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Abstract This article deals with kinetic Fokker–Planck equations with essentially bounded coefficients.
A weak Harnack inequality for nonnegative super-solutions is derived by considering their log-transform
and adapting an argument due to S. N. Kružkov (1963). Such a result rests on a new weak Poincaré
inequality sharing similarities with the one introduced by W. Wang and L. Zhang in a series of
works about ultraparabolic equations (2009, 2011, 2017). This functional inequality is combined with
a classical covering argument recently adapted by L. Silvestre and the second author (2020) to kinetic
equations.
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1. Introduction

This paper is concerned with local properties of solutions of linear kinetic equations of
Fokker–Planck type in some cylindrical domain Q0

(∂t+v ·∇x)f =∇v · (A∇vf)+B ·∇vf +S (1)

assuming that the diffusion matrix A is uniformly elliptic and B and S are essentially

bounded: There exist λ,Λ> 0 such that, for almost every (t,x,v) ∈Q0,{
eigenvalues of A(t,x,v) =AT (t,x,v) lie in [λ,Λ],

the vector field B satisfies: |B(t,x,v)| ≤ Λ.
(2)

In particular, coefficients do not enjoy further regularity such as continuity, vanishing

mean oscillation etc. For this reason, coefficients are said to be rough.
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1.1. Main result

We classically reduce the local study to the case where Q0 is at unit scale. For some

reasons we expose below, Q0 takes the form (−1,0]×BR0
×BR0

for some large constant

R0 only depending on dimension and the ellipticity constants λ,Λ in (2).

Before stating our main result, we give the definition of (weak) super-solutions in a
cylindrical open set Ω, that is to say an open set of the form I ×Bx ×Bv. A function

f : Ω → R is a weak super-solution of (1) in Ω if f ∈ L∞(I,L2(Bx ×Bv)) ∩ L2(I ×
Bx,H1(Bv)) and (∂t+v ·∇x)f ∈ L2(I×Bx,H−1(Bv)) and for all nonnegative ϕ ∈ D(Ω),

−
∫
Q0

f(∂t+v ·∇x)ϕdz ≥−
∫
Q0

A∇vf ·∇vϕdz+

∫
Q0

(B ·∇vf +S)ϕdz.

Theorem 1.1 (weak Harnack inequality). Let Q0 = (−1,0]×BR0
×BR0

and A,B satisfy

(2) and S be essentially bounded in Q0. Let f be a nonnegative super-solution of (1) in

some cylindrical open set Ω⊃Q0. Then(∫
Q−

fp(z)dz

) 1
p

≤ C

(
inf
Q+

f +‖S‖L∞(Q+)

)

where Q+ = (−ω2,0]× Bω3 × Bω and Q− = (−1, − 1 + ω2]× Bω3 × Bω; the positive

constants C, p, ω and R0 only depend on the dimension and the ellipticity constants

λ,Λ.

Remark 1. Combined with the fact that nonnegative subsolutions are locally bounded
[33], the weak Harnack inequality implies the Harnack inequality proved in [13]; see

Theorem 1.3

Remark 2. The proof of Theorem 1.1 is constructive. As a consequence, it provides a

constructive proof of the Harnack inequality from [13].

Remark 3. The (weak) Harnack inequality implies Hölder regularity of weak solutions.

Remark 4. Such a weak Harnack inequality can be generalized to the ultraparabolic
equations with rough coefficients considered for instance in [33, 40, 41, 42].

Remark 5. This estimate can be scaled and stated in arbitrary cylinders thanks to

Galilean and scaling invariances of the class of equations of the form (1). These invariances

are recalled at the end of the introduction.

Remark 6. As in [13, 18], the radius ω is small enough so that when ‘stacking cylinders’
over a small initial one contained in Q−, the cylinder Q+ is captured; see Lemma 4.3. As

far as R0 is concerned, it is large enough so that it is possible to apply the expansion of

positivity lemma (see Lemma 4.1) to every stacked cylinder.

Soon after this work was completed, another constructive proof of the Harnack
inequality was proposed by the second author and C. Mouhot in [14]. While in the present

article, we start from ideas developed by W. Wang and L. Zhang (see below for further

details) and go further than their Hölder bound by deriving a weak Harnack inequality
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for super-solutions, the first author and C. Mouhot show that De Giorgi’s arguments
implemented in [13] can be made constructive. It is worth mentioning that they also

derive the weak Harnack inequality.

1.2. Historical background and motivations

The weak Harnack inequality from our main theorem and the techniques we develop to

establish it are deeply rooted in the large literature about elliptic and parabolic regularity,

both in divergence and nondivergence form.

De Giorgi’s theorem and Harnack inequality. E. De Giorgi proved that solutions of

elliptic equations in divergence form with rough coefficients are locally Hölder continuous
[7, 8]. This regularity result for linear equations allowed him to solve Hilbert’s 19th

problem by proving the regularity of weak solutions of a nonlinear elliptic equation.

The case of parabolic equations was addressed by J. Nash in [32]. Then J. Moser [30,
31] showed that a Harnack inequality can be derived for nonnegative solutions of elliptic

and parabolic equations with rough coefficients by considering the logarithm of positive

solutions. The proof of E. De Giorgi applies not only to solutions of elliptic equations

but also to functions in what is now known as the elliptic De Giorgi class. Parabolic De
Giorgi classes were then introduced in particular in [24].

The log-transform. While the proof of the continuity of solutions for parabolic
equations by J. Nash [32] includes the study of the ‘entropy’ of the solution, related to its

logarithm, the proof of the Harnack inequality for parabolic equations by Moser [31] relies

in an essential way on the observation that the logarithm of the solution of a parabolic
equation in divergence form satisfies an equation with a dominating quadratic term in

the left-hand side. This observation is then combined with a lemma that is the parabolic

counterpart of a result by F. John and L. Nirenberg about functions with bounded mean

oscillation. Independently, S. N. Kružkov reached Hölder continuity thanks to a Poincaré
inequality due to Sobolev; see [21, 22, Eq. (1.18)]. But his method is not adapted to prove

the Harnack inequality. This point will be further discussed in Subsection 1.4 below.

Weak Harnack inequality. Moser [31] and then Trudinger [37, Theorem 1.2] proved

a weak Harnack inequality for parabolic equations. Lieberman [27] made the following

comment: ‘It should be noted [. . .] that Trudinger was the first to recognize the significance
of the weak Harnack inequality even though it was an easy consequence of previously

known results. [. . .]’ He also mentioned that DiBenedetto and Trudinger [9] showed that

nonnegative functions in the elliptic De Giorgi class corresponding to super-solutions of
elliptic equations satisfy a weak Harnack inequality and G. L. Wang [38, 39] proved a

weak Harnack inequality for functions in the corresponding parabolic De Giorgi class.

Parabolic equations in nondivergence form. N. V. Krylov and M. V. Safonov [23]

derived a Harnack inequality for equations in nondivergence form. In order to do so, they

introduced a covering argument now known as the ink-spots theorem; see for instance
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[17]. Such a covering argument will be later used in the various studies of elliptic equations

in divergence form; see e.g., [38, 39] or [9].

Expansion of positivity. Ferretti and Safonov [11] established the interior Harnack

inequality for both elliptic equations in divergence and nondivergence form by establishing

what they called growth lemmas, allowing to control the behavior of solutions in terms
of the measure of their super-level sets.

Gianazza and Vespri introduced in [12] suitable homogeneous parabolic De Giorgi

classes of order p and proved a Harnack inequality. They shed light on the fact that their
main technical point is an expansion of positivity in the following sense: If a solution lies

above � in a ball Bρ(x) at time t, then it lies above μ� in a ball B2ρ(x) at time t+Cρp for

some universal constants μ and C, that is to say constants only depending on dimension

and ellipticity constants. They mentioned that G. L. Wang also used some expansion of
positivity in [38].

More recently, R. Schwab and L. Silvestre [36] used such ideas in order to derive a weak

Harnack inequality for parabolic integro-differential equations with very irregular kernels.

Hypoellipticity. In the case where A is the identity matrix, equation (1) was first

studied by Kolmogorov [19]. He exhibited a regularizing effect, despite the fact that

diffusion only occurs in the velocity variable. This was the starting point of the
hypoellipticity theory developed by Hörmander [15] for equations with smooth variable

coefficients (unlike A and B in (1)).

Regularity theory for ultraparabolic equations. The elliptic regularity for degen-

erate Kolmogorov equations in divergence form with discontinuous coefficients, including

(1) with B =0, started at the end of the 1990s with contributions including [5, 29, 34, 35].
As far as the rough coefficients case is concerned, A. Pascucci and S. Polidoro [33] proved

that weak (sub)solutions of (1) are locally bounded (from above). This result was later

extended in [6, 2]. Then W. Wang and L. Zhang [40, 41, 42] proved that solutions of (1)

are Hölder continuous. Even if the authors do not state their result as an a priori estimate,
it is possible to derive from their proof the following result for a class of ultraparabolic

equations that contains equations of the form (1).

Theorem 1.2 (Hölder regularity – [40, 41, 42]). There exist α ∈ (0,1) only depending

on dimension, λ and Λ such that all weak solution f of (1) in some cylindrical open set
Ω⊃Q1 = (−1,0]×B1×B1 satisfies

[f ]Cα(Q1/2) ≤ C(‖f‖L2(Q1)+‖S‖L∞(Q1))

with Q1/2 = (−1/4,0]×B1/8×B1/2; the constant C only depends on the dimension and
the ellipticity constants λ,Λ.

More recently, M. Litsg̊ard and K. Nyström [28] established existence and uniqueness

results for the Cauchy Dirichlet problem for Kolmogorov–Fokker–Planck type equations

with rough coefficients.
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Linear kinetic equations with rough coefficients. Since the resolution of the 19th

Hilbert problem by E. de Giorgi [8], it is known that being able to deal with coefficients

that are merely bounded is of interest for studying nonlinear problems. There are several

models from the kinetic theory of gases related to equations of the form (1) with A, B and

S depending on the solution itself. The most famous and important example is probably
the Landau equation [25].

An alternative proof of the Hölder continuity Theorem 1.2 was proposed by F. Golse, C.

Mouhot, A. F. Vasseur and the second author [13] and a Harnack inequality was obtained.

Theorem 1.3 (Harnack inequality – [13]). Let f be a nonnegative weak solution of (1)

in some cylindrical open set Ω containing Q0 := (−1,0]×BR0
×BR0

. Then

sup
Q−

f ≤ C

(
inf
Q+

f +‖S‖L∞(Q0)

)
,

where Q+ = (−ω2,0]× Bω3 × Bω and Q− = (−1, − 1 + ω2]× Bω3 × Bω; the positive
constants C, R0 and ω only depend on the dimension and the ellipticity constants λ,Λ.

On the one hand, this new proof is closer to the original argument used by De Giorgi. On

the other hand, the second step of the proof from [13] relies on a compactness argument
while the proof by W. Wang and L. Zhang is constructive. It is worth mentioning that

the second author and C. Mouhot [14] managed to make constructive the De Giorgi

argument. We will give further details below.
Such a Harnack inequality implies in particular the strong maximum principle [1] relying

on a geometric construction known as Harnack chains. The Hölder regularity result of

[40] was extended by Y. Zhu [43] to general transport operators ∂t+ b(v) ·∇v for some

nonlinear function b.
To finish, we mention that C. Mouhot and the second author [16] initiated the study of

a toy nonlinear model, and F. Anceschi and Y. Zhu continued it in [3]. Both studies rely

in an essential way on Hölder continuity of weak solutions to the linear equation (1).

Hypoelliptic estimates. We previously mentioned that in the case where A and B

are C∞, the study of (1) falls into the realm of the hypoellipticity theory developed by
Hörmander in [15]. Such a point of view over (1) is adopted in [4]. Let A be the identity

matrix for simplicity. We can write (1) by writing X2
1f +X0f + c= 0, where X1 and X0

are the following vector fields: X1 =∇v, X0 = (∂t+v ·∇x) and c=B ·∇vf+S. Hörmander
mentions that ‘the main point of [his] paper is the proof’ of [15, Estimate (3.4)]. In our

setting, it reads

‖f‖Hε
t,x,v

≤ C(‖f‖L2
t,xH

1
v
+‖(∂t+v ·∇x)f‖L2

t,xH
−1
v

)

for some ε > 0.

In order to derive local properties of solutions such as their Hölder continuity by
elliptic regularity methods, it is necessary to be able to work with subsolutions of (1).

In this case, the source term S is supplemented with −μ, where μ is an arbitrary

Radon measure. Such a source term cannot be treated directly by the previous estimate.
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Q1

Qpos

(x, v)

t

Figure 1. Expansion of positivity.

Comparison principles are used in [13] to gain locally some integrability for nonnegative

subsolutions.

Kinetic equations with integral diffusions. We would like to conclude this review of
literature by mentioning the weak Harnack inequality derived in [18] for kinetic equations.

The proof also relies on De Giorgi type arguments that are combined with a covering

argument, referred to as an ink-spots theorem and inspired by the elliptic regularity for

equations in nondivergence form (see above). The interested reader is referred to the
introduction of [18] for further details.

1.3. Weak expansion of positivity

The proof of the main result of this article relies on proving that super-solutions of (1)

expand positivity along times (Lemma 4.1) and to combine it with the covering argument
from [18] mentioned in the previous paragraph. The derivation of the weak Harnack

inequality in the present article from the expansion of positivity follows very closely the

reasoning in [18].
In contrast with parabolic equations, it is not possible to apply the Poincaré inequality

in v for (t,x) fixed when studying solutions of linear Fokker–Planck equations such as

(1). Instead, if a subsolution vanishes enough, then a quantity replacing the average in
the usual Poincaré inequality is decreased in the future. See θ0M in the weak Poincaré

inequality in the next paragraph (Theorem 1.4).

We establish the expansion of positivity of super-solutions in the spirit of [11]. Given

a small cylinder Qpos lying in the past of Q1 (see Figure 1), Lemma 4.1 states that,
if a super-solution f lies above 1 in ‘a good proportion’ of Qpos, then it lies above a

constant �0 > 0 in the whole cylinder Q1. Roughly speaking, such a lemma transforms

an information in measure about positivity in the past into a pointwise positivity in the
future in a (much) larger cylinder.

We emphasize the fact that in the classical parabolic case, S. N. Kružkov does not

need to prove such an expansion of positivity to get Hölder continuity of solutions. But
he cannot reach the weak Harnack inequality. To get an Hölder estimate, he uses an

appropriate Poincaré inequality that can be applied at any time t > 0. Such an approach

is not applicable in the x -dependent case.
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t

Qext

Q1
Qzero

(x, v)

Figure 2. Geometric setting of the weak Poincaré inequality.

Such a weak propagation of positivity was already proved in [13] thanks to a lemma of

intermediate values in the spirit of De Giorgi’s original proof. While the proof of this key

lemma uses a compactness argument in [13], C. Mouhot and the first author [14] found a
constructive proof of it.

1.4. A weak Poincaré inequality

The proof of the expansion of positivity relies on a weak Poincaré inequality. It is

worth mentioning that Armstrong and Mourrat proved in [4] a Poincaré inequality.

Unfortunately, such a Poincaré inequality cannot be applied to subsolutions (see the
discussion on page 2753). The geometric setting of the next theorem is shown in Figure 2

Theorem 1.4 (Weak Poincaré inequality). Let η ∈ (0,1). There exist R> 1 and θ0 ∈ (0,1)

depending on dimension and η such that, if Qext = (−1−η2,0]×B8R×B2R and Qzero =

(−1−η2,−1]×Bη3 ×Bη (see Figure 2), then for any nonnegative function f ∈ L2(Qext)
such that ∇vf ∈ L2(Qext), (∂t + v ·∇x)f ∈ L2((−1− η2,0]×B8R,H

−1(B2R)), f ≤ M in

Qext and |{f = 0}∩Qzero| ≥ 1
4 |Qzero|, satisfying

(∂t+v ·∇x)f ≤H in D′(Qext) with H ∈ L2
t,xH

−1
v (Qext),

we have

‖(f −θ0M)+‖L2(Q1) ≤ C(‖∇vf‖L2(Qext)+‖H‖L2
t,xH

−1
v (Qext)

)

for some constant C > 0 only depending on dimension.

Remark 7. In the previous statement, L2
t,xH

−1
v (Qext) is a shorthand notation for

L2((−1−η2,0]×B8R,H
−1(B2R)).

A somewhat similar inequality was introduced by W. Wang and L. Zhang for
subsolutions of ultraparabolic equations; see for instance [40, Lemmas 3.3 & 3.4] and

the corresponding lemmas in [41, 42]. The statements and proofs share similarities, and

we explain next in what they differ. The main difference between statements comes from
the fact that the information in measure in Theorem 1.4, the information in measure

|{f = 0}∩Qzero| ≥ 1
4 |Qzero| comes ‘from the past’ since Qzero is contained in {t ≤ −1}

while the functional inequality is stated in Q1 ⊂ {t > −1}. This is in contrast with [40,
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41, 42] and [21, 22]; indeed, in these works the information in measure is contained in

{−1 < t ≤ 0} and the pointwise bound is derived in the same time interval. For this

reason, it is not possible to derive a (weak) Harnack inequality directly from these proofs
because no time lap is considered or no positivity is propagated in time. Moreover, we

adopt the functional framework from [4] and forget about the equation under study. The

main difference in proofs lies on the fact that we avoid using repeatedly the exact form
of the fundamental solution of the Kolmogorov equation, and we seek for arguments

closer to the classical theory of parabolic equations presented, for instance, in [24] or

[27]. In contrast with [40, 41, 42], the information obtained through the log-transform is
summarized in only one weak Poincaré inequality (while it is split it several lemmas in

[40, 41, 42]) and the geometric settings of the main lemmas are as simple as possible. For

instance, it is the same for the weak Harnack inequality and for the lemma of expansion

of positivity (Lemma 4.1). We also mostly use cylinders respecting the invariances of the
equation (see the defintion of Qr(z) in the paragraph devoted to notation), except the

‘large’ cylinders where the equation is satisfied such as Qext in Theorem 1.4.

The Lie group structure. Equation (1) is not translation invariant in the velocity

variable because of the free transport term. But this (class of) equation(s) comes from

mathematical physics, and it enjoys the Galilean invariance: In a frame moving with
constant speed v0, the equation is the same. For z1 = (t1,x1,v1) and z2 = (t2,x2,v2), we

define the following noncommutative group product

z1 ◦z2 = (t1+ t2,x1+x2+ t2v1,v1+v2).

In particular, for z = (t,x,v), the inverse element is z−1 = (−t,−x+ tv,−v).

Scaling and cylinders. Given a parameter r > 0, the class of equations (1) is invariant

under the scaling

fr(t,x,v) = f(r2t,r3x,rv).

It is convenient to write Sr(z)= (r2t,r3x,rv) if z=(t,x,v). It is thus natural to consider the

following cylinders ‘centered’ at (0,0,0) of radius r > 0: Qr = (−r2,0]×Br3 ×Br = Sr(Q1).

Moreover, in view of the Galilean invariance, it is then natural to consider cylinders

centered at z0 ∈ R
1+2d of radius r > 0 of the form: Qr(z0) := z0 ◦Qr which is

Qr(z0) :=
{
z ∈ R

1+2d : z−1
0 ◦z ∈Qr(0)

}
:=
{−r2 < t− t0 ≤ 0, |x−x0− (t− t0)v0|< r3, |v−v0|< r

}
.

Organization of the article. In Section 2, the definition of weak subsolutions, super-
solutions and solutions for (1) is recalled and two properties of the log-transform are given.

Section 3 is devoted to the proof of the weak Poincaré inequality. In Section 4, we explain

how to derive the lemma of expansion of positivity from the weak Poincaré inequality
and how to prove the weak Harnack inequality from expansion of positivity by using a

covering lemma called the ink-spots theorem. This last result is recalled in Appendix

A. In another appendix, see B, we recall how Hölder regularity can be derived directly
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from the expansion of positivity of super-solutions. The proof of a technical lemma about
stacked cylinders is given in Appendix C.

Notation. The open ball of the Euclidian space centered at c of radius R is denoted

by BR(c). The measure of a Lebesgue set A of the Euclidian space is denoted by |A|.
The z variable refers to (t,x,v) ∈ R×R

d×R
d = R

1+2d. For z1,z2 ∈ R
1+2d, z1 ◦z2 denotes

their Lie group product and z−1
1 denotes the inverse of z1 with respect to ◦. For r > 0,

Sr denotes the scaling operator. A constant is said to be universal if it only depends on

dimension and the ellipticity constants λ,Λ appearing in (2). The notation a � b means

that a≤ Cb for some universal constant C > 0.
For an open set Ω, D(Ω) denotes the set of C∞ functions compactly supported in Ω

while D′(Ω) denotes the set of distributions in Ω.

2. Weak solutions and log-transform

2.1. Weak solutions

We start with the definition of weak (super- and sub-) solutions of (1).

Definition 2.1 (Weak solutions). Let Ω = I ×Bx×Bv be open. A function f : Ω→ R

is a weak super-solution (resp. weak subsolution) of (1) in Ω if f ∈ L∞(I,L2(Bx×Bv))∩
L2(I×Bx,H1(Bv)) and (∂t+v ·∇x)f ∈ L2(I×Bx,H−1(Bv)) and

−
∫

f(∂t+v ·∇x)ϕdz+

∫
A∇vf ·∇vϕdz−

∫
(B ·∇vf +S)ϕdz ≥ 0 (resp. ≤ 0)

for all nonnegative ϕ ∈ D(Ω). It is a weak solution of (1) in Q if it is both a weak
super-solution and a weak subsolution.

As explained in the introduction, the local boundedness of subsolutions has been known

since [33]. We give below the version contained in [13].

Proposition 2.1 (Local upper bound for subsolutions – [13]). Consider two cylinders

Qint = (t1,T ]×Brx ×Brv and Qext = (t0,T ]×BRx
×BRv

with t1 > t0, rx <Rx and rv <Rv.

Assume that f is a subsolution of (1) in some cylindrical open set Ω⊃Qext. Then

sup
Qint

f ≤ C(‖f+‖L2(Qext)+‖S‖L∞(Qext)),

where C only depends on d,λ,Λ and (t1− t0,Rx− rx,Rv − rv).

2.2. Log-transform of subsolutions

For technicals reasons, the positive part of the opposite of the logarithm is replaced with
a more regular function G that keeps the important features of max(0,− ln). The function

max(0,− ln) was first considered in [21, 22].

Lemma 2.1 (A convex function). There exists G : (0,+∞)→ [0,+∞) nonincreasing and

C2 such that
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• G′′ ≥ (G′)2 and G′ ≤ 0 in (0,+∞),
• G is supported in (0,1],
• G(t)∼− ln t as t→ 0+,
• −G′(t)≤ 1

t for t ∈ (0, 14 ].

Lemma 2.2 (Log-transform of solutions). Let ε ∈ (0, 14 ] and f be a nonnegative weak

super-solution of (1) in a cylinder Qext = (t0,T ]×BRx
×BRv

. Then g =G(ε+f) satisfies

(∂t+v ·∇x)g+λ|∇vg|2 ≤∇v · (A∇vg)+B ·∇vg+ ε−1|S| in Qext,

i.e., it is a subsolution of the corresponding equation in Qext.

Proof.We first note that g ∈L∞(Qext) since 0≤ g≤G(ε). Moreover,∇vg=G′(ε+f)∇vf

with |G′(ε+f)| ≤ |G′(ε)|. In particular, g ∈L2((t0,T ]×BRx
,H1(BRv

)). In order to obtain

the subequation, it is sufficient to consider the test-function G′(ε+f)Ψ in the definition
of super-solution for f.

The following observation is key in Moser’s reasoning since the square of the L2-norm
of ∇vg is controlled by the mass of g.

Lemma 2.3 (The mass of g). Let f be a nonnegative weak subsolution of (1) in a cylinder

Qext = (t0,T ]×Brx ×Brv and Qint = (t1,T ]×BRx
×BRv

with t1 > t0, rx <Rx and rv <Rv.
Then

λ

2

∫
Qint

|∇vg|2 ≤ C

(∫
Qext

g(τ)+1+ ε−1‖S‖L∞(Qext)

)
,

where C depends on dimension, λ, Λ, Qint and Qext.

Proof. Consider a smooth cut-off function Ψ valued in [0,1], supported in Qext and equal

to 1 in Qint, and use Ψ2 as a test-function for the subequation satisfied by g, and get

λ

∫
|∇vg|2Ψ2 ≤−2

∫
A∇vg ·Ψ∇vΨ+

∫
g(∂t+v ·∇x)Ψ

2+

∫
(B ·∇vg+ ε−1|S|)Ψ2

≤λ

4

∫
|∇vg|2Ψ2+C(1+

∫
Qext

g)+
λ

4

∫
|∇vg|2Ψ2+Cε−1‖S‖L∞(Qext).

This yields the desired estimate.

2.3. Kružkov’s proof in the parabolic case

In this subsection, we discuss how Kružkov proved in [21, 22] (see also [20]) Hölder
continuity of solutions of parabolic equations corresponding to solutions u of (1) such

that the solution and the coefficients A,B and S are independent of the x variable. It

relies on the local boundedness of nonnegative subsolutions [20, Theorem 2.1] and a
Poincaré inequality due to Sobolev and Ilin.

A Poincaré inequality. We start with presenting the functional inequality [22, (1.8)]:
for any u ∈H1(Br) and N ⊂Br such that |N | ≥ c0r

d,

r−2d/p‖u‖2Lp(Br)
≤ c
[
r−d+2‖∇u‖2L2(Br)

+ r−d‖u‖2L2(N)

]
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for p ∈ [2,2d/(d−2)] for d≥ 3 and p > 0 arbitrary for d= 2 and c= c(d,p). In particular,

if N = {u= 0} and p= 2, this implies

‖u‖L2(Br) ≤ C‖∇u‖L2(Br) (3)

for some C = C(d,r).

Decrease of the oscillation. Kružkov proves a local Hölder estimate [20, Theorem
3.1] by proving that the oscillation of a bounded solution decreases by a universal factor

strictly smaller than 1. We change here some constants in his proof, but we follow exactly

the same reasoning. See [20, p. 187–190].
Consider a nonnegative super-solution u= u(t,v) of (1), and assume that

|{u≥ 1}∩ (−1,0]×B1| ≥ 1

2
|B1|.1 (4)

We then prove that u ≥ �0 in (−θ2,0]×Bθ. Such a result implies the decrease of

oscillation and in turn yields the Hölder estimate.

A pointwise in time estimate. In order to get a lower bound on u in (−θ2,0]×Bθ,
Kružkov first proves that there exist ω,β,h > 0 such that, for a.e. t ∈ (−ω,0], we have

|{x ∈Bβ : u≥ h}| ≥ (1/4)|Bβ |. (5)

In words, the lower bound on the volume of {u ≥ 1} is made pointwise in time. It is

necessary to apply the Poincaré inequality (3) after freezing the time variable.
To get such a result, Kružkov first considers μ(t) = |{u(t)≥ 1}∩B1| and remarks that

(4) implies that there exists ω small and τ ∈ (−1,−ω] so that u is defined a.e. in B1 and

μ(τ)≥ 1/2−ω
1−ω |B1|. In particular, considering w =G(u+h)∫

Bβ

w(τ,v)dv ≤G(h)|{u(τ)≤ 1}∩B1|

≤G(h)

(
1− 1/2−ω

1−ω

)
|B1|

≤ 2

3
G(h)|Bβ |

the last inequality holding true if β is chosen so that 2(1−ω)βd = 3/2.

He then uses the evolution of the mass of w with time. Let us assume B = 0 and S = 0

for simplicity. Using Lemma 2.2, we can get that, for a.e. t ∈ (τ,0],∫
Bβ

w(t,v)dv ≤
∫
Bβ

w(τ,v)dv+C.

1In [20], the radius of the cylinder is r > 0.
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Since for u(t,v)≤ h, we also have w(t,v)≥G(2h), we can write, for a.e. t ∈ (−ω,0],

G(2h)|{u(t)≤ h}∩Bβ | ≤
∫
Bβ

w(t,v)dv

≤
∫
Bβ

w(τ,v)dv+C

≤ 2

3
G(h)|Bβ |+C.

This implies (5) by choosing h small enough.

The decrease of oscillation. With (5) at hand, Kružkov then considers g = G((u+

ε)/h) and combines i) local boundedness of nonnegative subsolutions with ii) the Poincaré

inequality (3) and iii) the rough estimate of the mass of g given by Lemma 2.3 to get for
θ small enough,

sup
(−θ2,0]×Bθ

g2 ≤ C

∫
(−ω,0]×Bβ

g2dtdv (local boundedness of subsolutions)

≤ C

∫
(−ω,0]×Bβ

|∇vg|2dtdv (Poincaré inequality)

≤ C

(∫
(−ω,0]×Bβ

gdtdv+1

)
(Lemma 2.3)

≤ CG(ε/h).

This implies that G((u+ ε)/h)≤ C
√
G(ε/h) in Qθ, and since G(t)∼− ln t as t→ 0+, we

get the desired lower bound on u in Qθ by choosing ε small enough.

3. A weak Poincaré inequality

In order to prove Theorem 1.4, we first derive a local Poincaré inequality (Lemma 3.1)
with an error function h due to the localization. This function h satisfies{

LKh= fLKΨ, in (a,b)×R
2d,

h= 0, in {a}×R
2d,

(6)

where LK = (∂t + v · ∇x)−Δv is the Kolmogorov operator and Ψ is a cut-off function

equal to 1 in Q1. We will estimate h in Lemma 3.2 below.

Lemma 3.1 (A local estimate). Let Qext = (a,0]×BRx
×BRv

be a cylinder such that

Q1 ⊂Qext, and let Ψ: R2d+1 → [0,1] be C∞, supported in Qext and Ψ= 1 in Q1. Then for

any function f ∈ L2(Qext) such that ∇vf ∈ L2(Qext) and (∂t+v ·∇x)f ≤H in D′(Qext)
with H ∈ L2((a,0]×BRx

,H−1(BRv
)), we have

‖(f −h)+‖L2(Q1) ≤ C(‖∇vf‖L2(Qext)+‖H‖L2((a,0]×BRx,H
−1(BRv ))

),

where h satisfies the Cauchy problem (6) and C = c(a)(1+ ‖∇vΨ‖∞) for some constant

c(a) only depending on |a|.
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Proof. Since H ∈ L2((a,0]×BRx
,H−1(BRv

)), there exists H0,H1 ∈ L2(Qext) such that

H =∇v ·H1+H0 and such that ‖H0‖L2(Qext)+‖H1‖L2(Qext) ≤ 2‖H‖L2((a,0]×BRx,H
−1(BRv ))

(see for instance [10]). The function g = fΨ satisfies

LKg ≤∇v · H̃1+ H̃0+f [(∂t+v ·∇x)Ψ−ΔvΨ] in D′((a,0)×R
2d)

with H̃1 = (H1−∇vf)Ψ and H̃0 =H0Ψ−H1∇vΨ−∇vΨ ·∇vf . We thus get

LK(g−h)≤ H̃ in D′((a,0)×R
2d)

with H̃ =∇v · H̃1+ H̃0. We then multiply by (g−h)+ to get the natural energy estimate

for all T,T ′ ∈ (a,0) and ε > 0,∫
(g−h)2+(T,x,v)dxdv+

∫ T ′

a

∫
|∇v(g−h)+|2dtdxdv

≤2

∫ 0

a

∫
|− H̃1 ·∇v(g−h)++ H̃0(g−h)+|dtdxdv

≤1

2
‖∇v(g−h)+‖2L2((a,0]×R2d)+2‖H̃1‖2L2((a,0]×R2d)

+2ε‖(g−h)+‖2L2((a,0]×R2d)+
1

2ε
‖H̃0‖2L2((a,0]×R2d).

Remark that we can deal with the two terms of the left-hand side separately so that we

can consider the two parameters T and T ′. Writing ‖ · ‖L2 for ‖ · ‖L2((a,0]×R2d), we get
after integrating in T from a to 0, and choosing T ′ = 0

‖(g−h)+‖2L2 ≤−2εa‖(g−h)+‖2L2 −a‖H̃1‖2L2 − a

2ε
‖H̃0‖2L2 .

Then remark that the function (g−h)+ equals (f −h)+ in Q1 and that

‖H̃1‖L2((a,0]×R2d) ≤ ‖H1‖L2(Qext)+‖∇vf‖L2(Qext),

‖H̃0‖L2((a,0]×R2d) ≤ ‖H0‖L2(Qext)+‖∇vΨ‖∞(‖H1‖L2(Qext)+‖∇vf‖L2(Qext)).

We get the desired inequality by combining the three previous inequalities and choosing

ε=−(4a)−1.

In view of Lemma 3.1, in order to prove Theorem 1.4, it is sufficient to prove that, if
the function f satisfies

|{f = 0}∩Qzero| ≥ 1

4
|Qzero|,

then the function h given by the Cauchy problem (6) is bounded from above by θ0M for
some universal parameter θ0 ∈ (0,1).

Lemma 3.2 (Control of the localization term). Let η ∈ (0,1]. There exist a (large)
constant R> 1 and a (small) constant θ0 ∈ (0,1) both depending on the dimension and η,

and a C∞ cut-off function Ψ: R2d+1 → [0,1], supported in Qext = (−1−η2,0]×B8R×B2R

and equal to 1 in Q1, such that, for all nonnegative bounded function f : Qext → R
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satisfying

|{f = 0}∩Qzero| ≥ 1

4
|Qzero|, (7)

the solution h of the following initial value problem{
LKh= fLKΨ in (−1−η2,0)×R

2d

h= 0 in {−1−η2}×R
2d

satisfies h≤ θ0‖f‖L∞(Qext) in Q1.

Remark 8. This lemma is related to [40, Lemma 3.4] and [41, Lemma 3.3].

Remark 9. The conclusion of the lemma and its proof are essentially unchanged under

the weaker assumption |{f = 0}∩Qzero| ≥ α0|Qzero| for some α0 ∈ (0,1).

Remark 10. Theorem 1.4 will be used in the proof of Lemma 4.1 about the expansion

of positivity of super-solutions. The parameter η will be then chosen after choosing θ.

The proof of Lemma 3.2 requires the following test-function whose construction is

elementary.

Lemma 3.3 (Cut-off function). Given η ∈ (0,1] and T ∈ (0,η2), there exists a smooth
function Ψ1 : [−1−η2,0]×R

d×R
d → [0,1], supported in [−1−η2,0]×B8×B2, equal to 1

in (−1,0]×B1×B1, such that (∂t+ v ·∇x)Ψ1 ≥ 0 everywhere and (∂t+ v ·∇x)Ψ1 ≥ 1 in

(−1−η2,−1−T ]×B1×B1.

Proof. Consider Ψ1(t,x,v) = ϕ1(t)ϕ2(x− tv)ϕ3(v) with

• a smooth function ϕ1 : [−1−η2,0]→ [0,1] equal to 1 in [−1,0] with ϕ1(−1−η2) = 0,
ϕ′
1 ≥ 0 in [−1−η2,0] and ϕ′

1 = 1 in [−1−η2,−1−T ];
• a smooth function ϕ2 : R

d → [0,1] supported in B4 and equal to 1 in B3;
• a smooth function ϕ3 : R

d → [0,1] supported in B2 and equal to 1 in B1.

It is then easy to check that the conclusion of the lemma holds true.

We can now turn to the proof of Lemma 3.2.

Proof of Lemma 3.2. If f = 0 in Qext, then h = 0. We thus can assume from now on

that f is not identically 0. We next reduce to the case ‖f‖L∞(Qext) = 1 by considering
f/‖f‖L∞(Qext).

We introduce a time lap T between the top of the cylinder Qzero and the bottom of

the cylinder Q1; see Figure 3.

Fix T = η2/8. Since |Qzero∩{t≥−1−T}|= 1
8 |Qzero|, then

|{f = 0}∩Qzero∩{t≤−1−T}| ≥ 1

8
|Qzero|. (8)

Let R> 1 to be chosen later. We consider the cut-off function

Ψ(t,x,v) = Ψ1(t,x/R,v/R).
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Qext

Q1
t = −1 − T

Qzero

Figure 3. Reducing to the case with a time lap.

Remark that Ψ is supported in Qext and equal to 1 in (−1,0]×BR×BR. Moreover,

LKΨ(t,x,v) = (∂t+v ·∇x)Ψ1(t,x/R,v/R)−R−2ΔvΨ1(t,x/R,v/R),

where in the last equation v ·∇x means the scalar product of the value of third variable

in Ψ (here it is v
R ) with the gradient in the second variable. We then have

LK(h−Ψ) =−(1−f)(∂t+v ·∇x)Ψ1(t,x/R,v/R)+
1−f

R2
ΔvΨ1(t,x/R,v/R),

and we can write

h−Ψ=−PR+ER

(PR for positive and ER for error) with PR and ER solutions of the following Cauchy

problems in (−1−η2,0)×R
2d:

LKPR = (1−f)(∂t+v ·∇x)Ψ1(t,x/R,v/R),

LKER =
1−f

R2
ΔvΨ1(t,x/R,v/R),

and PR = ER = 0 at time t=−1−η2.

We claim that there exist constants C > 0 and δ0 > 0 depending on the dimension and

η (in particular independent of R) such that

ER ≤ CR−2 and PR ≥ δ0 in Q1. (9)

As far as the estimate of ER is concerned, it is enough to remark that LKER ≤C0R
−2 for

some constant C0 = ‖ΔvΨ1‖L∞ only depending on d,λ,Λ,η (in particular not depending

on R). The maximum principle then yields the result for some universal constant C. As

far as PR is concerned, we remark that

LKPR ≥ IZ in (−1−η2,0]×R
2d,

where Z = {f = 0}∩Qzero∩{t≤−1−T}. We use here the fact that (∂t+v ·∇x)Ψ1 ≥ 1 in

(−1−η2,−1−T )×R
2d. Let P be such that LKP = IZ in (−1−η2,0]×R

2d and P = 0 at

the initial time −1−η2. The maximum principle implies that PR ≥ P in the time interval
(−1−η2,0] and in particular in Q1.

We now claim that P ≥ δ0 in Q1 for some constant δ0 > 0 depending on the dimension

and η. Indeed, one can use the fundamental solution Γ of the Kolmogorov equation and
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Qwhi

Q1
Qpos

Figure 4. Geometric setting of the expansion of positivity lemma. It is the same as the one of the weak

Poincaré inequality, except that Qext and Qzero are replaced with Qwhi and Qpos. Here, Qpos denotes a

set ‘in the past’ where {f ≥ 1} occupies half of it.

write

P (t,x,v) =

∫
Γ(z,ζ)IZ(ζ)dζ ≥ 1

8
m|Qzero|= δ0,

with m= min
Q1×Qzero∩{t≤−1−T}

Γ. The claim (9) is now proved.

Inequalities from (9) imply that

h≤ 1− δ0+CR−2 in Q1.

This yields the desired result with θ0 = 1− δ0/2 for R large enough. Note in particular

that R only depends on C and δ0 and consequently depends on the dimension and η.

4. The weak Harnack inequality

Before proving the weak Harnack inequality stated in Theorem 1.1, we investigate how

equation (1) expands positivity of super-solutions.

Lemma 4.1 (Expansion of positivity). Let θ ∈ (0,1] and Qpos = (−1−θ2,−1]×Bθ3 ×Bθ,

and let R be the constant given by Lemma 3.2 which depends on θ, d, λ, Λ. There exist
η0,�0 ∈ (0,1), only depending on θ, d, λ, Λ, such that for Qwhi := (−1−θ2,0]×B9R×B3R

and any nonnegative super-solution f of (1) in some cylindrical open set Ω ⊃ Qwhi and

‖S‖L∞(Qwhi) ≤ η0 and such that |{f ≥ 1}∩Qpos| ≥ 1
2 |Qpos| we have f ≥ �0 in Q1.

Remark 11. The parameter θ will be chosen in such a way that the stacked cylinder
Qpos

m
is contained in Q1(see the definition of stacked cylinders in Appendix A). The

cylinder Qpos
m

can be thought of as the union of m copies of Qpos stacked above (in

time) of Qpos. Such cylinders are used in the covering argument used in the proof of the
weak Harnack inequality, and the parameter m ∈ N only depends on dimension.

Proof of Lemma 4.1. We consider g = G(f + ε). We remark that g ≤ G(ε) since f is

nonnegative and G is nonincreasing. We also remark that |G′(f+ε)| ≤ |G′(ε)| ≤ ε−1 since

f ≥ 0; see Lemma 2.1.

https://doi.org/10.1017/S1474748022000160 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748022000160


Log-Transform and the Weak Harnack Inequality for Kinetic Fokker-Planck Equations 2765

Qwhi Q̃ext

Q1 S(1+ι)(Q1)

Qpos

S(1+ι)(Qzero)

Figure 5. Intermediate cylinders in the proof of the expansion of positivity. The great parts are obtained

after a scaling with a parameter 1+ ι close to 1. This is necessary in order to keep f vanishing in a ‘good

ratio’ of S(1+ι)(Qzero).

We know from Lemma 2.2 that g is a nonnegative subsolution of (1) with S replaced

with SG′(f+ε). In particular, (∂t+v ·∇x)g≤H with H =∇v ·(A∇vg)+B ·∇vg+ε−1|S|.
Recall that, for a set Q ⊂ R

2d+1, S(r)(Q) = {(r2t,r3x,rv) for z = (t,x,v) ∈ Q}. We

introduce η ∈ (0,
(
4
5

) 1
4d+2 θ) and ι > 0 two parameters depending on θ to be chosen later

in the proof.

We are going to apply successively: the L2−L∞ estimate from Q1 to a slightly larger

cylinder Q1+ι for an accurate choice of ι; the (scaled) weak Poincaré inequality in the
big cylinder Q̃ext = S(1+ι)(Qext) with Qext = (−1−η2,0]×B8R×B2R. Then we estimate

the L2-norm of ∇vg by the square root of its mass in a cylinder larger than Q̃ext, namely
S(1+ι)2(Qext)⊂Qwhi. This is illustrated in Figure 5.

The remainder of the proof is split into several steps. We explain in Step 1 how

to choose ι to ensure that cylinders are properly ordered and η so that we retain
enough information from the assumption |{f ≥ 1}∩Qpos| ≥ 1

2 |Qpos|. We then apply the

aforementioned successive estimates in Step 2 before deriving the lower bound on f in

Step 3.

Step 1. Choose ι small enough so that Qext ⊂ Q̃ext ⊂ S(1+ι)2(Qext) ⊂ Qwhi. We only
need to check the last inclusion. We choose ι > 0 small enough so that (1 + ι)4(1 +

η2) ≤ 1 + θ2, 2(1 + ι)2 ≤ 3 and 8(1 + ι)6 ≤ 9. Since η ∈ (0,
(
4
5

) 1
4d+2 θ), to satisfy the

first inequality it is enough to satisfy (1 + ι)4
(
1+
(
4
5

) 1
2d+1 θ2

)
≤ 1 + θ2. So we pick

ι=min

((
5

1
2d+1 (1+θ2)

5
1

2d+1 +4
1

2d+1 θ2

)1/4

−1,
(
9
8

)1/6−1,
(
3
2

)1/2−1

)
.

Recall that Qzero = (−1− η2, − 1]×Bη3 ×Bη. In particular, S(1+ι)(Qzero) = (−(1 +

ι)2(1+η2),− (1+ ι)2]×B(1+ι)3η3 ×B(1+ι)η. We next pick η ∈ (0,
(
4
5

) 1
4d+2 θ) big enough so

that

|Qpos \S(1+ι)(Qzero)| ≤ 1

4
|S(1+ι)(Qzero)|.

It is then enough to satisfy θ ≤ (5/4)
1

4d+2 (1+ ι)η, so we pick η = (4/5)
1

4d+2 (1+ ι)−1θ. In

particular, the previous volume condition implies that

|{g = 0}∩S(1+ι)(Qzero)| ≥ |{f ≥ 1}∩S(1+ι)(Qzero)| ≥ 1

4
|S(1+ι)(Qzero)|.
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Step 2. With such an information at hand, we know that there exists θ0 ∈ (0,1), only

depending on η and thus only depending on θ, such that

sup
Q1

(g−θ0G(ε))+ � ‖(g−θ0G(ε))+‖L2(Q1+ι)+η0 from Proposition 2.1

�ι ‖∇vg‖L2(Q̃ext)
+(η0/ε)+η0 from Theorem 1.4

�
(∫

Qwhi

g+1+η0/ε

) 1
2

+(η0/ε)+η0 from Lemma 2.3

� (G(ε)+2)
1
2 +2 for η0 ≤ ε≤ 1

�
√

G(ε) for ε such that G(ε)≥ 2.

Remark that it has been necessary to scale g before applying Theorem 1.4. This generates

a constant depending on ι. This is emphasized by writing �ι. But ι only depends on
dimension, λ, Λ and θ.

Step 3. The previous computation yields

g ≤ C
√
G(ε)+θ0G(ε) in Q1

for some θ0 ∈ (0,1) depending on universal constants and θ. Since G(ε)→ +∞ (we can

pick ε and η0 small enough only depending on the universal constants and θ), we thus
have

G(f + ε) = g ≤ 1+2θ0
3

G(ε) in Q1.

Now recall that G(t) ∼ − ln t as t → 0+ and −G′(t) ≤ 1
t for t ∈ (0, 14]. The previous

inequality thus implies that, as ε→ 0+,

ln(f + ε)≥ 2+θ0
3

lnε.

This yields the result with �0 = ε
2+θ0

3 − ε > 0.

Before iterating the lemma of expansion of positivity, we state and prove a straightfor-

ward consequence of it that will be used when applying the ink-spots theorem.

Lemma 4.2. Let m≥ 3 be an integer and R be given by Lemma 4.1 for θ=m−1/2. There

exists a constant M > 1 only depending on m, d, λ, Λ such that for all nonnegative super-
solution f (1) with S = 0 in some cylindrical open set Ω ⊃ (−1,m]×B9Rm3/2 ×B3Rm1/2 ,

such that

|{f ≥M}∩Q1| ≥ 1

2
|Q1|,

then f ≥ 1 in Q̄m
1 = (0,m]×Bm+2×B1.

Proof. Let θ = m− 1
2 so that Q̄m

1 ⊂ (0,θ−2]×Bθ−3 ×Bθ−1 . We apply Lemma 4.1 to f
M

with Q1 and Q̄m
1 taking the role of Qpos and Q1 thanks to a rescaling argument. This

yields that f ≥ �0M in (0,θ−2]×Bθ−3 ×Bθ−1 . We then pick M = 1/�0, and we conclude

the proof.
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−ω2

t0 + TN

(x, v)

t

Q−

Q+

Q[N ]

Q[N + 1]

Figure 6. Stacking cylinders above an initial one contained in Q−. We see that the stacked cylinder

obtained after N +1 iterations by doubling the radius leaks out of the domain. This is the reason why

Q[N+1] is chosen in a way that it is contained in the domain and its ‘predecessor’ is contained in Q[N ].

Notice that the cylinders Q[k] are in fact slanted since they are not centered at the origin. We also

mention that Q[N +1] is choosen centered if the time t0+TN is too close to the final time 0.

When deriving the weak Harnack inequality, we will need to estimate how the

lower bound deteriorates with time. Indeed, such information is needed in the ink-

spots theorem: Since cylinders can ‘leak’ out of the set F, a corresponding error has
to be estimated; see the term Cmr20 in Theorem A.1. The geometric setting is the

one from Theorem 1.1. In particular, recall that Q+ = (−ω2,0]×Bω3 ×Bω and Q− =

(−1,−1+ω2]×Bω3 ×Bω, where ω is small and universal. It has to be small enough so

that, when spreading positivity from a cylinder Qr(z0) from the past, i.e., included in Q−,
the union of the stacked cylinders where positivity is expanded captures Q+. Then the

radius R0 in the statement of weak Harnack inequality is chosen so that the expansion of

positivity lemma can be applied as long as new cylinders are stacked over previous ones.
These two facts are stated precisely in the following lemma.

In order to avoid the situation where the last stacked cylinder (see Q[N+1] in the next

lemma) leaks out of the domain where the equation is satisfied, we choose it in a way
that we can use the information obtained in the previous cylinder Q[N ]: the ‘predecessor’

of Q[N +1] is contained in Q[N ] (see Figure 6).

Lemma 4.3 (Stacking cylinders). Let ω < 10−2. Given any nonempty cylinder Qr(z0)⊂
Q−, let Tk =

∑k
j=1(2

jr)2 and N ≥ 1 such that TN ≤−t0 < TN+1. Let

Q[k] =Q2kr(zk) for k = 1, . . . ,N,

Q[N +1] =QRN+1
(zN+1),
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where zk = z0 ◦(Tk,0,0) and, letting R= |t0+TN | 12 and ρ= (4ω)
1
3 , RN+1 =max(R,ρ) and

zN+1 =

{
zN ◦ (R2,0,0) if R≥ ρ,

(0,0,0) if R< ρ.

These cylinders satisfy

Q+ ⊂Q[N +1],
N+1⋃
k=1

Q[k]⊂ (−1,0]×B2×B2, Q[N ]⊃ Q̃[N ],

where Q̃[N ] is the ‘predecessor’ of Q[N +1]: Q̃[N ] =QRN+1/2(zN+1 ◦ (−R2
N+1,0,0)).

The proof of this lemma is posponed until Appendix C.

With such a technical lemma at hand, expansion of positivity for large times follows

easily.

Lemma 4.4 (Expansion of positivity for large times). Let R1/2 given by Lemma 4.1 with

θ=1/2. There exist a universal constant p0 > 0 such that, if f is a nonnegative weak super-
solution of (1) with S = 0 in some cylindrical open set Ω⊃Q= (−1,0]×B18R1/2

×B6R1/2

such that

|{f ≥A}∩Qr(z0)| ≥ 1

2
|Qr(z0)|

for some A> 0 and for some cylinder Qr(z0)⊂Q−, then f ≥A(r2/4)p0 in Q+.

Proof. We first apply Lemma 4.1 with θ = 1/2 to f/A (after rescaling Qr(z0) into Qpos)

and get f/A ≥ �0 in Q[1]. We then apply it to f/(A�0) and get f ≥ A�20 in Q[2]. By

induction, we get f ≥A�k0 in Q[k] for k = 1, . . . ,N .
We then apply Lemma 4.1 one more time and get f ≥ A�N+1

0 in Q[N +1] and in

particular f ≥A�N+1
0 in Q+. Since TN ≤ 1, we have 4Nr2 ≤ 1. Choosing p0 > 0 such that

�0 = (1/4)p0 , we get f ≥A((1/4)N+1)p0 ≥A(r2/4)p0 .

We finally turn to the proof of the main result of this paper, Theorem 1.1.

Proof of Theorem 1.1. We start the proof with general comments about the geometric

setting. The proof is going to use a covering argument through the application of the ink-

spots theorem. To apply this result, we will consider an arbitrary cylinder Q contained

in Q−. The parameter ω used in the definition of Q− and Q+ is chosen small enough
(ω ≤ 10−2) so that the cylinder Q+ is ‘captured’ when stacking cylinders (Lemma 4.3)

and propagating positivity (Lemma 4.4). We also pick the parameter R0 in the definition

of the cylinder Q0 large enough so that the stacked cylinders do not leak out of Q0; we
impose R0 ≥ 18R1/2, where R1/2 is given by Lemma 4.1 for θ = 1/2. We also impose

R0 ≥ 9Rm−1/2m3/2ω3, where Rm−1/2 is given by Lemma 4.1 with θ =m−1/2 in order to

be in position to apply Lemma 4.2 to cylinders contained in Q−, hence of radius smaller
than ω.

We first classically reduce to the case

inf
Q+

f ≤ 1 and S = 0.
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Considering f̃(t,x,v) = f(t,x,v)+‖S‖L∞t, f̃ is a super-solution of the same equation with

no source term (S = 0), and the weak Harnack inequality for f̃ implies the one for f.

So from now we assume S = 0. Considering next f̃ = f/(infQ+
f +1) reduces to the case

infQ+
f ≤ 1.

We then aim at proving that
∫
Q−

fp(z)dz is bounded from above by a universal constant

for some universal exponent p. This amounts to prove that, for all k ∈ N,

|{f >Mk}∩Q−| ≤ Cw.h.i.(1− μ̃)k

for some universal parameters μ̃ ∈ (0,1), M > 1 and Cw.h.i. > 0 to be determined later.
We can see that this property would be enough by transposing it to the continuous case

(k real and above 1) and by application of the layer cake formula to
∫
Q−

fp(z)dz.

We are going to apply Theorem A.1 with μ= 1/2. We pick m ∈ N such that m+1
m (1−

c/2)≤ 1− c/4. Then the constant M > 1 is given by Lemma 4.2.

We prove the result by induction. For k = 1, we simply choose μ̃≤ 1/2 and Cw.h.i. such

that |Q−| ≤ 1
2Cw.h.i.. Now assume that the claim holds true for k ≥ 1, and let us prove it

for k+1. We thus consider

E = {f >Mk+1}∩Q− and F = {f >Mk}∩Q1.

These two sets are bounded and measurable and such that E ⊂ F ∩Q−. We consider a

cylinder Q=Qr(t,x,v)⊂Q− such that |Q∩E|> 1
2 |Q|, that is to say

|{f >Mk+1}∩Q|> 1

2
|Q|.

We first prove that r is small, i.e., we determine a universal r0 which depends on k

such that r < r0. Lemma 4.4 (after translation in time) implies that f ≥Mk+1(r2/4)p0

in Q+. In particular, 1≥ infQ+
f ≥Mk+1(r2/4)p0 , so r2p0 ≤ 4p0M−(k+1). We thus choose

r0 = 2M− k+1
2p0 .

We next prove that Q̄m ⊂ F , i.e.,

Q̄m ⊂ {f >Mk}.
In order to do so, we apply Lemma 4.2 to f/Mk after rescaling Q in Q1 where we assume

ω ≤ (2m+3)−1/2 to be able to rescale.

By Theorem A.1, we conclude thanks to the induction assumption that

|{f >Mk+1}∩Q−| ≤ (1− c/4)

(
Cw.h.i.(1−μ)k+Cmr20

)

≤ (1− c/4)

(
Cw.h.i.(1−μ)k+CmM− k+1

p0

)
.

Then pick μ̃ small enough so that M−1/p0 ≤ (1−μ) and μ̃≤ c
4 , and get

≤ Cw.h.i.(1− c/4)

(
1+C−1

w.h.i.CmM− 1
p0

)
(1− μ̃)k.
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Now pick Cw.h.i. large enough (depending on c, C, m and M−1/p0), and get

≤ Cw.h.i.(1− c/4)(1− μ̃)k

≤ Cw.h.i.(1− μ̃)k+1.

The proof is now complete.

The full Harnack inequality is a direct consequence of the local boundedness of
subsolutions and the weak Harnack inequality.

Proof of Theorem 1.3. Combine Proposition 2.1 and Theorem 1.1, and rescale to reach

the result. See, for example, [26] for more details.

Appendix A. the ink-spots theorem

In order to state the ink-spots theorem, we need to define stacked cylinders. Given Q=

Qr(t,x,v) and m ∈ N, Q̄m denotes the cylinder {(t,x,v) : 0 < t− t0 ≤ mr2,|x−x0− (t−
t0)v0|< (m+2)r3,|v− v0|< r}. We recall that Q− = (−1,−1+ω2]×Bω3 ×Bω for some

constant ω ∈ (0,1).

Theorem A.1 (Ink-spots – [18]). Let E and F be two bounded measurable sets of R×R
2d

with E⊂F ∩Q−. We assume that there exist two constants μ,r0 ∈ (0,1) and an integer m∈
N such that, for any cylinder Q⊂Q− of the form Qr(z0) such that |Q∩E| ≥ (1−μ)|Q|,
we have Q̄m ⊂ F and r < r0. Then

|E| ≤ m+1

m
(1− cμ)

(
|F ∩Q−|+Cmr20

)
,

where c ∈ (0,1) and C > 0 only depend on dimension d.

Remark 12. This corresponds to [18, Corollary 10.1] with Q− instead of Q1, i.e., the

ink-spots theorem with leakage, with s= 1. Indeed, the statement in [18] is more general

since the cylinders are of the form z0 ◦Qr with Qr = (−r2s,0]×Br1+2s ×Br for some
s ∈ (0,1]. In the statement above, we only deal with s= 1.

Appendix B. local Hölder estimate

The Hölder estimate from Theorem 1.2 is classically obtained by proving that the
oscillation of the solution decays by a universal factor when zooming in. Such an

improvement of oscillation is obtained from Lemma 4.1 with θ = 1.

Of course, it is not necessary to prove this lemma in order to prove the Harnack
inequality since the Hölder estimate can be derived from it. Even though, we provide

a proof to emphasize that it can be easily derived from Lemma 4.1.

Lemma B.1 (Decrease of oscillation). Let R̄ > 0 be such that QR̄ ⊃ (−2,0]×B9R1
×B3R1

with R1 universal given by Lemma 4.1 with θ= 1. There exist (small) universal constants

η0,�0 > 0 such that, for any solution f of (1) in some cylindrical open set Ω ⊃ QR̄ such

that 0≤ f ≤ 2 in QR̄ and ‖S‖L∞(QR̄) ≤ η0, oscQ1
f ≤ 2− �0.
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Proof. Remark that either |{f ≤ 1} ∩ (−2, − 1]×B1 ×B1| ≤ 1
2 |(−2, − 1]×B1 ×B1| or

|{f ≤ 1}∩ (−2,− 1]×B1×B1| ≥ 1
2 |(−2,− 1]×B1×B1|. In the former case, Lemma 4.1

implies that f ≥ �0 in Q1 while, in the latter, we simply consider f̃ = 2−f , apply Lemma
4.1 to this new function and get f ≤ 2− �0 in Q1. In both cases, we get the desired

reduction of oscillation: oscQ1
f ≤ 2− �0.

Deriving Theorem 1.2 from Lemma B.1 is completely standard, but we provide details

for the sake of completeness and for the reader’s convenience.

Proof of Theorem 1.2. Let f be a solution of (1) in Q1. By scaling, we can reduce to
the case ‖f‖L2(QR̄) ≤ 1 and ‖S‖L∞(QR̄) ≤ η0, where η0 is given by Lemma B.1. We deduce

from Proposition 2.1 that f is bounded in Q1.

In order to prove that f is Hölder continuous in Q1/2, it is sufficient to prove that, for

all z0 ∈Q1/2 and r ∈ (0,1/(9R1)),

oscQr(z0) f ≤ Cαr
α

for some universal constants α ∈ (0,1) and Cα.

We reduce to the case z0 = 0 by using the invariance of the equation by the

transformation z �→ z0 ◦z, and we simply prove

oscQ
R̄−k

f ≤ C(1− δ0)
k

for some C and δ0 = �0/2 ∈ (0,1) universal. By scaling, this amounts to prove that, if

oscQR̄
f ≤ 2, then oscQ1

f ≤ 2(1−δ0). By considering f̃ = 1+ f
‖f‖L∞(QR̄)+‖S‖L∞(QR̄)/η0

, we

can assume that 0≤ f ≤ 2 and |S| ≤ η0 in QR̄. Remark that the L∞ bound of S is reduced

when zooming in. We now apply Lemma B.1 and conclude.

Appendix C. stacking cylinders

Proof of Lemma 4.3. We first check that the sequence of cylinders is well defined for

ω < 1/
√
5, say. Since r ≤ ω, we have t0+T1 ≤−1+ω2+4r2 < 0, and we know that there

exists N ≥ 1 such that TN <−t0 ≤ TN+1.

We check next that Q+ ⊂Q[N+1]. If R< ρ, we simply remark that ω ≤ ρ to conclude.

In the other case, when R ≥ ρ, we have to prove that Qω(z
−1
N+1) ⊂ QR. In this case, we

have z−1
N+1 = (0,x0− t0v0,v0)

−1 = (0,−x0+ t0v0,−v0) and for z ∈Qω,

z−1
N+1 ◦z = (t,−x0+ t0v0+x− tv0,v−v0) ∈QR

if ω2 ≤R2 and ω3+ω+ω3+ω3 ≤R3 and 2ω ≤R. This is true for 4ω ≤R3, that is to say

ρ≤R.
Let us now check that for all k ∈ {1, . . . ,N +1}, Q[k]⊂ (−1,0]×B2×B2.

As far asQ[N+1] is concerned, we use the fact thatR= |t0+TN | 12 ≤ 1 and ρ=(4ω)
1
3 ≤ 1

to get RN+1 ≤ 1. Moreover, zN+1 ∈Q1, and thus, Q[N +1]⊂ (−1,0]×B2×B2.
We remark TN ≤ −t0 ≤ 1 implies that (2Nr)2 ≤ 3

4 + r2 ≤ 1 and in particular 2Nr ≤ 1.

If z̄k = (tk,xk,vk) ∈ Q[k] for k ≤ N , then there exists (t,x,v) ∈ Q1 such that z̄k = z0 ◦
(Tk,0,0) ◦ ((2kr)2t,(2kr)3x,2krv). This implies that xk = x0+Tkv0+(2kr)2tv0+(2kr)3x
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and vk = v0+2krv, and since z0 ∈Q−,

|xk| ≤ ω3+2ω+1≤ 2 and |vk| ≤ ω+1≤ 2.

In particular, Q[k]⊂ (−1,0]×B2×B2.

We are left with proving that Q̃[N ]⊂Q[N ].

If R≥ ρ, then the conclusion follows from the fact that R/2≤ 2Nr (since TN+1 > 0).

Let us deal with the case R ≤ ρ. In view of the definitions of these cylinders, this is
equivalent to

Qρ/2(z̄)⊂Q2Nr with z̄ = (−TN,0,0)◦z−1
0 ◦ (−ρ2,0,0).

In order to prove this inclusion, we first estimate 2Nr from below. Since t0+TN+1 > 0

and −t0 ≥ 1−ω2, we have (4/3)(4N+1−1)r2 ≥ 1−ω2 and in particular 4Nr2 ≥ (1/4)(3/4−
7/4ω2)≥ 1/8. We conclude that

2Nr ≥ 1/(2
√
2). (10)

With such a lower bound at hand, we now compute z̄= (R2−ρ2,−x0+(t0+ρ2)v0,−v0)

and get for z ∈Qρ/2,

z̄ ◦z = (R2−ρ2+ t,−x0+(t0+ρ2)v0+x− tv0,v−v0) ∈Q2ρ.

Indeed, −2ρ2 <R2−ρ2+ t≤ 0 and |−x0+(t0+ρ2)v0+x− tv0| ≤ ω3+3ω+(ρ/2)3 ≤ 2ρ3

and |v−v0| ≤ 2ρ. It is thus sufficient to pick ω such that ρ≤ 1/(2
√
2) to get the desired

inclusion. This is true for ω ≤ 10−2.
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