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A quasi-linear model of particle, momentum and
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We present a quasi-linear treatment of the drift-kinetic equation in the presence of a
stochastic magnetic field, which provides a self-contained description of particle, parallel
momentum and heat transport. Explicit analytical expressions, which satisfy the Onsager
reciprocal relations, are obtained by approximating the distribution function by a local
shifted Maxwellian. This theory completes previous formulations (Harvey et al., Phys.
Rev. Lett., vol. 47, 1981, p. 102) by including the momentum transport and by generalizing
the derivation from the cylindrical tokamak configuration to an arbitrary cylindrical pinch.
Application to the reversed field pinch provides satisfactory results.
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1. Introduction

The purpose of this paper is to present an integrated analytical model of particle, parallel
momentum and heat transport in magnetized plasmas, in the presence of a stochastic
magnetic field produced by resonant perturbations. Particle and energy transport have
been already studied in such conditions by adopting the quasi-linear approximation of
the drift-kinetic equation (Harvey et al. 1981; Rice, Molvig & Helava 1982; Predebon
& Paccagnella 2007). In particular Harvey et al. (1981) and Rice et al. (1982) derive
the ambipolar electric field, which develops in order to equalize the electrons’ and ions’
particle fluxes. Later work (Predebon & Paccagnella 2007) completes the analysis by
including the collisional effects. All these studies, made in slab or cylindrical geometry,
implicitly adopt the tokamak ordering of the magnetic field components, which allows
some simplifications in the derivation of the transport equations. Following the same line
of the previous work, the present paper develops some new elements. First, no ordering
assumption is made for the magnetic field components: this gives rise to extra terms in
the transport equations, whose relevance is assessed. Second, we also consider the parallel
momentum transport, an issue not addressed in the above-mentioned works, showing that
it is described in terms of diffusion and convection, like the particle and heat fluxes.
The transport equations are obtained by approximating the distribution function by a
local shifted Maxwellian. We find that the collisional effects addressed in Predebon &
Paccagnella (2007) must be included to avoid singularities in some expressions related to
the momentum transport. The coefficient regulating the momentum flux is similar to that
obtained in Finn, Guzdar & Chernikov (1992) with a different approach. The inclusion of
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momentum transport enriches the particle and heat equations by further terms (for example
the viscous heating) not considered in the above-mentioned works. The expressions for
the particle, momentum and heat fluxes satisfy the Onsager reciprocal relations (Onsager
1931), which are a general property of the transport phenomena.

Cylindrical geometry is adopted, with periodicity 2πR in the z direction, and simulated
toroidal angle φ = z/R. Hence, the coordinates are (r, θ, φ). The minor radius of the
device, location of the material wall, is at r = a.

The paper is organized as follows. In § 2 we present the basis of our transport model: the
kinetic diffusion equation obtained from the quasi-linear approximation of the drift-kinetic
equation. In § 3 we take velocity moments of the kinetic diffusion equation. Then, by
assuming a local shifted Maxwellian for the distribution function, we derive explicit
analytical expressions for particle, momentum and heat transport in § 4. In § 5 we discuss a
stationary solution of the above equation for the reversed field pinch (RFP) configuration.
In § 6 we compare the present model with previous works on the subject. Conclusions are
drawn in § 7. Appendix A presents the details of the derivation of the kinetic diffusion
equation.

2. Kinetic diffusion equation

The starting point is the drift-kinetic equation for the gyro-averaged distribution
function of particles of species j (Hinton & Hazeltine 1976):

∂fj/∂t + v‖b · ∇fj + Zjev‖b · Ein∂fj/∂ε = Cj, (2.1)

with fj = fj(r, θ, φ, ε, μ), ε = 1
2 mjv

2 + ZjeΦ the total energy, mj the mass, v2 = v‖2 +
v2

⊥, v‖, v⊥ the velocities of the parallel and gyration motion respectively, Zje the electric
charge, e > 0 the elementary charge, Φ the electrostatic potential, μ = mjv

2
⊥/(2B) the

magnetic moment, b = B/B the magnetic unit vector, Ein the externally applied inductive
electric field and Cj the collision term. From now on we drop the subscript j, if not strictly
necessary. As in Harvey et al. (1981) and Rice et al. (1982), we neglect the drift velocity
perpendicular to the magnetic field and we assume both the magnetic field (including its
perturbation) and the electrostatic potential constant in time (∂B/∂t = ∂Φ/∂t = 0). The
plasma here considered has destroyed magnetic surfaces due to the overlapping of several
resonant magnetic perturbations. The total magnetic field is written as the sum of the
equilibrium B0 and the perturbation B1:

B = B0(r) + B1(r, θ, φ), B0,r = 0, ∇ · B = ∇ · B0 = ∇ · B1 = 0. (2.2a–c)

We take the ratio δ = B1/B0 to be a small parameter. It is also useful to split the magnetic
field unit vector b into the equilibrium b0 = B0/B0 and perturbation components:

b = b0 + b̃, b̃ = B1/B0 − (B0 · B1/B2
0)b0 + o(δ2). (2.3a,b)

In the presence of a stochastic magnetic field, the parallel gradient v‖b · ∇f of (2.1)
gives rise to a diffusive term for the distribution function, stemming from quasi-linear
approximation (Harvey et al. 1981; Rice et al. 1982). To prove it, let us write the
distribution function as

f = 〈 f 〉(r) + f̃ (r, θ, φ), (2.4)
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where 〈〉 denotes the average over the angles θ, φ and f̃ ∼ o(δ)〈 f 〉 is the perturbation
component. Then, we approximate (2.1) by the following two equations:

∂ f̃ /∂t + v‖b0 · ∇f̃ + v‖b̃ · ∇〈 f 〉 ∼= 0, (2.5)

∂〈 f 〉/∂t + v‖〈b̃ · ∇f̃ 〉 + Zev‖b0 · Ein∂〈 f 〉/∂ε ∼= C(〈 f 〉). (2.6)

All the terms in (2.5) are of order (v‖/a)o(δ)〈 f 〉. All the terms in (2.6) are assumed to be of
higher order: (v‖/a)o(δ2)〈 f 〉. As far as ∂〈 f 〉/∂t and C(〈 f 〉) are concerned, this is justified
in conditions close to an equilibrium described by a Maxwellian distribution. As far as the
Ein term is concerned, the underlying idea is that the electric field balances the diffusion
v‖〈b̃ · ∇f̃ 〉 and the collisions. Equation (2.5) is time-integrated along the characteristics,
given by the field line of the equilibrium magnetic field b0. Since collisions are not
considered in (2.5), this case corresponds to the collision-less solution of f̃ . The collisional
correction is introduced heuristically in a second step. By inserting the f̃ solution into the
term v‖〈b̃ · ∇f̃ 〉 of (2.6), one gets the following kinetic diffusion equation for 〈 f 〉:

∂〈 f 〉/∂t ∼= |v‖|1
r
L[rD0L〈 f 〉] + |v‖|L−1

0 D0L〈 f 〉 − Zev‖b0 · Ein∂〈 f 〉/∂ε + C(〈 f 〉),
L =

(
∂

∂r

)
ε,μ

, L0 = B0/(dB0/dr).

⎫⎪⎬
⎪⎭

(2.7)

Details of the derivation are given in Appendix A. The first two terms on the right-hand
side stem from v‖〈b̃ · ∇f̃ 〉, and they describe radial diffusion processes due to the
stochastic magnetic field. The coefficient D0 is the magnetic diffusivity, which relates
the average squared radial displacement 〈(	r)2〉 of the field lines to the distance l covered
along the lines: 〈(	r)2〉 = 2D0l (Rechester & Rosenbluth 1978; D’Angelo & Paccagnella
1996). By defining the Fourier expansion b̃ = ∑

m,n∈Z
b̃

m,n
ei(mθ−nφ), D0 is expressed in

terms of the harmonics b̃m,n
r :

D0(r) =
∑

m ∈, Z

n > 0

2πδ(m − nq)|b̃m,n
r |2

∣∣∣∣ R q
b0,φ

∣∣∣∣ , q(r) = rB0,φ/(RB0,θ ). (2.8a,b)

Only the resonant harmonics, i.e. those satisfying the condition q(rm,n) = m/n inside
the plasma (rm,n < a), give a contribution to D0. Note that the sum runs over half of
the harmonics: as shown in Appendix A, the delta-function includes the contribution
of the complex-conjugate harmonics (i.e. the complementary half m ∈ Z, n < 0). The
δ function in (2.8) derives from integrating (2.5) along the unperturbed magnetic field
line, and it is a typical feature of the quasi-linear theory. Such a singular function can
be smoothed by exploiting nonlinear resonance broadening techniques (Ishihara, Xia &
Hirose 1992), which instead consider the effect of the perturbed orbits. The development
of such a method for our specific case is beyond the scope of the present paper, and it is
left as future refinement of the work.

The term |v‖|L−1
0 D0L〈 f 〉 of (2.7) is not present in previous derivations (Harvey et al.

1981; Rice et al. 1982), where the tokamak ordering there assumed makes it negligible:
L−1

0 = a−1o(ε2), ε = a/R, with ε small. Nonetheless, this term cannot be discarded a
priori, since L−1

0 ∼ a−1 for a general pinch.
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Expression (2.8) corresponds to the collision-less case, since it derives from the f̃
obtained in this limit. Collisions hamper the free motion of the particles along the field
lines, thereby reducing the stochastic transport. Following Predebon & Paccagnella (2007),
we include their effect by an ad hoc factor in front of D0:

Dj = gj(v‖)D0, gj(v‖) = 1
1 + LK/λj(v‖)

, λj(v‖) = v‖
ν0j

, ν0j = Z2
j e4 ln(Λ)ni

4πε2
0m2

j v
3
‖

,

(2.9a–d)
where λj(v‖) is the mean free path of a test particle j in a hydrogen background Maxwellian
plasma whose main ion density is ni, computed by the fundamental collision frequency
ν0j (Trubnikov 1965) (the actual frequencies of the various relaxation processes involve
extra coefficients); ln(Λ) is the Coulomb logarithm; and LK is the Kolmogorov–Lyapunov
length (Rechester, Rosenbluth & White 1979; D’Angelo & Paccagnella 1996), which is
the characteristic length for the exponential divergence of close magnetic field lines. The
collision-less limit LK/λj → 0 corresponds to (2.8). In the opposite limit LK/λj → +∞
(as occurs for particles with v‖ → 0), collisions are so frequent that particles do not
experience the stochastic nature of the magnetic field: the vanishing of expression (2.9)
for D in this limit means that other transport mechanisms take over the stochastic one.
Actually, LK should be corrected by a logarithmic factor involving further characteristic
lengths (Rechester & Rosenbluth 1978; Krommes, Oberman & Kleva 1983; Predebon &
Paccagnella 2007): these details, not crucial for our purposes, are here omitted. Hereafter,
we replace D0 with D in (2.7).

A solution of (2.7) for 〈 f 〉 is not attempted here. Instead, we take velocity moments of
(2.7), and then we convert them into transport equations for macroscopic plasma quantities
by approximating 〈 f 〉 with a local shifted Maxwellian.

3. Velocity moments of the kinetic diffusion equation

In order to take the velocity moments of (2.7), we perform the variable change (ε, μ) →
(v‖, v⊥) by

v‖ = ±
√

2
m

(ε − μB − ZeΦ), v⊥ =
√

2
m

μB. (3.1a,b)

Moreover, we add a source term of particles coming from the wall with zero velocity.
Equation (2.7) for 〈 f 〉(r, v‖, v⊥) becomes

∂〈 f 〉/∂t = |v‖|1
r
L[r DL〈 f 〉] + |v‖|L−1

0 DL〈 f 〉 − Ze/mb0 · Ein∂〈 f 〉/∂v‖ + C

+ δ(v‖)δ(v⊥)/(2πv⊥) S(r), (3.2)

with

L =
(

∂

∂r

)
ε,μ

=
(

∂

∂r

)
v‖,v⊥

−
1
2 mv2

⊥L−1
0 − ZeEa

mv‖

(
∂

∂v‖

)
r,v⊥

+ 1
2
v⊥L−1

0

(
∂

∂v⊥

)
r,v‖

, (3.3)

where S(r) is the radial dependence of the particle source. The form of the delta-function
factors derives from the cylindrical symmetry in the velocity space introduced by the
magnetic field, which gives d3v = 2πv⊥ dv⊥ dv‖, with v‖ ∈ [−∞,+∞] in the role of axial
coordinate and v⊥ ∈ [0,+∞] in the role of radial coordinate. Since D ∼ o(δ2), in (3.3) we
approximate the radial derivative of B by means of the equilibrium component L−1

0 , and
the radial derivative of the potential by its angular average Ea = −〈∂Φ/∂r〉. This radial
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electric field Ea is named ambipolar, because it equalizes the particle fluxes of electrons
and ions, as we will see later.

Let F(v‖, v⊥) be a generic polynomial function of the velocity components. After
multiplying (3.2) by F, we integrate it over the velocity space by assuming 〈 f 〉,L〈 f 〉
to vanish faster than any power of the velocity when |v‖,⊥| → +∞. The integration
over v‖ can be limited to the interval [0,+∞] by splitting any function X(v‖) of the
parallel velocity into its even X+(v‖) = [X(v‖) + X(−v‖)]/2 and odd X−(v‖) = [X(v‖) −
X(−v‖)]/2 components: X(v‖) = X+(v‖) + X−(v‖). Since both the operator (3.3) and the
collisional factor g(v‖) defined in (2.9) are even in v‖, and the latter also vanishes for
v‖ → 0, the velocity integration can be cast into the following form:

∂

∂t
(F+ + F−) + ∂

r∂r
[r(Γ+ + Γ−)] = −ZeEa

m
(A+ + A−) + 1

2
L−1

0 (B+ + B−)

+Ze
m

b0 · EinE + C̄ + F(0, 0)S(r), (3.4)

F± = 4π

∫ +∞

0
dv‖

∫ +∞

0
dv⊥v⊥F±〈 f 〉±, (3.5)

Γ± = −4π

∫ +∞

0
dv‖v‖

∫ +∞

0
dv⊥v⊥F±DL〈 f 〉±, (3.6)

A± = 4π

∫ +∞

0
dv‖

∫ +∞

0
dv⊥v⊥

[
∂

∂v‖
F±

]
DL〈 f 〉±, (3.7)

B± = 4π

∫ +∞

0
dv‖

∫ +∞

0
dv⊥

[
v3

⊥
∂

∂v‖
F± − v‖v⊥2 ∂

∂v⊥
F±

]
DL〈 f 〉±, (3.8)

E = 4π

∫ +∞

0
dv‖

∫ +∞

0
dv⊥v⊥

[
〈 f 〉+

∂

∂v‖
F− + 〈 f 〉−

∂

∂v‖
F+

]
, (3.9)

C̄ = 2π

∫ +∞

+∞
dv‖

∫ +∞

0
dv⊥v⊥F C(〈 f 〉). (3.10)

Note that the original integration interval of v‖ is retained in the collision term (3.10).

4. Transport equations

As written above, we do not seek for a solution of (3.2). Instead, according to the
ordering assumption previously discussed for (2.6), we approximate 〈 f 〉 by a local shifted
Maxwellian:

〈 f 〉 ∼= n
( m

2πT

)3/2
e−m[(v‖−u)2+v2

⊥]/2T, (4.1)

with n(r), T(r) the particle density and temperature (in energy units) and u(r) the
parallel drift velocity. All these quantities depend on the particle species. In such a way,
the velocity integrals (3.5)–(3.9) can be carried out analytically, as done in previous
publications (Harvey et al. 1981; Rice et al. 1982; Predebon & Paccagnella 2007), and
(3.4) gives rise to transport equations for n(r), T(r), u(r). Approximation (4.1) implies
that collisions can establish a local thermal equilibrium. Accordingly, their effect has been
included in (2.9).

https://doi.org/10.1017/S0022377823000971 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377823000971


6 P. Zanca, I. Predebon, R. Paccagnella and F. Sattin

Denoting vth = (T/m)1/2 the thermal velocity, and assuming ζ = (u/vth)
2 = mu2/T 


1, we approximate the even/odd components in v‖ of 〈 f 〉 with the following expansions:

〈 f 〉+ ∼=
(

1 − 1
2
ζ + m v2

‖
2T

ζ

)
f0, f0 = n

( m
2πT

)3/2
e−m v2/2T, (4.2)

〈 f 〉− ≈ m
T

u v‖f0 = ζ 1/2v‖/vthf0. (4.3)

Accordingly, in (3.6)–(3.8) we make use of the following relations:

L〈 f 〉+ =
[
A + ζB + mv2

2T
T ′

T

(
1 − 1

2
ζ

)
+ ζ

(
m v2

‖
2T

C + m v2
‖

2T
mv2

2T
T ′

T
− m v2

⊥
2T

L−1
0

)]
f0,

(4.4)

A = n′

n
− 3

2
T ′

T
− ZeEa

T
, B = − n′

2n
+ 5

4
T ′

T
− u′

u
+ 3

2
ZeEa

T
,

C = n′

n
− 7

2
T ′

T
− ZeEa

T
+ 2

u′

u
, (4.5a–c)

L〈 f 〉− =
(

n′

n
− 5

2
T ′

T
+ mv2

2T
T ′

T
− ZeEa

T
+ u′

u
−

1
2 mv2

⊥L−1
0 − ZeEa

mv‖2

)
m
T

u v‖f0. (4.6)

Only terms up to o(ζ 1/2) have been retained in Predebon & Paccagnella (2007). Instead,
here we push the approximation to o(ζ ) to disclose velocity-related contributions in the
particle and heat transport equations. Equation (3.4) is specialized to specific functions
F(v‖, v⊥) in the following subsections.

4.1. Particle transport
By taking F+ = 1, F− = 0, we have A± = B± = E = 0 in (3.4). Since we are considering
collisions that do not change the number of particles, C̄ = 0 as well. In this case (3.4)
provides the following continuity equation:

∂n
∂t

+ ∂

r∂r
(rΓn) = S(r), (4.7)

with the particle flux Γn given by

Γn = −Dn n′
[

1 + ζ

(
H3

H2
− 1

2

)]
+ n Vn,

′ = d/dr, (4.8)

where the stochastic particle diffusivity is

Dn =
(

2
π

)1/2

vthD0H2, (4.9)

the convective velocity is

Vn = −Dn

{
T ′

T

(
H3

H2
− 1

2

)
− ZeEa

T
+ ζ

[
T ′

T

(
H4

H2
− 3H3

H2
+ 3

4

)
+ u′

u

(
2H3

H2
− 1

)

+ ZeEa

T

(
3
2

− H3

H2

)
− L−1

0

]}
(4.10)
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and Hk are the following family of integral functions:

Hk(α) =
∫ +∞

0
dx

xk

α + x2
e−x, (4.11)

stemming from the collision term g(v‖) defined in (2.9). Therefore, their argument depends
on the particle species:

αj = 1
4

LK/λj(vth,j) = Z2
j e4 ln(Λ)niLK

4πε2
0(2Tj)

2 . (4.12)

We note that the combination of (4.8), (4.10) becomes (16) of Predebon & Paccagnella
(2007) in the limit ζ → 0. The particle radial flux (4.8) is given by a diffusion term,
proportional to n′, plus a convective term. The integral functions (4.11) are decreasing
functions of α; hence collisions tend to decrease Dn. The collision-less case corresponds
to α = 0. Note that αi ∼ Z2

i αe for the ions and αi ∼ αe for the common case of
hydrogen isotope species. Therefore, the electron diffusivity is much larger than the ion
diffusivity: Dn,i ∼ vth,i/vth,eDn,e ∼ (me/mi)

1/2Dn,e. Nonetheless, the particle fluxes (4.8) of
ions and electrons are equalized, condition required by the plasma quasi-neutrality, by the
ambipolar electric field Ea. The constraint Γn,i = Γn,e implies the vanishing, apart from
terms o((me/mi)

1/2), of Γn,e/Dn,e. One gets

eEa

Te

∼= −
{

n′
e

ne
+ T ′

e

Te

(
H3

H2
− 1

2

)
+ ζe

[
n′

e

ne
+ T ′

e

Te

(
H4

H2
− H3

H2
−
(

H3

H2

)2
)

+ u′
e

ue

(
2H3

H2
− 1

)
− L−1

0

]}
. (4.13)

In (4.13) the functions (4.11) are evaluated on the electron population: Hk = Hk(αe). Note
that the L−1

0 term enters only as higher-order correction (o(ζ )) in (4.10) and (4.13).

4.2. Parallel momentum transport
By taking F+ = 0, F− = mjv‖, we get from (3.4) the following equation for the parallel
momentum:

∂

∂t
(nmu) + ∂

r∂r
(rΓu) = −ZeEa

T
Θu + L−1

0 Λu + Zenb0 · Ein + R‖. (4.14)

The radial flux of parallel momentum Γu on the left-hand side of (4.14) is the sum of a
diffusion term and a convection term:

Γu = nm(−Duu′ + u Vu), (4.15)

Du = 2
(

2
π

)1/2

vthD0H3 = 2
H3

H2
Dn, (4.16)

Vu = −Du

[
n′

n
+ T ′

T

(
H4

H3
− 3

2

)
+ ZeEa

T

(
H2

2H3
− 1

)
− 1

2
L−1

0
H2

H3

]
. (4.17)

The coefficient (4.16) represents the stochastic kinematic viscosity. On the right-hand side
of (4.14), the first term is a parallel force generated by the ambipolar electric field, with
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Θu similar to a momentum flux:

Θu = n m
H2

2H3
(Duu′ + u Vu,Θ), (4.18)

Vu,Θ = Du

[
n′

n
+ T ′

T

(
H3

H2
− 3

2

)
+ ZeEa

T

(
H1

2H2
− 1

)
− 1

2
L−1

0
H1

H2

]
. (4.19)

The second term in the right-hand side of (4.14) is a parallel force generated by the gradient
of B0, with Λu similar to a momentum flux:

Λu = nm
H2

2H3
(Duu′ + u Vu,Λ), (4.20)

Vu,Λ = Du

[
n′

n
+ T ′

T

(
H3

H2
− 1

2

)
+ ZeEa

T

(
H1

2H2
− 1

)
− L−1

0
H1

H2

]
. (4.21)

The function H1, which enters (4.19), (4.21), diverges in the collision-less case α = 0.
This divergence stems from the singularity of (4.6) for v‖ → 0, and it is symptomatic
of the inconsistency of taking a collision-less limit in transport expressions derived by a
local Maxwellian approximation of 〈 f 〉 (a distribution indeed established by collisions).
Therefore, we have to keep α = 0 to be consistent with our assumptions, and in this case
H1 is finite. Nonetheless, the divergence at α = 0 is logarithmic, hence very weak: for
instance, H1/H2 ∼ 1 for α ∼ 1, and H1/H2 ∼ 10 only at α ∼ 10−9. Moreover, the explicit
computation discussed in the next paragraph estimates the two forces under discussion
as almost negligible with α ∼ 1. Therefore, even the case of α = 0 but very small is not
problematic.

The third term on the right-hand side of (4.14) is the drive due to the applied electric
field. Finally, the fourth term is the collisional transfer of parallel momentum:

R‖ = 2π

∫ +∞

−∞
dv‖

∫ +∞

0
dv⊥v⊥mv‖C. (4.22)

Following the procedure adopted in Bragiinkii (1965), we replace the time derivative of
the density in (4.14) by the continuity equation (4.7):

nm
∂

∂t
u + mΓn

∂

∂r
u + ∂

r∂r
(rΓ̂u) = −ZeEa

T
Θu + L−1

0 Λu + Zenb0 · Ein + R‖ − muS,

(4.23)

Γ̂u = Γu − muΓn = nm(−Duu′ + uV̂u), (4.24)

V̂u = −Du

[
n′

n

(
1 − H2

2H3

)
+ T ′

T

(
H4

H3
− 2 + H2

4H3

)
+ ZeEa

T

(
H2

H3
− 1

)
− 1

2
L−1

0
H2

H3

]
.

(4.25)

Since u = ζ 1/2vth, terms of order ζ are neglected in (4.25). Equation (4.23) is formally akin
to the Braginskii motion equation ((2.2) of Bragiinkii 1965), with an extra term related to
the particle source S. In particular, two correspondences can be identified:

mΓn
∂

∂r
u ↔ nmV · ∇V ,

∂

r∂r
(rΓ̂u) ↔ ∇ · Π, (4.26)

with V , Π the Braginskii mean velocity and stress tensor, respectively.
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4.3. Heat transport
Since we do not distinguish between parallel and perpendicular temperatures in the
distribution function (4.1), the meaningful second-order moment is F+ = 1

2 mv2 =
1
2 m(v2

‖ + v2
⊥), F− = 0. Note an exact cancellation of the terms in the square bracket of

expression (3.8) for B±: therefore, L−1
0 gives no contribution in (3.4). From (3.4), one gets

the following energy transport equation:

∂

∂t

(
3
2

nT + 1
2

nmu2

)
+ ∂

r∂r
(rΓE) = ZeEaΓn + Zenub0 · Ein + R‖u + Q, (4.27)

where ΓE is the energy flux, not written here for the sake of brevity, and

Q = 2π

∫ +∞

−−∞
dv‖

∫ +∞

0
dv⊥v⊥

1
2

m[(v‖ − u)2 + v2
⊥]C (4.28)

is the heat produced by collisions. Following again Bragiinkii (1965), we express the time
derivative of 1

2 nmu2 by (4.7) and (4.23) to obtain the heat transport equation:

∂

∂t

(
3
2

nT
)

+ ∂

r∂r
(rΓQ) = −Γ̂u

∂

∂r
u + ZeEaΓn + Ze Ea

T
Θuu − L−1

0 Λuu + Q + 1
2

mu2S.

(4.29)
The heat flux is

ΓQ = ΓE − 1
2

mu2Γn − Γ̂uu = −DTnT ′
[

H4 + H3

2
+ H2

2
+ ζ

(
9
4

H3 − 4H4 + H5

)]
+nTVT, (4.30)

DT =
(

2
π

)1/2

vthD0 = DnH−1
2 , (4.31)

VT = −DT

{(
n′

n
− ZeEa

T

)
(H3 + H2) + ζ

[
n′

n

(
H4 − 3

2
H3

)
+ u′

u
(2H4 − H2 − H3)

+ZeEa

T

(
5
2

H3 − H4

)
− L−1

0 (H3 + H2)

]}
, (4.32)

with DT the stochastic thermal diffusivity. Since H4(α) = 2 − αH2(α), we note that the
flux (4.30) becomes expression (31) of Predebon & Paccagnella (2007) for ζ → 0.

The terms on the right-hand side of (4.29) are heating sources. In particular, by
comparing (4.29) with the Braginskii heat equation ((1.23) of Bragiinkii 1965), and taking
into account the second of (4.26), we can identify the viscous heating as

Qvisc → −Γ̂u
∂

∂r
u. (4.33)

The presence of the particle source S in (4.29) is explained by the fact that zero-velocity
particles from the wall are seen with energy 1

2 mu2 in the plasma reference. However,
this contribution is estimated as negligible (see § 5).
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4.4. The Onsager reciprocal relations
The above expressions for particle, momentum and heat flux satisfy the Onsager reciprocal
relations (Onsager 1931), a general property of the thermodynamics of the transport
processes, stemming from the principle of microscopic reversibility. This result is
discussed in full because it represents a verification of the model. Assuming a small
deviation from thermal equilibrium due to the ‘thermodynamic forces’ Xi (such as the
gradients), the ‘thermodynamic fluxes’ Γi are linearly related to Xi by kinetic coefficients
Lik:

Γi =
∑

k

LikXk. (4.34)

Fluxes and forces are ‘conjugate’ if the entropy production for unit of volume can be
expressed in the form

θ =
∑

i

ΓiXi. (4.35)

The reciprocal relations of the kinetic coefficients apply to conjugate fluxes and forces. In
the presence of a magnetic field they are (Bragiinkii 1965)

Lik(B) = Lki(−B), (4.36)

when both forces Xi, Xk are even or odd functions of the particle velocity,

Lik(B) = −Lki(−B), (4.37)

if one force is odd and the other is even. To show that the present theory satisfies the
constraints (4.36), (4.37), we first identify the pairs of conjugate thermodynamic fluxes
and forces. Following Bragiinkii (1965), we start from the entropy per particle (j-species
label omitted):

s = 3
2 ln(T) − ln(n) + const. (4.38)

Then we compute the transport equation for the entropy per unit volume, ns, by exploiting
the continuity equation for density (4.7), and the heat transport equation (4.29). Discarding
the particle source S, one gets

∂

∂t
(ns) + ∂

r∂r

[
r
(

sΓn − 5
2
Γn + ΓQ

T

)]
= θ =

∑
i=1,4

ΓiXi + Q
T

. (4.39)

The entropy production θ is given by the collisional heating and by the following four pairs
of conjugate fluxes and thermodynamic forces:

Γ1 = Γn, X1 = 3
2

T ′

T
− n′

n
+ ZeEa

T
; Γ2 = Γ̂u, X2 = −u′

T
;

Γ3 = ΓQ, X3 = − T ′

T2
; Γ4 = ZeEa

T
�u − L−1

0 �u, X4 = u
T

.

⎫⎪⎬
⎪⎭ (4.40)

Note that Γ4 is a force density (which enters (4.23)), but we keep the term ‘thermodynamic
flux’ in this context (as done in Bragiinkii (1965) for the collisional momentum transfer
R, for instance). The forces X2, X3 are expressed by gradients of u, T respectively, and
they are conjugate of the parallel momentum and heat fluxes Γ2, Γ3, as expected. Instead,
X1, the conjugate of the particle flux Γ1, depends on T ′ and Ea, in addition to n′. The
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ambipolar electric field enters X1 because Γ1ZeEa is a heating source in (4.29). Moreover,
we speculate that T ′ enters X1 because particles carry energy. As written above, Γ4 is
actually a parallel force density, and it is conjugate of X4 because Γ4X4T is a heating
source in (4.29).

By exploiting equations (4.8)–(4.10), (4.16), (4.18)–(4.21), (4.24), (4.25), (4.30)–(4.32),
it is possible to establish the linear relationship (4.34) between Γi and Xi defined in (4.40),
with the following Lik. The diagonal coefficients are

L11 = nDn

[
1 + ζ

(
H3

H2
− 1

2

)]
; L22 = 2nmTDn

H3

H2
;

L33 = nT2Dn

[
H4

H2
+ 2H3

H2
+ 2 + ζ

(
H5

H2
− 5

2
H4

H2

)]
;

L44 = nmTDn
H1

H2

[
1
2

(
Ze Ea

T

)2

+ L−2
0 − Ze Ea

T
L−1

0

]
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.41)

The off-diagonal coefficients are symmetric:

L12 = L21 = nmuDn

(
2H3

H2
− 1

)
; L13 = L31 = nTDn

[
H3

H2
+ 1 + ζ

(
H4

H2
− 3

2
H3

H2

)]
;

L14 = L41 = −nmuDn

[
ZeEa

T
− L−1

0

]
; L23 = L32 = nmTuDn

(
2H4

H2
− 1 − H3

H2

)
;

L24 = L42 = −nmTDn

[
ZeEa

T
− L−1

0

]
; L34 = L43 = −nmTuDn

[
ZeEa

T
H3

H2
− L−1

0

(
H3

H2
+ 1

)]
.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(4.42)

The equalities L13 = L31, L24 = L42 correspond to (4.36), because both the forces involved
are even or odd in the velocity. Instead, the other coefficients relate even and odd forces:
the equalities L12 = L21, L14 = L41, L23 = L32, L34 = L43 indeed correspond to (4.37),
because the average parallel velocity u, contained in these coefficients, is odd with B.
In conclusion, this theory fulfils the Onsager reciprocal relations.

The off-diagonal coefficients formalize the interdependence of the transport processes
in a thermodynamic system (Onsager 1931). Indeed, the fluxes derived in the previous
paragraph depend on all the quantities n′/n, T ′/T, u′/u, ZeEa/T, L−1

0 , so that they are
represented by convective velocities, in addition to diffusive components. By inspection of
(4.41), (4.42), we note that the terms L12X2, L14X4 are o(ζ ) with respect to L11X1, L13X3, so
that the particle flux Γ1 mostly depends on X1, X3. Instead, the terms L2kXk share the same
order, so that the parallel momentum flux Γ2 depends on all the Xk in the same way. The
terms L32X2, L34X4 are o(ζ ) with respect to L33X3, L31X1, so that the heat flux Γ3 mostly
depends on X1, X3. The terms L4kXk share the same order, so that Γ4 depends on all the
Xk in the same way. Of course, the actual magnitude of the various terms LikXk can be
inferred only by an explicit computation, and we comment on that in the next paragraph.

As far as the collisional heating Q is concerned, we can adopt the Braginskii expressions
(Bragiinkii 1965) in the present context without violating (4.36), (4.37). Braginskii’s
formulas are simplified here, because: (i) the mean velocity is taken only in the direction
parallel to B and (ii) due to the cylindrical geometry, the gradients parallel to B can
be discarded as an effect produced by the radial magnetic field (∇‖ ∼ a−1o(δ)). For
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electrons and main ions one gets

Qe = R‖,e(ui − ue) − Qei, Qi = Qei, (4.43a,b)

R‖,e = (ene)
2η‖(ui − ue), Qei

∼= 1.37 × 10−30 me

mi
Zi ln Λn2

e(Te − Ti)/T3/2
e , (4.44a,b)

with η‖ the parallel resistivity and Qei the heat exchanged between the two species (the
Qei expression is in SI units, except T in eV). For the electrons, (4.39), (4.43) introduce
the thermodynamic force (ui − ue)/Te and the conjugate flux R‖,e. The same equations,
summed for electrons and ions, introduce the force (Te − Ti)/(TeTi) and the conjugate flux
Qei. These two pairs of fluxes and forces are completely decoupled by the previous ones
(4.40). Therefore, (4.43), (4.44) can be included without violating the Onsager reciprocal
relations.

5. Example of solution

Within the cylindrical geometry approximation, the present theory can be applied to the
stochastic region of any magnetic configuration. The above equations for particle and heat
transport, the latter without the terms related to the velocity u, have been already integrated
into a transport model for the RFP (Predebon et al. 2009), which is currently applied to the
RFX-mod device (R = 2m, a = 0.459m) (Zuin et al. 2017). Indeed, this theory is suitable
for the RFP in the so-called multiple-helicity regime (MH), which is characterized by
many m = 1 tearing modes with comparable amplitudes, whose overlap gives rise to a
wide stochastic region. This is not true in the quasi-single-helicity regime (QSH), where
the innermost resonant mode grows at the expense of the others, thus healing the magnetic
chaos (Lorenzini et al 2009). The inclusion of parallel momentum transport, the novelty
of the present derivation, still allows finding plausible solutions for RFX-mod in MH
conditions. The unavoidable uncertainty about several input quantities, as well as the lack
of the transport terms due to the drift velocity perpendicular to the magnetic field, prevent
a detailed comparison of this model with the experiment. Nonetheless, the solutions are
in the expected range of values. We consider a case at plasma current Ip ∼ 1 MA (shot
29509 as reference). We adopt SI units, but the temperature is given in eV.

First of all, at least an indicative estimate of the collision-less magnetic diffusion
coefficient D0, given by (2.8), is required. The RFX-mod sensors’ layout allows
determination of the harmonics b̃m,n

r for the core-resonant m = 1 modes and for the
reversal-resonant m = 0 modes (r0,n ≈ 0.4 in this shot), in the interval n = 1–24. We
focus on m = 1, whose amplitude is much larger than that of m = 0. The harmonics b̃1,n

r
are estimated at the resonant radii r1,n by a reconstruction, from the edge measurements,
of both the equilibrium (assumed force-free, J 0 ∝ B0) and the perturbation radial profile
(Zanca & Terranova 2004). Their amplitudes are plotted in figure 1(a): even in a MH
case, the innermost resonant n = 7 is twice as large as the following n = 8 (for a
QSH case it would be 20 times larger). The same figure plots the Chirikov parameter
s(n, n + 1) = 1

2(w
1,n + w1,n+1)/(r1,n+1 − r1,n) (Rechester & Rosenbluth 1978; D’Angelo

& Paccagnella 1996), with w1,n the island width (the increase of s with n is due to the
resonances getting denser). The overlapping condition s > 1, which defines a stochastic
magnetic field, is largely satisfied. As written before, we do not apply any resonance
broadening method to regularize the singular functions δ(m − nq) = δ(r − r1,n)/|nq′|.
We simply average them by radial integration of (2.8) over suitable intervals centred
about the resonant radii r1,n. Since magnetic islands overlap (s > 1), we cannot take w1,n

as amplitudes of these intervals. To avoid overlapping, we adopt neighbouring intervals
	r1,n = (r1,n+1 − r1,n−1)/2, with extrema halfway to r1,n+1 and r1,n−1. For the innermost
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(a) (b)

FIGURE 1. (a) Values of |b̃1,n
r (r1,n)| for modes m = 1, n = 7–24, averaged over a significant

time interval for shot 29509 (black diamonds), and stochasticity parameter from these amplitudes
(red squares). (b) Stepwise profile of D0(r) obtained from averaging equation (2.8) (black; the
vertical segments mark the resonant radii), alongside the continuous profile taken to solve the
equations (blue).

resonant n = 7 the left extremum is set at r = 0. The contribution of the m = 0 modes
cannot be computed in this way, due to the impossibility of defining a radial interval to
average: in fact, both resonances of m = 1, n > 0 and m = 1, n < 0 (a secondary branch
resonating between the reversal and the plasma edge, not detectable by the RFX-mod
sensors) become dense approaching the reversal. The average values of D0 on these
intervals give the stepwise profile plotted in figure 1(b) (black). We have verified that
a more regular profile makes solving the equations easier. Therefore, we choose the
profile plotted in blue (D0(0) = 2.5 × 10−4 m). We also keep a finite value at the edge
(D0(a) = 5 × 10−5 m), since numerical analyses of magnetic diffusion in MH conditions
give a stochastic region in the whole plasma: see figure 9(b) of Innocente et al. (2017).

The Kolmogorov–Lyapunov length LK , which enters αj (equation (4.12)), is here fixed by
a scaling found numerically in D’Angelo & Paccagnella (1996): LK(r) = (0.127D0.275

0 )−1.
An increasing radial profile with LK(0) ≈ 80 m is obtained. This scaling is close to the
analytical result derived in Rechester et al. (1979).

Stochastic diffusion is expected to be the dominant transport mechanism in the plasma
core, but electrostatic turbulence can emerge in the edge region where D0 becomes smaller.
Indeed, the edge RFX-mod particle transport is compatible with the Bohm diffusivity
DBohm = 1

16(T/B) (Antoni et al. 1998; Spolaore et al. 2004); hence this additional transport
mechanism should be included when solving the equations. Diffusivity DBohm is typically
negligible compared with the electron stochastic diffusivity, but, in the case under
examination, it is of the same order of magnitude (∼10 m2 s−1) as the ion stochastic
diffusivity (see figure 2d). One option is to take a background of Bohm diffusion in the
whole plasma, besides the stochastic transport, letting the equations to weigh the two
different mechanisms. We now present the solution obtained by this assumption. Another
option is to restrict the Bohm diffusion only to the edge region: this second case is briefly
discussed later on.

Taking stationary conditions (∂/∂t = 0), the transport equations become second-order
ordinary differential equations in the radial coordinate, for density, velocity and
temperature. Regularity at r = 0 requires the vanishing of the on-axis radial derivative of
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(a) (b)

(c) (d)

FIGURE 2. (a) Normalized profiles obtained for density (red with diamonds), Te (blue with
crosses) and Ti (black). The normalized particle source is also reported (red dashed). (b) Parallel
current from velocity and density solution (black) and from equilibrium reconstruction (blue
with crosses). (c) Toroidal (black) and poloidal (blue with crosses) components of ui. (d)
Electron (blue with crosses) and ion (black) stochastic particle diffusivity, alongside the ion
Bohm coefficient (red with diamonds). These solutions are obtained by superimposing the Bohm
diffusion on the stochastic transport, in the whole plasma.

these quantities. Therefore, one free parameter is left in each equation to make the profiles
decreasing to small values towards r = a. The equations solved are described below.

(i) Equations (4.7)–(4.13) for the normalized density ni/ni(0) of the hydrogen ion
(Zi = 1). As explained before, the diffusion term −DBohm,in′

i is added to the flux
(4.8). Without a model for the source, we fix a plausible S(r)/ni(0) profile localized
at the edge, but we leave a global coefficient S0 as free parameter. We take the same
normalized density profile for all the particle species, with on-axis electron density
ne(0) = 2.5 × 1019 m−3.
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(ii) Equations (4.14)–(4.22) for the parallel velocities of electrons ue and ions ui,
with Ein = Eφeφ, Eφ = 25/(2πR) V m−1. The electron collisional momentum
transfer R‖,e is expressed by (4.44) with Spitzer parallel resistivity: η‖ ∼= 5.2 ×
10−5 ln ΛZeffN(Zeff)T−3/2

e (Wesson 2004). Due to the significant dependence of R‖,e
on the plasma effective charge Zeff, with N(Zeff) a corrective function, it is important
to include impurity species, which, though present only in trace, can raise Zeff.
We consider the Carbon impurity (the material of the RFX-mod first wall), with
mean charge ZC = 5, and we take Zeff = 2.5, a suitable value for this density level
(Carraro et al. 2005). Equation (4.14) is considered separately for the electrons,
whereas those for the main ion and the Carbon impurity are summed together, with
assumption of same velocity and temperature for the two species, and exploiting the
momentum conservation R‖,i + R‖,C = −R‖,e. The on-axis values ue(0), ui(0) are
free parameters. The background Bohm diffusion terms −njmjDBohm,ju′

j are added to
the momentum flux (4.15) for the different species.

(iii) Equations (4.29)–(4.32) for the electron Te and ion Ti temperatures. The collisional
heating is given by (4.43), (4.44). The background diffusion terms −njDBohm,jT ′

j are
added to the heat flux (4.30). The on-axis values Te(0), Ti(0) are free parameters.

All the above equations are coupled together.
To summarize, several inputs of the equations are taken from the experiments: the

equilibrium magnetic field and the perturbed radial magnetic field, used to estimate
D0 and LK , the on-axis electron density, the applied electric field and Zeff. Instead,
S0, ue(0), ui(0), Te(0), Ti(0) are left as free parameters, tuned to have density, velocity and
temperature profiles with values at r = a below 15 % of the on-axis inputs. Therefore, they
turn out to be an output of the solution.

The normalized solution profiles for density and temperature are shown in figure 2(a).
The very steep gradient at r ≈ a is an artefact due to transport coefficients getting very
small there (they depend on T). The density has the mildly hollow profile typical of
RFX-mod, and the particle source S(r) (red dashed line in the same figure) is very similar
to the edge-localized profiles reported in figures 5 and 6 of Lorenzini et al. (2006), with a
maximum about 2.4 × 1023 m−3 s−1. As far as the on-axis temperature is concerned, we get
Te(0) ≈ 335 eV, Ti(0) ≈ 195 eV. The Te value is compatible with typical measurements
at Ip ∼ 1 MA in MH conditions (see figure 6 of Innocente et al. 2009), whereas for Ti
we cannot say, lacking reliable diagnostics of this quantity in RFX-mod. The collisional
heating Qi = Qei dominates the other source terms on the right-hand side of (4.29) for
the ions. Hence, this model does not contain any relevant anomalous heating source for
the ions. Apart from the high-density regime, Qi is not strong enough to equalize the
ion and electron temperatures, hence our result Ti(0) ≈ 0.58 Te(0). During the magnetic
reconnection events, characteristic of the RFP, it is often observed that Ti > Te (Scime
et al. 1992; Gobbin et al. 2022), supporting the existence of an important transient
anomalous ion heating, outside the quasi-linear description of the present work. The
identification of the process responsible for that is still a matter of investigation: see
McChesney, Stern & Bellan (1987), Guo, Paccagnella & Romanelli (1994) and Fiksel
et al. (2009) as examples.

In the core region the parallel velocity profiles are steeper than those of the temperature,
because the ratio between the source and the stochastic diffusion coefficient is larger for
the momentum than for the temperature. Moreover, the two terms with Ein, R‖ dominate
the other sources on the right-hand side of (4.14). We get ue(0) ≈ 1540 km s−1, ui(0) ≈
27 km s−1, corresponding to Mach numbers ≈5.17, 0.09 respectively (use is made of the
sound speed defined in formula (6.1) below). The density and velocity solutions allow
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computing the parallel current density profile, j‖ = ene(ui − ue), which is compared with
the magnetic equilibrium reconstruction j‖,eq in figure 2(b). The good deal of uncertainty
about several quantities of the model (for instance D0, Lk) would leave space for an
adjustment of the same in order to get a better agreement between j‖ and j‖,eq. Nonetheless,
the result is already satisfactory. Since ui 
 ue, j‖ involves mostly ue. As far as ui is
concerned, a comparison with the RFX-mod spectroscopic measurement of the impurity
flow (Zaniol et al. 2015) is more problematic, because the present model misses the
perpendicular drift velocity, particularly relevant in the edge region (Spolaore et al. 2004;
Vianello et al. 2005). However, the toroidal and poloidal components of ui plotted in
figure 2(c) are in the correct experimental range (< 20 km s−1 for impurities which emit
in the region r > a/2). In conclusion, the solution is compatible with the experiment.

The solution so obtained weakly depends on the profile shape chosen for D0(r). For
instance, a profile with the same on-axis and edge values as that considered so far (blue
continuous line in figure 1b), but much flatter in the central region r < a/2, and steeper
for r > a/2, leaves the density profile and the source S(r) almost unchanged and gives
about 10 % variations for the other quantities: Te(0) ≈ 377 eV, Ti(0) ≈ 205 eV, ue(0) ≈
1750 km s−1, ui(0) ≈ 30 km s−1.

As far as the stochastic transport coefficients are concerned, both the kinematic viscosity
(4.16) and the thermal diffusivity (4.31) are proportional to the particle diffusivity (4.9).
Therefore, in figure 2(d) we plot Dn,e, Dn,i alongside DBohm,i as terms of comparison: the
electron stochastic diffusivity dominates the ion stochastic diffusivity, which instead is of
the same order of magnitude as the Bohm diffusivity in the central region (r < a/2).

The stochastic fluxes derived in § 4 are all of the form Γx ∝ Dxx′ + xVx, with Vx mainly
depending on n′/n and T ′/T (taking into account expression (4.13) for the ambipolar
electric field), apart from the L−1

0 dependence of V̂u, and the o(ζ ) corrections. Figures 3(a)
and 3(b) plot the ratio between the convective and diffusive components of the particle,
heat and momentum flux, for ions and electrons, respectively, in the core region (the edge
region is not plotted, due the unrealistically large n′/n and T ′/T obtained there). This ratio
is everywhere close to unity for the electron particle flux, due to the ambipolar electric
field (4.13), which makes Γn,e/Dn,e = o((me/mi)

1/2). Therefore, it is not plotted. The ratio
is small for the momentum, because the density and temperature profiles (which determine
Vx) are rather flat in the core, while the velocity is not. Recalling the discussion below
(4.42), this means that the momentum flux is mainly driven by the diagonal term L22X2,
though all L2kXk are of the same order a priori. Nonetheless, convection is not entirely
negligible for the ion momentum flux. For heat flux, diffusion exceeds convection: indeed,
the diagonal term L33X3 is larger than L31X1 (see figure 3c) whereas L32X2, L34X4 (not
plotted) are o(ζ ) corrections (as stated below (4.42)). For ion particle flux, convection
exceeds diffusion: indeed L13X3 is larger than L11X1 (see figure 3c), whereas L12X2, L14X4
(not plotted) are o(ζ ) corrections. This large convection produces the hollow density
profile typically observed in RFX-mod. The parallel force density Γ4 (not plotted) is
estimated as negligible; hence the cumulative effects of the terms L4kXk are very small.
We cannot say whether all these properties are specific to the stochastic RFP core, or more
general.

A comment is made about the terms depending on the magnetic field radial variation
L−1

0 , which is one of the new elements of this analysis. The one entering V̂u (equation
(4.25)) is not negligible, whereas those in Vn, VT are higher-order (o(ζ )) corrections. As
written above, the related force and heat source, on the right-hand side of (4.23), (4.29)
respectively, are estimated as negligible, as those produced by Ea. Therefore, the L−1

0 effect
is relevant only in the convective component of the momentum flux.

https://doi.org/10.1017/S0022377823000971 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377823000971


Quasi-linear model of particle, momentum and heat transport 17

(a) (b)

(c)

FIGURE 3. (a) Ratio between the convective and diffusive components of the stochastic fluxes
in the core region (r/a < 0.8) for the ion quantities. (b) Ratio between the convective and
diffusive components of the stochastic fluxes in the core region (r/a < 0.8) for the electron
quantities, but for the density. (c) Some of the terms LikXk for the main ion, suitably normalized
to make them comparable. All these quantities refer to the solution displayed in figure 2.

Finally, we summarize what changes in the solution when restricting the Bohm diffusion
to the very edge region (r ≥ 0.9a). As expected, Te, ue are almost unaffected, whereas
Ti, ui increase: Ti(0) ≈ 0.8Te(0), ui(0) ≈ 54 km s−1 (nonetheless, in the region r > a/2
we still get the correct experimental range < 20 km s−1 for the toroidal and poloidal
components of ui). The hollowness of the density profile increases (but it is still plausible
for RFX-mod), due to the removal of the additional Bohm diffusion in the core. In
conclusion, the ion solution is sensitive to the inclusion of anomalous transport processes
different from the stochastic one.

6. Discussion

A previous work (Finn et al. 1992) applied the quasilinear theory to the propagation
of electrostatic sound wave perturbations along a stochastic magnetic field. The ensuing

https://doi.org/10.1017/S0022377823000971 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377823000971


18 P. Zanca, I. Predebon, R. Paccagnella and F. Sattin

transport is purely diffusive, and it is written for two quantities defined by linear
combinations of parallel velocity and density. The diffusion coefficient is similar to those
here derived, except for the sound speed cs in the place of the thermal velocity. Borrowing
from Finn et al. (1992) the cs dependence, the following expression for the perpendicular
dynamic viscosity (assumed spatially constant):

μ⊥ = nimi cs

∑
m ∈ Z

n > 0

|b̃m,n
r |2Lc, cs =

(
Te + γ Ti

mi

)1/2

, Lc ≈ 1m, γ = 3, (6.1)

gave a good description of Madison Symmetric Torus (MST) momentum transport
experiments (Frindström et al. 2018). For the solutions presented in the previous
paragraph, and taking the sum over the m = 1, n = 7–24 modes, (6.1) gives μ⊥/(nimi) ≈
23 m2 s−1, a value almost identical to that obtained from the on-axis ion coefficient
(4.16): Du,i(0) ≈ 26 m2 s−1. This is not surprising, since (6.1) shares the same structure
of our transport coefficients, and cs is not far from the ion thermal speed. Instead, the
perpendicular kinematic viscosity ηi

2/(nimi) of Braginskii’s theory (Bragiinkii 1965) is
estimated as much smaller, with a maximum value ≈0.08 m2 s−1. We remark on some
differences between Finn et al. (1992) and the present derivation. Our model is based on
the drift-kinetic equation only, and it does not require electrostatic instabilities. Our fluxes
include diffusive and convective terms, whereas the latter are absent in Finn et al. (1992).
Finally, the present model integrates the momentum transport with those for particles and
heat, within a formalism that satisfies the Onsager reciprocal relations.

According to (2.8) and other similar expressions of previous works (Rechester
& Rosenbluth 1978; Harvey et al. 1981; Rice et al. 1982), the quasi-linear theory
predicts a quadratic dependence of the magnetic diffusion coefficient on the normalized
perturbation amplitudes: (b̃)α, α = 2. Nonetheless, a numerical analysis of magnetic
diffusion (D’Angelo & Paccagnella 1996) showed that the exponent α actually depends on
the shape of the magnetic spectrum: α = 2 for a flat spectrum of m = 1 modes; α = 1.5 for
mode amplitudes decreasing as 1/n. Another numerical analysis of particle diffusion, with
a background magnetic spectrum from the output of a magnetohydrodynamic code run
in RFP configuration, found a sub-diffusive regime, and a phenomenological coefficient
described by α = 1.6 (Spizzo, White & Cappello 2007). Therefore, it is not surprising
that the experimental indications are not unanimous. In agreement with the quasi-linear
theory, the above MST analysis (Frindström et al. 2018) found α ≈ 2 for the experimental
perpendicular viscosity divided by the sound speed, (μ⊥)exp/cs. Instead, a study of the
global energy confinement in RFX obtained the best fit with α ≈ 1.5 alongside the
correction (2.9) for collisions (with the replacement v‖ → vth) (Sattin et al. 2005). In
conclusion, the quasi-linear approximation is a straightforward method to obtain general
analytical transport expressions, but it cannot describe effects due to the details of the
magnetic topology, for which specific numerical studies are required.

7. Conclusions

We have presented a self-contained theory of particle, parallel momentum and
heat transport in a stochastic magnetic field. Transport equations are derived from
the drift-kinetic equation, treated within the quasi-linear approximation, with velocity
perpendicular to the magnetic field neglected, and from approximating the distribution
function as a local shifted Maxwellian. The theory refers to a general pinch in cylindrical
geometry, and extends previous formulations (Harvey et al. 1981; Rice et al. 1982;
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Predebon & Paccagnella 2007) specific of the tokamak. The fluxes are all made by
diffusive and convective components, and they satisfy the Onsager reciprocal relations.
This theory, applied to an RFX-mod case in MH condition, and completed by a background
of Bohm diffusion suitable for the edge region, provides density, parallel current and
temperature profiles compatible with the experiment. This is in agreement with previous
application to RFX-mod of a subset of the equations here derived (Predebon et al. 2009).
As far as the momentum flux is concerned, the convective component is estimated as
smaller than the diffusive one, at least in the examined case, but not negligible for ions.
Convection turns out to be particularly important for particle flux. The radial variation
of the equilibrium magnetic field magnitude, negligible for the tokamak, gives rise to
several new terms in the equations. However, an explicit evaluation shows that they are
relevant only in the convective velocity of the momentum flux. The predicted anomalous
heating source terms are not strong enough to raise the ion temperature above the electron
one, as transiently observed in the RFP during the reconnection events. Therefore, other
mechanisms, out of this anyway self-consistent theory, need to be included for a complete
description of the RFP transport. Future applications of this theory will concern the
edge stochastic region of a tokamak, produced by application of resonant magnetic
perturbations.
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Appendix A. Derivation of (2.7)

The solution method is similar to that reported in Rice et al. (1982), but no ordering
assumption of the equilibrium magnetic field components is made here. First, (2.5) is
integrated along the characteristics, which are given by the magnetic field line of the
equilibrium field (orbit-0):

f̃ − f̃0 = −v‖

∫ t

t0

dt′b̃ · ∇〈 f 〉
∣∣∣∣
orbit−0

= −v‖
d〈 f 〉
dr

∫ t

t0

dt′b̃r

∣∣∣∣
orbit−0

. (A1)

The orbit-0 are identified by the following equations:

θ(t′) = θ(t) + v‖
r

b0,θ (t′ − t), φ(t′) = φ(t) + v‖
R

b0,φ(t′ − t). (A2a,b)

The distinction between the velocity parallel to B and that parallel to B0 gives
a higher-order correction in (A1), and hence it is neglected. The term d〈 f 〉/dr is
put outside the integral for two reasons: (i) the orbit-0 develop at constant r and
(ii) the time dependence of 〈 f 〉 can be neglected as a higher-order effect, because
∂〈 f 〉/∂t ∼ (v‖/a) o(δ2)〈 f 〉 according to (2.6). In (A1) we Fourier-expand b̃r (see (2.8)),
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exploiting (A2):

f̃ − f̃0 = −v‖d〈 f 〉/dr
∑
m,n

{∫ t

t0

dt′ ei(v‖/r)b0,θ (t′−t)[m−nq]

}
b̃m,n

r (r) ei[m θ(t)−n φ(t)]. (A3)

By the variable change (v‖/r)b0,θ (t′ − t) = x′, and letting t0 → −∞, f̃0 = 0 one gets

f̃ = −sgn(v‖)

∣∣∣∣ Rq
b0,φ

∣∣∣∣ d〈 f 〉
dr

∑
m,n

R(m − nq)b̃m,n
r ei[mθ−nφ], (A4)

with R the following resonant function:

R(m − nq) =
{∫ 0

−∞ dx′ eix′[m−nq] v‖b0,θ > 0,∫ +∞
0 dx′ eix′[m−nq] v‖b0,θ < 0.

(A5)

Then, solution (A4) is replaced into the term v‖〈b̃ · ∇f̃ 〉 of (2.6), written as

v‖〈b̃ · ∇f̃ 〉 = v‖〈∇ · (b̃f̃ )〉 − v‖〈f̃ ∇ · b̃〉 = v‖
1
r

∂

∂r
r〈b̃r f̃ 〉 − v‖〈f̃∇ · b̃〉. (A6)

From (2.3), discarding o(δ2) terms, we have

∇ · b̃ ∼= B1 · ∇(1/B0) − b0 · ∇(B0 · B1/B2
0)

= −B1,r/B0L−1
0 − ib0,θ /r

∑
m,n

(m − nq)(b0,θBm,n
1,θ + b0,φBm,n

1,φ )/B0 ei(mθ−nφ). (A7)

In a tokamak, (A7) gives ∇ · b̃ = o(δε2), ε = a/R, according to the ordering of the field
components in this device (Wesson 2004): in this case the second term on the right-hand
side of (A6) can be discarded, as done in Rice et al. (1982). But, this is not true in general,
and hence we retain it.

By inserting (A4), (A7) into (A6) and performing the angular averages 〈〉, one gets

v‖〈b̃ · ∇f̃ 〉 = −|v‖|1
r

∂

∂r

{
r

d〈 f 〉
dr

∣∣∣∣ Rq
b0,φ

∣∣∣∣∑
m,n

R(m − nq)|b̃m,n
r |2

}

− |v‖|L−1
0

d〈 f 〉
dr

∣∣∣∣ Rq
b0,φ

∣∣∣∣∑
m,n

R(m − nq)|b̃m,n
r |2

+ |v‖|b0,θ

r
d〈 f 〉
dr

∣∣∣∣ Rq
b0,φ

∣∣∣∣∑
m,n

R(m − nq)(m − nq)b̃m,n
r i(b0 · Bm,.n

1 )
∗
/B0. (A8)

Then, we limit the sum to the modes m ∈ Z, n > 0, by including the contribution of the
complex-conjugate harmonic (−m,−n). SinceR(m − nq) + R(nq − m) = 2πδ(m − nq),
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we get

v‖〈b̃ · ∇f̃ 〉 = −|v‖|1
r

∂

∂r

⎧⎪⎨
⎪⎩r

d〈 f 〉
dr

∣∣∣∣ Rq
b0,φ

∣∣∣∣∑
m∈Z
n>0

2πδ(m − nq)|b̃m,n
r |2

⎫⎪⎬
⎪⎭

− |v‖|L−1
0

d〈 f 〉
dr

∣∣∣∣ Rq
b0,φ

∣∣∣∣∑
m∈Z
n>0

2πδ(m − nq)|b̃m,n
r |2. (A9)

The last summation on the right-hand side of (A8) is discarded, by assuming
b̃m,n

r i(b0 · Bm,n
1 )∗ to be a real quantity, as is the case for tearing modes in the presence

of an ideal shell (Fitzpatrick 1999). In fact, with this assumption the sum is zero:∑
m∈Zn>0

{R(m − nq)(m − n q)b̃m,n
r i(b0 · Bm,n

1 )
∗
/B0

+ R(nq − m)(m − nq)(b̃m,n
r i)

∗
b0 · Bm,n

1 /B0}

=
∑

m∈Zn>0

2πδ(m − nq)(m − nq)b̃m,n
r i(b0 · Bm,n

1 )
∗
/B0 = 0. (A10)

Replacing (A9) into (2.6) we obtain (2.7) with definition (2.8).
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