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1. Introduction

In this article, we study the dynamical behaviour of the non-autonomous stochastic
lattice system defined on the integer set Z: for τ ∈ R,

dui (t)− ν (ui−1 (t)− 2ui (t) + ui+1 (t)) dt+ λ(t)ui (t) dt

= (F (t, ui(t)) + gi(t)) dt+ ε
∞∑
k=1

(hi,k(t) + σi,k (t, ui (t)))dWk (t) , t > τ,

(1.1)
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with initial data

ui (τ) = ξi, (1.2)

where u = (ui)i∈Z is an unknown sequence, ξ = (ξi)i∈Z ∈ l2 is given, 0 < ε ≤ 1,
ν > 0, λ(t) > 0, g(t) = (gi(t))i∈Z and h(t) = (hi,k(t))i∈Z,k∈N are given time depen-
dent sequence, F, σi,k : R × R → R are nonlinearity satisfying certain structural
conditions for every i ∈ Z and k ∈ N, and (Wk)k∈N is a sequence of indepen-
dent standard two-side Wiener processes on a complete filtered probability space
(Ω,F , {Ft}t∈R, P ) satisfying the usual condition.

It seems that measure attractors for autonomous stochastic equations was first
studied in [15] where Schmalfuss considered the existence of measure attractors of
a stochastic Navier–Stokes equation with additive noise and upper semicontinuity
of measure attractors as the noise intensity goes to zero. Related equations with
nonlinear noise were investigated for the existence results of measure attractors in
[12–14]. The relation between measure attractor and random attractor was studied
in [7, 16] for stochastic equations with additive noise. In [9], Li and Wang extended
the notion of measure attractors to pullback measure attractors in order to capture
the dynamic behaviours of non-autonomous stochastic differential equations.

Lattice differential equations arise naturally in a wide variety of applications
where the spatial structure has a discrete character. Such systems also arise in
numerical simulations when discretizing PDEs（Partial Differential Equations）
defined on unbounded domains. When random influences are taken into account,
stochastic lattice systems have been extensively investigated. For random attrac-
tors, we refer the readers to [1, 3–5, 8, 17] for autonomous case and [2, 21, 22] for
non-autonomous case. The invariant measures or periodic measures for stochastic
lattice systems have been investigated by [6, 10, 11, 19, 20].

Here we prove the existence, uniqueness, periodicity, and upper semicontinuity
of pullback measure attractors for the non-autonomous stochastic lattice differ-
ential equations (1.1)–(1.2). Note that the stochastic lattice system (1.1) shares
some similar property with stochastic PDEs defined on the entire space R. The
main difficulty is how to establish the asymptotic tightness for a family of proba-
bility distributions of solutions. The uniform estimates on the tails of solutions are
employed to prove the asymptotic tightness.

The rest of this article is organized as follows. In §2, we recall some fundamental
results on the existence, uniqueness, and periodicity of a pullback measure attractor
for non-autonomous dynamical systems defined on the space of probability mea-
sures of Banach spaces. Section 3 is devoted to the existence and uniqueness of
solutions to the non-autonomous stochastic lattice system (1.1)–(1.2). In §4, we
derive the uniform moment estimates of solutions as t → ∞. These estimates are
necessary for proving the existence of absorbing sets and the pullback asymptotic
compactness of the non-autonomous dynamical systems with respect to the Markov
semigroup generated by (1.1)–(1.2). In the last two sections, we establish the exis-
tence, uniqueness, and periodicity of pullback measure attractors for (1.1)–(1.2)
and prove the convergence of pullback measure attractors of system (1.1)–(1.2) as
ε→ 0.
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2. Preliminaries

In this section, for the readers convenience, we recall some results regarding pull-
back measure attractors for non-autonomous dynamical systems on the space of
probability measures(see, e.g., [9]).

In what follows, we denote by X a separable Banach space with norm ‖ · ‖X . Let
Cb(X) be the space of bounded continuous functions ϕ : X → R endowed with the
norm

‖ϕ‖∞ = sup
x∈X

|ϕ (x)| .

Denote by Lb(X) the space of bounded Lipschitz functions on X which consists of
all functions ϕ ∈ Cb(X) such that

Lip (ϕ) := sup
x1,x2∈X,x1 6=x2

|ϕ (x1)− ϕ (x2)|
‖x1 − x2‖X

<∞.

The space Lb(X) is endowed with the norm

‖ϕ‖L = ‖ϕ‖∞ + Lip (ϕ) .

Let P(X) be the set of probability measures on (X,B(X)), where B(X) is the Borel
σ-algebra of X. Given ϕ ∈ Cb(X) and µ ∈ P(X), we write

(ϕ, µ) =

∫
X

ϕ (x)µ (dx).

Recall that a sequence {µn}∞n=1 ⊆ P(X) is weakly convergent to µ ∈ P(X) if for
every ϕ ∈ Cb(X),

lim
n→∞

(ϕ, µn) = (ϕ, µ) .

Define a metric on P(X) by

dP(X) (µ1, µ2) = sup
ϕ∈Lb(X)
‖ϕ‖L≤1

|(ϕ, µ1)− (ϕ, µ2)| , ∀ µ1, µ2 ∈ P(X).

Then (P(X), dP(X)) is a polish space. Moreover, a sequence {µn}∞n=1 ⊆ P (X)
converges to µ in (P(X), dP(X)) if and only if {µn}∞n=1 converges to µ weakly.

Given p> 0, let Pp(X) be the subset of P(X) defined by

Pp (X) =

{
µ ∈ P (X) :

∫
X

‖x‖pXµ (dx) <∞
}
.

Then (Pp(X), dP(X)) is also a metric space. Without confusion, we denote
(Pp(X), dP(X)) by (Pp(X), dPp(X)). Given r > 0, denote by

BPp(X)(r) =

µ ∈ Pp (X) :

(∫
X

‖x‖pXµ (dx)
) 1

p

≤ r

 .
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Recall that the Hausdorff semi-metric between subsets of Pp(X) is given by

dPp(X)(Y, Z) = sup
y∈Y

inf
z∈Z

d (y, z) , Y, Z ⊆ Pp(X), Y, Z 6= ∅.

If ε> 0 and B ⊆ Pp (X), then the open ε-neighbourhood of B in Pp (X) is defined
by

Nε(B) =
{
µ ∈ Pp(X) : dPp(X) (µ,B) < ε

}
.

Definition 2.1. A family S = {S(t, τ) : t ∈ R+, τ ∈ R} of mappings from Pp(X)
to Pp(X) is called a continuous non-autonomous dynamical system on Pp(X), if
for all τ ∈ R and t, s ∈ R+, the following conditions are satisfied:

(a) S(0, τ) = IPp(X), where IPp(X) is the identity operator on Pp(X);
(b) S(t+ s, τ) = S(t, s+ τ) ◦ S(s, τ);
(c) S(t, τ) : Pp(X) → Pp(X) is continuous.
If, in addition, there exists a positive number T such that for every t ∈ R+ and

τ ∈ R,
S(t, τ + T ) = S(t, τ),

then S is called a continuous periodic non-autonomous dynamical system on Pp(X)
with period T.

Definition 2.2. A set D ⊆ Pp (X) is called a bounded subset if there is r> 0 such
that D ⊆ BPp(X)(r).

In the sequel, we denote by D a collection of some families of nonempty subsets
of Pp(X) parametrized by τ ∈ R; that is,

D = {D = {D (τ) ⊆ Pp (X) : D (τ) 6= ∅, τ ∈ R} : D satisfies some conditions} .

Definition 2.3. A collection D of some families of nonempty subsets of Pp(X) is
said to be neighbourhood-closed if for each D = {D (τ) : τ ∈ R} ∈ D, there exists a
positive number ε depending on D such that the family

{B (τ) : B (τ) is a nonempty subset of Nε(D(τ)), ∀τ ∈ R}

also belongs to D.

Note that the neighbourhood closedness of D implies for each D ∈ D,

D̃ =
{
D̃ (τ) : ∅ 6= D̃ (τ) ⊆ D (τ) , τ ∈ R

}
∈ D. (2.1)

A collection D satisfying (2.1) is said to be inclusion-closed in the literature.

Definition 2.4. A family K = {K (τ) : τ ∈ R} ∈ D is called a D-pullback absorb-
ing set for S if for each τ ∈ R and every D ∈ D, there exists T = T (τ,D) > 0 such
that

S (t, τ − t)D(τ − t) ⊆ K(τ), for all t ≥ T.

If there exists a positive number T such that K(τ + T ) = K(τ) for every τ ∈ R,
then K is said to be periodic with period T.
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Definition 2.5. The non-autonomous dynamical system S is said to be D-pullback
asymptotically compact in Pp (X) if for each τ ∈ R, {S (tn, τ − tn)µn}∞n=1 has a
convergent subsequence in Pp (X) whenever tn → +∞ and µn ∈ D(τ − tn) with
D ∈ D.

Definition 2.6. A family A = {A(τ) : τ ∈ R} ∈ D is called a D-pullback measure
attractor for S if the following conditions are satisfied,

(i) A(τ) is compact in Pp (X) for each τ ∈ R;
(ii) A is invariant, that is, S(t, τ)A(τ) = A(τ + t), for all τ ∈ R and t ∈ R+;
(iii) A attracts every set in D, that is, for each D = {D (τ) : τ ∈ R} ∈ D,

lim
t→∞

d (S (t, τ − t)D(τ − t),A(τ)) = 0.

Definition 2.7. A mapping ψ : R×R → Pp (X) is called a complete orbit of S if
for every s ∈ R, t ∈ R+ and τ ∈ R, the following holds:

S (t, s+ τ)ψ (s, τ) = ψ (t+ s, τ) . (2.2)

If, in addition, there exists D = {D(τ) : τ ∈ R} ∈ D such that ψ(t, τ) belongs to
D(τ + t) for every t ∈ R and τ ∈ R, then ψ is called a D-complete orbit of S.

Definition 2.8. A mapping ξ : R → Pp (X) is called a complete solution of S if
for every t ∈ R+ and τ ∈ R, the following holds:

S (t, τ) ξ (τ) = ξ (t+ τ) .

If, in addition, there exists D = {D(τ) : τ ∈ R} ∈ D such that ξ(τ) belongs to D(τ)
for every τ ∈ R, then ξ is called a D-complete solution of S.

Definition 2.9. For each D = {D(τ) : τ ∈ R} ∈ D and τ ∈ R, the pullback
ω-limit set of D at τ is defined by

ω (D, τ) :=
⋂
s≥0

⋃
t≥s

S (t, τ − t)D(τ − t),

that is,

ω (D, τ) = {ν ∈ Pp (X) : there exist tn → ∞, µn ∈ D(τ − tn) such that

ν = lim
n→∞

S (tn, τ − tn)µn

}
.

Based on the above notation, from theorem 2.25 and proposition 3.6 in [18],
we have the following criterion for the existence, uniqueness, and periodicity of
D-pullback measure attractors.

Proposition 2.10. Let D be a neighbourhood-closed collection of families of sub-
sets of Pp (X) and S be a continuous non-autonomous dynamical system on Pp (X).
Then S has a unique D-pullback measure attractor A in Pp (X) if and only if S has a
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closed D-pullback absorbing set K ∈ D and S is D-pullback asymptotically compact
in Pp (X). The D-pullback measure attractor A is given by, for each τ ∈ R,

A (τ) = ω(K, τ) = {ψ(0, τ) : ψ is a D-complete orbit of S}
= {ξ(τ) : ξ is a D-complete solution of S}.

If, in addition, both S and K are T-periodic for some T> 0, then so is the attractor
A, i.e., A(τ) = A(τ + T ), for all τ ∈ R.

Next, we give an abstract result for the upper semicontinuity of pullback measure
attractors of a family of non-autonomous dynamical systems on Pp(X).

Suppose Λ is an interval of R, and for each λ ∈ Λ, Φλ is a non-autonomous
dynamical system on Pp(X). Suppose that for each λ ∈ Λ, Φλ has a D-pullback
measure attractor Aλ ∈ D. Assume there exists λ0 ∈ Λ such that for τ ∈ R and
t ∈ R+,

lim
n→∞

sup
µ∈Aλn

dPp(X)

(
Φλn (t, τ)µ,Φλ0

(t, τ)µ
)
= 0, (2.3)

for any λn → λ0.
We also assume that

K =
{
K(τ) =

⋃
λ∈Λ

Aλ(τ) : τ ∈ R
}
∈ D. (2.4)

We now present the upper semicontinuity of Aλ as λ→ λ0.

Theorem 2.11 Suppose (2.3)–(2.4) hold. Then for τ ∈ R,

lim
λ→λ0

dPp(X)

(
Aλ(τ),Aλ0

(τ)
)
= 0.

Proof. Since K ∈ D from (2.4), for τ ∈ R and η > 0, there exists a T = T (τ, η) > 0
such that for all t ≥ T ,

dPp(X)(Φλ0
(t, τ − t)K(τ − t),Aλ0

(τ)) < η. (2.6)

Now let µn ∈ Aλn(τ), n ∈ N. Since the measure attractor Aλn is invariant under
Φλn , there exists a νn ∈ Aλn(τ − T ) such that

µn = Φλn(T, τ − T )νn. (2.7)

By (2.3), we obtain

lim
n→∞

sup
νn∈Aλn (τ−T )

‖Φλn(T, τ − T )νn − Φλ0
(T, τ − T )νn‖X = 0. (2.8)
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It follows from (2.6)–(2.8) that for large enough n,

dPp(X)

(
Aλn(τ),Aλ0

(τ)
)
= sup

µn∈Aλn (τ)

dPp(X)

(
µn,Aλ0

(τ)
)

≤ sup
µn∈Aλn (τ)

(dPp(X)(µn,Φλ0
(T, τ − T )νn) + dPp(X)(Φλ0

(T, τ − T )νn,Aλ0
(τ)))

≤ sup
νn∈Aλn (τ−T )

dPp(X)(Φλn(T, τ − T )νn,Φλ0
(T, τ − T )νn)

+ sup
νn∈Aλn (τ−T )

dPp(X)(Φλ0
(T, τ − T )νn,Aλ0

(τ))

≤ sup
νn∈Aλn (τ−T )

dPp(X)(Φλn(T, τ − T )νn,Φλ0
(T, τ − T )νn)

+ dPp(X)(Φλ0
(T, τ − T )K(τ − T ),Aλ0

(τ))

< 2η.

This completes the proof. �

3. Existence and uniqueness of solutions

In this section, we prove the existence and uniqueness of solutions to sys-
tem (1.1)–(1.2). We first discuss the assumptions on the nonlinear drift and diffusion
terms in (1.1).

Throughout this article, suppose g, h : R → l2, g(t) = (gi(t))i∈Z and h(t) =
(hi,k(t))i∈Z,k∈N are both continuous in t ∈ R, which implies that for every t ∈ R,

‖g(t)‖2 =
∑
i∈Z

|gi(t)|2 <∞ and ‖h(t)‖2 =
∑
i∈Z

∑
k∈N

|hi,k(t)|2 <∞, (3.1)

where ‖ · ‖ is the norm of l2. The inner product of l2 will be denoted by (·, ·)
throughout this article.

Assume that F : R × R → R, F = F (t, s), is continuous in (t, s) ∈ R × R,
∂F (t,s)

∂s ∈ C(R × R,R) and there exists a positive continuous function β0 : R → R
such that

F (t, 0) = 0 and
∂F (t, s)

∂s
≤ −β0 (t) , for all t, s ∈ R. (3.2)

For the diffusion terms in (1.1), we assume σi,k : R×R → R, σi,k = σi,k(t, s), is
continuous in (t, s) ∈ R×R and globally Lipschitz in s ∈ R uniformly with respect
to i ∈ Z; more precisely, for every k ∈ N, there exists a constant Lk > 0 such that
for all t, s, s∗ ∈ R, and i ∈ Z,

|σi,k (t, s)− σi,k (t, s
∗)| ≤ Lk |s− s∗| , (3.3)

where L = (Lk)k∈N ∈ l2. In addition, we assume σi,k(t, s) grows linearly in s ∈ R;
that is, for each k ∈ N and i ∈ Z,

|σi,k (t, s)| ≤ δi,k(t) + βk(t) |s| , ∀ t, s ∈ R, k ∈ N and i ∈ Z, (3.4)
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where δ(·) = (δi,k(·))i∈Z,k∈N : R → l2 and β(·) = (βk(·))k∈N : R → l2 are positive
continuous functions.

The following notation will be used throughout the article:

‖L‖2 =
∑
k∈N

|Lk|2, ‖β(t)‖2 =
∑
k∈N

|βk(t)|2, ‖δ‖2 =
∑
i∈Z

∑
k∈N

|δi,k|2.

For convenience, we set for all i ∈ Z and s, t ∈ R,

f (t, s) = F (t, s) + β0 (t) s.

Then by (3.2) we obtain for all s, t ∈ R,

f (t, 0) = 0 and
∂f (t, s)

∂s
≤ 0. (3.5)

In addition, for u = (ui)i∈Z ∈ l2, we write f(t, u) = (f(t, ui))i∈Z and σk (t, u) =

(σi,k (t, ui))i∈Z. Since
∂f(t,s)

∂s ∈ C(R × R,R) with f(t, 0) = 0, one can verify that f

is a locally Lipschitz mapping from l2 to l2; that is, for every bounded set E in l2

and I in R, there exists a constant Lf = Lf (E, I) > 0 such that

‖f (t, u1)− f (t, u2)‖2 ≤ Lf ‖u1 − u2‖2 , for all u1, u2 ∈ E and t ∈ I. (3.6)

It follows from (3.5) that for all t ∈ R and u1, u2 ∈ l2,

(f (t, u1)− f (t, u2) , u1 − u2) ≤ 0. (3.7)

Similarly, by (3.3)–(3.4), we have for all t ∈ R and u1, u2,∑
k∈N

‖σk (t, u1)− σk (t, u2)‖2 ≤ ‖L‖2 ‖u1 − u2‖2 (3.8)

and ∑
k∈N

‖σk (t, u1)‖2 ≤ 2 ‖δ(t)‖2 + 2 ‖β(t)‖2 ‖u1‖2 . (3.9)

For simplicity, define linear operators A,B, : l2 → l2 by

(Au)i = −ui−1 + 2ui − ui+1, (Bu)i = ui+1 − ui, i ∈ Z, u = (ui)i∈Z ∈ l2.

Then, system (1.1)–(1.2) can be put into the following form in l2 for t > τ :

du (t) + νAu (t) dt+ (λ(t) + β0(t))u (t) dt = (f (t, u(t)) + g(t)) dt

+ ε
∞∑
k=1

(hk(t) + σk (t, u (t)))dWk (t) ,
(3.10)

with initial condition

u (τ) = ξ, (3.11)

where hk(t) = (hi,k(t))i∈Z ∈ l2 for each k ∈ N.
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We use L2
Fτ

(
Ω, l2

)
to denote the space of all Fτ -measurable, l2-valued random

variables ϕ with E(‖ϕ‖2) < ∞, where E means the mathematical expecta-
tion. Similar to [19], under conditions (3.1)–(3.4), we can show that for any
ξ ∈ L2

Fτ
(Ω, l2), system (3.10)–(3.11) has a unique solution, which is written as

u(t). In particular, u(t), t ≥ τ , is a continuous l2-valued Ft-adapted stochastic
process such that

u ∈ L2
(
Ω, C

(
[τ, τ + T ] , l2

))
, (3.12)

for every T > 0. To highlight the initial time and initial values, we denote by
u(t, τ, ξ) the solution of (3.10)–(3.11) with initial conditions u(τ) = ξ ∈ L2

Fτ
(Ω, l2).

Give a subset E of P2

(
l2
)
, define

‖E‖P2

(
l2

) = inf

r > 0 : sup
µ∈E

(∫
l2
‖z‖2µ(dz)

)1
2

≤ r

 ,

with the convention that inf ∅ = ∞. If E is a bounded subset of P2

(
l2
)
, then

‖E‖P2

(
l2

) < ∞. Let D be the collection of families of bounded nonempty subsets

of P2

(
l2
)
as given by

D =
{
D =

{
D (τ) ⊆ P2

(
l2
)
: ∅ 6= D (τ) bounded in P2

(
l2
)
, τ ∈ R

}
:

lim
τ→−∞

eγτ ‖D (τ)‖2P2(l
2) = 0

}
,

where γ > 0 defined later.
Throughout this article, we assume∫ τ

−∞
eγt(‖g(t)‖2 + ‖h(t)‖2 + ‖δ(t)‖2)dt <∞, ∀τ ∈ R. (3.13)

4. Uniform moment estimates

In this section, we derive uniform moment estimates of the solution of problem
(3.10)–(3.11) which are necessary for establishing the existence of pullback measure
attractors. In the sequel, we use L(ξ) to denote the distribution law of a random
variable ξ. We assume that

γ = inf
t∈R

{
λ (t) + β0 (t)−

1

2
− 2 ‖β (t)‖2

}
> 0. (4.1)

We first discuss uniform estimates of solutions of problem (3.10)–(3.11) in
L2(Ω, l2).

Lemma 4.1. Suppose (3.1)–(3.4), (3.13), and (4.1) hold. Then for every τ ∈ R
and D = {D(t) : t ∈ R} ∈ D, there exists T = T (τ,D) > 0, independent of ε,
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such that for all t ≥ T , ξ ∈ L2
Fτ−t

(Ω, l2) with L(ξ) ∈ D(τ − t), and 0 < ε ≤ 1, the

solution u of (3.10)–(3.11) satisfies

E
(
‖u (τ, τ − t, ξ)‖2

)
+

∫ τ

τ−t

e−γ(τ−s)E
(
‖u (s, τ − t, ξ)‖2

)
ds ≤ R(τ), (4.2)

where

R(τ) =M1 +M1

∫ τ

−∞
e−γ(τ−s)

(
‖g (s)‖2 + ‖h (s)‖2 + ‖δ(s)‖2

)
ds,

with M1 > 0 being a constant independent of τ , ε, and D.

Proof. By (3.10) and Ito’s formula, we have for t ≥ τ

E
(
‖u (t)‖2

)
+ 2ν

∫ t

τ

E(‖Bu (s)‖2)ds+ 2

∫ t

τ

(λ(s) + β0(s))E(‖u (s)‖2)ds

= E
(
‖ξ‖2

)
+ 2

∫ t

τ

E (u (s) , f (s, u (s))) ds

+ 2

∫ t

τ

E (u (s) , g(s))ds+ ε2
∞∑
k=1

∫ t

τ

E
(
‖hk(s) + σk (s, u (s))‖2

)
ds.

(4.3)

It should be noted that u ∈ C([τ,+∞);L2(Ω; l2)) due to the fact that u ∈
L2(Ω;C([τ, τ + T ]; l2)) for all T > 0 and the Lebesgue Dominated Theorem. Thus,
by (3.7), (3.9), and (4.1), we obtain from (4.3) for t > τ

d

dt
E
(
‖u (t)‖2

)
≤ −$(t)E

(
‖u (t)‖2

)
+ 4(‖g(t)‖2 + ‖h(t)‖2 + ‖δ(t)‖2)

≤ −2γE
(
‖u (t)‖2

)
+ 4(‖g(t)‖2 + ‖h(t)‖2 + ‖δ(t)‖2),

(4.4)

where $(t) = 2(λ(t) + β0(t))− 1− 4 ‖β(t)‖2.
Multiplying (4.4) by eγt and then integrating the resulting inequality on (τ−t, τ)

with t ∈ R+, we obtain

E
(
‖u (τ, τ − t, ξ)‖2

)
+ γ

∫ τ

τ−t

e−γ(τ−s)E
(
‖u (s, τ − t, ξ)‖2

)
ds

≤ E
(
‖ξ‖2

)
e−γt + 4

∫ τ

τ−t

e−γ(τ−s)
(
‖g (s)‖2 + ‖h (s)‖2 + ‖δ(s)‖2

)
ds

≤ E
(
‖ξ‖2

)
e−γt + 4

∫ τ

−∞
e−γ(τ−s)

(
‖g (s)‖2 + ‖h (s)‖2 + ‖δ(s)‖2

)
ds.

(4.5)

Since L(ξ) ∈ D1 (τ − t) we have

e−γtE
(
‖ξ‖2

)
≤ e−γt ‖D (τ − t)‖2 → 0, as t→ ∞,
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and hence there exists T = T (τ,D) > 0 such that for all t ≥ T ,

e−γtE
(
‖ξ‖2

)
≤ 4

γ
,

which along with (4.5) concludes the proof. �

Next, we derive uniform estimates on the tails of the solutions of (3.10)–(3.11)
which are crucial for establishing the D-pullback asymptotic compact in P2(l

2) of
the family of probability distributions of the solutions.

Lemma 4.2. Suppose (3.1)–(3.4), (3.13), and (4.1) hold. Then for every η > 0, τ ∈
R and D = {D(t) : t ∈ R} ∈ D, there exist T = T (D, τ, η) and N = N(D, τ, η) ∈ N
such that for all 0 < ε ≤ 1, t ≥ T and n ≥ N , the solution u of (3.10)–(3.11)
satisfies, ∑

|i|≥n

E(|ui(τ, τ − t, ξ)|2) ≤ η,

when ξ ∈ L2
Fτ−t

(Ω, l2) with L(ξ) ∈ D(τ − t).

Proof. Let θ : R → R be a smooth function such that 0 ≤ θ(s) ≤ 1 for all s ∈ R
and

θ(s) = 0, for |s| ≤ 1, and θ(s) = 1, for |s| ≥ 2. (4.6)

Given n ∈ N, denote by θn = (θ( i
n ))i∈Z and θnu = (θ( i

n )ui)i∈Z for u = (ui)i∈Z. By
(3.10), we obtain

d(θnu(t)) = −θnνAu(t)dt− (λ(t) + β0(t))θnu(t)dt+ θnf(t, u(t))dt

+ θng(t)dt+ ε
∞∑
k=1

(θnhk(t) + θnσk(t, u(t)))dWk(t), t > τ.
(4.7)

By (4.7), Ito’s formula and taking the expectation we obtain for all t ≥ τ and
∆t ≥ 0,

E
(
‖θnu (t+∆t)‖2

)
= E

(
‖θnu(t)‖2

)
− 2ν

∫ t+∆t

t

E
(
Bu (s) , B

(
θ2nu (s)

))
ds

− 2

∫ t+∆t

t

(λ(s) + β0(s))E (θnu (s) , θnu (s)) ds

+ 2

∫ t+∆t

t

E (θnu (s) , θnf (s, u(s))) ds+ 2

∫ t+∆t

t

E (θnu (s) , θng(s)) ds

+ ε2
∞∑
k=1

∫ t+∆t

t

E
(
‖θnhk(s) + θnσk (s, u (s))‖2

)
ds.

(4.8)
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For the second term on the right-hand side of (4.8), we have

− 2ν

∫ t+4t

t

E
(
Bu (s) , B

(
θ2nu (s)

))
ds

= −2ν

∫ t+4t

t

E

(∑
i∈Z

(ui+1 − ui)

(
θ2
(
i+ 1

n

)
ui+1 − θ2

(
i

n

)
ui

))
ds

≤ 4ν

∫ t+4t

t

E

(∑
i∈Z

∣∣∣∣θ( i+ 1

n

)
− θ

(
i

n

)∣∣∣∣ |ui+1 − ui| |ui|

)
ds

≤ c

n

∫ t+4t

t

E

(∑
i∈Z

|ui+1 − ui| |ui|

)
ds ≤ 2c

n

∫ t+4t

t

E
(
‖u (s)‖2

)
ds,

(4.9)

where c> 0 depends only on θ.
For the fourth term on the right-hand side of (4.8), by (3.5), we obtain

2

∫ t+4t

t

E (θnu (s) , θnf (s, u(s))) ds ≤ 0. (4.10)

On the other hand, by Young’s inequality, we get

2

∫ t+4t

t

E (θnu (s) , θng(s)) ds ≤
∫ t+4t

t

E
(
‖θnu (τ)‖2

)
dτ +

∫ t+4t

t

∑
|i|≥n

g2i (s)ds.

(4.11)
For the last term on the right-hand side of (4.8), by (3.9), we obtain

ε2
∞∑
k=1

∫ t+4t

t

E
(
‖θnhk + θnσk (u (τ))‖2

)
dτ

≤ 4

∫ t+4t

t

‖β(s)‖2 E
(
‖θnu (s)‖2

)
ds+ 4

∫ t+4t

t

∑
|i|≥n

∞∑
k=1

(
h2i,k(s) + δ2i,k(s)

)
ds.

(4.12)

We obtain from (4.1) and (4.8)–(4.12) that

D+E
(
‖θnu (t)‖2

)
≤ −

(
2(λ(t) + β0(t))− 1− 4 ‖β(t)‖2

)
E
(
‖θnu (t)‖2

)
+

2c

n
E(‖u (t)‖2) +

∑
|i|≥n

g2i (t) + 4
∑
|i|≥n

∞∑
k=1

(
h2i,k(t) + δ2i,k(t)

)
≤ −γE

(
‖θnu (t)‖2

)
+

2c

n
E(‖u (t)‖2) +

∑
|i|≥n

g2i (t) + 4
∑
|i|≥n

∞∑
k=1

(
h2i,k(t) + δ2i,k(t)

)
,

(4.13)
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where D+ is the upper right Dini derivative. Given t ∈ R+ and τ ∈ R, integrating
the above over (τ − t, τ), we obtain

E
(
‖θnu (τ, τ − t, ξ)‖2

)
≤ E

(
‖θnξ‖2

)
e−γt+

2c

n

∫ τ

τ−t

e−γ(τ−s)E
(
‖u (s, τ−t, ξ)‖2

)
ds

+ 4

∫ τ

τ−t

e−γ(τ−s)

∑
|i|≥n

g2i (s) +
∑
|i|≥n

∞∑
k=1

(
h2i,k (s) + δ2i,k (s)

)ds. (4.14)

For every η > 0, τ ∈ R and D = {D(t) : t ∈ R} ∈ D, there exists T1 = T1(D, τ, η) >
0 such that

E
(
‖θnξ‖2

)
e−γt ≤ e−γτ ‖D (τ − t)‖2P2

(
l2

) eγ(τ−t) < η.

By lemma 4.1 for every η > 0, τ ∈ R and D = {D(t) : t ∈ R} ∈ D, we find that
there exist T2 = T2(D, τ, η) > 0 and N1 = N1(D, τ, η) ∈ N such that for all t ≥ T2
and n ≥ N1,

2c

n

∫ τ

τ−t

e−γ(τ−s)E
(
‖u (s, τ − t, ξ)‖2

)
ds ≤ 2c

n
R (τ) < η, (4.15)

where R(τ) is given by (4.2). By (3.13), we know for every η > 0 and τ ∈ R, there
exists N2 = N2(τ, η) ∈ N such that for n > N2,

4

∫ τ

τ−t

e−γ(τ−s)

∑
|i|≥n

g2i (s) +
∑
|i|≥n

∞∑
k=1

(
h2i,k (s) + δ2i,k (s)

)ds < η. (4.16)

Since L(ξ) ∈ D(τ − t), there exists T2 = T2(D, τ, η) > T1, such that for t > T2,

E(‖θnξ‖2)e−γt ≤ ‖D(τ − t)‖2P2(l
2)
e−γt < η.

Combining (4.14), (4.15), and (4.16), we get for every η > 0, τ ∈ R and D =
{D(t) : t ∈ R} ∈ D, there exist T = max{T1, T2} and N = max{N1, N2} such that
for all 0 < ε ≤ 1, t ≥ T and n ≥ N ,

E
(
‖θnu (t)‖2

)
≤ 3η,

when ξ ∈ L2
Fτ−t

(Ω, l2) with L(ξ) ∈ D(τ − t). This completes the proof. �

5. Existence of pullback measure attractors

This section is devoted to the existence, uniqueness and periodicity of D-pullback
measure attractors of (3.10)–(3.11) in P2(l

2).
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As usual, if φ : l2 → R is a bounded Borel function, then for r ≤ t and ξ ∈ l2,
we set

(p(t, r)φ) (ξ) = E (φ (u (t, r, ξ))) ,

and

p (r, ξ; t,Γ) = (p(t, r)1Γ) (ξ) ,

where Γ ∈ B
(
l2
)
and 1Γ is the characteristic function of Γ.

The following properties of {p(t, r)}r≤t are standard (see, e.g., [19]) and the proof
is omitted.

Lemma 5.1. Suppose (3.1)–(3.4), (3.13), and (4.1) hold. Then:
(i) The family {p(t, r)}r≤t is Feller; that is, for any r ≤ t, the function p(t, r)φ ∈

Cb(l
2) is bounded and continuous if so is φ.

(ii) For every r ∈ R and ξ ∈ l2, the process {u (t, r, ξ)}t≥r is an l2-valued Markov
process.

We will also investigate the periodicity of pullback measure attractors of system
(3.10)–(3.11) for which we assume that all given time-dependent functions are $-
periodic in t for some $> 0; that is, for all t ∈ R and k ∈ N,

λ (t+$) = λ (t) , β0(t+$) = β0(t) g(t+$) = g(t),

f (t+$, ·, ·) = f (t, ·, ·) , hk(t+$) = hk(t), σk (t+$, ·, ·) = σk (t, ·, ·) .
(5.1)

By the similar argument as that of lemma 4.1 in [10], we get the following lemma.

Lemma 5.2. Suppose (3.1)–(3.4), (3.13), (4.1), and (5.1) hold. Then we have the
family {p(t, r)}r≤t is $-periodic; that is, for all t ≥ r,

p (r, ξ; t, ·) = p (r +$, ξ; t+$, ·) , ∀ξ ∈ l2.

Given t ≥ r and µ ∈ P(l2), define

p∗ (t, r)µ (·) =
∫
l2
p (r, ξ; t, ·)µ (dξ) . (5.2)

Then p∗(t, r) : P(l2) → P(l2) is the dual operator of p(t, r). By (3.12), we find that
for all t ≥ r, p∗(t, r) maps P2(l

2) to P2(l
2).

We now define a non-autonomous dynamical system S(t, τ), t ≥ τ , for the family
of operators p∗(t, τ). Given t ∈ R+ and τ ∈ R, let S(t, τ) : P2(l

2) → P2(l
2) be the

map given by

S(t, τ)µ = p∗(τ + t, τ)µ, ∀ µ ∈ P2(l
2).

Lemma 5.3. Suppose (3.1)–(3.4), (3.13), and (4.1) hold. Then S(t, τ), t ≥
τ , is a continuous non-autonomous dynamical system in P2(l

2) generated by
(3.10)–(3.11); more precisely, S(t, τ) : P2(l

2) → P2(l
2) satisfies the following

conditions
(a) S(0, τ) = IP2(l

2), for all τ ∈ R;
(b) S(s+ t, τ) = S(t, τ + s) ◦ S(s, τ), for any τ ∈ R and t, s ∈ R+;
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(c) S(t, τ) : P2(l
2) → P2(l

2) is continuous, for every τ ∈ R and t ∈ R+.

Proof. Note that (a) follows from the definition of S, and (b) follows the Markov
property of the solutions of (3.10)–(3.11).

We now prove (c). Suppose µn → µ in P2(l
2). We will show S(t, τ)µn → S(t, τ)µ

in P2(l
2) for every τ ∈ R and t ∈ R+. Let ϕ ∈ Cb(l

2). By lemma 5.1, we have
p(τ + t, τ)ϕ ∈ Cb(l

2) for all τ ∈ R and t ∈ R+, and hence

lim
n→∞

(ϕ, S (t, τ)µn) = lim
n→∞

(ϕ, p∗ (τ + t, τ)µn)

= lim
n→∞

(p(τ + t, τ)ϕ, µn) = (p(τ + t, τ)ϕ, µ)

= (ϕ, p∗ (τ + t, τ)µ) = (ϕ, S (t, τ)µ) ,

(5.3)

as desired. �

By lemma 4.1, we obtain a D-pullback absorbing set for S as stated below.

Lemma 5.4. Suppose (3.1)–(3.4), (3.13), and (4.1) hold. Given τ ∈ R, denote by

K(τ) = BP2(l
2)

(
L

1
2
1 (τ)

)
, (5.4)

where

L1(τ) =M1 +M1

∫ τ

−∞
e−γ(τ−s)

(
‖g (s)‖2 + ‖h (s)‖2 + ‖δ(s)‖2

)
ds, (5.5)

and M1 > 0 is the same constant as in lemma 4.1, independent of τ and ε. Then
K = {K(τ) : τ ∈ R} ∈ D is a closed D-pullback absorbing set of S.

Proof. By (5.4) and lemma 4.1, we see that for every τ ∈ R and D = {D(t) : t ∈
R} ∈ D, there exists T = T (τ,D) > 0, independent of ε, such that for all t ≥ T
and 0 < ε ≤ 1, S satisfies

S (t, τ − t)D(τ − t) ⊆ K(τ). (5.6)

We now prove K = {K(τ) : τ ∈ R} ∈ D. By (5.4), (5.5), and (3.13), we have

eγτ‖K(τ)‖2P2(l
2)

= eγτL1(τ)

= eγτM1 +M1

∫ τ

−∞
eγs
(
‖g (s)‖2 + ‖h (s)‖2 + ‖δ(s)‖2

)
ds→ 0,

× as τ → −∞,

and hence K = {K(τ) : τ ∈ R} ∈ D, which along with (5.6) concludes the proof.
�

We now present the D-pullback asymptotically compact of S associated with
(3.10)–(3.11).
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Lemma 5.5. If (3.1)–(3.4), (3.13), and (4.1) hold, then S is D-pullback asymp-
totically compact in P2

(
l2
)
; that is, for every τ ∈ R, {S (tn, τ − tn)µn}∞n=1 has a

convergent subsequence in P2

(
l2
)
whenever tn → +∞ and µn ∈ D(τ − tn) with

D ∈ D.

Proof. To complete the proof, by Prohorov theorem, we need to prove that for
each τ ∈ R, the sequence {L(u(τ, τ − tn, ξn))}∞n=1 is tight. It follows from lemma
4.1 that for τ ∈ R and D = {D(t) : t ∈ R} ∈ D there exists a N1 = N1(τ,D) ∈ N
such that for all ξn ∈ L2

Fτ−tn
(Ω, l2) with L(ξn) ∈ D(τ − tn) and n > N1,

E
(
‖u(τ, τ − tn, ξn)‖2

)
≤M, (5.7)

where M > 0 is a constant depending on τ , but independent of ε and D. By
Chebyshev’s inequality, we obtain from (5.7) that for all ξn ∈ L2

Fτ−tn
(Ω, l2) with

L(ξn) ∈ D(τ − tn) and n > N1,

P
(
‖u(τ, τ − tn, ξn)‖2 > R1

)
≤ M

R2
1

→ 0 as R1 → ∞.

Hence for every τ ∈ R, η > 0 and m ∈ N, there exists R2 = R2(τ, η,m) > 0 such
that for all ξn ∈ L2

Fτ−tn
(Ω, l2) with L(ξn) ∈ D(τ − tn) and n > N1,

P
{
‖u(τ, τ − tn, ξn)‖2 > R2

}
<

η

2m+1
. (5.8)

By lemma 4.2, we infer that for each τ ∈ R, D = {D(t) : t ∈ R} ∈ D, η > 0 and
m ∈ N, there exist an integer nm = nm(τ,D, η,m) and Hm = Hm(τ,D, η,m) > N1

such that for all ξn ∈ L2
Fτ−tn

(Ω, l2) with L(ξn) ∈ D(τ − tn) and n ≥ Hm,

E

 ∑
|i|>nm

|ui (τ, τ − tn, ξn)|2
 <

η

22m+1
,

and hence for all ξn ∈ L2
Fτ−tn

(Ω, l2) with L(ξn) ∈ D(τ − tn) and n ≥ Hm,

P

 ∑
|i|>nm

|ui (τ, τ − tn, ξn)|2 >
1

2m


 ≤ 2mE

 ∑
|i|>nm

|ui (τ, τ − tn, ξn)|2

(5.9)

<
η

2m+1
. (5.9)

Given m ∈ N, set

Y1,m =
{
v ∈ l2 : ‖v‖2 ≤ R2

}
, (5.10)
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Y2,m =

v ∈ l2 :
∑

|i|>nm

|vi|2 ≤ 1

2m

 , (5.11)

and

Ym = Y1,m ∩ Y2,m. (5.12)

By (5.10), we see that the set
{
(vi)|i|≤nm : v ∈ Ym

}
is bounded in

the finite-dimensional space R2nm+1 and hence precompact. Consequently,{
(vi)|i|≤nm : v ∈ Ym

}
has a finite open cover of balls with radius 1√

2
m , which

along with (5.11) implies that the set {v : v ∈ Ym} has a finite open cover of
balls with radius 1√

2
m−1 in l2. For each τ ∈ R and m ∈ N, there exists a com-

pact set Km = Km(τ) such that for all n ≤ Hm, P ({u (τ, τ − tn, ξn) ∈ Km}) >
1 − η

2m . Then by (5.8) and (5.9), there exists a set Ym = Ym ∪ Km, which has
a finite open cover of balls with radius 1√

2
m−1 in l2, such that for all n ∈ N,

P ({u (τ, τ − tn, ξn) ∈ Ym}) > 1 − η
2m . Set Y =

∞⋂
m=1

Ym. Then Y is a closed and

totally bounded subset of l2, and hence is compact. For all n ∈ N,

P ({u (τ, τ − tn, ξn) ∈ Y}) > 1−
∞∑

m=1

η

2m
= 1− η,

as desired. �

Next, we establish the existence, uniqueness, and periodicity of D-pullback
measure attractors for (3.10)–(3.11) on P2(l

2).

Theorem 5.6 If (3.1)–(3.4), (3.13), and (4.1) hold, then for every 0 < ε ≤ 1,
S associated with (3.10)–(3.11) has a unique D-pullback measure attractor A =
{A(τ) : τ ∈ R} ∈ D in P2(l

2), which is given by, for each τ ∈ R,

A (τ) = ω(K, τ) = {ψ(0, τ) : ψ is a D-complete orbit of S}
= {ξ(τ) : ξ is a D-complete solution of S},

where K = {K(τ) : τ ∈ R} is the D-pullback absorbing set of S as given by lemma
5.4.

Proof. It follows from lemma 5.3 that S is a continuous non-autonomous dynamical
system on P2(l

2). Notice that S has a closed D-pullback absorbing set K in P2(l
2)

by lemma 5.4 and is D-pullback asymptotically compact in P2(l
2) by lemma 5.5.

Hence the existence and uniqueness of the D-pullback measure attractor for S
follows from proposition 2.10 immediately. �

We now consider the periodicity of the measure attractor A. By (5.4) and (5.5),
we find that K is $-periodic. In addition, it follows from lemma 5.2 and (5.2), the
non-autonomous dynamical system S associated with system (3.10)–(3.11) is also
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$-periodic. Thus, from proposition 2.10, the periodicity of the measure attractor
A follows.

Theorem 5.7 If (3.1)–(3.4), (3.13), (4.1), and (5.1) hold, then for every 0 <
ε ≤ 1, S associated with (3.10)–(3.11) has a unique $-periodic D-pullback measure
attractor A in P2(l

2).

6. Upper semicontinuity of pullback measure attractors

In this section, we prove the upper semicontinuity of D-pullback measure attractors
for the non-autonomous stochastic lattice systems as the noise intensity ε tends to
zero.

We apply theorem 2.11 to the non-autonomous stochastic lattice systems
(3.10)–(3.11) with ε ∈ [0, 1]. Note that all results in the previous sections are
valid for ε=0 in which case the proof is actually simpler. From now on, we write
the solution of system (3.10)–(3.11) as uε(t, τ, ξ) at initial time τ with initial value
ξ ∈ L2

Fτ
(Ω, l2) to highlight the dependence of solutions on the parameter ε. Given

ε ∈ [0, 1], let pε(t, τ) be the transition operator of uε(t, τ, ξ) and pε∗(t, τ) be the
duality operator of pε. Given t ∈ R+ and τ ∈ R, let Sε(t, τ) : P2(l

2) → P2(l
2) be

the map given by

Sε(t, τ)µ = pε∗(τ + t, τ)µ, ∀ µ ∈ P2(l
2).

Let Aε be the D-pullback measure attractor of S ε.
Next, we establish the convergence of solutions of problem (3.10)–(3.11) when

ε→ 0.

Lemma 6.1. Suppose (3.1)–(3.4) hold. Then given τ ∈ R and a positive constant
K(τ), if ξ ∈ L2

Fτ
(Ω, l2) with E(‖ξ‖2) ≤ K2(τ), then we have for t ∈ R+,

lim
ε→0

sup
µ∈BP2(l

2)
(K(τ))

dP2(l
2)

(
Sε(t, τ)µ, S0(t, τ)µ

)
= 0.

Proof. By the similar argument as that of lemma 6.2 in [11], we obtain for τ ∈ R,
K(τ) and t ∈ R+,

sup
E(‖ξ‖2)≤K2(τ)

E
(∥∥uε(τ + t, τ, ξ)− u0(τ + t, τ, ξ)

∥∥2) ≤ χ(ε), (6.1)
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where χ(ε) → 0 as ε→ 0. Note that for all t ∈ R+ we have

sup
E(‖ξ‖2)≤K2(τ)

sup
ϕ∈Lb

(
l2

)
‖ϕ‖L≤1

∣∣E (ϕ (uε (τ + t, τ, ξ)))− E
(
ϕ
(
u0 (τ + t, τ, ξ)

))∣∣
≤ sup

E(‖ξε‖2)≤K2(τ)

sup
ϕ∈Lb

(
l2

)
‖ϕ‖L≤1

E
(∣∣ϕ (uε (τ + t, τ, ξ))− ϕ

(
u0 (τ + t, τ, ξ)

)∣∣)
≤ sup

E(‖ξ‖2)≤K2(τ)

E
(
‖uε (τ + t, τ, ξ)− u0 (τ + t, τ, ξ)‖

)

≤

(
sup

E(‖ξε‖2)≤K2(τ)

E
(
‖uε (τ + t, τ, ξ)− u0 (τ + t, τ, ξ)‖2

))1
2

which along with (6.1) implies that for all t ∈ R+,

lim
ε→0

sup
E(‖ξ‖2)≤K2(τ)

sup
ϕ∈Lb

(
l2

)
‖ϕ‖L≤1

∣∣E (ϕ (uε (τ + t, τ, ξ)))− E
(
ϕ
(
u0 (τ + t, τ, ξ)

))∣∣ = 0.

This completes the proof. �

By lemma 5.4, one can verify that

K =
{
K(τ) =

⋃
ε∈[0,1]

Aε(τ) : τ ∈ R
}
∈ D. (6.2)

Then the main result of this section are given below.

Theorem 6.2 Suppose (3.1)–(3.4), (3.13), and (4.1) hold. Then for τ ∈ R,

lim
ε→0

dP2(l
2) (Aε(τ),A0(τ)) = 0. (6.3)

Proof. Based on (6.2) and lemma 6.1, we obtain (6.3) immediately from theorem
2.11. �
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