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Deformations of morphisms of sheaves
Donatella Iacono and Elena Martinengo
Abstract. We analyze infinitesimal deformations of morphisms of locally free sheaves on a smooth
projective variety X over an algebraically closed field of characteristic zero. In particular, we describe
a differential graded Lie algebra controlling the deformation problem. As an application, we study
infinitesimal deformations of the pairs given by a locally free sheaf and a subspace of its sections
with a view toward Brill-Noether theory.

1 Introduction

Let X be a smooth projective variety over an algebraically closed field K of char-
acteristic zero. Let F and G be locally free sheaves of OX-modules on X and α ∶
F → G a morphism of sheaves. In this article, we are interested in the infinitesimal
deformations of α ∶ F → G, where both the sheaves F and G and the map α can be
deformed. This is equivalent to deform the graph of α as a subsheaf of the direct sum
F ⊕ G, in such a way that the deformation of F ⊕ G is given by a deformation of F and
a deformation of G.

Not much is known about them. We tackle this problem using differential graded
Lie algebras (dgLas). In [Ia06, Ia08], the first author investigated infinitesimal defor-
mations of a holomorphic map gluing the dgLas that control the deformations of
the domain, of the codomain and of the graph in the product. Here, we apply the
same approach to deformations of a morphism of sheaves. Moreover, we extend it to
any algebraically closed field K of characteristic zero, using semicosimplicial dgLas
techniques as developed in [FMM12, FIM12].

The sheaves of dgLas associated with the infinitesimal deformations of a sheaf
and of the graph inside the direct sum are classically known, each of them forms a
semicosimplicial dgLa gΔ and the Čech functor H1

sc(gΔ) controls the corresponding
deformations. A deformation of the morphism α ∶ F → G is obtained from the data
of the three involved deformations via a totalization process. Finally, applying the
strong tool of Hinich’s Theorem of descent of Deligne groupoids [Hin97], we get a
specific differential graded Lie algebra that controls the infinitesimal deformations of
α ∶ F → G via the Deligne functor in groupoids. This dgLa Tot(H(V)Δ) is the Thom–
Whitney dgLa associated with a suitable semicosimplicial dgLa H(V)Δ (see Section 3
for details).

Received by the editors January 8, 2024; revised January 24, 2025; accepted February 18, 2025.
Published online on Cambridge Core February 4, 2025.
AMS subject classification: 14B10, 14B12, 14D15, 13D10.
Keywords: Deformations and infinitesimal methods, differential graded Lie algebras, functor of

Artin rings, deformations of morphisms, Brill–Noether theory.

https://doi.org/10.4153/S0008414X25000148 Published online by Cambridge University Press

http://dx.doi.org/10.4153/S0008414X25000148
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.4153/S0008414X25000148&domain=pdf
https://doi.org/10.4153/S0008414X25000148


2 D. Iacono and E. Martinengo

Theorem (Theorem 3.7) The functor Def(F,α ,G) of infinitesimal deformations of the
morphism α ∶ F → G is equivalent to the Deligne functor DelTot(H(V)Δ) associated with
the Thom–Whitney dgLa of the semicosimplicial dgLa H(V)Δ .

This approach holds for any algebraically closed field K of characteristic zero.
If we restrict our attention to the field of complex numbers, we can consider the
dgLas associated with the Dolbeault resolutions of the relevant sheaves, instead of the
Čech semicosimplicial dgLas and the Thom–Withney construction, as explained in
Remark 3.11.

As an application of our study of the infinitesimal deformations of a morphism
of sheaves, we analyze the infinitesimal deformations of a locally free sheaf E over a
smooth projective variety X over K together with a linear subspace U ⊆ H0(X ,E) of
its global sections. Such a pair (E, U) is called a coherent system. The study of the
moduli space and deformations of coherent systems is very classical and it is a wide
and still very active research field. We refer the reader to the introduction of [IM23] for
more details and references. The idea behind our approach is to view any infinitesimal
deformation of the pair (E, U) as an infinitesimal deformation of the morphism
s ∶ U ⊗OX → E of sheaves of OX-modules, induced by the inclusion U ⊆ H0(X ,E).
For this correspondence, we need the technical assumption that H1(X ,OX) = 0,
so that the sheaf U ⊗OX has only trivial infinitesimal deformations. To study the
infinitesimal deformations of s ∶ U ⊗OX → E, we can directly apply the previous
construction to find a suitable semicosimplicial dgLa, whose Thom–Whitney dgLa
controls infinitesimal deformations of the pair (E, U) via the Deligne functor.

Moreover, under the assumption that H i(X ,OX) = 0 for i = 1, 2, its cohomology
groups fit into an exact sequence (see Equation 8), from which we obtain much infor-
mation about the tangent and the obstructions spaces of the deformation problem of
(E, U) and a link with the Petri map. The dgLa we described is quite involved, but
its importance lies on the fact that it holds over any algebraically closed field K of
characteristic zero.

In our article [IM23], we generalized many classical results concerning coherent
systems of line bundles over a curve, to the case of a vector bundle of any rank on a
smooth projective variety of any dimension overC. Here, we recover these results over
any algebraically closed field K of characteristic zero, under the additional hypothesis
that H i(X ,OX) = 0 for i = 1, 2, see Corollaries 4.5, 4.6, 4.7, and 4.8. This additional
hypothesis do not allow us to generalize the results obtained over C, for curves of
genus g > 0.

The Thom–Whitney dgLa constructed in this way is unfortunately quite compli-
cated to be handled. For this reason, we even present a more explicit model of a
semicosimplicial dgLa whose total complex controls deformations of the pair (E, U)
(see Section 4.3).

The connection between the moduli space of coherent systems and Brill–Noether
theory is obviously very close. The classical Brill–Noether theory concerns the sub-
varieties W k

d (C) of Picd(C) of line bundles on a curve C of degree d having at least
k + 1 independent sections and much is classically known about it. During the last
years, several generalizations of this problem were investigated. The general case of
vector bundles on varieties of higher dimension is still quite mysterious and many
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Deformations of morphisms of sheaves 3

generalizations are studied just over the field of complex numbers. A parallel approach
to this problem is the one based on dgL pairs, used to locally analyze the cohomology
jump loci of some moduli spaces over any field K [BW15, BR19, B24]

We decide to follow a different approach. Note that the functor associated with the
Brill–Noether loci, or to any deformation problem with cohomological constraints, is
intrinsically more difficult to be studied, since it is not a deformation functor. Our
idea is to get as much information as possible on infinitesimal deformations of a
pair (E, U), that we tackle using dgLas even over any algebraically closed field K of
characteristic zero. Then, using the natural link between coherent systems and Brill–
Noether theory, we deduce some information on the last deformation problem. In our
point of view this approach is very natural and very explicit and takes advantage from
the very powerful tool of dgLas in deformation theory.

In particular, we are able to recover the results of [IM23] about the infinitesimal
deformations of E with at least k independent sections (see Section 5) for any alge-
braically closed field K of characteristic zero, adding the hypothesis that H i(X ,OX) =
0 for i = 1, 2. This additional hypothesis do not allow us to generalize the results
obtained over C, for curves of genus g > 0.

The article is organized as follows. With the aim of providing an introduction to
the subject, we include the notion of differential graded Lie algebras, semicosimplicial
dgLas and the associated deformation and Deligne functors in Section 2.

In Section 3, we review the notion of infinitesimal deformations of a morphism of
locally free sheaves and we describe a dgLa that controls these deformations, as the
Thom–Whitney dgLa of a specific semicosimplicial dgLa.

Section 4 is devoted to the infinitesimal deformations of a locally free sheaf together
with a subspace of sections, viewed as deformations of a morphism of sheaves. We
actually provide a second dgLa which can be constructed explicitly.

Finally, in the last section, we apply our results to study infinitesimal deformations
of a locally free sheaf together with at least a prescribed number of independent
sections.

Throughout the article, we work over an algebraically closed field K of characteris-
tic zero; Sets denotes the category of sets in a fixed universe and ArtK the category of
local Artinian K-algebras with residue field K. For an element A ∈ ArtK, its maximal
ideal is indicated by mA.

2 Preliminaries

2.1 Differential graded Lie algebras, deformation and Deligne functors

In this subsection, we introduce the basic definitions and properties of differential
graded Lie algebras, together with their associated deformation and Deligne functors.

For full details, we refer the reader to [Man99, Man04, Man09, Man22].

Definition 2.1 A differential graded Lie algebra, briefly a dgLa, is the data (L, d , [ , ]),
where L = ⊕i∈Z L i is a Z-graded vector space over K, d ∶ L i → L i+1 is a linear map,
such that d ○ d = 0, and [ , ] ∶ L i × L j → L i+ j is a bilinear map, such that:
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• [ , ] is graded skewsymmetric, i.e., [a, b] = −(−1)deg a deg b[b, a],
• [ , ] verifies the graded Jacoby identity, i.e., [a, [b, c]] = [[a, b], c] +
(−1)deg a deg b[b, [a, c]],

• [ , ] and d verify the graded Leibniz’s rule, i.e., d[a, b] = [da, b] + (−1)deg a[a, db],
for every a, b and c homogeneous elements.
Definition 2.2 Let (L, dL , [ , ]L) and (M , dM , [ , ]M) be two dgLas, a morphism of
dglas φ ∶ L → M is a degree zero linear morphism that commutes with the brackets
and the differentials.

A quasi-isomorphism of dgLas is a morphism of dgLas that induces an isomorphism
in cohomology.
Definition 2.3 The Thom–Whitney homotopy fibre product of two morphisms of
dgLas h ∶ L → M and g ∶ N → M is the differential graded Lie algebra defined as

L ×M N ∶= {(l , n, m(t, dt)) ∈ L × N × M[t, dt] ∣ m(0) = h(l), m(1) = g(n)}.

Here, we denote by M[t, dt] the dgLa M ⊗ K[t, dt], where t has degree zero, dt
has degree 1 and d2 t = 0 as well as (dt)2 = 0. Moreover, m(0) and m(1) denotes the
evaluation in t = 0 and t = 1, respectively.
Definition 2.4 Let L be a nilpotent differential graded Lie algebra, we define:

Def(L) = MC(L)
∼gauge

,

where:

MC(L) = {x ∈ L1 ∣ dx + 1
2
[x , x] = 0}

is the set of the Maurer-Cartan elements, and the gauge action is the action of exp(L0)
on MC(L), given by:

ea ∗ x = x +
+∞

∑
n=0

([a,−])n

(n + 1)!
([a, x] − da).

If L is any dgLa, we define the deformation functor associated with L as the functor

Def L ∶ ArtK → Sets,

that associates to every A ∈ ArtK the set

Def L(A) ∶= Def(L ⊗mA).

We recall that the tangent space to the deformation functor Def L is the first
cohomology space H1(L) of the dgLa L. Moreover, a complete obstruction theory
for the functor Def L can be naturally defined and its obstruction space is the second
cohomology space H2(L) of the dgLa L.

If the functor of deformations of a geometric object X is isomorphic to the defor-
mation functor associated with a dgLa L, then we say that L controls the deformations
of X.

Any morphism φ ∶ L → M, induces a morphism φ ∶ Def L → Def M , that is an
isomorphism, whenever φ is a quasi-isomorphism.
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Definition 2.5 A small category is a category whose morphisms form a set.
A groupoid is a small category such that every morphism is an isomorphism. We

denote the category of groupoids by Grpds.
For every groupoid G, the set of isomorphism classes of objects is denoted by

π0(G).

Let L be a nilpotent dgLa, we define C(L) as the groupoid whose set of objects is
MC(L) and whose morphisms between two objects x and y are defined as the set

MorC(L)(x , y) = {ea ∈ exp(L0) ∣ ea ∗ x = y}.

The irrelevant stabilizer of a Maurer–Cartan element x ∈ MC(L) is the normal sub-
group

I(x) = {edu+[x ,u] ∣ u ∈ L−1} ⊆ MorC(L)(x , x).

Definition 2.6 The Deligne groupoid of a nilpotent differential graded Lie algebra
L is the groupoid Del(L) having as objects the Maurer–Cartan elements of L and as
morphisms

MorDel(L)(x , y) =
MorC(L)(x , y)

I(x) =
MorC(L)(x , y)

I(y) ,

where the second equality is a natural isomorphism (see [Man22, Lemma 6.5.5]).
If L is any dgLa, we define the Deligne functor

DelL ∶ ArtK → Grpds,

as the functor that associates to every A ∈ ArtK the groupoid

DelL(A) ∶= Del(L ⊗mA).

It is immediate from the definitions that there is an equivalence of functors:

π0(DelL) ≅ Def L .

Remark 2.7 Note that, if the nilpotent dgLa L is concentrated in non negative
degrees, then the irrelevant stabilisers are trivial and the morphisms of the Deligne
groupoid Del(L) coincide with the ones induced by the gauge action.

2.2 Semicosimplical differential graded Lie algebras

Here, we recall some preliminaries on the semicosimplicial dgLas, their total object
and the deformation functors associated with them. We mainly follow [FMM12,
FIM12], see also [Man22].

Definition 2.8 A semicosimplicial differential graded Lie algebra is a covariant functor
Δmon → DGLA, from the category Δmon, whose objects are finite ordinal sets and
whose morphisms are order-preserving injective maps between them, to the category
of dgLas. Equivalently, a semicosimplicial dgLa gΔ is a diagram

g0
���� g1

������ g2
�������� ⋅ ⋅ ⋅ ,
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where each gi is a dgLa, and for each i > 0, there are i + 1 morphisms of dgLas

∂k , i ∶gi−1 → gi , k = 0, . . . , i ,

such that ∂k+1, i+1∂ l , i = ∂ l , i+1∂k , i , for any k ≥ l .
A morphism of semicosimplicial differential graded Lie algebras f ∶ gΔ → hΔ , is given

by a sequence { f i ∶ gi → hi} of morphisms of dgLas, commuting with the maps ∂k , i .

In particular, every gi is a vector space and so we can consider the graded vector
space ⊕n≥0 gn[−n] that has two differentials, i.e.,

d = ∑
n
(−1)ndn , where dn is the differential of gn ,

and

∂ = ∑
i

∂ i , where ∂ i = ∂0, i − ∂1, i + ⋅ ⋅ ⋅ + (−1)i ∂ i , i .

Note that d∂ + ∂d = 0, thus the graded vector space ⊕n≥0 gn[−n], endowed with
the differential D = d + ∂, is a complex, called the total complex, but it can not be
endowed with a structure of dgLa.

However, there is a dgLa that is naturally associated with any semicosimplicial
dgLa and that is quasi-isomorphic to the total complex. It is constructed as follows.
For every n ≥ 0, we denote by Ωn the differential graded commutative algebra of
polynomial differential forms on the standard n-simplex Δn :

Ωn =
K[t0 , . . . , tn , dt0 , . . . , dtn]

(
n
∑
i=0

t i − 1,
n
∑
i=0

dt i)
.

Definition 2.9 The Thom–Whitney dgLa associated with the semicosimplicial dgLa
gΔ is

Tot(gΔ) = {(xn)n ∈ ∏
n

Ωn ⊗ gn ∣ δk ,n xn = ∂k ,n xn−1 ∀ 0 ≤ k ≤ n},

where, for k = 0, . . . , n, δk ,n ∶Ωn → Ωn−1 are the face maps and ∂k ,n ∶gn−1 → gn are the
maps of the semicosimplicial dgLa gΔ .

As already mentioned, Tot(gΔ) is quasi-isomorphic, as graded vector space, to the
total complex (⊕n≥0 gn[−n], d + ∂).

Remark 2.10 Let h ∶ L → M and g ∶ N → M be two morphisms of dgLas and con-
sider the semicosimplicial dgLa

L ⊕ N
h ��
g

�� M ������ 0
�� ������ ⋅ ⋅ ⋅ .

In this case, the associated Thom–Whitney dgLa is nothing else that the Thom–
Whitney homotopy fibre product of Definition 2.3.
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Example 2.11 Given a sheaf L of dgLas on a topological space X and an open cover
V = {Vi}i of X, the Čech semicosimplicial dgLa L(V) is given by:

∏i L(Vi) �� �� ∏i< j L(Vi j)
�� ���� ∏i< j<k L(Vi jk)

�� ������ ⋅ ⋅ ⋅ ,

where, as usual, Vi j = Vi ∩ Vj , Vi jk = Vi ∩ Vj ∩ Vk and so on, denote the intersections,
L(Vi) = Γ(Vi ,L) stays for the sections and the morphisms ∂k , i are the restriction
maps. Here, the total complex associated with the Čech semicosimplicial dgLie
algebra L(V) is the Čech complex Č(V,L) of the sheaf L. In particular, by the
quasi isomorphism between the total complex and the Thom–Whitney dgLa, we have
Hk(Tot(L(V))) ≅ Ȟk(V,L), for all k ∈ Z.

According to [FMM12, FIM12], we define the following deformation functor
associated with a semicosimplicial dgLa.

Definition 2.12 Let gΔ be a semicosimplicial dgLa. The functor

Z1
sc(expgΔ) ∶ ArtK → Set

is defined, for all A ∈ ArtK, by

Z1
sc(exp g

Δ)(A) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

(l , m) ∈ (g1
0 ⊕ g

0
1 ) ⊗mA

																		

dl + 1
2 [l , l] = 0,

∂1,1 l = em ∗ ∂0,1 l ,
∂0,2m ● −∂1,2m ● ∂2,2m = dn + [∂2,2∂0,1 l , n]

for some n ∈ g−1
2 ⊗mA

⎫⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎭

,

where the symbol ● stands for the Baker Campbell Hausdorff product in a Lie algebra.

Two elements (l0 , m0) and (l1 , m1) ∈ Z1
sc(expgΔ)(A) are equivalent under the

relation ∼ if and only if there exist elements a ∈ g0
0 ⊗mA and b ∈ g−1

1 ⊗mA such that
⎧⎪⎪⎨⎪⎪⎩

ea ∗ l0 = l1

−m0 ● −∂1,1a ● m1 ● ∂0,1a = db + [∂0,1 l0 , b].
(1)

Definition 2.13 Let gΔ be a semicosimplicial dgLa, the functor

H1
sc(expgΔ) ∶ ArtK → Set

is defined, for all A ∈ ArtK, by

H1
sc(expgΔ)(A) = Z1

sc(expgΔ)(A)
∼ .

Note that any morphism of semicosimplicial dgLas gΔ → hΔ induces a natural
transformation of functors H1

sc(expgΔ) → H1
sc(exphΔ).

Remark 2.14 If gΔ is a semicosimplicial Lie algebra, i.e., every dgLa gi is concentrated
in degree zero, then the functor H1

sc(expgΔ) reduces to the one defined in [FMM12].
Moreover, if gΔ is a semicosimplicial dgLa, such that every dgLa is concentrated in

non negative degrees, we can easily view the above functor as a functor in groupoids.
More explicitly, we have

H̃1
sc(expgΔ) ∶ ArtK → Grpds,
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where, for any A ∈ ArtK, the set of object is

Z1
sc(expgΔ)(A) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(l , m) ∈ (g1

0 ⊕ g
0
1 ) ⊗mA

��������������

dl + 1
2 [l , l] = 0,

∂1,1 l = em ∗ ∂0,1 l ,
∂0,2m ● −∂1,2m ● ∂2,2m = 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭
,(2)

and the isomorphisms between two objects (l0 , m0) and (l1 , m1) ∈ Z1
sc(expgΔ)(A)

are given by the elements a ∈ g0
0 ⊗mA as above, i.e., such that

⎧⎪⎪⎨⎪⎪⎩

ea ∗ l0 = l1

−m0 ● −∂1,1a ● m1 ● ∂0,1a = 0.
(3)

We recall the following result [FIM12, Theorem 4.10], that relates these functors
with the ones associated with the dgLas.

Theorem 2.15 Let gΔ be a semicosimplicial dgLa, such that H j(gi) = 0 for all i ≥ 0 and
j < 0. Then, there is an equivalence of functors:

Def Tot(gΔ) ≅ H1
sc(expgΔ).

In particular, the functor H1
sc(expgΔ) is a deformation functor, its tangent space is

H1(Tot(gΔ)) and its obstructions are contained in H2(Tot(gΔ)).

In particular, if the functor of deformations of a geometric object X is isomorphic
to the deformation functor H1

sc(expgΔ) associated with a semicosimiplicial dgLa gΔ ,
then the Thom–Whitney dgLa Tot(gΔ) controls the deformations of X.

Example 2.16 Let E be a locally free sheaf of OX-modules on a projective variety X.
Denote by End(E) the sheaf of OX-modules endomorphisms of E. It is a classical
fact that End(E) encodes all the information of the infinitesimal deformations of
E. Over the field of complex numbers C, it can be rephrased saying that the dgLa
A0,∗

X (End(E)) controls the deformations ofE via the Maurer–Cartan functor modulo
the gauge equivalence [Fu03]. Over any algebraically closed field K of characteristic
zero, one can consider the Čech semicosimplicial Lie algebra associated with the sheaf
End(E) and with an open affine cover V = {Vi}i of X:

End(E)(V) ∶ ∏i End(E)(Vi)
���� ∏i< j End(E)(Vi j)

������ ∏i< j<k End(E)(Vi jk)
�������� ⋅ ⋅ ⋅ .

In [FMM12] the authors proved that the functor H1
sc(expEnd(E)(V)) of Defini-

tion 2.13 is isomorphic to the functor of infinitesimal deformations of E. More-
over, the cohomology of the total complex of the semicosimplicial dgLa above is
Hk(Tot(End(E)(V))) ≅ Hk(X ,End(E)) for all k ∈ Z, according to the classical
fact that the tangent space to the functor of the infinitesimal deformations of E is
H1(X ,End(E)) and the obstructions are contained in H2(X ,End(E)).

2.3 Semicosimplicial groupoid and descent theorem

This subsection is dedicated to semicosimplicial objects in the category of groupoids,
their total groupoid and the fundamental Hinich’s theorem on descent of Deligne
groupoids. Here, we mainly follow [Man22].
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Definition 2.17 A semicosmplicial groupoid is a covariant functor Δmon → Grpds,
from the category Δmon, whose objects are finite ordinal sets and whose morphisms
are order-preserving injective maps between them, to the category of groupoids.
Equivalently, a semicosimplicial groupoid GΔ is a diagram

G0
���� G1

������ G2
�������� ⋅ ⋅ ⋅ ,

where each G i is a groupoid, and for each i > 0, there are i + 1 morphisms of groupoids

∂k , i ∶G i−1 → G i , k = 0, . . . , i ,

such that ∂k+1, i+1∂ l , i = ∂ l , i+1∂k , i , for any k ≥ l . Since every groupoid is a small
category, equality of morphisms of groupoids is intended in the strict sense.

A morphism of semicosimplicial groupoids f ∶ GΔ → HΔ , is given by a sequence { f i ∶
G i → H i} of morphisms of groupoids, commuting with the maps ∂k , i .

Example 2.18 Let gΔ be a semicosimplicial dgLa

g0
���� g1

������ g2
�������� ⋅ ⋅ ⋅ ,

such that every gi is a nilpotent dgLa. Applying the Deligne groupoid of Definition
2.6, one obtains the semicosimplicial groupoid

DelgΔ ∶ Delg0
���� Delg1

������ Delg2

�������� ⋅ ⋅ ⋅ .

Analogously, for any A ∈ ArtK and any semicosimplicial dgLa gΔ , one defines the
semicosimplicial groupoid

DelgΔ(A) ∶ Delg0(A) ���� Delg1(A) ������ Delg2(A)
�������� ⋅ ⋅ ⋅ .

Definition 2.19 Let GΔ be a semicosimplicial groupoid. The total groupoid Tot(GΔ)
of GΔ is the groupoid defined as follows:

• the objects of Tot(GΔ) are the elements of the form (l , m), where l is an object
in G0 and m ∶ ∂0,1 l → ∂1,1 l is a morphism in G1 such that the following diagram
commutes in G2

∂0,2∂0,1 l

���
���

���
�

���
���

���
�

∂0,1 m

����
���

���
��

∂1,2∂0,1 l

∂1,1 m
��

∂0,2∂1,1 l

∂1,2∂1,1 l

���
���

���
�

���
���

���
�

∂2,2∂0,1 l

∂2,1 m�����
���

���
�

∂1,2∂1,1 l ,
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• the morphisms between two objects (l0 , m0) and (l1 , m1) are the morphisms a in
G0 such that the following diagram commutes

∂0,1 l0
m0 ��

∂0,1 a
��

∂1,1 l0

∂1,1 a
��

∂0,1 l1 m1
�� ∂1,1 l1 .

Proposition 2.20 [Man22, Proposition 7.5.5] Let f ∶ GΔ → HΔ be a morphism of
semicosimplicial groupoids, such that for every n = 0, 1, 2 the component fn ∶ Gn → Hn
is an equivalence of groupoids, then f ∶ Tot(GΔ) → Tot(HΔ) is also an equivalence of
groupoids.

We end up this section with the following theorem due to Hinich on descent of
Deligne groupoids.

Theorem 2.21 [Hin97, Corollary 4.1.1] Let gΔ be a nilpotent semicosimplicial dgLa,
such that every gn is trivial in negative degrees. Then, there exists a natural equivalence
of groupoids

DelTot(gΔ) → Tot(DelgΔ).

Remark 2.22 We remark that a generalization of the previous Hinich’s descent
Theorem for the Deligne–Getzler ∞-groupoid was proved in [Ba17].

3 Deformations of a morphism of locally free sheaves

In this section, we would like to analyze the infinitesimal deformations of a morphism
of locally free sheaves and explicitly describe a differential graded Lie algebra that
controls the deformation problem.

3.1 Geometric deformations

Let X be a smooth projective variety over K, F and G locally free sheaves of OX-
modules over X and α∶F → G a morphism of them. First of all we recall some classical
definitions.

Definition 3.1 An infinitesimal deformation of F over A ∈ ArtK is a locally free sheaf
FA of OX ⊗ A-module on X × Spec A together with a morphism πA ∶ FA → F, such
that the obvious restriction of scalars πA ∶ FA ⊗A K→ F is an isomorphism.

Let (FA, πA) and (F′A, π′A) be two deformations of the sheaf F over A. They
are isomorphic, if there exists an isomorphism ϕ∶FA → F′A of OX ⊗ A-modules, that
commutes with the restrictions to F.

Definition 3.2 An infinitesimal deformation of the morphism α∶F → G over A ∈ ArtK
is a morphism αA ∶ FA → GA of locally free sheaves of OX ⊗ A-modules over X ×
Spec A, where FA and GA are deformations of F and G over A respectively, such that
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the following diagram is commutative:

FA
αA ��

πF
A

��

GA ��

πG
A

��

Spec A

��
F

α �� G �� SpecK.

Two deformations αA ∶ FA → GA and α′A ∶ F′A → G′A of α ∶ F → G over A are
isomorphic, if there exist a pair (ϕ, ψ) of isomorphisms of sheaves ϕ ∶ FA → F′A and
ψ ∶ GA → G′A, such that the following diagram commutes:

FA
αA ��

ϕ

��

πF
A

���
��

��
��

� GA
πG

A

����
��
��
��

ψ

��

���
��

��
��

��

F
α �� G Spec A

F′A
α′A

��
πF′

A

		��������
G′A.



��������πG′

A

����������

We recall that, the trivial deformation of a sheaf F over A is given by F ⊗OX

OX×Spec A = F ⊗K A and that the trivial deformation of α∶F → G over A ∈ ArtK is
given by the trivial extension α ⊗ IdA∶F ⊗K A → G⊗K A.

Note that, since F and G are locally free sheaves, any infinitesimal deformation of
α∶F → G is locally trivial, i.e., it is locally in X isomorphic to the trivial deformation.

Definition 3.3 The functor of infinitesimal deformations of the morphism α ∶ F → G

is the functor

Def(F,α ,G) ∶ ArtK → Grpds,

that associates, to any A ∈ ArtK, the groupoid Def(F,α ,G)(A), whose objects are the
deformations of the morphism α over A and whose morphisms are the isomorphisms
of them. Note that

π0(Def(F,α ,G))(A)) = {isomorphism classes of deformations of the morphism α over A}

is the classical functor of deformations in Sets.

Remark 3.4 Among all the infinitesimal deformations of α∶F → G over A ∈ ArtK,
there are the infinitesimal deformations of the morphism α in which F and G deform
trivially, i.e., the deformations αA∶F ⊗K A → G⊗K A such that just the map deforms.
The groupoid of these deformations defines a subfunctor Def α ∶ ArtK → Grpds of the
functor Def(F,α ,G).

Let α∶F → G be a morphism of locally free sheaves and γ its graph in F ⊕ G. We
define γ as the image of the morphism of sheaves (Id, α) ∶ F → F ⊕ G.

For future use, we would like to observe that a deformation of α ∶ F → G over A ∈
ArtK as in Definition 3.2 can be also seen as the collection of the following data:
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• two deformations FA and GA of F and G over A, respectively;
• a deformation γA ⊆ (F ⊕ G)A of the inclusion γ ⊆ F ⊕ G over A;
• an isomorphism fA between the deformations FA ⊕ GA and (F ⊕ G)A.
Two of such collections of data (FA,GA, γA ⊆ (F ⊕ G)A, fA) and
(F′A,G′A, γ′A ⊆ (F ⊕ G)′A, f ′A) define isomorphic deformations of α ∶ F → G, if
there exist:
• two isomorphisms ϕ ∶ FA → F′A and ψ ∶ GA → G′A of the deformations of F and G

over A, respectively,
• an isomorphism χ ∶ (F ⊕ G)A → (F ⊕ G)′A of the deformations of F ⊕ G over A,

with χ(γA) ⊆ γ′A,
such that the following diagram is commutative

FA ⊕ GA
fA ��

(ϕ ,ψ)
��

(F ⊕ G)A

χ
��

F′A ⊕ G′A
f ′A �� (F ⊕ G)′A.

We point out that this approach is similar to the one used in [Ho73, Ho74,
Ho76, Se06] to analyze deformations of holomorphic maps of complex manifolds.
In particular, this was applied in [Ia06, Ia08] and in [Man22] to investigate these
deformations via dgLas.

3.2 The local case

First of all, we analyze the infinitesimal deformations of a morphism α ∶ F → G in the
local case. We assume that X is a smooth affine variety over K and α ∶ F → G is a
morphism of the free sheaves F and G on X. Under this hypothesis, we are able to find
out a dgLa that controls the deformations of α.

We denote by End(F), End(G) and End(F ⊕ G) the free sheaves of the OX-
modules endomorphisms of the sheaves F, G and F ⊕ G, respectively. Moreover, let
L be the subsheaf of End(F ⊕ G) that preserves the graph γ ⊆ F ⊕ G of the morphism
α, i.e.,

L ∶= {φ ∈ End(F ⊕ G) ∣ φ(γ) ⊆ γ}.

Definition 3.5 In the above notation, we define the dgLa H(X ,F, α,G) as the Thom–
Whitney homotopy fibre product of the diagram of Lie algebras

Γ(X ,L)

h
��

Γ(X ,End(F) ⊕ End(G))
g �� Γ(X ,End(F ⊕ G)),

where h is the inclusion and g is defined as the map (φ, ψ) ↦ ( φ 0
0 ψ ) . More

explicitly, according to Definition 2.3, the elements of H(X ,F, α,G) are of the form
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(x , y, z(t, dt)), where

x ∈ Γ(X ,L), y ∈ Γ(X ,End(F) ⊕ End(G)),

z(t, dt) ∈ Γ(X ,End(F ⊕ G))[t, dt],

such that z(0) = h(x), z(1) = g(y).

Then, we can prove the following result.

Theorem 3.6 In this setting, the functor Def(F,α ,G) of infinitesimal deformations of the
morphism α ∶ F → G on X is equivalent to the Deligne functor DelH(X ,F,α ,G) associated
with the dgLa H(X ,F, α,G).

Proof By Definition 3.5, H(X ,F, α,G) is the Thom–Whitney dgLa of the following
semicosimplicial Lie algebra:

h
Δ ∶ Γ(X ,L) ⊕ Γ(X ,End(F) ⊕ End(G))

h ��
g

�� Γ(X ,End(F ⊕ G)) ������ 0.

By Hinich’s Theorem on descent of Deligne groupoids (Theorem 2.21), there is an
equivalence of functors of groupoids

DelH(X ,F,α ,G) ≅ Tot(DelhΔ),

i.e., for every A ∈ ArtK, there is an equivalence of the groupoids DelH(X ,F,α ,G)(A) ≅
Tot(DelhΔ)(A).

Let us describe explicitly the objects and the morphisms of the groupoid
Tot(DelhΔ)(A), for any A ∈ ArtK. Its objects are elements of the form (x , y, z), where:

x ∈ Del(Γ(X ,L) ⊗mA), y ∈ Del(Γ(End(F) ⊕ End(G)) ⊗mA),

and so x = y = 0, since we are dealing with Lie algebras, and

z = ew ∈ exp(Γ(X ,End(F ⊕ G)) ⊗mA),

such that ew ∗ 0 = 0 ∈ Γ(X ,L) ⊗mA. A morphism between two of such objects,
ew and e t , is of the form ea , where a = (a1 , a2 , a3) ∈ (Γ(X ,End(F) ⊕ End(G)) ⊕
Γ(X ,L)) ⊗mA, such that ew eh(a) = e t e g(a) .

These data corresponds to the data of the objects and morphisms of the groupoid
Def(F,α ,G)(A). Indeed, when X is an affine smooth variety, any deformation of a free
sheaf on X is trivial and the only datum of a deformation of α is an isomorphism of the
direct sum of the trivial deformations of F and G to the trivial deformation of F ⊕ G,
that preserves γ, this is ew .

A morphism between two of such deformations, ew and e t , is given by an iso-
morphism of the trivial deformation of F, an isomorphism of the trivial deformation
of G, an isomorphism of the trivial deformation of F ⊕ G that preserve γ. These
data are (a1 , a2 , a3), respectively, and they have to respect compatibilities with the
isomorphisms above, that are expressed by the equation ew eh(a) = e t e g(a). ∎
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3.3 The global case

Let, now, X be a smooth projective variety over K, α ∶ F → G a morphism of locally
free sheaves on X and V = {Vi}i an open affine cover of X trivialising both F and G.

Consider the following semicosimplicial dgLa

H(V)Δ
∶ ∏i H(Vi , F, α , G) ���� ∏i< j H(Vi j , F, α , G)

������ ∏i< j<k H(Vi jk , F, α , G)
�������� ⋅ ⋅ ⋅ ,

where H(Vi ,F, α,G) is the Thom–Whitney homotopy fibre of Definition 3.5.
Then, we can prove the following result.

Theorem 3.7 In this setting, the functor Def(F,α ,G) of infinitesimal deformations of the
morphism α ∶ F → G on X is equivalent to the Deligne functor DelTot(H(V)Δ) associated
with the Thom–Whitney dgLa of the semicosimplicial dgLa H(V)Δ .

Proof Applying Hinich’s Theorem on descent of Deligne groupoids (Theorem 2.21),
there exists an equivalence of groupoids:

DelTot(H(V)Δ) ≅ Tot(DelH(V)Δ).

By Proposition 2.20 and by the local case, analyzed in Theorem 3.6, we have

Tot(DelH(V)Δ) ≅ Tot(Def(F,α ,G)(V)Δ).

Here Def(F,α ,G)(V)Δ is the semicosimplicial functor in groupoids

∏i Def(F,α ,G)(Vi)
���� ∏i< j Def(F,α ,G)(Vi j)

������ ∏i< j<k Def(F,α ,G)(Vi jk)

�������� ⋅ ⋅ ⋅ ,

where Def(F,α ,G)(V) is the functor of infinitesimal deformations of α∣V ∶ F∣V → G∣V ,
for any V ⊂ X affine open subset that trivialises both F and G. Moreover, by a classical
argument, global deformations are given by gluing local ones, then

Tot(Def(F,α ,G)(V)Δ) ≅ Def(F,α ,G),

as desired. ∎

Corollary 3.8 In the above notation, the Thom–Whitney dgLa associated with the
semicosimplicial dgLa H(V)Δ controls the infinitesimal deformations of the morphism
of locally free sheaves α ∶ F → G.

Remark 3.9 We note that, for any coherent sheaf of dgLas H, the quasi isomorphism
class of the Thom–Whitney dgLa Tot(H(V)Δ) does not depend on the choice of the
affine open cover V of X [FIM12]. Then, the previous construction does not depend
on the choice of the cover.

Remark 3.10 Let α ∶ F → G be a morphism of locally free sheaves of OX-modules on
X and letV = {Vi}i be an affine open cover of X, we can construct a bisemicosimplicial
object associated with these data as follows. On every open set Vi ∈ V, we have

Γ(Vi ,L) ⊕ Γ(Vi ,End(F) ⊕ End(G))
h ��
g

�� Γ(Vi ,End(F ⊕ G)) ������ 0.
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Since h and g are morphisms of sheaves, they commute with restrictions of every open
subsets, inducing morphisms of the Čech semicosimplicial objects

L(V) ⊕ End(F)(V) ⊕ End(G)(V)
h ��
g

�� End(F ⊕ G)(V) ������ 0.

In Theorem 3.7, we define, for every open set Vi , the dgLas H(Vi ,F, α,G) as the
Thom–Withney homotopy fiber products; they form a semicosimplicial dgLas H(V)Δ

and we consider the associated Thom–Withney dgLa Tot(H(V)Δ). This construction
does not depend on the order [Ia10]. We could first consider the Thom–Withney dgLas
of the Čech semicosimplicial sheaves of Lie algebras L(V), End(F)(V), End(G)(V)
and End(F ⊕ G)(V) and obtain the semicosimplicial dgLa

Tot(L(V)) ⊕ Tot(End(F)(V)) ⊕ Tot(End(G)(V))
h ��
g

�� Tot(End(F ⊕ G)(V))
������ 0(4)

and then apply Thom–Withney homotopy fibre product. This dgLa is quasi isomor-
phic to Tot(H(V)Δ).

Since the cohomology of the total complex of the semicosimplicial dgLa H(V)Δ

is the same as the one of the Thom–Whitney homotopy fibre, according to [Ia08,
Section 4], we get the following exact sequence:

. . . → H i(Tot(H(V)Δ) → H i(X ,End(F) ⊕ End(G) ⊕L) →

→ H i(X ,End(F ⊕ G)) → H i+1(Tot(H(V)Δ) → . . .

Moreover, since the map h ∶ L→ End(F ⊕ G) is injective, thanks to [Ia08, Lemma
3.1], the following sequence is also exact:

⋅ ⋅ ⋅Hi(Tot(H(V)Δ) → Hi(X ,End(F) ⊕ End(G)) → Hi(X , coker h) → Hi+1(X , Tot(H(V)Δ) ⋅ ⋅ ⋅ .
(5)

Note that, since Tot(H(V)Δ) controls the infinitesimal deformations of α ∶ F → G,
its first cohomology space is isomorphic to the tangent space of the functor Def(F,α ,G),
and its second cohomology space is an obstruction space.

Remark 3.11 If we work over the field of complex numbers, we can consider the
Dolbeault resolutions of the endomorphisms of sheaves, and avoid the Čech semi-
cosimplicial dgLas. More precisely, we can consider the two morphisms of dgLas

A0,∗
X (L) ⊕ A0,∗

X (End(F)) ⊕ A0,∗
X (End(G))

h ��
g

�� A0,∗
X (End(F ⊕ G)),

analogous to the previous h and g. Then, the associated Thom–Whitney homotopy
fibre product of Definition 2.3 is a dgLa that controls infinitesimal deformations of
α ∶ F → G. Note that this construction is the analogous of the one in Equation (4) of
Remark 3.10.
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4 Deformations of a locally free sheaf and a subspace of sections

In this section, we would like to apply the previous results to the infinitesimal
deformations of a locally free sheaf with a subspace of its sections, finding a dgLa
that controls them.

4.1 Geometric deformations

Let X be a smooth projective variety overK,E be a locally free sheaf ofOX-modules on
X and U ⊆ H0(X ,E) be a subspace of global sections of E. We study the infinitesimal
deformations of E which preserve the subspace U. We start with some definitions.

Definition 4.1 Let A ∈ ArtK. An infinitesimal deformation of the pair (E, U) over A
is the data (EA, πA, iA) of:
• a deformation (EA, πA) of E over A,
• a morphism iA ∶ U ⊗ A → H0(X × Spec A,EA),
such that the following diagram commutes

U ⊗ A

π
��

iA �� H0(X × Spec A,EA)

πA

��
U � � i �� H0(X ,E).

(6)

Two deformations (EA, πA, iA), (E′A, π′A, i′A) are isomorphic if there exist an iso-
morphism ϕ ∶ EA → E′A of sheaves of OX ⊗ A-modules, such that π′A ○ ϕ = πA and an
isomorphism ψ ∶ U ⊗ A → U ⊗ A, that makes the diagram commutative:

U ⊗ A

ψ

��

iA �� H0(X × Spec A,EA)

ϕ
��

U ⊗ A
i′A �� H0(X × Spec A,E′A).

Note that, this implies that ϕ induces an isomorphism ϕ ∶ iA(U ⊗ A) → i′A(U ⊗
A). In the following, we will often shorten the notation of such deformations with
(EA, iA).

Definition 4.2 The functor of infinitesimal deformations of (E, U) is

Def(E,U) ∶ ArtK → Grpds,

that associates to any A ∈ ArtK the groupoid Def(E,U)(A), whose objects are the
infinitesimal deformations of the pair (E, U) over A and whose morphisms are the
isomorphisms among them. Note that

π0(Def(E,U))(A)) = {isomorphism classes of deformations of the pair (E, U) over A}

is the classical functor of deformations in Sets.

Remark 4.3 Let X be a smooth projective variety over K with H1(X ,OX) = 0.
Let E be a locally free sheaf of OX-modules on X and U ⊆ H0(X ,E) a subspace
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of global sections of it. Let s ∶ U ⊗OX → E be the morphism of sheaves of OX-
modules associated with i ∶ U ↪ H0(E) via the obvious correspondence between
global sections and morphisms from OX to E.

According to Definition 3.3, we denote by

Def(U⊗OX ,s ,E) ∶ ArtK → Grpds,

the functor of infinitesimal deformations of the morphism s, that associates, to
any A ∈ ArtK, the groupoid Def(U⊗OX ,s ,E)(A), whose objects are the infinitesimal
deformations of the morphism s over A and whose morphisms are the isomorphisms
between them.

We claim that, for any A ∈ ArtK there is a 1-1 correspondence between the objects
of the groupoids

Def(E,U)(A) → Def(U⊗OX ,s ,E)(A).

Indeed, given a deformation (EA, iA) of (E, U) over A as in Definition 4.1, there is just
one morphism of sheaves of OX ⊗ A-modules sA ∶ U ⊗OX ⊗ A → EA associated with
iA, it makes the following diagram commutative

U ⊗OX ⊗ A

π
��

sA �� EA

πA

��
U ⊗OX

s �� E,

(7)

and it defines an object of Def(U⊗OX ,s ,E)(A). On the other hand, since H1(X ,OX) = 0,
every infinitesimal deformation of the domain U ⊗OX is trivial. A deformation of s
over A is just the data of a deformation EA of E and of a map sA ∶ U ⊗OX ⊗ A → EA,
such that the diagram (7) is commutative. Taking global sections, one gets the required
deformed map iA ∶ U ⊗ A → H0(X × Spec A,EA) and the commutative diagram (6).

Analogously, we can prove that isomorphisms of deformations correspond each
others. This assures that, under the hypothesis H1(X ,OX) = 0, the functors Def(E,U)
and Def(U⊗OX ,s ,E) are are equivalent.

In [Mar08, Mar09], the second author introduced the problem of deformations
of the pair (E, U) and found a dgLa that controls it on a variety X over the field of
complex numbers. In [IM23], we studied these deformations in more details and we
generalized to vector bundles over a smooth complex projective variety some classical
results known for line bundles over curves, concerning the description of the tangent
space, the smoothness of the functor Def(E,U) and the liftings of a section. Here,
we would like to study the infinitesimal deformations of the pair (E, U) over an
algebraically closed field K of characteristic zero using the analysis of the previous
sections.

4.2 The dgLa that controls deformations of (E, U)

Let X be a smooth projective variety over K, we assume here H1(X ,OX) = 0. Let E
be a locally free sheaf of OX-modules on X and U ⊆ H0(X ,E) be a subspace of global
sections of it.
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Let s ∶ U ⊗OX → E be the morphism of sheaves of OX-modules associated with
i ∶ U ↪ H0(E). As observed in Remark 4.3, the infinitesimal deformations of the pair
(E, U) are equivalent to the infinitesimal deformations of the morphism s. We indicate
with γ the graph of the morphism s, that is a subsheaf of (U ⊗OX) ⊕ E.

Let V = {Vi}i be an affine open cover of X, we denote by End(E),End(U ⊗OX)
and End ((U ⊗OX) ⊕ E) the sheaves of OX-modules endomorphisms of E, U ⊗
OX and (U ⊗OX) ⊕ E, respectively. Let H(V)Δ be the Cech semicosimplicial dgLa
associated with the Thom–Whitney homotopy fibres of the diagram of sheaves of Lie
algebras

L

h
��

End(U ⊗OX) ⊕ End(E)
g �� End ((U ⊗OX) ⊕ E) ,

where h ∶ L = {φ ∈ End ((U ⊗OX) ⊕ E) ∣ φ(γ) ⊆ γ} → End ((U ⊗OX) ⊕ E) is the

inclusion and g is defined as the map (φ, ψ) ↦ ( φ 0
0 ψ ) . Applying the results of

the previous section, we get the following result.

Theorem 4.4 In the above notation and under the hypothesis H1(X ,OX) = 0, the func-
tor Def(E,U) of deformations of (E, U) is equivalent to the Deligne functor associated
with the Thom–Whitney dgLa of the semicosimplicial dgLa H(V)Δ . Moreover, under the
additional hypothesis that H2(X ,OX) = 0, the cohomology of the dgLa Tot(H(V)Δ) fits
into the exact sequence

0 → H0(Tot(H(V)Δ)) → H0(X ,End(E)) → Hom(U , H0(E)/U) →
→ H1(Tot(H(V)Δ)) → H1(X ,End(E)) α→ Hom(U , H1(X ,E)) →
→ H2(Tot(H(V)Δ)) → H2(X ,End(E)) → Hom(U , H2(X ,E)).

(8)

Proof The equivalence

Def(E,U) ≅ DelTot(H(V)Δ)

is a direct consequence of Theorem 3.7 and Remark 4.3. According to the sequence
(5), the cohomology of the dgLa Tot(H(V)Δ) fits in the exact sequence

⋅ ⋅ ⋅H i(Tot(H(V)Δ) → H i(X ,End(U ⊗OX) ⊕ End(E)) → H i(X , coker h)
→ H i+1(Tot(H(V)Δ) ⋅ ⋅ ⋅ .(9)

Observe that, since X is projective,

H0(X ,End(U ⊗OX) ⊕ End(E)) = Hom(U , U) ⊕ H0(X ,End(E));

while for i = 1, 2, under the hypothesis H i(X ,OX) = 0, we get

H i(X ,End(U ⊗OX) ⊕ End(E)) = (H i(X ,OX) ⊗U∨ ⊗U) ⊕ H i(X ,End(E))
= H i(X ,End(E)).
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Moreover, we can describe explicitly the coker h via the following isomorphisms

coker h ≅Hom (γ, (U ⊗OX) ⊕ E

γ
) ≅Hom(U ⊗OX ,E).

The first one is given by restricting an endomorphism of (U ⊗OX) ⊕ E to γ and
projecting it to the quotient. The second one is obtained just observing that U ⊗OX ≅
γ and (U ⊗OX) ⊕ E

γ
≅ E. Thus, for i = 0, we have

H0(coker h) = H0(Hom(U ⊗OX ,E)) = Hom(U , H0(X ,E)) = Hom(U , U)

⊕Hom(U , H0(X ,E)
U

) ,

where the last equality follows applying Hom(U ,−) to the exact sequence of vector
spaces

0 → U → H0(X ,E) → H0(X ,E)/U → 0.

While, for i = 1, 2, we have

H i(coker h) = H i(Hom(U ⊗OX ,E)) = Hom(U , H i(X ,E)).

Thus, the first terms of the exact sequence (9) become

0 → H0(Tot(H(V)Δ)) → Hom(U , U) ⊕ H0(X ,End(E)) f→ Hom(U , U)

⊕Hom(U , H0(X ,E)
U

) →(10)

→ H1(Tot(H(V)Δ)) → H1(X ,End(E)) → Hom(U , H1(X ,E))
→ H2(Tot(H(V)Δ)) →

→ H2(X ,End(E)) → Hom(U , H2(X ,E)).

The last step is to make explicit the morphism f of (10). It is immediate to see that f is
the morphism

Hom(U , U) ⊕ H0(X ,End(E)) f→ Hom(U , U) ⊕Hom(U , H0(X ,E)
U

),

whose first component is the identity on Hom(U , U). Thus the exact sequence (10)
induces the sequence (8). ∎

The exact sequence (8) of Theorem 4.4 is a generalization over any algebraically
closed field of characteristic zero of the exact sequence (7) in [IM23], from which we
get most of our results, that now can be immediately generalized to any algebraically
closed field K of characteristic zero.

Let us denote by rU ∶ Def(E,U) → DefE, the forgetful functor, i.e., the functor that
ignores all information about U. Then, under the hypothesis H i(X ,OX) = 0 for i =
1, 2, we have the following results, that holds for over any algebraically closed field K

of characteristic zero.
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Corollary 4.5 [IM23, Corollary 3.11] If the map α ∶ H1(X ,End(E)) →
Hom(U , H1(X ,E)) that appears in the exact sequence (8) is surjective or,
that is equivalent, if Hom(U , H1(X ,E)) = 0, then the forgetful morphism
rU ∶ Def(E,U) → DefE is smooth.

Corollary 4.6 [IM23, Corollary 3.13] In the notation above, we have

dim tDef(E,U) ≥ dim tDefE − m ⋅ dim H1(X ,E),

where m is the dimension of U ⊆ H0(X ,E).

Corollary 4.7 [IM23, Corollary 3.11] A section s ∈ H0(X ,E) can be extended to a
section of a first order deformation of E associated with an element a ∈ H1(X ,End(E))
if and only if a ∪ s = 0 ∈ H1(X ,E).

Corollary 4.8 [IM23, Corollary 3.15] The tangent space to the deformations of the pair
(E, H0(E)) can be identified with

tDef(E,H0(E))
= {a ∈ H1(X ,End(E)) ∣ a ∪ s = 0, ∀ s ∈ H0(X ,E)}.

Remark 4.9 We underline that the results of [IM23] hold over the field of complex
numbers C without the additional hypothesis that H i(X ,OX) = 0 for i = 1, 2.

4.3 An explicit model for the semicosimplicial dgla that controls deformations
of (E, U).

In this section, we describe another semicosimplicial dgLa whose total complex
controls deformations of the pairs (E, U) over a field K. The construction is more
explicit and it avoids the Theorem on descent of Deligne groupoids (Theorem 2.21).

In the previous notation, given the morphism of sheaves s ∶ U ⊗OX → E, we
consider the complex of sheaves

Q ∶ U ⊗OX
s→ E,

where the sheaves U ⊗OX and E are settled in degree zero and one, respectively. As
above, s is the morphism associated with i ∶ U ↪ H0(E) and it is a differential, s2 = 0,
since there is no degree 2. A similar construction is used in [Man22, pp. 234–235]
to analyze the embedded deformations. Consider the following complex of sheaves
concentrated in degree 0 and 1:

Hom≥0(Q,Q) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Hom0(Q,Q) = End(U ⊗OX) ⊕ End(E)
Hom1(Q,Q) = Hom(U ⊗OX ,E)
Homk(Q,Q) = 0 ∀ k ≠ 0, 1,

This is a sheaf of dgLas. The differential is given by s, the bracket is the usual one in
End(U ⊗OX) and End(E), it is the trivial bracket between an element in End(U ⊗
OX) and an element in End(E) and it is given by the composition between elements
in degree 0 and 1.

Next, fix an open affine cover V = {Vi}i of X trivialising E and let gΔ be the Čech
semicosimplicial dgLa gΔ associated with the sheaf Hom≥0(Q,Q) and to the open
cover V. The aim of this section is to prove the following result.
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Theorem 4.10 The Čech semicosimplicial dgLa gΔ associated with the sheaf
Hom≥0(Q,Q) controls the infinitesimal deformations of the morphism s ∶ U ⊗OX → E,
i.e., the functor H̃1

sc(expgΔ) and the functor Def(U⊗OX ,s ,E) are isomorphic.

Proof For any A ∈ ArtK, we define a 1-1 correspondence between the objects of the
groupoids

H̃1
sc(expgΔ)(A) → Def(U⊗OX ,E,s)(A).

An element in Z1
sc(expgΔ)(A) is a pair (l , m) ∈ (g1

0 ⊕ g0
1 ) ⊗mA, where the ele-

ment l = {l i}i ∈ ∏i Hom(U ⊗OX ,E)(Vi) ⊗mA and the element m = {ν i j , μ i j}i j ∈
∏i< j (End(U ⊗OX)(Vi j) ⊕ End(E)(Vi j)) ⊗mA, and it has to satisfy the equations
in (2).

Using these data, we can define a deformation of the morphism s ∶ U ⊗OX → E

over A as follows.

• The deformation EA of the locally free sheaf E over A is obtained by gluing the local
trivial deformations {E∣Vi ⊗ A}i by the isomorphisms {eμ i j ∶ E∣Vi j

⊗ A → E∣Vi j
⊗

A}i j . Note that the third equation of (2) gives rise in our case to the equation ∂0,2 μ ●
−∂1,2 μ ● ∂2,2 μ = 0, that assures that the given gluing functions are compatible on the
triple intersections.

• Similarly, the data {eν i j ∶ U ⊗OX ∣Vi j ⊗ A → U ⊗OX ∣Vi j ⊗ A}i j are gluing isomor-
phisms of the local trivial deformations of the sheaf U ⊗OX over A in the open sets
Vi j . The third equation in (2) gives rise to the equation ∂0,2ν ● −∂1,2ν ● ∂2,2ν = 0 and
it assures that the gluing isomorphisms are compatible on the triple intersections.

• The morphism sA ∶ U ⊗OX ⊗ A → EA is locally defined as {s∣Vi + l i ∶ U ⊗OX ∣Vi ⊗
A → E∣Vi ⊗ A}i . Note that the second equation of (2) is δ11 l = em ∗ δ01 l and it can
be rewritten as s + δ11 l = eμ(s + δ01 l)e−ν (see for example [IM23, Formula 8]). It
says that the local maps {s∣Vi + l i}i glue to a global one.

Note that the first equation dl + 1
2 [l , l] = 0 is trivial in our case, because our dgLas are

zero in degree 2.
Thus every element in Z1

sc(expgΔ)(A) exactly defines an infinitesimal deformation
of the morphism s ∶ U ⊗OX → E on A. Let now (l0 , m0), (l1 , m1) ∈ Z1

sc(expgΔ)(A)
be isomorphic elements. We prove that they define two isomorphic deformations in
Def(U⊗OX ,s ,E)(A).

• By the first equation in (3), there exists a ∈ g0
0 ⊗mA such that ea ∗ l0 = l1. Note

that a = (β, α) = {β i , α i}i ∈ ∏i (End(U ⊗OX)(Vi) ⊕ End(E)(Vi)) ⊗mA and as
usual, the equation can be rewritten as s + l1 = eα(s + l0)e−β . Then, for every
i, eα i ∶ E∣Vi

⊗ A → E∣Vi
⊗ A and eβ i ∶ U ⊗OX ∣Vi ⊗ A → U ⊗OX ∣Vi ⊗ A define local

isomorphisms that make the following diagram commutative:

U ⊗OX ∣Vi ⊗ A

e βi

��

s+(l0)i �� E∣Vi ⊗ A

eαi

��
U ⊗OX ∣Vi ⊗ A

s+(l1)i �� E∣Vi ⊗ A.

https://doi.org/10.4153/S0008414X25000148 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X25000148


22 D. Iacono and E. Martinengo

• The second equation in (3) gives rise to the following two equations −μ0 ● −∂1,1α ●
μ1 ● ∂0,1α = 0 and −ν0 ● −∂1,1β ● ν1 ● ∂0,1β = 0 that assure that the isomorphisms
eα i and eβ i glue to a global one.

Thus, as wanted, the two deformations defined by (l0 , m0), (l1 , m1) are isomorphic.
In this way, we obtain every infinitesimal deformation of the morphism s ∶ U ⊗

OX → E. Indeed, on a fix open affine set Vi , the infinitesimal deformations of E and
U ⊗OX are trivial, while a deformation of s ∶ U ⊗OX → E over Vi , is given by s∣Vi +
l i ∶ U ⊗OX ∣Vi ⊗ A → E∣Vi ⊗ A, for l i ∈Hom(U ⊗OX ,E)(Vi) ⊗mA. Then, we have to
glue these data along double intersections to give a deformation of the morphism s on
X. Therefore, we need isomorphisms μ̃ i j ∶ E∣Vi j

⊗ A → E∣Vi j
⊗ A for all i , j, that satisfy

the cocycle condition on triple intersections: μ̃ jk ○ μ̃−1
ik ○ μ̃ i j = Id, to glue the trivial

deformations ofE to a global one. Moreover, we need isomorphisms ν̃ i j ∶ U ⊗OX ∣Vi j ⊗
A → U ⊗OX ∣Vi j ⊗ A such that the following diagram commutes

U ⊗OX ∣Vi ⊗ A

ν̃ i j

��

(s∣Vi+l i)∣Vi j �� E∣Vi ⊗ A

μ̃ i j

��
U ⊗OX ∣Vj ⊗ A

(s∣Vj+l j)
∣Vi j

�� E∣Vj ⊗ A,

i.e., (s∣Vj + l j)∣Vi j
○ ν̃ i j = μ̃ i j ○ (s∣Vi + l i)∣Vi j

. Then, the local trivial deformations will
glue to a global non trivial deformation of s.

Since we are in characteristic zero, we can take the logarithm to obtain (μ̃ i j , ν̃ i j) =
(eμ i j , eν i j) with {(ν i j , μ i j)}i j ∈ ∏i< j (End(U ⊗OX)(Vi j) ⊕ End(E)(Vi j)) ⊗mA.

Therefore, any deformation of the morphism s over A is given by an ele-
ment (l , m) ∈ (g1

0 ⊕ g0
1 ) ⊗mA, where l = {l i}i ∈ ∏i Hom(U ⊗OX ,E)(Vi) ⊗mA

and the element m = {ν i j , μ i j}i j ∈ ∏i< j (End(U ⊗OX)(Vi j) ⊕ End(E)(Vi j)) ⊗mA,
that has to satisfy the conditions in (2).

Analogously, we can prove that isomorphisms of deformations correspond to the
existence of an element a ∈ g0

0 ⊗mA that satisfy the condition in Equation (3). ∎

As a direct consequence of Remark 4.3, Theorems 4.10 and 2.15, we get the following
result.

Corollary 4.11 Under the hypothesis H1(X ,OX) = 0, there are natural isomorphisms
of functors

Def(E,U) ≅ Def(U⊗OX ,s ,E) ≅ H1
sc(expgΔ) ≅ Def Tot(gΔ) .

This corollary provides another explicit description of a dgLa controlling the
infinitesimal deformations of the pair (E, U).

Fix an open affine cover {Vi}i of X. As above, let gΔ and hΔ be the Čech
semicosimplicial dgLas associated with the sheaf Hom≥0(Q,Q) and to the sheaf
End(E), respectively. There is an obvious surjective morphism of semicosimplicial
dgLas gΔ → hΔ and, denoting with mΔ the kernel of it, we get the following exact
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sequence of semicosimplicial dgLas:

0 → m
Δ → g

Δ → h
Δ → 0.(11)

Lemma 4.12 Under the hypothesis that H i(X ,OX) = 0 for i = 1, 2, the cohomology of
the total complex of the semicosimplicial dgLa mΔ is given by:

H0 (Tot(mΔ)) = 0, H1 (Tot(mΔ)) = Hom (U , H0(E)/U) and H2 (Tot(mΔ))
= Hom(U , H1(E)).

Proof The double complex associated with the semicosimplicial dgLa mΔ is

∏i Hom(U⊗OX,E)(Vi)
δ̌ �� ∏i< j Hom(U⊗OX,E)(Vi j)

δ̌ �� ∏i< j<k Hom(U⊗OX,E)(Vi jk)
δ̌ �� . . .

∏i End(U⊗OX)(Vi)
δ̌ ��

d

��

∏i< j End(U⊗OX)(Vi j)
δ̌ ��

d

��

∏i< j<k End(U⊗OX)(Vi jk)
δ̌ ��

d

��

. . .

(12)

where the horizontal differential δ̌ is the Čech one, while the vertical d is the
differential of the dgLa involved.

Let {E p,q
k } be the spectral sequence associated with the double complex (12).

Calculating the Čech cohomology of it, we get the first page:

Hom(U , H0(X ,E)) Hom(U , Ȟ1(X ,E)) Hom(U , Ȟ2(X ,E)) . . . Hom(U , Ȟk(X ,E))

Hom(U , U)

d

��

0

d

��

0

d

��

. . . Hk(X ,OX) ⊗Hom(U , U)

d

��

(13)

where we use that Ȟ0(X ,End(U ⊗OX)) = Hom(U , U) and Ȟk(X ,End(U ⊗
OX)) = 0 for k = 1, 2 and Ȟk(X ,Hom(U ⊗OX ,E)) = Hom(U , Ȟk(X ,E)) for all
k ≥ 0. Since the differential from the second page is always zero, the spectral sequence
abuts to E p,q

2 = E p,q
∞ . This gives the expected cohomology of the total complex

Tot(mΔ). ∎

From the exact sequence (11) and thanks to Lemma 4.12, we recover the exact
sequence (8):

0 → H0(Tot(gΔ)) → H0(X ,End(E)) → Hom(U , H0(X ,E)/U)

→ H1(Tot(gΔ)) → H1(X ,End(E)) α→ Hom(U , H1(X ,E)) β→

→ H2(Tot(gΔ)) γ→ H2(X ,End(E)) → Hom(U , H2(X ,E)).

(14)

Thus, the two dgLas Tot(H(V)Δ) and Tot(gΔ), constructed to control the infinitesi-
mal deformations of the pair (E, U), have actually the same tangent and obstructions
space.
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Remark 4.13 Note that, if we strengthen the hypothesis of Theorem 4.4 and of
Lemma 4.12, assumining that H i(X ,OX) = 0 for all i > 0, both the exact sequences
(8) and (14) continue in higher degrees giving rise to the exact sequences:

⋅ ⋅ ⋅ → H i(Tot(gΔ)) → H i(X ,End(E)) → Hom(U , H i(X ,E)) → H i+1(Tot(gΔ)) → ⋅ ⋅ ⋅

and

⋅ ⋅ ⋅ → H i(Tot(H(V)Δ) → H i(X ,End(E)) → Hom(U , H i(X ,E)) → H i+1(Tot(H(V)Δ)) → ⋅ ⋅ ⋅

respectively. Thus, in this case the two dgLas Tot(H(V)Δ) and Tot(gΔ) are quasi-
isomorphic.

5 Deformations of a locally free sheaf preserving some sections

In this section, we consider a locally free sheaf E of OX-modules on a smooth
projective variety X over K, such that dim H0(X ,E) ≥ k. We analyze the infinitesimal
deformations of E such that at least k independent sections of E lift to the deformed
locally free sheaf. Our approach is the same as in [IM23] improved with the tech-
niques developed in the previous sections that allow to generalize the results to any
algebraically closed field K of characteristic zero.

We start giving the following definition.

Definition 5.1 Let E be a locally free sheaf of OX-modules on a smooth projective
variety X over K, such that h0(X ,E) ≥ k. Let Gr(k, H0(X ,E)) be the Grassmannian
of all subspaces of H0(X ,E) of dimension k. We define the functor Def k

E ∶ ArtK →
Sets, that associates to every A ∈ ArtK the set

Def k
E(A) = ⋃

U∈Gr(k ,H0(X ,E))
rU(Def(E,U)(A)),

where rU ∶ Def(E,U) → DefE is the forgetful maps of functors. We call it the functor
of infinitesimal deformations of E with at least k sections.

As observed in loc. cit., the functor Def k
E is a functor of Artin rings, but unfortu-

nately, it is not a deformation functor. This makes the analysis of it more difficult: its
first order deformations do not necessary form a vector space, and its obstructions do
not have a clear meaning in term of the corresponding moduli space.

Here we get the following result, that is a version of [IM23, Theorem 5.3] over any
algebraically closed field K of characteristic zero.

Theorem 5.2 Let X be a smooth projective variety over an algebraically closed field
K of characteristic zero, such that H i(X ,OX) = 0 for i = 1, 2. If h0(X ,E) = k, then the
tangent space to the deformation functor Def k

E is

tDef k
E
= Def k

E(K[ε]) = {a ∈ H1(X ,End(E)) ∣ a ∪ s = 0, ∀ s ∈ H0(X ,E)}.

If instead h0(X ,E) ≥ k + 1, then the first order deformations of E with at least k sections
are described by the cone

Def k
E(K[ε]) = {ν ∈ H1(X ,End(E)) ∣ ∃U ∈ Gr(k, H0(X ,E)) such that ν ∪ s = 0,∀s ∈ U}
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and the vector space generated by it, that we call the tangent space to Def k
E, is

tDef k
E
= H1(X ,End(E)).

Proof In the case h0(X ,E) = k, the functor Def k
E is in one-to-on e correspondence

with the functor Def(E,H0(E)) and the tangent space is described in Corollary 4.8 as

tDef k
E
≅ tDef(E,H0(E))

= {a ∈ H1(X ,End(E)) ∣ a ∪ s = 0, ∀ s ∈ H0(X ,E)}.

If h0(X ,E) ≥ k + 1, by definition,

Def k
E(K[ε]) = ⋃

U∈Gr(k ,H0(X ,E))
rU(Def(E,U)(K[ε])).

For each U ∈ Gr(k, H0(X ,E)), we calculate the image via rU of the tangent space to
the infinitesimal deformations of the pair (E, U) using the exact sequence (8)

⋅ ⋅ ⋅ → H1(Tot(H(V)Δ)) rU→ H1(X ,End(E)) α→ Hom(U , H1(X ,E)) ⋅ ⋅ ⋅ .

Thus

rU(Def(E,U)(K[ε])) = ker α = {ν ∈ H1(X ,End(E)) ∣ ν ∪ s = 0,∀s ∈ U}

and the first statement is proved.
The second statement follows from a classical linear algebra argument, that can be

found for example in [ACGH85, Proposition 4.2]. ∎

Remark 5.3 We notice that our explicit description of the tangent space is also
a particular case of the one of the Zariski tangent space to the cohomology jump
functors done in [B24, Proposition 2.7] using dgl pairs.

Finally, we prove a new version of [IM23, Propositions 5.5 and 5.6] that concerns
the smoothness of the functor Def k

E.

Proposition 5.4 Let X be a smooth projective variety over an algebraically closed
field K of characteristic zero, such that H i(X ,OX) = 0 for i = 1, 2. If there exists an
U ∈ Gr(k, H0(X ,E)) such that Hom(U , H1(X ,E)) = 0 or, in an equivalent way, such
that the map α ∶ H1(X ,End(E)) → Hom(U , H1(X ,E)) in sequence (8) is surjective,
then

DefE is smooth ⇔ Def(E,U) is smooth ⇔ Def k
E is smooth.

Proof From Corollary 4.5, the two equivalent hypotheses imply that the forgetful
morphism rU is smooth. Then, the first equivalence is obvious. As regard the second
equivalence, since the obstruction is complete, each EA ∈ Def k

E(A) comes from a pair
(EA, iA) ∈ Def(E,U)(A), for every A ∈ ArtK. The above argument obviously implies
the equivalence between the smoothness of Def(E,U) and Def k

E . ∎

Proposition 5.5 Let X be a smooth projective variety over an algebraically closed
field K of characteristic zero, such that H i(X ,OX) = 0 for i = 1, 2. If there exists an
U ∈ Gr(k, H0(X ,E)) such that H2(Tot(H(V)Δ)) = 0, then both the functors Def(E,U)

and Def k
E are smooth.
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Proof Since H2(Tot(H(V)Δ)) = 0, the functor Def(E,U) is smooth and the relative
obstruction to rU is zero, thus rU is smooth too. These two properties assure that Def k

E

is smooth too. ∎
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