
Bull. Aust. Math. Soc. 80 (2009), 306–316
doi:10.1017/S000497270900029X

WEAK BRAIDED BIALGEBRAS AND WEAK ENTWINING
STRUCTURES

J. N. ALONSO ÁLVAREZ, J. M. FERNÁNDEZ VILABOA and
R. GONZÁLEZ RODRÍGUEZ ˛

(Received 11 December 2008)

Abstract

In this paper we clarify and improve the notion of weak braided bialgebra using weak entwining
structures. As a main result we show that the notion of weak braided bialgebra can be rewritten in
terms of weak entwining structures.
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1. Introduction

Weak braided bialgebras and weak braided Hopf algebras were defined by us in [1]
as a generalization to the braided setting of the notions of weak bialgebra and weak
Hopf algebra introduced by Böhm et al. [4]. The definition of these weak braided
structures was inspired by the work of Takeuchi [11] and motivated by the study and
characterization of weak Hopf algebra projections that we finished in [1] where, for a
weak Hopf algebra H with invertible antipode, we obtain a one-to-one correspondence
between Hopf algebras in the category of left–left Yetter–Drinfeld modules over H
and pairs of morphisms of weak Hopf algebras f : H → B, g : B→ H such that
g ◦ f = idH . In order to establish this result, which generalizes the classical theorems
proved by Radford [10] and Majid [8] to the weak setting, we had defined previously
the notion of weak Yang–Baxter operators and had showed that it is possible to
construct examples of these weak operators working with the category of Yetter–
Drinfeld modules over a weak Hopf algebra with invertible antipode.

Roughly speaking, a weak braided bialgebra D in a strict monoidal category is
an algebra–coalgebra with a weak Yang–Baxter operator tD,D : D ⊗ D→ D ⊗ D,
satisfying some compatibility conditions. This definition generalizes the one
introduced by Takeuchi in [11], that is, the definition of braided bialgebra, and
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the classical notion of bialgebra in a braided or symmetric category. Moreover, as
particular instances, we recover the definition of weak bialgebra and, if the weak
Yang–Baxter operator is the braiding of a braided category, we formulate the new
notion of weak bialgebra in a braided monoidal setting.

The aim of this paper is to improve the definition of weak braided bialgebra
introduced in [1] and discuss how working with these algebraic objects it is possible to
obtain examples of weak entwining structures (see [5] for the definition). Moreover,
we prove that weak entwining structures provide a good characterization of weak
braided bialgebras; that is, in the final theorem of this paper we prove that the definition
of weak braided bialgebra can be stated in terms of weak entwining structures.

2. Relations between weak braided Hopf algebras and entwining structures

We assume that the reader is familiar with the machinery of monoidal categories.
Throughout the paper we work in a strict monoidal category (C,⊗, K ) where every
idempotent splits; that is, for every morphism q : Y → Y such that q = q ◦ q , then
there exist an object Z and morphisms i : Z→ Y and p : Y → Z satisfying q = i ◦ p
and p ◦ i = idZ where idZ denotes the identity morphism in Z . For simplicity of
notation, given objects M , N , P in C and a morphism f : M→ N , we write P ⊗ f
for idP ⊗ f and f ⊗ P for f ⊗ idP .

An algebra in C is a triple A = (A, ηA, µA) where A is an object in C and
ηA : K → A (unit), µA : A ⊗ A→ A (product) are morphisms in C such that µA ◦

(A ⊗ ηA)= idA = µA ◦ (ηA ⊗ A), µA ◦ (A ⊗ µA)= µA ◦ (µA ⊗ A). A coalgebra in
C is a triple D = (D, εD, δD) where D is an object in C and εD : D→ K (counit),
δD : D→ D ⊗ D (coproduct) are morphisms in C such that (εD ⊗ D) ◦ δD = idD =

(D ⊗ εD) ◦ δD , (δD ⊗ D) ◦ δD = (D ⊗ δD) ◦ δD .
If A is an algebra, B is a coalgebra and α : B→ A, β : B→ A are morphisms, we

define the convolution product by α ∧ β = µA ◦ (α ⊗ β) ◦ δB .
Let D ∈ C and let tD,D : D ⊗ D→ D ⊗ D be a morphism in C. We will say that

tD,D satisfies the Yang–Baxter equation if

(tD,D ⊗ D) ◦ (D ⊗ tD,D) ◦ (tD,D ⊗ D)= (D ⊗ tD,D) ◦ (tD,D ⊗ D) ◦ (D ⊗ tD,D).

The notion of weak Yang–Baxter operator is a generalization of the classical
definition of Yang–Baxter operator and was introduced by the authors in [1]. The
definition is the following.

DEFINITION 2.1. Let D ∈ C. A weak Yang–Baxter operator is a morphism tD,D :

D ⊗ D→ D ⊗ D in C satisfying the following conditions.

(a1) The morphism tD,D satisfies the Yang–Baxter equation.
(a2) There exists an idempotent morphism ∇D⊗D : D ⊗ D→ D ⊗ D such that:

(a2-1) (∇D⊗D ⊗ D) ◦ (D ⊗∇D⊗D)= (D ⊗∇D⊗D) ◦ (∇D⊗D ⊗ D);
(a2-2) (∇D⊗D ⊗ D) ◦ (D ⊗ tD,D)= (D ⊗ tD,D) ◦ (∇D⊗D ⊗ D);
(a2-3) (tD,D ⊗ D) ◦ (D ⊗∇D⊗D)= (D ⊗∇D⊗D) ◦ (tD,D ⊗ D);
(a2-4) tD,D ◦ ∇D⊗D =∇D⊗D ◦ tD,D = tD,D .
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(a3) There exists a morphism t ′D,D : D ⊗ D→ D ⊗ D such that:
(a3-1) t ′D,D satisfies the Yang–Baxter equation;
(a3-2) the morphism pD,D ◦ tD,D ◦ iD,D : D × D→ D × D is an isomorphism

with inverse pD,D ◦ t ′D,D ◦ iD,D : D × D→ D × D, where pD,D and
iD,D are the morphisms such that iD,D ◦ pD,D =∇D⊗D and pD,D ◦

iD,D = idD×D being D × D the image of ∇D⊗D;
(a3-3) t ′D,D ◦ ∇D⊗D =∇D⊗D ◦ t ′D,D = t ′D,D .

Note that if ∇D⊗D = idD⊗D the morphism tD,D is an isomorphism and we have the
usual definition of Yang–Baxter operator in the sense of Joyal and Street [6]. Also, as
a direct consequence of this definition, the idempotent morphism ∇D⊗D satisfies the
Yang–Baxter equation and we have that tD,D is a weak Yang–Baxter operator if and
only if t ′D,D is a weak Yang–Baxter operator. Also, by [1, Proposition 1.3], we have
t ′D,D ◦ tD,D = tD,D ◦ t ′D,D =∇D⊗D .

Now we recall the definition of weak braided bialgebra introduced in [1].

DEFINITION 2.2. A weak braided bialgebra D is an object in C with an algebra
structure (D, ηD, µD) and a coalgebra structure (D, εD, δD) such that there exists
a weak Yang–Baxter operator tD,D : D ⊗ D→ D ⊗ D with associated idempotent
∇D⊗D satisfying the following conditions.

(b1) We have:
(b1-1) µD ◦ ∇D⊗D = µD;

(b1-2) ∇D⊗D ◦ (µD ⊗ D)= (µD ⊗ D) ◦ (D ⊗∇D⊗D);

(b1-3) ∇D⊗D ◦ (D ⊗ µD)= (D ⊗ µD) ◦ (∇D⊗D ⊗ D).
(b2) We have:

(b2-1) ∇D⊗D ◦ δD = δD;

(b2-2) (δD ⊗ D) ◦ ∇D⊗D = (D ⊗∇D⊗D) ◦ (δD ⊗ D);
(b2-3) (D ⊗ δD) ◦ ∇D⊗D = (∇D⊗D ⊗ D) ◦ (D ⊗ δD).

(b3) The morphisms ηD , µD , εD and δD commute with tD,D , that is:
(b3-1) tD,D ◦ (ηD ⊗ D)=∇D⊗D ◦ (D ⊗ ηD);

(b3-2) tD,D ◦ (D ⊗ ηD)=∇D⊗D ◦ (ηD ⊗ D);
(b3-3) tD,D ◦ (µD ⊗ D)= (D ⊗ µD) ◦ (tD,D ⊗ D) ◦ (D ⊗ tD,D);

(b3-4) tD,D ◦ (D ⊗ µD)= (µD ⊗ D) ◦ (D ⊗ tD,D) ◦ (tD,D ⊗ D);
(b3-5) (εD ⊗ D) ◦ tD,D = (D ⊗ εD) ◦ ∇D⊗D;

(b3-6) (D ⊗ εD) ◦ tD,D = (εD ⊗ D) ◦ ∇D⊗D;

(b3-7) (δD ⊗ D) ◦ tD,D = (D ⊗ tD,D) ◦ (tD,D ⊗ D) ◦ (D ⊗ δD);

(b3-8) (D ⊗ δD) ◦ tD,D = (tD,D ⊗ D) ◦ (D ⊗ tD,D) ◦ (δD ⊗ D).
(b4) δD ◦ µD = (µD ⊗ µD) ◦ (D ⊗ tD,D ⊗ D) ◦ (δD ⊗ δD).
(b5) εD ◦ µD ◦ (µD ⊗ D)= ((εD ◦ µD)⊗ (εD ◦ µD)) ◦ (D ⊗ δD ⊗ D)

= ((εD ◦ µD)⊗ (εD ◦ µD)) ◦ (D ⊗ (t ′D,D ◦ δD)⊗ D).
(b6) (δD ⊗ D) ◦ δD ◦ ηD = (D ⊗ µD ⊗ D) ◦ ((δD ◦ ηD)⊗ (δD ◦ ηD))

= (D ⊗ (µD ◦ t ′D,D)⊗ D) ◦ ((δD ◦ ηD)⊗ (δD ◦ ηD)).
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The weak braided bialgebra D is called a weak braided Hopf algebra in C when we
have the following property.
(b7) There exists a morphism λD : D→ D in C (called the antipode of D) satisfying:

(b7-1) idD ∧ λD = ((εD ◦ µD)⊗ D) ◦ (D ⊗ tD,D) ◦ ((δD ◦ ηD)⊗ D);
(b7-2) λD ∧ idD = (D ⊗ (εD ◦ µD)) ◦ (tD,D ⊗ D) ◦ (D ⊗ (δD ◦ ηD));
(b7-3) λD ∧ idD ∧ λD = λD .

Note that, if D is a weak braided bialgebra, we have the equalities (b3-1)–(b3-8)
replacing tD,D for t ′D,D (see [2, equalities (13) to (14)]).

As an example, if C is symmetric and tD,D = cD,D = t ′D,D (that is, the weak Yang–
Baxter operator is the braiding of the symmetric category C) then ∇D⊗D = idD⊗D and
the last definition is the usual definition of weak bialgebra (see [4]).

When C is braided with braiding c and tD,D = cD,D , t ′D,D = c−1
D,D , we have

∇D⊗D = idD⊗D and D is called a weak bialgebra in the braided category C. In
this setting the definition can be simplified in the following way. A weak bialgebra
in a braided category C with braiding c is an object in C with an algebra structure
(D, ηD, µD) and a coalgebra structure (D, εD, δD) satisfying:
(c1) δD ◦ µD = (µD ⊗ µD) ◦ (D ⊗ cD,D ⊗ D) ◦ (δD ⊗ δD);
(c2) εD ◦ µD ◦ (µD ⊗ D)= ((εD ◦ µD)⊗ (εD ◦ µD)) ◦ (D ⊗ δD ⊗ D)

= ((εD ◦ µD)⊗ (εD ◦ µD)) ◦ (D ⊗ (c
−1
D,D ◦ δD)⊗ D);

(c3) (δD ⊗ D) ◦ δD ◦ ηD = (D ⊗ µD ⊗ D) ◦ ((δD ◦ ηD)⊗ (δD ◦ ηD))

= (D ⊗ (µD ◦ c−1
D,D)⊗ D) ◦ ((δD ◦ ηD)⊗ (δD ◦ ηD)).

The weak bialgebra D in C is called a weak Hopf algebra in the braided category C
when we have the following property.
(c4) There exists a morphism λD : D→ D in C (called the antipode of D) satisfying:

(c4-1) idD ∧ λD = ((εD ◦ µD)⊗ D) ◦ (D ⊗ cD,D) ◦ ((δD ◦ ηD)⊗ D);
(c4-2) λD ∧ idD = (D ⊗ (εD ◦ µD)) ◦ (cD,D ⊗ D) ◦ (D ⊗ (δD ◦ ηD));

(c4-3) λD ∧ idD ∧ λD = λD .
Bialgebras in braided categories, in the sense of Majid [7], and classical bialgebras

are examples of weak braided bialgebras in this setting. Also, braided bialgebras, in
the sense of Takeuchi [11], are examples of weak braided bialgebras. Finally, recall
that the notion of weak Hopf algebra in a braided category was recently called weak
Hopf monoid by Pastro and Street (see [9]). In this last reference we can see that
it is possible to obtain examples of weak braided Hopf algebras and weak braided
bialgebras working with separable Frobenius algebras in a braided monoidal category.

Definition 2.2 can be improved using the following result.

LEMMA 2.3. Let D be an object in C with an algebra structure (D, ηD, µD) and a
coalgebra structure (D, εD, δD) such that there exists a weak Yang–Baxter operator
tD,D : D ⊗ D→ D ⊗ D with associated idempotent ∇D⊗D .

(1) If the equalities (b1-1) and (b3-3) of Definition 2.2 hold then (b3-1) holds.
(2) If the equalities (b1-1) and (b3-4) of Definition 2.2 hold then (b3-2) holds.
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(3) If the equalities (b2-1) and (b3-7) of Definition 2.2 hold then (b3-5) holds.
(4) If the equalities (b2-1) and (b3-8) of Definition 2.2 hold then (b3-6) holds.

PROOF. We prove assertion (1). The proofs for the assertions (2), (3) and (4) are
similar and we leave the details to the reader.

Composing with D ⊗ t ′D,D in (b3-3) and using (a2-3) and (b1-1) we have

tD,D ◦ (µD ⊗ D) ◦ (D ⊗ t ′D,D)

= (D ⊗ µD) ◦ (tD,D ⊗ D) ◦ (D ⊗∇D⊗D)

= (D ⊗ (µD ◦ ∇D⊗D)) ◦ (tD,D ⊗ D)

= (D ⊗ µD) ◦ (tD,D ⊗ D).

Finally, composing with ηD ⊗ D ⊗ ηD in the last equalities we obtain (b3-1). 2

Hence (b3-1), (b3-2), (b3-5) and (b3-6) can be removed in Definition 2.2. The
preceding Lemma 2.3 implies also that in the definition of braided Hopf algebra
(braided bialgebra) introduced by Takeuchi in [11] (see Definition 5.1), there exists
superfluous conditions, that is, the commuting relations for the unit, the counit and the
Yang–Baxter operator.

DEFINITION 2.4. A right–right weak entwining structure in C is a triple (A, C, ψR R)

where A is an algebra, C is a coalgebra and ψR R : C ⊗ A→ A ⊗ C is a morphism
satisfying the following conditions, in which eR R : C→ A is the morphism defined
by eR R = (A ⊗ εC ) ◦ ψR R ◦ (C ⊗ ηA):

(d1) ψR R ◦ (C ⊗ µA)= (µA ⊗ C) ◦ (A ⊗ ψR R) ◦ (ψR R ⊗ A);
(d2) ψR R ◦ (C ⊗ ηA)= (eR R ⊗ C) ◦ δC ;

(d3) (A ⊗ δC ) ◦ ψR R = (ψR R ⊗ C) ◦ (C ⊗ ψR R) ◦ (δC ⊗ A);
(d4) (A ⊗ εC ) ◦ ψR R = µA ◦ (eR R ⊗ A).

For a right–right weak entwining structure, by 1R R we denote the idempotent
morphism

1R R = (µA ⊗ C) ◦ (A ⊗ ψR R) ◦ (A ⊗ C ⊗ ηA) : A ⊗ C→ A ⊗ C.

Similarly one can define a left–left weak entwining structure (A, C, ψL L) for an
algebra A, a coalgebra C and a morphism ψL L : A ⊗ C→ C ⊗ A, that verifies similar
equalities to the previous ones. Here eL L = (εC ⊗ A) ◦ ψL L ◦ (ηA ⊗ C) and by 1L L
we denote the idempotent morphism

1L L = (C ⊗ µA) ◦ (ψL L ⊗ A) ◦ (ηA ⊗ C ⊗ A) : C ⊗ A→ C ⊗ A.

If (A, C, ψR R) is a right–right entwining structure and eR R = εC ⊗ ηA we recover
the notion of right–right entwining structure or, equivalently, −⊗ ψR R : − ⊗ C ⊗
A→−⊗ A ⊗ C is a mixed distributive law (see [3]) between the monad −⊗ A and
the comonad −⊗ C .
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THEOREM 2.5. Let D be an algebra–coalgebra in C. Let tD,D : D ⊗ D→ D ⊗ D be
a morphism in C. The following assertions are equivalent.

(1) The following all hold.
(1-1) The triple (D, D, ψR R = tD,D) is a right–right weak entwining structure.
(1-2) The triple (D, D, ψL L = tD,D) is a left–left weak entwining structure.
(1-3) The morphisms 1R R and 1L L are equal.
(1-4) The morphisms eR R and eL L are equal.
(1-5) The morphisms eR R and eL L satisfy eR R ∧ idD = idD ∧ eL L = idD .

(2) There exists a unique idempotent morphism ∇D⊗D : D ⊗ D→ D ⊗ D such that
the triple (D, tD,D, ∇D⊗D) satisfies the identities (b1) to (b3) of Definition 2.2.

REMARK 2.6. Note that in this theorem it is impossible to remove conditions (b3-1),
(b3-2), (b3-5) and (b3-6) because tD,D is only a morphism and not a weak Yang–
Baxter operator.

PROOF. First we prove that (1) implies (2). Put ∇D⊗D =1R R . Using the fact
that (D, D, tD,D) is a right–right and a left–left weak entwining structure we obtain
(b3-3), (b3-4), (b3-7) and (b3-8). Also, we have (b3-1) because

∇D⊗D ◦ (ηD ⊗ D)=1R R ◦ (ηD ⊗ D)= tD,D ◦ (D ⊗ ηD).

The equality (b3-2) follows from

∇D⊗D ◦ (D ⊗ ηD)=1R R ◦ (D ⊗ ηD)=1L L ◦ (D ⊗ ηD)= tD,D ◦ (ηD ⊗ D),

where we used that 1R R =1L L .
As a consequence of the identity eR R = eL L we obtain that

∇D⊗D = 1R R = ((µD ◦ (D ⊗ eR R))⊗ D) ◦ (D ⊗ δD)

= ((µD ◦ (D ⊗ eL L))⊗ D) ◦ (D ⊗ δD)

= (((εD ⊗ D) ◦ tD,D)⊗ D) ◦ (D ⊗ δD),

and, composing with D ⊗ εD , we have (D ⊗ εD) ◦ ∇D⊗D = (εD ⊗ D) ◦ tD,D; that is,
(b3-5) holds. In a similar way,

∇D⊗D =1L L = (D ⊗ (((D ⊗ εD) ◦ tD,D))) ◦ (δD ⊗ D)

and then composing with εD ⊗ D we have (b3-6).
On the other hand, using the identity idD ∧ eR R = idD and the associativity of µD ,

we obtain (b1-1) because

µD ◦ ∇D⊗D = µD ◦ ((µD ◦ (D ⊗ eR R))⊗ D) ◦ (D ⊗ δD)

= µD ◦ (D ⊗ (eR R ∧ idD))= µD.

Also, by the associativity of µD and (1-3) we have (b1-2) and (b1-3). Finally the
proofs for (b2-1), (b2-2) and (b2-3) are similar and the idempotent morphism ∇D⊗D
is the unique one such that (D, tD,D, ∇D⊗D) satisfies the identities (b1) to (b3) of
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Definition 2.2, because if� : D ⊗ D→ D ⊗ D is another idempotent satisfying these
conditions, using (b1-2) and (b3-2) we obtain

� = � ◦ ((µD ◦ (D ⊗ ηD))⊗ D)= (µD ⊗ D) ◦ (D ⊗ (� ◦ (ηD ⊗ D)))

= (µD ⊗ D) ◦ (D ⊗ (tD,D ◦ (D ⊗ ηD)))=1R R =∇D⊗D.

Conversely, suppose that there exists an unique idempotent morphism ∇D⊗D :

D ⊗ D→ D ⊗ D such that the triple (D, tD,D, ∇D⊗D) satisfies the identities (b1)
to (b3) of Definition 2.2. Firstly we show (1-3). Note that by (b1-2) and (b3-2) we
have

∇D⊗D = ∇D⊗D ◦ ((µD ◦ (D ⊗ ηD))⊗ D)

= (µD ⊗ D) ◦ (D ⊗ (∇D⊗D ◦ (ηD ⊗ D)))

= (µD ⊗ D) ◦ (D ⊗ (tD,D ◦ (D ⊗ ηD)))=1R R .

On the other hand, by (b1-3), (b3-1) and using a similar computations we obtain
∇D⊗D =1L L . Note that if we work with the identities (b2-2), (b3-6), (b2-3) and
(b3-5) we prove that

(D ⊗ ((D ⊗ εD) ◦ tD,D)) ◦ (δD ⊗ D)

=∇D⊗D = (((εD ⊗ D) ◦ tD,D)⊗ D) ◦ (D ⊗ δD).

By (b3-2) and (b3-5) we have

eR R = (D ⊗ εD) ◦ tD,D ◦ (D ⊗ ηD)= (D ⊗ εD) ◦ ∇D⊗D ◦ (ηD ⊗ D)

= (D ⊗ εD) ◦ tD,D ◦ (ηD ⊗ D)= eL L .

Also, by (b3-3), (b3-4), (b3-7) and (b3-8) we have the first and the third axioms of
the definitions of right–right and left–left entwining structure for (D, D, tD,D).

Moreover,

µD ◦ (eR R ⊗ D) = µD ◦ (eL L ⊗ D)= (εD ⊗ µD) ◦ ((tD,D ◦ (ηD ⊗ D))⊗ D)

= (εD ⊗ D) ◦1L L = (εD ⊗ D) ◦ ∇D⊗D = (D ⊗ εD) ◦ tD,D

and

(eR R ⊗ D) ◦ δD = (eL L ⊗ D) ◦ δD =1L L ◦ (ηD ⊗ D)

= 1R R ◦ (ηD ⊗ D)= tD,D ◦ (D ⊗ ηD).

Also,

µD ◦ (D ⊗ eL L)= (εD ⊗ D) ◦ tD,D, (D ⊗ eL L) ◦ δD = tD,D ◦ (ηD ⊗ D).

Therefore (D, D, tD,D) is a right–right and a left–left weak entwining structure.
Finally, by (b2-1) we have

eR R ∧ idD = eL L ∧ idD = (εD ⊗ µD) ◦ (tD,D ⊗ D) ◦ (ηD ⊗ δD)

= (εD ⊗ D) ◦ ∇D⊗D ◦ δD = (εD ⊗ D) ◦ δD = idD,

and by (b1-1) we prove the equality idD ∧ eR R = idD . 2
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DEFINITION 2.7. A right–left weak entwining structure on C, consists of a triple
(A, C, ψRL), where A is an algebra, C a coalgebra, and ψRL : A ⊗ C→ A ⊗ C a
morphism such that there exist morphisms τA,C : A ⊗ C→ C ⊗ A, σC,A : C ⊗ A→
A ⊗ C , rC,C : C ⊗ C→ C ⊗ C and sC,C : C ⊗ C→ C ⊗ C satisfying the following
relations, in which eRL : C→ A is the morphism defined by eRL = (A ⊗ εC ) ◦ ψRL ◦

(ηA ⊗ C):
(e1) (µA ⊗ C) ◦ (A ⊗ σC,A) ◦ (ψRL ⊗ A) ◦ (A ⊗ (τA,C ◦ ψRL))

= ψRL ◦ (µA ⊗ C);
(e2) (ψRL ⊗ C) ◦ (A ⊗ sC,C ) ◦ (ψRL ⊗ C) ◦ (A ⊗ (rC,C ◦ δC ))

= (A ⊗ δC ) ◦ ψRL;

(e3) ψRL ◦ (ηA ⊗ C)= (eRL ⊗ C) ◦ δC ;

(e4) (A ⊗ εC ) ◦ ψRL = µA ◦ (A ⊗ eRL).
In a similar way a left–right weak entwining structure consists of a triple

(A, C, ψL R), where A is an algebra, C a coalgebra, and ψL R : C ⊗ A→ C ⊗ A a
morphism such that there exist morphisms τA,C : A ⊗ C→ C ⊗ A, σC,A : C ⊗ A→
A ⊗ C , rA,A : A ⊗ A→ A ⊗ A and sA,A : A ⊗ A→ A ⊗ A, satisfying the following
relations, in which eL R : C→ A is the morphism defined by eL R = (εC ⊗ A) ◦ ψL R ◦

(C ⊗ ηA):
(f1) (C ⊗ (µA ◦ rA,A)) ◦ (ψL R ⊗ A) ◦ (C ⊗ sA,A) ◦ (ψL R ⊗ A)

= ψL R ◦ (C ⊗ µA);

(f2) (C ⊗ (ψL R ◦ τA,C )) ◦ (ψL R ⊗ C) ◦ (C ⊗ σC,A) ◦ (δC ⊗ A)
= (δC ⊗ A) ◦ ψL R;

(f3) ψL R ◦ (C ⊗ ηA)= (C ⊗ eL R) ◦ δC ;

(f4) (εC ⊗ A) ◦ ψL R = µA ◦ (eL R ⊗ A).

PROPOSITION 2.8. Let D be a weak braided bialgebra in C with weak Yang–Baxter
operator tD,D and associated idempotent ∇D⊗D . Then it follows that:

(1) (D, D, ψ1 = (D ⊗ µD) ◦ (tD,D ⊗ D) ◦ (D ⊗ δD)) is a right–right weak en-
twining structure;

(2) (D, D, ψ2 = (µD ⊗ D) ◦ (D ⊗ tD,D) ◦ (δD ⊗ D)) is a left–left weak entwining
structure;

(3) (D, D, ψ3 = (D ⊗ µD) ◦ (δD ⊗ D)) is a right–left weak entwining structure
where τD,D = rD,D = t ′D,D and σD,D = sD,D = tD,D;

(4) (D, D, ψ4 = (µD ⊗ D) ◦ (D ⊗ δD)) is a left–right weak entwining structure
where τD,D = rD,D = t ′D,D and σD,D = sD,D = tD,D .

PROOF. The assertion (1) was proved in [2, Proposition 3.2]. The proof for the other
claims are similar and the detailed verification of (2), (3) and (4) is an exercise that we
leave to the reader. 2

REMARK 2.9. For the entwining structures defined in Proposition 2.8 we denote by
e1, e2, e3 and e4 the morphisms
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e1 = (D ⊗ εD) ◦ ψ1 ◦ (D ⊗ ηD), e2 = (εD ⊗ D) ◦ ψ2 ◦ (ηD ⊗ D),

e3 = (D ⊗ εD) ◦ ψ3 ◦ (ηD ⊗ D), e4 = (εD ⊗ D) ◦ ψ4 ◦ (D ⊗ ηD).

Note that e1 =5
R
D , e2 =5

L
D , e3 =5

L
D and e4 =5

R
D , where5R

D ,5L
D ,5

L
D and5

R
D

are the morphisms defined in Propositions 2.3, 2.4, 2.5 and 2.6 respectively of [2]. In
these results we assume that D is an algebra–coalgebra and tD,D is a weak Yang–
Baxter operator with associated idempotent satisfying (b1), (b2), (b3) and (b4) of
Definition 2.2. Then, under these conditions we have the following results.

(1) The following assertions are equivalent [2, Proposition 2.3].
(1-1) The equality εD ◦ µD ◦ (µD ⊗ D)= ((εD ◦ µD)⊗ (εD ◦ µD)) ◦ (D ⊗

(t ′D,D ◦ δD)⊗ D) holds.
(1-2) The equality µD ◦ (D ⊗ e2)= (εD ⊗ D) ◦ ψ2 holds.
(1-3) The equality µD ◦ (e1 ⊗ D)= (D ⊗ εD) ◦ ψ1 holds.

(2) The following assertions are equivalent [2, Proposition 2.4].
(2-1) The equality εD ◦ µD ◦ (µD ⊗ D)= ((εD ◦ µD)⊗ (εD ◦ µD)) ◦ (D ⊗

δD ⊗ D) holds.
(2-2) The equality µD ◦ (D ⊗ e3)= (D ⊗ εD) ◦ ψ3 holds.
(2-3) The equality µD ◦ (e4 ⊗ D)= (εD ⊗ D) ◦ ψ4 holds.

(3) The following assertions are equivalent [2, Proposition 2.5].
(3-1) The equality (δD ⊗ D) ◦ δD ◦ ηD = (D ⊗ (µD ◦ t ′D,D)⊗ D) ◦ ((δD ◦ ηD)

⊗ (δD ◦ ηD)) holds.
(3-2) The equality (D ⊗ e2) ◦ δD = ψ2 ◦ (ηD ⊗ D) holds.
(3-3) The equality (e1 ⊗ D) ◦ δD = ψ1 ◦ (D ⊗ ηD) holds.

(4) The following assertions are equivalent [2, Proposition 2.6].
(4-1) The equality (δD ⊗ D) ◦ δD ◦ ηD = (D ⊗ µD ⊗ D) ◦ ((δD ◦ ηD)⊗ (δD ◦

ηD)) holds.
(4-2) The equality (e3 ⊗ D) ◦ δD = ψ3 ◦ (ηD ⊗ D) holds.
(4-3) The equality (D ⊗ e4) ◦ δD = ψ4 ◦ (ηD ⊗ D) holds.

From Theorem 2.5, Proposition 2.8 and Remark 2.9 we conclude the main theorem
of this paper. Note that Theorem 2.10 implies that the condition δD ◦ µD = (µD ⊗

µD) ◦ (D ⊗ tD,D ⊗ D) ◦ (δD ⊗ δD) assumed by Caenepeel and De Groot in [5,
Theorem 4.7] is superfluous (in [5], C = k-Mod is the category of modules over a
commutative ring k and tD,D is the natural isomorphism of symmetry). Also, note that
the conditions of the following theorem in the case C = k-Mod are trivial because tD,D
is the natural isomorphism of symmetry.

THEOREM 2.10. Let D be an algebra–coalgebra in C. Let tD,D be a weak Yang–
Baxter operator with associated idempotent ∇D⊗D such that (D, D, tD,D) is a right–
right and a left–left weak entwining structure, ∇D⊗D =1R R =1L L , eR R = eL L , and
eR R ∧ idD = idD ∧ eR R = idD . The following assertions are equivalent:

(1) D is a weak braided bialgebra;
(2) (D, D, ψ1) is a right–right weak entwining structure and (D, D, ψ3) is a right–

left weak entwining structure;
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(3) (D, D, ψ2) is a left–left weak entwining structure and (D, D, ψ4) is a left–right
weak entwining structure;

(4) (D, D, ψ2) is a left–left weak entwining structure and (D, D, ψ3) is a right–left
weak entwining structure;

(5) (D, D, ψ1) is a right–right weak entwining structure and (D, D, ψ4) is a left–
right weak entwining structure.

PROOF. We begin the proof emphasizing that by Theorem 2.5 the equalities contained
in (b1), (b2) and (b3) of Definition 2.2 hold. Then if (b4) holds we can apply
[2, Propositions 2.3, 2.4, 2.5, and 2.6].

Firstly, by (1) of Proposition 2.8 we have (1) implies (2). To prove (2) implies
(1), note that we have (b4) because (D, D, ψ1) is a right–right entwining structure.
Indeed,

δD ◦ µD = ∇D⊗D ◦ δD ◦ µD =1L L ◦ δD ◦ µD

= (D ⊗ µD) ◦ (tD,D ⊗ D) ◦ (ηD ⊗ (δD ◦ µD))= ψ1 ◦ (ηD ⊗ µD)

= (µD ⊗ D) ◦ (D ⊗ ψ1) ◦ (ψ1 ⊗ D) ◦ (ηD ⊗ D ⊗ D)

= (µD ⊗ µD) ◦ (D ⊗ tD,D ⊗ D) ◦ ((∇D⊗D ◦ δD)⊗ δD)

= (µD ⊗ µD) ◦ (D ⊗ tD,D ⊗ D) ◦ (δD ⊗ δD).

Then, using the fact that µD ◦ (D ⊗ e3)= (D ⊗ εD) ◦ ψ3 and µD ◦ (e1 ⊗ D)=
(D ⊗ εD) ◦ ψ1 hold, by [2, Propositions 2.4 and 2.3] we obtain (b5) of Definition 2.2.
Also, using the fact that (e1 ⊗ D) ◦ δD = ψ1 ◦ (D ⊗ ηD) and (e3 ⊗ D) ◦ δD = ψ3 ◦

(ηD ⊗ D) hold we have (b6).
Finally, repeating similar arguments it is possible to prove (1) if and only if (3), (1)

if and only if (4), (1) if and only if (5) and the proof is finished. 2
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