

)+ log(1/ε)
)+ τ

steps of John’s walk starting at x, we have dTV
(
πt(ε)+τ , π

)
� ε.

It is known that for the center of mass, η � c
n .

2. John’s walk

In this section, we describe John’s maximum-volume ellipsoid for a convex body K ⊂R
n,

and describe a geometric random walk using such ellipsoids. We begin by reviewing John’s
theorem and some implications of the theorem.

2.1. John’s theorem

Fritz John showed that any convex body contains a unique ellipsoid of maximal volume, and
characterized the ellipsoid [4, 1]. Without loss of generality, we may assume that the ellipsoid
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John’s walk 475

of maximal volume is the unit Euclidean ball B ⊂R
n, since this is the case after an affine

transformation. John’s theorem as stated for the unit ball case is as follows.

Theorem 1. (John’s theorem.) Each convex body K ⊂R
n contains a unique ellipsoid of max-

imal volume. The ellipsoid is B if and only if the following conditions are satisfied: B ⊂K,
and for some m � n there are Euclidean unit vectors {ui}m

i=1 on the boundary of K and positive
constants {ci}m

i=1 satisfying
m∑

i=1

ciui = 0, (2.1)

m∑
i=1

ciuiu
T
i = In, (2.2)

where In denotes the identity matrix in R
n×n.

Note that the condition (2.2) is sometimes written equivalently as

〈x, y〉 =
m∑

i=1

ci〈ui, x〉 〈ui, y〉

for all x, y ∈R
n. Using the cyclic invariance of the trace and that the {ui} are unit vectors, (2.2)

implies that
m∑

i=1

ci = n, (2.3)

a property we employ in the subsequent analysis.
We now enumerate some properties from [1] which provide additional insight into the geo-

metric properties of John’s ellipsoids and are useful for the analysis in subsequent sections.
Note that the condition (2.1) implies that all the contact points do not lie in one half-space of
the unit ball, and this condition is redundant in the symmetric case, since for every contact
point ui, its reflection about the origin −ui is also a contact point. The condition (2.2) guaran-
tees that such contact points do not lie close to a proper subspace. Furthermore, there are at
most n(n + 3)/2 contact points for general K, and n(n + 1)/2 non-redundant contact points if
K is origin-symmetric [3]. At each ui, the supporting hyperplane to K is unique and orthogonal
to ui, since this is the case for the unit ball. Thus, considering the polytope resulting from such
supporting hyperplanes, P = {

x ∈R
n
∣∣ 〈x, ui〉� 1, i = 1, . . . , m

}
, the convex set K obeys the

sandwiching B ⊂K ⊂P . By Cauchy–Schwarz, for any x ∈P , we have

−|x|� 〈ui, x〉� 1.

Since the weights {ci} are positive, it follows from applying the conditions (2.1), (2.2), and
(2.3) that

0 �
m∑

i=1

ci(1 − 〈ui, x〉)(|x| + 〈ui, x〉)

= |x|
m∑

i=1

ci + (1 − |x|)
〈

m∑
i=1

ciui, x

〉
−

m∑
i=1

ci〈ui, x〉2

= n|x| − |x|2,
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476 A. GUSTAFSON AND H. NARAYANAN

Algorithm 2.1: John’s walk step

from which it follows that |x|� n. If the convex body is origin-symmetric, then by substituting
−ui for ui, for any x ∈P , we have

|〈ui, x〉|� 1.

It follows that

|x|2 =
m∑

i=1

ci〈ui, x〉2 �
m∑

i=1

ci = n,

so |x|�√
n. Therefore, if K is origin-symmetric and the unit ball is the John’s ellipsoid, then

the containment is
B ⊂K ⊂ √

nB. (2.4)

2.2. The John’s walk algorithm

We state the algorithm for a general convex body K. At a given point x ∈K, let the
symmetrization of K at x be

Ks
x ≡K ∩ {

2x − y
∣∣ y ∈K} ,

and for some symmetric positive definite matrix Ex, let

Ex = {
Exu + x

∣∣ |u|� 1
}

(2.5)

denote the John’s ellipsoid of Ks
x. Similarly, let the rescaled John’s ellipsoid be Ex(r) ={

r(Exu) + x
∣∣ |u|� 1

}
, where the radius r > 0 will be specified in Section 3. Assume 0 = x0 ∈

int(K), and we have computed Ex0 . To generate a sample xi given xi−1, we use Algorithm 2.1,
where λ(·) denotes the Lebesgue measure on R

n.
Algorithm 2.1 is a Metropolis–Hastings geometric random walk which uses the uniform

measure Qx(·) on the dilated John’s ellipsoid Ex(r) as the proposal distribution. Tossing a fair
coin ensures that the transition probability kernel defined by the algorithm is positive definite,
which is known as making the walk lazy. Lazy random walks have the same stationary distribu-
tion as the original walk, at the cost of a constant increase in mixing time (we will analyze the
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non-lazy walk, noting that the mixing time is not affected in terms of complexity as a function
of m and n). The rejection of any sample y such that x /∈ Ey(r) is necessary to ensure that the
random walk is reversible.

The uniform measure on the John’s ellipsoid Ex(r) is absolutely continuous with respect
to the Lebesgue measure λ, and thus the Radon–Nikodym derivative (i.e., density) for the
proposal distribution is

qx(y) ≡ dQx

dλ
(y)

=
(

1

λ(Ex(r))

)
· 1{y∈Ex(r)}.

(2.6)

The acceptance probability corresponding to the uniform stationary measure in the Metropolis
filter is

αx(y) = min

[
1,

λ(Ex(r))

λ(Ey(r))

]
.

By the Lebesgue decomposition, the transition probability measure Px(·) of the non-lazy
version of Algorithm 2.1 is absolutely continuous with respect to the measure

μ ≡ λ + δx, (2.7)

where δx(·) is the Dirac measure at x corresponding to a rejected move. The transition density
is thus

px(y) ≡ dPx

dμ
(y)

= αx(y)qx(y)1{y 
=x, x∈Ey(r)} + ρ(x)1{y=x}

= min

[
1

λ(Ex(r))
,

1

λ(Ey(r))

]
1{y 
=x, x∈Ey(r), y∈Ex(r)} + ρ(x)1{y=x},

(2.8)

where 1{·} is the indicator function and the rejection probability is denoted by ρ(x). Following
the observation below, we analyze the mixing time of the walk.

2.2.1. An observation. As a consequence of John’s theorem, Ex =B for x = 0 ∈K if and only
if the following conditions are satisfied: B ⊂K, and for some m � n there are Euclidean unit
vectors {ui}m

i=1 on the boundary of K and positive constants {ci}m
i=1 satisfying

m∑
i=1

ciuiu
T
i = In, (2.9)

where In denotes the identity matrix in R
n×n. Note that we have done away with the first

condition
∑

i ciui = 0, because not all contact points with Ks
x are contact points with K. We

are forced to place a zero weight on such vectors, and this is possible, because in such a case,
−ui is a contact point with both K and Ks

x.

3. Analysis of mixing time

In what follows we let a discrete-time, homogeneous Markov chain be the triple
{K,A, Px(·)} along with a distribution P0 for the starting point, where the sample space is
the convex body K ⊂R

n, the measurable sets on K are denoted by A, and Px(·) denotes the
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transition measure for any x ∈K. We say that π is a stationary distribution of {K,A, Px(·)} if
for all A ∈A, ∫

K

∫
A

Px(y)π (dx) = π (A).

We say that {K,A, Px(·)} is reversible with respect to the stationary distribution π if for all
A, A′ ∈A, ∫

A′

∫
A

Px(y)π (dx) =
∫

A

∫
A′

Py(x)π (dy).

3.1. Conductance and mixing times

We use the approach from [10] of lower-bounding the conductance of the chain to prove
mixing times. The conductance is defined as follows.

Definition 1. (Conductance.) Let P be a discrete-time homogenous Markov chain with ker-
nel Px(·) that is reversible with respect to the stationary measure π (·). Given A ∈A with
0 < π (A) < 1, the conductance of A is defined as

φ(A) ≡ �(A)

min{π (A), π (K\A)} ,

where �(A) ≡ ∫
A Pu(K\A) dπ (u). The conductance of the chain is defined as

φ ≡ inf
{
φ(A)

∣∣ A ∈A, 0 < π (A) � 1/2
}

.

Recall that the total variation distance between two measures P1, P2 on a measurable space
(K,A) is

dTV (P1, P2) = sup
A∈A

|P1(A) − P2(A)|.

Note that |P1(A) − P2(A)| = |P1(K\A) − P2(K\A)|, so if the supremum is attained on any A ∈
A, then it is attained on K\A ∈A as well. If P1 and P2 are both absolutely continuous with
respect to a dominating measure μ and thus have densities p1 ≡ dP1

dμ
and p2 ≡ dP2

dμ
, respectively,

the total variation distance may also be written as

dTV (P1, P2) = 1

2

∫ ∣∣p1 − p2
∣∣dμ

= 1 −
∫

min(p1, p2) dμ

= 1 −
∫

S1

[
min

(
1,

p2

p1

)]
p1 dμ

= 1 −EP1

[
min

(
1,

p2

p1

)]
,

(3.1)

where S1 = {
x
∣∣ p1(x) > 0

}
. Recall that (3.1) does not depend on the choice of dominating

measure μ, but that, rather, the densities are correctly specified with respect to the domi-
nating measure. Additionally, note that the equality is attained on

{
x
∣∣ p1(x) � p2(x)

}
almost

everywhere with respect to μ (or alternatively on its complement). The following relationship
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between conductance and the total variation distance to the stationary measure was proven
in [10].

Theorem 2. (Lovász and Simonovits.) Let π0 be the initial distribution for a lazy, reversible
Markov chain with conductance φ and stationary measure π , and let πt denote the distribution
after t steps. Let π0 be an M-warm start for π ; i.e., we have M = supA∈A

π0(A)
π (A) . Then

dTV (πt, π ) �
√

M

(
1 − φ2

2

)t

. (3.2)

As a consequence, we have the following bound on the mixing time.

Corollary 1. Given ε > 0 and M ≡ sup π0(A)
π (A) , after t(ε) ≡ ⌈ 2

φ2 log
(√

M/ε
)⌉

steps of the chain,

we have dTV (πt(ε), π ) � ε. Thus the Markov chain mixes in Õ
(
φ−2

)
steps from a warm start.

To find mixing times, it then suffices to lower-bound the conductance φ.

3.2. Isoperimetry

The typical means by which one finds lower bounds on the conductance is via isoperimetric
inequalites. We first restate the cross-ratio used in the isoperimetric inequality we will employ.

Definition 2. (Cross-ratio.) Let x, y ∈K, and let p, q be the end points of a chord in K passing
through x, y, such that x lies in between p and y. The cross-ratio is defined to be

σ (x, y) = |x − y||p − q|
|p − x||y − q| ,

where | · | denotes the Euclidean norm.
Additionally, for any S1, S2 ⊂K, let

σ (S1, S2) = inf
x∈S1,y∈S2

σ (x, y).

In [9], Lovász proved an isoperimetric inequality involving the cross-ratio, from which the
conductance φ may be lower-bounded for the special case of the uniform distribution on a
convex body K ⊂R

n. This was extended to log-concave measures by Lovász and Vempala in
[12], of which the uniform measure on a convex body is a special case. We state the latter result
as follows.

Theorem 3. (Lovász and Vempala.) For any log-concave probability measure π (·) supported
on K and a partition of K into measurable subsets S1, S2, and S3 =K\(S1 ∪ S2), we have

π (S3) � σ (S1, S2)π (S1)π (S2). (3.3)

3.3. Mixing of John’s walk

The key step in proving conductance lower bounds is to show that if two points x and
y are close in geometric distance, then the total variation distance between the correspond-
ing marginals Px and Py is bounded away from 1 by a controlled quantity. Note that given
John’s ellipsoid Ex = {

Exu + x
∣∣ |u|� 1

}
, where Ex is symmetric and positive definite, a norm

is induced via
‖y − x‖2

x = (y − x)TE−2
x (y − x).

We first relate this norm to the cross-ratio as follows.
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480 A. GUSTAFSON AND H. NARAYANAN

Theorem 4. Let ‖·‖x denote the norm induced by the John’s ellipsoid of Ks
x. Then

σ (x, y) � 1√
n
‖y − x‖x.

Proof. Noting that the cross-ratio is invariant to affine transformations, without loss of gen-
erality we may assume by a suitable affine transformation that the John’s ellipsoid of Ks

x is the
unit ball, and thus ‖y − x‖x = |y − x|. Let p, x, y, q denote successive points on a chord through
Ks

x. Then

σ (x, y) = |x − y||p − q|
|p − x||y − q|

� |x − y| (|p − x| + |y − q|)
|p − x||y − q|

� max

( |x − y|
|y − q| ,

|x − y|
|p − x|

)
= |x − y|

min(|y − q|, |p − x|)
� |x − y|√

n
,

where the last inequality follows from the containment

B ⊂K ⊂ √
nB

(see (2.4)) and the observation that either |x − p| or |y − q| is contained inside Ks
x. �

Before bounding the statistical distance between Px and Py given a bound on the geometric
distance between x and y, we first state some useful lemmas regarding the ellipsoids Ex and Ey.
The next lemma is a generalization of the Cauchy–Schwarz inequality to semidefinite matrices.

Lemma 1. (Semidefinite Cauchy–Schwarz.) Let α1, . . . , αm ∈R and let A1, . . . , Am ∈R
r×n.

Then (
m∑

i=1

αiAi

)(
m∑

i=1

αiAi

)T

�
(

m∑
i=1

α2
i

)(
m∑

i=1

AiA
T
i

)
, (3.4)

where A � B signifies that B − A is positive semidefinite.

Proof. The proof is as in Lemma 3.11 in [6]. For all i and j,(
αjAi − αiAj

)(
αjAi − αiAj

)T � 0.

Thus

0 � 1

2

m∑
i=1

m∑
j=1

(
αjAi − αiAj

)(
αjAi − αiAj

)T

= 1

2

m∑
i=1

⎡⎣⎛⎝ m∑
j=1

α2
j

⎞⎠ AiA
T
i − αiAi

m∑
j=1

(
αjA

T
j

)
−
⎛⎝ m∑

j=1

(
αjAj

)⎞⎠ (
αiA

T
i

)+ α2
i

m∑
j=1

AjA
T
j

⎤⎦
=
(

m∑
i=1

α2
i

)(
m∑

i=1

AiA
T
i

)
−
(

m∑
i=1

αiAi

)(
m∑

i=1

αiAi

)T

.

�
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Now we study how the volume and aspect ratio of the John’s ellipsoid changes in a move
from x to y. If the John’s ellipsoid centered at x = 0 is the unit ball (which we can assume after
an affine transformation) and we make a move to y, the matrix Ey such that

Ey =
{

z|(z − y)TE−2
y (z − y) � 1

}
is the unique (from John’s theorem) arg max over positive definite matrices of log det E under
the constraint that

E ⊆Ks
y. (3.5)

Noting that the John’s ellipsoid of Ks
x is a unit ball at the origin, we see that the matrix Ex

can be taken to be the identity matrix. Let us translate K by x − y (where x = 0). All the contact
points with K of Ex must lie on the boundary of Ey or outside Ey. Note that if ui is a contact
point of Ex with K, then by definition, uT

i ui = 1. This implies that for any ‖u‖ = 1,

Eyu + y ∈ Ey ⊆K ⊆
{

x|uT
i x � 1

}
.

The last containment above uses the fact that the John’s ellipsoid Ex to Ks
x at x = 0 is the unit

ball and that ui is a contact point of Ex with K. This in turn implies that

uT
i

(
Eyu + y

)
� 1.

Since u may be an arbitrary unit vector, and Ey is symmetric, this condition can be
rewritten as

|Eyui| + 〈ui, y〉� 1, i = 1, . . . , m. (3.6)

Note that we do not claim that Ey is the matrix with largest determinant that satisfies the
above constraints. There may be other constraints corresponding to contact points for Ey that
are not contact points of Ex.

Using Theorem 1 and Lemma 1, we deduce an upper bound on det Ey as follows.
Recall that we will denote a universal positive constant that is large by C and a universal

positive constant that is small by c.

Lemma 2. Let r = cn−5/2, and assume y is chosen from a ball of radius r such that ‖y − x‖x =
|y − x|� r. Then

det Ey � 1 + 2n−2.

Proof. Note that by (3.6), Ey satisfies the constraints uT
i Eyui � 1 − uT

i y. Since the weights
corresponding to the John’s ellipsoid Ks

x are positive, the constraint implies that

m∑
i=1

ciu
T
i Eyui �

m∑
i=1

ci
(
1 − uT

i y
)
.

In the above equation, ci is chosen so that it is non-zero for a contact point of the John’s
ellipsoid with Ks

x only if it is also a contact point for K itself. Such a choice of ci can always
be made, because, as explained in Subsection 2.2.1, if ui is a contact point with Ks

x that is not a
contact point with K, then −ui must be a contact point with both Ks

x and K, and so no weight
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need fall on ui; we can compensate with a weight on −ui. By (2.2) and (2.3), and using the
linearity and cyclic invariance of the trace, we have

tr(Ey) �
m∑

i=1

ci −
m∑

i=1

ciu
T
i y

= n −
(

m∑
i=1

ciui

)T

y

= n −
(

m∑
i=1

ciui

)T

y.

Considering
∣∣∑

i ciui
∣∣ to bound the middle term, we may employ Lemma 1. Letting αi = √

ci

and Ai = √
ciui, we have(

m∑
i=1

ciui

)(
m∑

i=1

ciui

)T

�
(

m∑
i=1

ci

)(
m∑

i=1

ciuiu
T
i

)
.

Noting that the right side is equal to nIn, and comparing the largest eigenvalue of the matrices
on the left and the right side, it follows that∣∣∣∣∣

m∑
i=1

ciui

∣∣∣∣∣�√
n.

Therefore, if y is chosen from a ball of radius cn−5/2, by Cauchy–Schwarz we conclude that

tr
(
Ey
)
� n + cn−2. (3.7)

Now, letting the eigenvalues of Ey be denoted by di > 0, we have by the arithmetic–geometric
mean inequality (

det Ey
)1/n =

(
n∏

i=1

di

)1/n

� 1

n

n∑
i=1

di

� 1

n

(
n + cn−2

)
.

Thus,

det Ey �
(
1 + cn−3)n

� 1 + n−2.

The last inequality assumes that c is a sufficiently small positive constant. �
We deduce a lower bound on det Ey by considering a positive definite matrix of the form

E = β
(
In − αyyT

)
such that the corresponding ellipsoid y + E is contained in the unit ball Ex.
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Note that such a matrix has eigenvalue β
(
1 − α|y|2) of multiplicity 1 corresponding to the unit

eigenvector y/|y|, and eigenvalues β of multiplicity n − 1 corresponding to any unit vector z
which is orthogonal to y. We choose β = 1 − |y|√

n
, and α = 2

√
n|y|−1.

Lemma 3. We have y + E ⊆ Ex, and hence vol(Ey) � vol(E).

Proof. Assume after rescaling that Ex is the unit ball B centered at the origin. We divide the

points u on the boundary of B into two sets: A =
{

u
∣∣ 〈u, y〉� |y|√

n

}
and B =

{
u
∣∣ 〈u, y〉 >

|y|√
n

}
.

If u ∈ A, we have

1 − 〈u, y〉� 1 − |y|√
n
,

and noting that E � 0 and 0 ≺ (
In − αyyT

)≺ In,

|Eu|� β � 1 − 〈u, y〉 .

If u ∈ B, we have
|Eu|2 = β2uT(I − αyyT)2

u

< β2(1 − α〈u, y〉2 )
= β2(1 − 2

√
n|y|−1 〈u, y〉2 )

< (1 − 〈u, y〉)2.

Therefore, for any u ∈ A ∪ B, we see that |Eu| + 〈u, y〉� 1. From this, it follows that for
any u, v ∈ ∂B,

uT (Ev + y) � 1. (3.8)

Therefore, for all v ∈ ∂B, |Ev + y|� 1.
Thus, E + y ⊆ Ex ⊆K, and so E + y ⊆Ks

y. Hence the volume of the John’s ellipsoid of Ks
y,

namely Ey, is at least the volume of E . �
Lemma 4. Let r = cn−5/2, and assume y is chosen from a ball of radius r such that ‖y − x‖x =
|y − x|� r. Then

det Ey � 1 − 3n−2.

Proof. Considering the matrix E as provided by Lemma 3, Ey satisfies

det Ey � det E

= βn(1 − α|y|2)
=
(

1 − |y|√
n

)n (
1 − 2

√
n|y|).

Thus
det Ey �

(
1 − cn−2)(1 − 2cn−2)

�
(
1 − 3n−2).

�
Lemmas 2 and 4 establish that for some universal constant c > 0 and |y − x|� cn−5/2, the

volume ratio of Ey and Bx satisfies

1 − 3n−2 � vol(Ey)

vol(Bx)
� 1 + 2n−2. (3.9)
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This does not necessarily indicate that the shapes of Ex and Ey are close, a property we require
so that rejection does not occur too frequently. The following lemma guarantees that this is
indeed the case.

Lemma 5. Let d1 � d2 � . . .� dn > 0 denote the eigenvalues of Ey. Then the minimum
eigenvalue dn satisfies

dn � 1 − 4n−1

for large enough n. Similarly, the maximum eigenvalue d1 satisfies

d1 � 1 + Cn−1

for large enough n.

Proof. Assume the eigenvalues are ordered so that d1 � . . .� dn. If dn � 1, then of course
dn � 1 − 4n−1, so we may assume that ζ := 1 − dn > 0. By Lemma 4 we see that

det Ey =
n∏

i=1

di � 1 − 3n−2.

By the fact that tr(Ey) � n + c/n2 (see (3.7)), making r smaller if necessary, we have that
tr(Ey) � n + n−2. By the arithmetic–geometric mean inequality, we thus have(

1 − 3n−2)/dn �
∏
i<n

di

�
(∑

i<n di

n − 1

)n−1

�
(

n + n−2 − dn

n − 1

)n−1

�
(

1 + 1 + n−2 − dn

n − 1

)n−1

� exp
(
1 + n−2 − dn

)
.

The last inequality holds because (1 + z/m)m � exp(z) for z � 0 and integer m � 1. Thus, to
summarize the above chain of inequalities,(

1 − 3/n2)� exp
(
1 + n−2 − dn

)
dn. (3.10)

Then, (3.10) may be rephrased as

exp
(
ζ + n−2)(1 − ζ ) �

(
1 − 3

n2

)
.

This implies that

exp(ζ )(1 − ζ ) �
(

1 − 6

n2

)
. (3.11)

We note that exp(ζ )(1 − ζ ) is a monotonically decreasing function of ζ on (0, 1), because its
derivative is

− exp(ζ ) + exp(ζ )(1 − ζ ) = −ζ exp(ζ ).
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Recall that we say that a function τ of n satisfies τ = �(1) if lim inf
n→∞ > 0. If ζ = �(1), then

exp(ζ )(1 − ζ ) � 1 − �(1), which would contradict (3.11). Therefore, we assume that ζ = o(1).
But then

1 − ζ 2(1 − ζ )

2
� exp(ζ )(1 − ζ ) � 1 − 6

n2

gives us ζ � 4
n , which implies the lower bound on dn.

To obtain the desired upper bound on d1, we first note that since there is a uniform lower

bound of 1 − 4
n on all the di, and as the product lies within

(
1 − 3

n2 , 1 + 2
n2

)
, we obtain a

uniform upper bound of 2e4 on the di and hence an upper bound of 2e4 on d1. Therefore, if
‖y − x‖x � r then ‖x − y‖y � 2e4r. We may now reverse the roles of x and y, and obtain the
following upper bound on d1:

d1 � 1 + C

n
. �

Now, to derive a lower bound on the conductance for John’s walk, we first must bound
the statistical distance between two points given a bound on their geometric distance with
respect to the local norm. Again without loss of generality, in what follows we may assume
that x = 0 and that the John’s ellipsoid centered at x is the unit ball Bx (otherwise, perform an
affine transformation so that this is the case). Let x, y ∈K represent any two points in the body
such that ‖y − x‖x = |y − x|� r, where r ∈ (0, 1) is a constant to be specified in terms of the
dimension n. Let Px and Py denote the one-step transition probability measures defined at x and
y, respectively. Let the uniform probability measures defined by the rescaled John’s ellipsoids
Ex(r) and Ey(r) be denoted by Qx and Qy, respectively. We seek to bound

dTV (Px, Py) � dTV (Px, Qx) + dTV (Qx, Qy) + dTV (Qy, Py) (3.12)

by choosing r such that the right side of (3.12) is 1 − �(1).
To bound dTV (Qx, Qy) in (3.12), letting Q̃y denote the probability measure corresponding to

the uniform distribution on a ball of radius r centered at y, we may alternatively bound

dTV (Qx, Qy) � dTV
(
Qx, Q̃y

)+ dTV
(
Q̃y, Qy

)
. (3.13)

We bound each term in (3.13) separately. To bound dTV
(
Qx, Q̃y

)
, note that by our assumption

that Ex =Bx (the unit ball at x), the corresponding densities with respect to the dominating
Lebesgue measure λ are

qx(z) =
(

1

λ(Bx(r))

)
· 1{z∈Bx(r)}

and

q̃y(z) =
(

1

λ
(By(r)

)) · 1{z∈By(r)}.

Thus, using (3.1) and noting that λ(Bx(r)) = λ
(By(r)

)
, we have

dTV
(
Qx, Q̃y

)= 1 −
∫
Bx(r)∩By(r)

qx(z) dλ(z)

= 1 − λ
(Bx(r) ∩By(r)

)
λ(Bx(r))

.

(3.14)
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The Lebesgue measure of Bx ∩By is equal to twice the volume of a spherical cap. The
following lemma regarding the volume of a spherical cap (Lemma 0.1 from [10]) is useful.

Lemma 6. Let Bx ⊂R
n be the Euclidean ball of unit radius centered at x. Let H⊂R

n define
a half-space at a distance of at least t from x (so x is not contained in the half-space). Then for
t � 1√

n
, we have

λ(H ∩Bx) � 1

2

(
1 − t

√
n
)
λ(Bx).

The following lemma results trivially from Lemma 6 and (3.14).

Lemma 7. Let t � 1. If ‖y − x‖x = |y − x|� rt√
n
, then

dTV
(
Qx, Q̃y

)
� t.

To bound dTV
(
Q̃y, Qy

)
, note that we are bounding the total variation distance between a

density supported on a ball and a density supported on an ellipsoid with the same center. The
following lemma provides the bound.

Lemma 8. If ‖y − x‖x � r = cn−5/2, the total variation distance between Q̃y and Qy satisfies

dTV
(
Q̃y, Qy

)
� 1/4.

Proof. Note that by (3.1), we have

dTV
(
Q̃y, Qy

)= 1 −EQ̃y

[
min

(
1,

λ
(By(r)

)
λ(Ey(r))

)
1z∈Ey(r)

]

= 1 − min

[
1,

λ(By)

λ(Ey)

]
PQ̃y

(
Z ∈ Ey(r)

)
� 1 − min

[
1,

λ(By)

λ(Ey)

]
PQ̃y

(
Z ∈ Ey(r)|B)PQ̃y

(Z ∈ B),

where B denotes the event in which Z ∈ (
1 − C

n

) ·By(r). By Lemma 5, it follows that PQ̃y
(Z ∈

Ey(r)|B) = 1, since the smallest eigenvalue of Ey is at least 1 − Cn−1. Additionally, by (3.9),

min

[
1,

λ(By)

λ(Ey)

]
� 1

1 + Cn−2

� exp
(−Cn−2).

Now, noting that
(
1 − x

2

)
� e−x for x ∈ [0, 1], we have PQ̃y

(Z ∈ B) =
(

1 − C
n

)n
� e−2c, and

dTV
(
Q̃y, Qy

)
� 1 − exp

(
−C

(
2 + n−2)) .

�
To bound dTV (Px, Qx), we provide the following lemma.

Lemma 9. If ‖y − x‖x � r = cn−5/2, the total variation distance between Px and Qx satisfies

dTV (Px, Qx) � 1/4.
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Proof. With some abuse of notation with regard to (2.6), temporarily let the density of Qx

with respect to the dominating measure μ as defined by (2.7) be

qx(y) ≡ dQ

dμ
(y) =

(
1

λ(Ex(r))

)
· 1{y∈Ex(r), y 
=x}.

Then, since qx(x) = 0 and px(y) � qx(y) for y 
= x, by (3.1) we have

dTV (Px, Qx) = 1 −
∫
{

y
∣∣ qx(y)�px(y)

} min
[
qx(y), px(y)

]
dμ(y)

= 1 −
∫
K\{x}

min
[
qx(y), px(y)

]
dλ(y)

= 1 −
∫
Ex(r)\{x}

min

[
1

λ(Ex(r))
,

1

λ(Ey(r))

]
· 1{x∈Ey(r)} dλ(y)

= 1 −
∫
Ex(r)

[
min

(
1,

λ(Ex(r))

λ(Ey(r))

)]
· 1{x∈Ey(r)} ·

(
1

λ(Ex(r))

)
dλ(y)

= 1 −EQx

[
min

(
1,

λ(Ex)

λ(EY )

)
· 1{Y∈A}

]
,

where we let A denote the ‘accept’ event in which x ∈ EY (r). Since Ex =Bx, as in the proof of
Lemma 8, we have for all Y ∈ A

min

[
1,

λ(Ex)

λ(EY )

]
� 1

1 + Cn−2
.

Therefore,

dTV (Px, Qx) � 1 −
(

1

1 + Cn−2

)
PQx (Y ∈ A)

� 1 −
(

1

1 + Cn−2

)
PQx (Y ∈ A|Y ∈ B)PQx (Y ∈ B),

where B is the event in which Y ∈ (
1 − C

n

) · Ex(r) = r
(
1 − C

n

) ·Bx. Again by Lemma 5, PQx (Y ∈
A|Y ∈ B) = 1. The remainder of the proof is as in Lemma 8. �

Note that by a similar argument, dTV (Qy, Py) � 1/4 for some universal c > 0 as well.
Combining this with Lemmas 7, 8, and 9, we obtain the following theorem.

Theorem 5. If ‖y − x‖x � rt√
n

= ctn−3 for some universal constant c > 0 and some t � 1, the

total variation distance between Px and Py satisfies

dTV (Px, Py) � 3/4 + t = 1 − ε.

In particular, we may choose t = 1/8, so that ε = 1/8.

We finally arrive at a lower bound on the conductance for John’s walk using Theorems 3,
4, and 5. The proof of the next result is similar to that of Corollary 10 and Theorem 11 in [9].

Theorem 6. (Conductance lower bound.) Consider the partition K = S1 ∪ S2 where S1, S2 ∈
A, and let π be the uniform measure on K, i.e.,

π (A) = λ(A)

λ(K)
for all A ∈A.
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Then for large enough n and t = 1/8, we have∫
S1

Px(S2)dπ (x) �
( c

512n7/2

)
min(π (S1), π (S2)),

so φ = �
(
n−7/2

)
.

Proof. Note that the Radon–Nikodym derivative of Px with respect to the Lebesgue measure
λ is well-defined for all y ∈K\ {x}, and is given as

dPx

dλ
(y) = min

[
1

λ(Ex(r))
,

1

λ(Ey(r))

]
1{x∈Ey(r), y∈Ex(r)}.

Let

ρ(x) ≡ dπ

dλ
(x) = 1

λ(K)
· 1{x∈K}

be the density for π . Then for any x, y ∈K such that y 
= x, we have

ρ(x)
dPx

dλ
(y) = ρ(y)

dPy

dλ
(x),

from which it follows that π is the stationary measure for the chain.
Now consider points far inside S1 that are unlikely to cross over to S2. Letting t = 1/8 so

ε = 1/8 as in Theorem 5, we define

S′
1 ≡ S1 ∩

{
x
∣∣ ρ(x)Px(S2) <

ε

2λ(K)

}
.

Similarly, let

S′
2 ≡ S2 ∩

{
y
∣∣ ρ(y)Py(S1) <

ε

2λ(K)

}
.

Since ρ(x)Px(S2) � ε/(2λ(K)) for x ∈ S1\S′
1, we have∫

S1

Px(S2)dπ (x) �
∫

S1\S′
1

ρ(x)Px(S2)dλ(x)

�
ελ
(
S1\S′

1

)
2λ(K)

= (ε/2)π
(
S1\S′

1

)
.

Similarly, for y ∈ S2\S′
2 we have∫

S2

Py(S1)dπ (y) � (ε/2)π
(
S2\S′

2

)
.

By the reversibility of the chain, we have∫
S1

Px(S2)dπ (x) =
∫

S2

Py(S1)dπ (y), (3.15)
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so it follows that ∫
S1

Px(S2)dπ (x) = 1

2

∫
S1

Px(S2)dπ (x) + 1

2

∫
S2

Py(S1)dπ (y)

� ε

4

(
π
(
S1\S′

1

)+ π
(
S2\S′

2

))
= (ε/4)π

(K\(S′
1 ∪ S′

2

))
.

Now let δ = ctn−3. Assuming that π
(
S′

1

)
� (1 − δ)π (S1), we have π

(
S1\S′

1

)= π (S1) −
π
(
S′

1

)
� δπ (S1), and thus∫

S1

Px(S2)dπ (x) � (εδ/2)π (S1) � (εδ/2) min(π (S1), π (S2))

=
( c

128n3

)
min(π (S1), π (S2)),

which proves the claim. Similarly, if π
(
S′

2

)
� (1 − δ)π (S2), the claim is proved again using

(3.15). Thus, assume that π
(
S′

1

)
> (1 − δ)π (S1) and π

(
S′

2

)
> (1 − δ)π (S2). By Theorem 3, we

have
π
(K\(S′

1 ∪ S′
2

))
� σ

(
S′

1, S′
2

)
π
(
S′

1

)
π
(
S′

2

)
.

Now, given x ∈ S′
1 and y ∈ S′

2, the total variation between Px and Py satisfies

dTV (Px, Py) � Px(S1) − Py(S1)

= 1 − Px(S2) − Py(S1)

> 1 − ε.

By Theorem 5, it follows that ‖y − x‖x > δ. Then by Theorem 4 it follows that

σ
(
S′

1, S′
2

)
� n−1/2‖y − x‖x > δn−1/2.

Finally, we deduce that∫
S1

Px(S2)dπ (x) � (εδn−1/2/4)π
(
S′

1

)
π
(
S′

2

)
�
(

εδ(1 − δ)2

4
√

n

)
π (S1)π (S2)

�
(

εδ(1 − δ)2

8
√

n

)
min(π (S1), π (S2))

=
(

c(1 − δ)2

512n7/2

)
min(π (S1), π (S2)).

The claim follows by absorbing terms into the constant for large enough n. �
Now applying Corollary 1, we obtain our main theorem.

Theorem 7. For ε > 0 and M � sup π0(A)
π (A) , after t(ε) = Cn7 log

(√
M/ε

)
steps of John’s walk,

we have dTV (πt(ε), π ) � ε.

As a matter of fact, this theorem allows us to find mixing time bounds starting from any
point that is not on the boundary of K. Suppose we know that x belongs to the interior of
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K and satisfies the following chord condition. For all chords pq of K containing x, assume
|p−x|
|q−x| ∈ (

η, η−1
)

for some parameter 0 < η < 1 that measures the centrality of x in K. Then we
see that

λ(Bx(r)) �
(

rη√
n

)n

λ(K).

After a random geometrically distributed time τ with mean bounded above by an absolute
constant, the first nontrivial move occurs. Then the distribution of xτ has a density bounded
above by

M =
(

rη√
n

)−n

.

We thus have the following theorem.

Theorem 8. Let r = cn− 5
2 be the radius of the John’s ellipsoids in the walk. For all chords

pq of K containing x, assume |p−x|
|q−x| ∈ (

η, η−1
)

for some parameter 0 < η < 1 that measures
the centrality of x in K. Then there is a random geometrically distributed time τ with mean
bounded above by C such that for ε > 0, after t(ε) + τ = Cn7

(
n log

(√
n/(rη)

)+ log(1/ε)
)+ τ

steps of John’s walk, we have dTV (πt(ε)+τ , π ) � ε.

4. Concluding remarks

We introduced an affine-invariant random walk akin to the Dikin walk which uses uniform
sampling from John’s ellipsoids of a certain small radius of appropriately symmetrized convex
sets to make steps, and showed that this walk mixes to within a total variation distance ε in
O
(
n7 log ε−1

)
steps from a warm start. The type of convex body K is not specified (i.e., it need

not be a polytope) in our analysis of the mixing time, but one must have access to the John’s
ellipsoid of the current symmetrization of the convex body. A significant feature of this walk
is that its mixing time from a warm start, or alternatively a ‘central point’ such as the center of
mass, can be bounded above by a quantity that has absolutely no dependence on any parameter
associated with the body apart from its dimension.

One potential avenue for obtaining an improved mixing time is to increase r and control
the relative change of shape of the John’s ellipsoids Ex and Ey when ‖x − y‖x < r/

√
n in a

more direct manner. We suspect that the method of controlling the change in shape using the
arithmetic–geometric mean inequality and the ratio of the volumes of Ex and Ey that appears in
Lemma 3.3 might be suboptimal.
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√

rank) linear system
solves. Preprint. Available at https://arxiv.org/abs/1312.6677.

[9] LOVÁSZ, L. (1999). Hit-and-run mixes fast. Math. Program. 86, 443–461.
[10] LOVÁSZ, L. AND SIMONOVITS, M. (1993). Random walks in a convex body and an improved volume

algorithm. Random Structures Algorithms 4, 359–412.
[11] LOVÁSZ, L. AND VEMPALA, S. (2006). Hit-and-run from a corner. SIAM J. Computing 35, 985–1005.
[12] LOVÁSZ, L. AND VEMPALA, S. (2007). The geometry of logconcave functions and sampling algorithms.

Random Structures Algorithms 30, 307–358.
[13] NARAYANAN, H. (2016). Randomized interior point methods for sampling and optimization. Ann. Appl. Prob.

26, 597–641.

https://doi.org/10.1017/apr.2022.34 Published online by Cambridge University Press

https://arxiv.org/abs/https://arxiv.org/abs/1710.08165
https://arxiv.org/abs/https://arxiv.org/abs/1312.6677
https://doi.org/10.1017/apr.2022.34

	Introduction
	John"2019`s walk
	John"2019`s theorem
	The John"2019`s walk algorithm
	An observation.


	Analysis of mixing time
	Conductance and mixing times
	Isoperimetry
	Mixing of John"2019`s walk

	Concluding remarks
	Acknowledgements
	Funding information
	Competing interests
	References

