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The Ekedahl–Oort stratification and the
semi-module stratification
Ryosuke Shimada
Abstract. In this paper, we compare the J-stratification (or the semi-module stratification) and the
Ekedahl–Oort stratification of affine Deligne–Lusztig varieties in the superbasic case. In particular,
we classify the cases where the J-stratification gives a refinement of the Ekedahl–Oort stratification,
which include many interesting cases such that the affine Deligne-Lusztig variety admits a simple
geometric structure.

1 Introduction

Affine Deligne–Lusztig varieties were introduced by Rapoport [34], which play an
important role in understanding geometric and arithmetic properties of Shimura
varieties. The uniformization theorem by Rapoport and Zink [33] allows us to describe
the Newton strata of Shimura varieties in terms of Rapoport–Zink spaces, whose
underlying spaces are special cases of affine Deligne–Lusztig varieties.

Let F be a non-Archimedean local field with finite residue field Fq of prime
characteristic p, and let L be the completion of the maximal unramified extension
of F. Let σ denote the Frobenius automorphism of L/F. Further, we write O (resp. OF )
for the valuation ring of L (resp. F). Finally, we denote by ϖ a uniformizer of F (and
L) and by vL the valuation of L such that vL(ϖ) = 1.

Let G be an unramified connected reductive group over OF . Let B ⊂ G be a Borel
subgroup and T ⊂ B a maximal torus in B, both defined over OF . For μ, μ′ ∈ X∗(T)
(resp. X∗(T)Q), we write μ′ ⪯ μ if μ − μ′ is a nonnegative integral (resp. rational)
linear combination of positive coroots. For a cocharacter μ ∈ X∗(T), let ϖμ be the
image of ϖ ∈ Gm(F) under the homomorphism μ∶Gm → T .

Set K = G(O). We fix a dominant cocharacter μ ∈ X∗(T)+ and b ∈ G(L). Then the
affine Deligne–Lusztig variety Xμ(b) is the locally closed reduced Fq-subscheme of
the affine Grassmannian Gr = G(L)/K defined as

Xμ(b) = {xK ∈ Gr ∣ x−1bσ(x) ∈ Kϖμ K}.
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2 R. Shimada

The closed affine Deligne–Lusztig variety is the closed reduced Fq-subscheme of Gr
defined as

X⪯μ(b) = ⋃
μ′⪯μ

Xμ′(b).

Both Xμ(b) and X⪯μ(b) are locally of finite type in the equal characteristic case and
locally perfectly of finite type in the mixed characteristic case (cf. [19, Corollary 6.5],
[18, Lemma 1.1]). Finally, the affine Deligne–Lusztig varieties Xμ(b) and X⪯μ(b) carry
a natural action (by left multiplication) by the σ-centralizer of b

Jb(F) = {g ∈ G(L) ∣ g−1bσ(g) = b}.

The geometric properties of affine Deligne–Lusztig varieties have been studied by
many people. For example, the non-emptiness criterion and the dimension formula
are already known for the affine Deligne–Lusztig varieties in the affine Grassmannian
(see [8], [42] and [17]). Let B(G) denote the set of σ-conjugacy classes of G(L).
Thanks to Kottwitz [28], a σ-conjugacy class [b] ∈ B(G) is uniquely determined by
two invariants: the Kottwitz point κ(b) ∈ π1(G)/((1 − σ)π1(G)) and the Newton
point νb ∈ X∗(T)Q,+. Set B(G , μ) = {[b] ∈ B(G) ∣ κ(b) = κ(ϖμ), νb ⪯ μ◇}, where
μ◇ ∈ X∗(T)Q,+ denotes the σ-average of μ. Then Xμ(b) ≠ ∅ if and only if [b] ∈
B(G , μ). If this is the case, then we have

dim Xμ(b) = ⟨ρ, μ − νb⟩ −
1
2

def(b),

where ρ is the half sum of positive roots and def(b) is the defect of b. Moreover,
the parametrization problem of the set of irreducible components Irr Xμ(b) is also
known. Let Ĝ be the Langlands dual of G defined over Ql with l ≠ p. Surprisingly,
there exists a natural bijection between Jb(F)/ Irr Xμ(b) and a certain weight space
of the crystal basis Bμ of the irreducible Ĝ-module Vμ of highest weight μ. This is
conjectured by Chen and Zhu, and proved in general by Nie [32] and Zhou-Zhu [47].

Via the relationship to Shimura varieties, or more directly to Rapoport–Zink
spaces, the results on the geometry of affine Deligne–Lusztig varieties have numerous
applications to number theory (e.g., the Kudla-Rapoport program [29], Zhang’s
Arithmetic Fundamental Lemma [46], . . .). Many of these applications make use of
the special cases where X⪯μ(b) admits a simple description. The fully Hodge–Newton
decomposable case, introduced by Görtz, He and Nie [13], is one of such cases. They
proved that (G , μ) is fully Hodge–Newton decomposable if and only if X⪯μ(τμ) is
naturally a union of (classical) Deligne–Lusztig varieties (in fact, they studied the
cases with arbitrary parahoric level). This stratification is the so-called weak Bruhat-
Tits stratification, a stratification indexed in terms of the Bruhat-Tits building of
Jb(F) (which exists only in the fully Hodge–Newton decomposable case). The case
of Coxeter type is a special case of this case such that each Deligne-Lusztig variety
appearing in this stratification is of Coxeter type (cf. [14, Section 2.3]). In this case,
we drop the “weak” above. For example, the cases of Coxeter type include the case for
certain unitary groups of signature (1, n − 1) studied in [44] by Vollaard and Wedhorn,
which has been used in [29] and [46].
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The Ekedahl–Oort stratification and the semi-module stratification 3

To give a conceptual way to explain the relationship between the geometry of
affine Deligne–Lusztig varieties and the Bruhat-Tits building of Jb(F) indicated by
above examples, Chen and Viehmann [2] introduced the J-stratification, where J

stands for Jb(F). The J-strata are locally closed subsets of Gr. By intersecting each
J-stratum with X⪯μ(b), we obtain the J-stratification of X⪯μ(b) (see Section 2.4 for
details). In [9], Görtz showed that the Bruhat-Tits stratification coincides with the
J-stratification. In fact the Bruhat-Tits stratification is a refinement of the Ekedahl–
Oort stratification (see Section 2.2 for the latter). So the J-stratification is also a refine-
ment of the Ekedahl–Oort stratification when (G , μ) is of Coxeter type. This does not
hold in general even if μ is minuscule. See [2, Example 4.1] for a counterexample in
the case G = GL9. Therefore, the cases when the J-stratification is a refinement of the
Ekedahl–Oort stratification should be special cases, which are of particular interest.

Usually it seems very difficult to study the J-stratification. However, in the case
that G = GLn and b is superbasic (i.e., κ(b) ∈ Z is coprime to n), the J-stratification
coincides with a stratification by semi-modules [2, Proposition 3.4]. The notion of
semi-modules was first considered by de Jong and Oort [3] (see Section 3.1) for
minuscule cocharacters. Later Viehmann [42] introduced a notion of extended semi-
modules for arbitrary cocharacters, which generalizes the notion of semi-modules. It
played a crucial role to prove the dimension formula (for split groups) and the Chen-
Zhu conjecture mentioned above. This is because for these problems, we can reduce
the general case to the case that G = GLn and b is superbasic.

The aim of this paper is to compare the Ekedahl–Oort stratification and the semi-
module stratification (for G = GLn). To state the main results, we need some notation.
Let W0 be the (finite) Weyl group of T in G and let W̃ be the Iwahori-Weyl group of T in
G. Then W̃ = X∗(T) ⋊W0. We denote the projection W̃ →W0 by p. For μ ∈ X∗(T)+,
we denote by Adm(μ) the admissible subset of W̃ . Let S Adm(μ) be a certain subset
of Adm(μ), which is the index set of the Ekedahl–Oort stratification of X⪯μ(τμ) (see
Section 2.2). We fix (a representative in G(L) of a) length 0 element τμ ∈ W̃ whose σ-
conjugacy class in G(L) is the unique basic element in B(G , μ). Finally, let LP(w) ⊆
W0 be the length positive elements for w (see Section 2.5).

Theorem A (See Theorem 7.2) Let G = GLn and let μ ∈ X∗(T)+. Assume that τμ is
superbasic. Then the following assertions are equivalent.

(i) The J-stratification (or the semi-module stratification) of X⪯μ(τμ)(≠ ∅) gives a
refinement of the Ekedahl–Oort stratification.

(ii) For any w ∈ SAdm(μ) whose corresponding Ekedahl–Oort stratum is nonempty,
there exists v ∈ LP(w) such that v−1 p(w)v is a Coxeter element.

(iii) The cocharacter μ has one of the following forms modulo Zωn :

ω1 , ωn−1 , (n ≥ 1),
ω2 , 2ω1 , ωn−2 , 2ωn−1 , (odd n ≥ 3),
ω2 + ωn−1 , 2ω1 + ωn−1 ω1 + ωn−2 , ω1 + 2ωn−1 , (n ≥ 3),
ω3 , ωn−3 , (n = 7, 8),
3ω1 , 3ωn−1 , (n = 4, 5),
ω1 + ω2 , ω3 + ω4 , (n = 5),
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4 R. Shimada

4ω1 , ω1 + 3ω2 , 4ω2 , 3ω1 + ω2 , (n = 3),
mω1 with m odd, (n = 2).

Here, ωk denotes the cocharacter of the form (1, . . . , 1, 0, . . . , 0) in which 1 is repeated k
times. Moreover, if one of the above conditions holds, then each J-stratum is universally
homeomorphic to an affine space.

See Section 2.4 for the reason why we choose τμ . In fact, this choice is the reasonable
one suggested in [2, Remark 2.1], which is unique in this case.

Although the cocharacters ω1 and ωn−1 are of Coxeter type for any n, the cochar-
acters 2ω1 and ω2 are of Coxeter type only when n = 2 and n = 4 respectively (cf.
[14, Theorem 1.4]). In Theorem A, these two cocharacters are no longer exceptional
cases. Note also that the condition (ii) works in more general setting. In [38], we
study this condition for GLn without the superbasic assumption. It turns out that if
μ satisfies (ii), then the J-stratification of X⪯μ(τμ) gives a refinement of the Ekedahl–
Oort stratification, and each J-stratum is universally homeomorphic to the product
of a classical Deligne–Lusztig variety and an affine space. This simple description can
be considered as a natural generalization of the Bruhat-Tits stratification. Moreover,
in a joint work [37] with Schremmer and Yu, we proved that (ii) implies a simple
geometric structure on each Ekedahl–Oort stratum of X⪯μ(τμ) for general G. In fact,
the condition (ii) for GLn is also a generalization of Coxeter type [37, Theorem 4.12].
So Theorem A tells us that the two conditions which contain the cases of Coxeter type
are actually equivalent at least in the superbasic case.

If μ is minuscule and ch F = 0, then Xμ(τμ)(= X⪯μ(τμ)) for GLn is the perfection
of the special fiber of the Rapoport–Zink space attached to (GLn , μ, τμ) (cf. [14,
Section 5]). These Rapoport–Zink spaces are moduli spaces of p-divisible groups,
which have been studied in [43]. Especially in the superbasic case, each J-stratum
of Xμ(τμ) is known to be isomorphic to an affine space (before perfection). However,
even in this case, there is no good description of the closure of each J-stratum in
general. On the other hand, it turned out in [38] that if μ is a minuscule cocharacter
appearing in the list (iii) above, then each J-stratum of Xμ(τμ) can be written as
a certain union of J-strata. It is also worth mentioning that the condition (i) in
Theorem A is essential to describe this union explicitly because we need to attach
w ∈ S Adm(μ) to each J-stratum in a natural way (cf. [38, Section 2.3]).

In [1], Chen-Tong compared the Newton stratification and the Harder–
Narashimhan stratification of the flag variety attached to (G , μ) under the assumption
that μ is minuscule. As a result, they showed that the former gives a refinement
of the latter if and only if (G , μ) is weakly fully Hodge–Newton decomposable [1,
Definition 2.4]. Recently, Schremmer informed the author that there is an upcoming
work with He and Viehmann which also aims at generalizing the fully Hodge–Newton
decomposable case. For a pair (G , μ), they define a nonnegative rational number
depth(G , μ). Then it is known that (G , μ) is fully Hodge–Newton decomposable if
and only if depth(G , μ) ≤ 1 (cf. [13, Definition 3.2]). They classified the cases where
1 < depth(G , μ) < 2. The classifications of these works have similarities, and most
cocharacters in Theorem A appear in these works (see also [38, Section 1]). Moreover,
the nice stratification in [38] suggests that these cases would be new cases such that
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X⪯μ(τμ) admits a simple description (as already predicted in [1, Remark 2.16]). Thus,
for general G, both (i) and (ii) are also reasonable conditions to find such simple cases
which would have many applications as the Bruhat-Tits stratification.

It is worth mentioning that there are some other (G , μ) such that the corresponding
basic affine Deligne–Lusztig variety admits a certain simple description. For example,
the works by Fox-Imai [7] (see also [6]) and Trentin [41] are such cases. Interestingly,
both cases have depth(G , μ) = 2. It is also interesting to compare the J-stratification
and the Ekedahl–Oort stratification in these cases because the result will be useful to
find new simple cases.

Cyclic semi-modules are certain simple elements in the set of extended semi-
modules. It is easy to see that if there exists a noncyclic semi-module for μ, then the
semi-module stratification of Xμ(τμ) never gives a refinement of the Ekedahl–Oort
stratification (Corollary 3.10). Along the way of proving Theorem A, we also prove
the following classification theorem, which ensures that there exists a noncyclic semi-
module in many cases.

Theorem B (See Theorem 4.17) Every top extended semi-module (the semi-module
whose corresponding stratum is top dimensional) for μ is cyclic if and only if μ has one
of the following forms modulo Zωn :

(i) ω i with 1 ≤ i ≤ n − 1 such that i is coprime to n.
(ii) ω1 + ω i or ωn−1 + ωn−i with 1 ≤ i ≤ n − 1 such that i + 1 is coprime to n.
(iii) (nr + i)ω1 or (nr + i)ωn−1 with r ≥ 0 and 1 ≤ i ≤ n − 1 such that i is coprime to n.
(iv) (nr + i − j)ω1 + ω j or (nr + i − j)ωn−1 + ωn− j with r ≥ 1, 2 ≤ j ≤ n − 1 and 1 ≤ i ≤

n − 1 such that i is coprime to n.

The key ingredient of the proof of Theorem B is an explicit construction of top
extended semi-modules from crystal bases via the natural map in the Chen-Zhu con-
jecture, which was established in [40] by the author. This method is a completely new
way of studying the affine Deligne–Lusztig varieties. Since the Chen-Zhu conjecture
holds for arbitrary G, it is an interesting question in general to investigate the affine
Deligne–Lusztig varieties by crystal bases.

The paper is organized as follows. In Section 2, we introduce the affine Deligne–
Lusztig variety and stratifications of it. We also recall the length positive elements
and the non-emptiness criterion of the affine Deligne–Lusztig variety in the affine flag
variety. In Section 3 and Section 4, we recollect known results on semi-modules and
crystal bases respectively. Also in Section 4, we prove Theorem B using combinatorics
on Young tableaux. In Sections 5 and 6, we examine the semi-module stratification
and the Ekedahl–Oort stratification respectively by an explicit calculation of semi-
modules and elements in S Adm(μ). In particular, using the non-emptiness criterion
mentioned above, we show that Theorem A (ii) does not hold for many μ. Finally,
in Section 7, we prove the main theorem, combining Theorem B and the results in
Section 5 and Section 6.

2 Preliminaries

Keep the notations in Section 1.
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6 R. Shimada

2.1 Notation

Let Φ = Φ(G , T) denote the set of roots of T in G. We denote by Φ+ (resp. Φ−) the set
of positive (resp. negative) roots distinguished by B. Let Δ be the set of simple roots and
Δ∨ be the corresponding set of simple coroots. Let X∗(T) be the set of cocharacters,
and let X∗(T)+ be the set of dominant cocharacters.

The Iwahori-Weyl group W̃ is defined as the quotient NG(L)T(L)/T(O). This can
be identified with the semi-direct product W0 ⋉ X∗(T), where W0 is the finite Weyl
group of G. We denote the projection W̃ →W0 by p. We have a length function �∶ W̃ →
Z≥0 given as

�(w0ϖλ) = ∑
α∈Φ+ ,w0 α∈Φ−

∣⟨α, λ⟩ + 1∣ + ∑
α∈Φ+ ,w0 α∈Φ+

∣⟨α, λ⟩∣,

where w0 ∈W0 and λ ∈ X∗(T).
Let S ⊂W0 denote the subset of simple reflections, and let S̃ ⊂ W̃ denote the subset

of simple affine reflections. We often identify Δ and S. The affine Weyl group Wa is
the subgroup of W̃ generated by S̃. Then we can write the Iwahori-Weyl group as a
semi-direct product W̃ =Wa ⋊Ω, where Ω ⊂ W̃ is the subgroup of length 0 elements.
Moreover, (Wa , S̃) is a Coxeter system. We denote by ≤ the Bruhat order on W̃ . For
any J ⊆ S̃, let JW̃ be the set of minimal length representatives for the cosets in WJ/W̃ ,
where WJ denotes the subgroup of W̃ generated by J.

Let w ∈ W̃ . There exists a positive integer k such that wk = ϖλ for some λ ∈ X∗(T).
We set νw = λ/k ∈ X∗(T)Q. This is independent of the choice of k.

For w ∈Wa , we denote by supp(w) ⊆ S̃ the set of simple affine reflections occurring
in every (equivalently, some) reduced expression of w. Note that τ ∈ Ω acts on S̃
by conjugation. We define the σ-support suppσ(wτ) of wτ as the smallest τσ-stable
subset of S̃ which contains supp(w).

For w , w′ ∈ W̃ and s ∈ S̃, we write w s�→σ w′ if w′ = swσ(s) and �(w′) ≤ �(w). We
write w →σ w′ if there is a sequence w = w0 , w1 , . . . , wk = w′ of elements in W̃ such
that for any i, w i−1

s i�→σ w i for some s i ∈ S. If w →σ w′ and w′ →σ w, we write w ≈σ w′.
For α ∈ Φ, let Uα ⊆ G denote the corresponding root subgroup. We set

I = T(O) ∏
α∈Φ+

Uα(ϖO) ∏
β∈Φ−

Uβ(O) ⊆ G(L),

which is called the standard Iwahori subgroup associated to the triple T ⊂ B ⊂ G.
In the case G = GLn , we will use the following description. Let T be the torus of

diagonal matrices, and we choose the subgroup of upper triangular matrices B as Borel
subgroup. Let χ i j be the character T → Gm defined by diag(t1 , t2 , . . . , tn) ↦ t i t j

−1.
Then we have Φ = {χ i j ∣ i ≠ j}, Φ+ = {χ i j ∣ i < j}, Φ− = {χ i j ∣ i > j} and Δ = {χ i , i+1 ∣
1 ≤ i < n}. Through a natural isomorphism X∗(T) ≅ Zn , X∗(T)+ can be identified
with the set {(m1 , . . . , mn) ∈ Zn ∣ m1 ≥ ⋅ ⋅ ⋅ ≥ mn}. The finite Weyl group is the sym-
metric group of degree n. Let us write s1 = (1 2), s2 = (2 3), . . . , sn−1 = (n − 1 n). Set
s0 = ϖ χ∨1,n(1 n), where χ1,n is the unique highest root. Then S = {s1 , s2 , . . . , sn−1} and
S̃ = S ∪ {s0}. The Iwahori subgroup I ⊂ K is the inverse image of the lower triangular

matrices under the projection K → G(Fq) induced by ϖ ↦ 0. Set τ = ( 0 ϖ
1n−1 0). We
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often regard τ as an element of W̃ , which is a generator of Ω ≅ Z. Note that b ∈ GLn(L)
is superbasic if and only if [b] = [τm] in B(GLn) for some m coprime to n.

2.2 Affine Deligne–Lusztig varieties

For w ∈ W̃ and b ∈ G(L), the affine Deligne–Lusztig variety Xw(b) in the affine flag
variety G(L)/I is defined as

Xw(b) = {xI ∈ G(L)/I ∣ x−1bσ(x) ∈ IwI}.

For μ ∈ X∗(T)+ and b ∈ G(L), the affine Deligne–Lusztig variety Xμ(b) in the affine
Grassmannian Gr = G(L)/K is defined as

Xμ(b) = {xK ∈ Gr ∣ x−1bσ(x) ∈ Kϖμ K}.

The closed affine Deligne–Lusztig variety is the closed reduced Fq-subscheme of Gr
defined as

X⪯μ(b) = ⋃
μ′⪯μ

Xμ′(b).

Left multiplication by g−1 ∈ G(L) induces an isomorphism between Xμ(b) and
Xμ(g−1bσ(g)). Thus, the isomorphism class of the affine Deligne–Lusztig variety only
depends on the σ-conjugacy class of b. Moreover, we have Xμ(b) = Xμ+λ(ϖλb) for
each central λ ∈ X∗(T).

The admissible subset of W̃ associated to μ is defined as

Adm(μ) = {w ∈ W̃ ∣ w ≤ ϖw0 μ for some w0 ∈W0}.

Note that Adm(μ′) ⊆ Adm(μ) if μ′ ⪯ μ. Indeed if w ≤ ϖw0 μ′ and μ′ ⪯ μ, then w ≤
ϖw0 μ by [16, Lemma 4.5]. Set S Adm(μ) = Adm(μ) ∩ S W̃ . Then by [11, Theorem 3.2.1]
(see also [15, Section 2.5]), we have

X⪯μ(b) = ⊔
w∈S Adm(μ)

π(Xw(b)),

where π∶G(L)/I → G(L)/K is the projection. This is the so-called Ekedahl–Oort
stratification.

For any w ∈ S W̃ , set

Z(w) ∶= {w0 ∈W0 ∣ w0w = wσ(w0)}.

Lemma 2.1 Let ϖμ y ∈ S W̃ with μ dominant and y ∈W0. Assume that Z(ϖμ y) = {1}.
Then the projection map π∶Xϖ μ y(b) → Xμ(b) is injective.

Proof The proof is similar to [23, Lemma 5.4]. We may assume that Xϖ μ y(b) ≠ ∅.
Let gI, g′I ∈ Xϖ μ y(b) such that π(gI) = π(g′I). Then g′−1 g ∈ K and hence g′−1 g ∈
IxI for some x ∈W0. Since (g′−1 g)(g−1bσ(g)) = (g′−1bσ(g′))(σ(g′−1 g)), we have
(IxI)(Iϖμ yI) ∩ (Iϖμ yI)(Iσ(x)I) ≠ ∅. Note that (IxI)(Iϖμ yI) = Ixϖμ yI because
ϖμ y ∈ S W̃ . This implies that xϖμ y = ϖμ yσ(x). By our assumption, we must have
x = 1 and hence g′−1 g ∈ I as desired. ∎
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Example 2.2 Let G = GLn and let ϖμ y ∈ S W̃ with μ dominant and y ∈W0. If y is an
n-cycle and {s1 , sn−1} ⊈ Z(ϖμ), then we have Z(ϖμ y) = {1}. Indeed, for any x ∈W0,
xϖμ y = ϖμ yx implies that x yx−1 = y and x ∈ Z(ϖμ). Thus, x = yk for some 0 ≤ k ≤
n − 1 and yk μ = μ. Since {s1 , sn−1} ⊈ Z(ϖμ), we must have k = 0.

2.3 Deligne–Lusztig reduction method

The following Deligne–Lusztig reduction method was established in [10, Corol-
lary 2.5.3].

Proposition 2.3 Let w ∈ W̃ and let s ∈ S̃ be a simple affine reflection. If ch(F) > 0, then
the following two statements hold for any b ∈ G(L).
(i) If �(swσ(s)) = �(w), then there exists a Jb(F)-equivariant universal homeomor-

phism Xw(b) → Xswσ(s)(b).
(ii) If �(swσ(s)) = �(w) − 2, then there exists a decomposition Xw(b) = X1 ⊔ X2 such

that
• X1 is open and there exists a Jb(F)-equivariant morphism X1 → Xsw(b), which

is the composition of a Zariski-locally trivial Gm-bundle and a universal homeo-
morphism.

• X2 is closed and there exists a Jb(F)-equivariant morphism X2 → Xswσ(s)(b),
which is the composition of a Zariski-locally trivial A1-bundle and a universal
homeomorphism.
If ch(F) = 0, then the above statements still hold by replacing A1 and Gm by

A1,pfn and G
pfn
m respectively.

The following result is proved in [22, Theorem 2.10], which allows us to reduce the
study of Xw(b) for any w, via the Deligne–Lusztig reduction method, to the study of
Xw(b) for w of minimal length in its σ-conjugacy class.

Theorem 2.4 For each w ∈ W̃, there exists an element w′ which is of minimal length
inside its σ-conjugacy class such that w →σ w′.

Following [23, Section 3.4], we construct the reduction trees for w by induction
on �(w).

The vertices of the trees are elements of W̃ . We write x ⇀ y if x , y ∈ W̃ and
there exists x′ ∈ W̃ and s ∈ S̃ such that x ≈σ x′, �(sx′σ(s)) = �(x′) − 2 and y ∈
{sx′ , sx′σ(s)}. These are the (oriented) edges of the trees. A reduction tree of w is
a tree with these vertices and edges whose unique starting point is w and whose end
points are of minimal length in its σ-conjugacy class of W̃ .

The existence of a (not necessarily unique) reduction tree of w can be proved as
follows. If w is of minimal length in its σ-conjugacy class of W̃ , then the reduction tree
for w consists of a single vertex w and no edges. Assume that w is not of minimal length
and that a reduction tree is given for any z ∈ W̃ with �(z) < �(w). By Theorem 2.4,
there exist w′ and s ∈ S̃ with w ≈σ w′ and �(sw′σ(s)) = �(w′) − 2. By our assumption,
there exist reduction trees of sw′ and sw′σ(s). Then a reduction tree of w consists of
the given reduction trees of sw′ and sw′σ(s) and the edges w ⇀ sw′ and w ⇀ sw′σ(s).

Let T be a reduction tree of w. Recall that an end point of T is a vertex in T of
minimal length. A reduction path in T is a path p∶w ⇀ w1 ⇀ ⋅ ⋅ ⋅ ⇀ wn , where wn
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is an end point of T. Set end(p) = wn . We say that x ⇀ y is of type I (resp. II) if
�(x) − �(y) = 1 (resp. �(x) − �(y) = 2). For any reduction path p, we denote by �I(p)
(resp. �II(p)) the number of type I (resp. II) edges in p. We write Xp for a locally
closed subscheme of Xw(b) which is Jb(F)-equivariant universally homeomorphic
to an iterated fibration of type (�I(p), �II(p)) over Xend(p)(b).

Let B(W̃ , σ) be the set of σ-conjugacy classes in W̃ . Let Ψ∶B(W̃ , σ) → B(G) be
the map sending [w] ∈ B(W̃ , σ) to [ẇ] ∈ B(G), where ẇ ∈ G(L) is a lift of w. It is
known that this map is well-defined and surjective, see [21, Theorem 3.7]. By [23,
Proposition 3.9], we have the following description of Xw(b).

Proposition 2.5 Let w ∈ W̃ and T be a reduction tree of w. For any b ∈ G(L), there
exists a decomposition

Xw(b) = ⊔
p is a reduction path in T;

Ψ(end(p))=[b]

Xp .

In the case that G = GLn and b = τm with m coprime to n, we can count the
number of top irreducible components and rational points of Xw(b)0 = {gI ∈ Xw(b) ∣
κ(g) = vL(det(g)) = 0} using the reduction tree for w. By [22, Proposition 3.5], the
σ-conjugacy class of τm in W̃ is the unique element in B(W̃ , σ) which maps to
[τm] ∈ B(G) under Ψ. Note also that τm is the unique minimal length element in
its σ-conjugacy class. We define a polynomial as

Fw ,b ∶= ∑
p
(q − 1)�I(p)q�II(p) ∈ N[q − 1],

where p runs over all the reduction paths in T with end(p) = τm .

Proposition 2.6 Assume that G = GLn and b = τm with m coprime to n. Let w ∈ W̃
and let T be a reduction tree of w. Then the number of top irreducible components of
Xw(b)0 is equal to the leading coefficient of Fw ,b (as a polynomial in q − 1). Moreover,
we have

∣Xw(b)0,σ ∣ = Fw ,b ∣q=q .

Proof Note that each Jb(F)-orbit of an irreducible component of Xw(b) can be
represented by an irreducible component of Xw(b)0. Moreover, it is known that the
stabilizer in Jb(F) is a parahoric subgroup (cf. [47, Proposition 3.1.4]), i.e., Jb(F) ∩
I = {g ∈ Jb(F) ∣ κ(g) = 0}. Then the statement follows from [23, Theorem 3.4 and
Proposition 3.5] and [24, Corollary 4.4]. ∎

Remark 2.7 The polynomials Fw ,b are called class polynomials. However, the defini-
tion above is an ad hoc one. See [23, Section 3] for the definition in general and the
connection to reduction trees.

2.4 The J-stratification

For any g , h ∈ G(L), let inv(g , h) denote the relative position, i.e., the unique domi-
nant cocharacter such that g−1h ∈ Kϖinv(g ,h)K. By definition, two elements gK , hK ∈
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G(L)/K lie in the same J-stratum if and only if for all j ∈ Jb(F), inv( j, g) = inv( j, h).
Clearly, this does not depend on the choice of g , h. By [2, Proposition 2.11], the J-strata
are locally closed in Gr. By intersecting each J-stratum with Xμ(b) (resp. X⪯μ(b)), we
obtain the J-stratification of Xμ(b) (resp. X⪯μ(b)).

As explained in [2, Remark 2.1], the J-stratification heavily depends on the choice
of b in its σ-conjugacy class. So we need to fix a specific representative to compare the
J-stratification on Xμ(b) (or X⪯μ(b)) to another stratification. It is pointed out in loc.
cit that if [b] is a basic class in B(G , μ), then a reasonable choice of b is the unique
length 0 element τμ . Also, for any w ∈ W̃ , the Jẇ(F)-stratification is independent of
the choice of a lift in G(L). See [9, Lemma 2.5].

In the case where G = GLn and b = τm with m coprime to n, there is a group-
theoretic way to describe the J-stratification, which we will call the semi-module
stratification. Indeed, by [2, Remark 3.1 and Proposition 3.4], the J-stratification on
Gr coincides with the stratification

G(L)/K = ⊔
λ∈X∗(T)

IϖλK/K .

So in this case, each J-stratum of Xμ(b) (resp. X⪯μ(b)) coincides with X λ
μ(b) (resp.

X λ
⪯μ(b)) for some λ ∈ X∗(T), where X λ

μ(b) = Xμ(b) ∩ IϖλK/K (resp. X λ
⪯μ(b) =

X⪯μ(b) ∩ IϖλK/K). Set Jb(F)0 = Jb(F) ∩ K = Jb(F) ∩ I. Note that τX λ
μ(b) = Xτλ

μ (b)
and Jb(F)/Jb(F)0 = {τk Jb(F)0 ∣ k ∈ Z}. Thus,

Jb(F)X λ
μ(b) = ⊔

k∈Z
Xτk λ

μ (b) and Jb(F)X λ
⪯μ(b) = ⊔

k∈Z
Xτk λ
⪯μ (b).

See Section 3.1 for the precise definition of (extended) semi-modules. As we will
explain in Section 3.2, the set {λ ∈ X∗(T) ∣ X λ

μ(b) ≠ ∅} can be regarded as semi-
modules for μ. Let wmax be the longest element in W0. Then we have

{λ ∈ X∗(T) ∣ X λ
−wmax μ(b−1) ≠ ∅} = {−wmax λ ∈ X∗(T) ∣ X λ

μ(b) ≠ ∅}.

Indeed it is easy to check that the image of X λ
μ(b) under the automorphism of Gr by

gK ↦ w t
max g−1K is X−wmax λ

−wmax μ(b−1). This gives the description of “dual” semi-modules
for μ.

2.5 Length positive elements

We denote by δ+ the indicator function of the set of positive roots, i.e.,

δ+∶Φ → {0, 1}, α ↦
⎧⎪⎪⎨⎪⎪⎩

1 (α ∈ Φ+)
0 (α ∈ Φ−).

Note that any element w ∈ W̃ can be written in a unique way as w = xϖμ y with μ
dominant, x , y ∈W0 such that ϖμ y ∈ S W̃ . We have p(w) = x y and �(w) = �(x) +
⟨μ, 2ρ⟩ − �(y). We define the set of length positive elements by

LP(w) = {v ∈W0 ∣ ⟨vα, y−1 μ⟩ + δ+(vα) − δ+(x yvα) ≥ 0 for allα ∈ Φ+}.
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Then we always have y−1 ∈ LP(w). Indeed y satisfies the condition that ⟨α, μ⟩ ≥
δ+(−y−1α) for allα ∈ Φ+. Since δ+(α) + δ+(−α) = 1, we have

⟨y−1α, y−1 μ⟩ + δ+(y−1α) − δ+(xα) = ⟨α, μ⟩ − δ+(−y−1α) + δ+(−xα) ≥ 0.

Lemma 2.8 For any w = xϖμ y ∈ W̃ as above, we define

Φw ∶= {α ∈ Φ+ ∣ ⟨α, μ⟩ − δ−(y−1α) + δ−(xα) = 0}.
Here δ− denotes the indicator function of the set of negative roots. Then we have

y LP(w) = {r−1 ∈W0 ∣ r(Φ+/Φw) ⊂ Φ+ or equivalently, r−1Φ+ ⊂ Φ+ ∪ −Φw}.
Proof Let r ∈W0 such that r(Φ+/Φw) ⊂ Φ+. Let α ∈ Φ+. If r−1α ∈ Φ+, then we can
check that y−1r−1 ∈ LP(w) similarly as the case r = 1 above. If r−1α ∈ Φ−, then we must
have r−1α ∈ −Φw . Since δ−(−α) = δ+(α), it follows that

⟨y−1r−1α, y−1 μ⟩ + δ+(y−1r−1α) − δ+(xr−1α)
= − (⟨−r−1α, μ⟩ − δ−(−y−1r−1α) + δ−(−xr−1α)) = 0.

Thus, y−1r−1 ∈ LP(w). This shows {r−1 ∈W0 ∣ r(Φ+/Φw) ⊂ Φ+} ⊆ y LP(w).
Let v ∈ LP(w) and let α ∈ Φ+. If yvα ∈ Φ−, then

⟨−yvα, μ⟩ − δ−(−vα) + δ−(−x yvα) = −(⟨vα, y−1 μ⟩ + δ+(vα) − δ+(x yvα)) ≤ 0.

On the other hand, by the characterization of y above, we have

⟨−yvα, μ⟩ − δ−(−vα) + δ−(−x yvα) = ⟨−yvα, μ⟩ − δ+(vα) + δ+(x yvα) ≥ 0.

Thus, ⟨−yvα, μ⟩ − δ−(−vα) + δ−(−x yvα) = 0 and hence yvα ∈ −Φw . This shows
y LP(w) ⊆ {r−1 ∈W0 ∣ r(Φ+/Φw) ⊂ Φ+}. The proof is finished. ∎

The notion of length positive elements is defined by Schremmer [35]. The descrip-
tion of LP(w) in Lemma 2.8 is due to Lim [30].

We say that the Dynkin diagram of G is σ-connected if it cannot be written as a
union of two proper σ-stable subdiagrams that are not connected to each other. The
following theorem is a refinement of the non-emptiness criterion in [12], which is
conjectured by Lim [30] and proved by Schremmer [36, Proposition 5].

Theorem 2.9 Assume that the Dynkin diagram of G is σ-connected. Let b ∈ G(L) be
a basic element with κ(b) = κ(ẇ). Then Xw(b) = ∅ if and only if both of the following
two conditions are satisfied:
(i) ∣Wsuppσ(w)∣ is not finite.

(ii) There exists v ∈ LP(w) such that suppσ(σ−1(v)−1 p(w)v) ⊊ S.

Remark 2.10 If κ(b) ≠ κ(ẇ), then Xw(b) = ∅.

Remark 2.11 Let w ∈ W̃ , w0 ∈W0 and let J ⊆ Δ such that J = σ(J). Then we say that
w is a (J , w0 , σ)-alcove element if the following conditions are both satisfied:
(1) w−1

0 wσ(w0) ∈ W̃J ∶= X∗(T) ⋊WJ , and
(2) For any α ∈ w0(Φ+/ΦJ), Uα ∩ w I ⊆ Uα ∩ I, where ΦJ denotes the root system

generated by J.
In [36, Proposition 5], the condition (ii) in Theorem 2.9 is written as
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(ii)’ There exist J ⊊ Δ and w0 ∈W0 such that w is a (J , w0 , σ)-alcove element.
The equivalence of (ii) and (ii)’ follows from [30, Lemmas 3.7 and 3.9] (see also [37,
Definition 2.3] and the comment right after it).

In the case G = GLn , there exists a length-preserving automorphism ς of W̃
defined as

w0ϖλ ↦ wmaxw0w−1
maxϖ−wmax λ , w0 ∈W0 , λ ∈ X∗(T).

Note that ς(τm) = τ−m , ς(s0) = s0 and ς(s i) = sn−i for 1 ≤ i ≤ n − 1. Let w = xϖμ y be
as above. For any α ∈ Φ+ and v ∈ LP(w), we have

⟨ς(v)(−wmaxα), ς(y−1)(−wmax μ)⟩ + δ+(ς(v)(−wmaxα)) − δ+(ς(x y)ς(v)(−wmaxα))
= ⟨vα, y−1 μ⟩ + δ+(vα) − δ+(x yvα) ≥ 0.

Thus, LP(ς(w)) = ς(LP(w)) = wmax LP(w)w−1
max. In particular, there exists v ∈

LP(w) such that v−1 p(w)v is a Coxeter element if and only if the same is true for
ς(w) and LP(ς(w)).

3 Semi-modules

From now and until the end of this paper, we set G = GLn and b = τm with m coprime
to n. For μ ∈ X∗(T)+, let μ(i) denotes the i-th entry of μ. Then [τm] ∈ B(G , μ) if
and only if m = μ(1) + ⋅ ⋅ ⋅ + μ(n). We assume this from now. Also, without loss of
generality, we may and will assume that μ(n) = 0. Recall that wmax is the longest
element in W0.

3.1 Extended semi-modules

Here we recall the definition of extended semi-modules in a combinatorial way from
[42]. Note that although we choose the subgroup of upper triangular matrices B as a
Borel subgroup in this paper, the fixed Borel subgroup in [42] is the subgroup of lower
triangular matrices.

Definition 3.1 A semi-module for m, n is a subset A ⊂ Z that is bounded below and
satisfies m + A ⊂ A and n + A ⊂ A. Set Ā = A/(n + A). The semi-module A is called
normalized if∑a∈Ā a = n(n−1)

2 .

For a semi-module A, there exists a unique μ′ ∈ Nn satisfying the following condi-
tion: Let a0 =min Ā and let inductively a i = a i−1 +m − μ′(i)n for i = 1, . . . , n. Then
a0 = an and {a0 , a1 , . . . , an−1} = Ā. We call μ′ the type of A.

Lemma 3.2 There is a bijection between the set of normalized semi-modules for m, n
and the set of possible types μ′ ∈ Nn with νb ⪯ wmax μ′.

Proof This is [42, Lemma 3.3]. ∎

Definition 3.3 An extended semi-module (A, φ) for μ ∈ X∗(T)+ is a normalized
semi-module A for m, n together with a function φ∶Z→ N ∪ {−∞} satisfying the
following properties:
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(1) φ(a) = −∞ if and only if a ∉ A.
(2) φ(a + n) ≥ φ(a) + 1 for all a ∈ Z.
(3) φ(a) ≤max{k ∣ a +m − kn ∈ A} for all a ∈ A. If b ∈ A for all b ≥ a, then the two

sides are equal.
(4) There is a decomposition of A into disjoint union of sequences a1

j , . . . , an
j with

j ∈ N and the following properties:
(a) φ(a l

j+1) = φ(a l
j) + 1.

(b) If φ(a l
j + n) = φ(a l

j) + 1, then a l
j+1 = a l

j + n. Otherwise a l
j+1 > a l

j + n.
(c) The n-tuple (φ(a l

0)) is a permutation of μ.
An extended semi-module such that the equality holds in (3) for all a ∈ A is called
cyclic.

For any λ ∈ X∗(T), we denote by λdom the dominant conjugate of λ. Let μ′ be the
type of a semi-module for m, n. Let φ be a function such that (1) and the equation
in (3) hold. Then it is easy to check that (A, φ) is a cyclic semi-module for μ′dom. In
general, the following lemma holds.

Lemma 3.4 Let (A, φ) be an extended semi-module for μ and let μ′ be the type of
A. Then μ′dom ⪯ μ and (A, φ) is cyclic if and only if μ′ ∈W0 μ. In particular, if μ is
minuscule, then all extended semi-modules for μ are cyclic.

Proof See [42, Lemma 3.6 and Corollary 3.7]. See also [17, Lemma 5.9]. ∎
Let e0 , . . . , en−1 be the standard basis of Ln . Then the lattice On is generated by

e0 , . . . , en−1. For i ∈ Z, we define e i by e i+n = ϖe i . Note that we have τe i = e i+1 for any
i. In the sequel, we identify Gr and {M ⊂ Ln lattice} by gK ↦ gOn .

Let Xμ(b)0 be a Fq-subscheme of Xμ(b) defined as Xμ(b)0 = {gK ∈ Xμ(b) ∣
κ(g) = 0}. We associate to M ∈ Xμ(b)0 an extended semi-module for μ. Let v ∈ Ln .
Then we can write v = ∑i∈Z[α i]e i with α i ∈ Fq and α i = 0 for sufficiently small i. Here,
[α i] denotes the Teichmüller lift of α i if ch F = 0 and [α i] = α i if ch F > 0. Let

I∶ Ln/{0} → Z, v ↦min{i ∣ α i ≠ 0}.
For M ∈ Gr, we define the set

A(M) = {I(v) ∣ v ∈ M/{0}}.
It is easy to check that if M ∈ Xμ(b)0, then A(M) is a normalized semi-module for
m, n. We also define φ(M)∶Z→ N ∪ {−∞} by

a ↦
⎧⎪⎪⎨⎪⎪⎩

max{k ∣ ∃v ∈ M/{0} with I(v) = a, ϖ−k bσ(v) ∈ M} (a ∈ A(M))
−∞ (a ∉ A(M)).

Lemma 3.5 Let M ∈ Xμ(b)0. Then (A(M), φ(M)) is an extended semi-module
for μ.

Proof See [42, Lemma 4.1]. ∎
For an extended semi-module (A, φ) for μ, let

SA,φ = {M ∣ A(M) = A, φ(M) = φ} ⊂ Gr.
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Lemma 3.6 The set SA,φ is a locally closed subscheme of Xμ(b)0.
Proof See [42, Lemma 4.2]. ∎

Let Aμ be the set of extended semi-modules for μ. Set A
top
μ = {(A, φ) ∈ Aμ ∣

dim SA,φ = dim Xμ(b)}. By Proposition 3.7 below, Jb(F)/ Irr Xμ(b) is parametrized
by A

top
μ . In the sequel, we also use the symbol A to denote the affine space as usual.

We hope our notation will not cause confusions.
For an extended semi-module (A, φ) for μ, let

V(A, φ) = {(a, c) ∈ A× A ∣ c > a, φ(a) > φ(c) > φ(a − n)}.
Proposition 3.7 Let (A, φ) be an extended semi-module for μ. There exists a nonempty
open subscheme UA,φ ⊆ A∣V(A,φ)∣ and a morphism UA,φ → SA,φ which is bijective
on Fq-valued points. In particular, SA,φ is irreducible and of dimension ∣V(A, φ)∣.
Moreover, if (A, φ) is a cyclic extended semi-module, then UA,φ = A∣V(A,φ)∣.
Proof See [42, Theorem 4.3]. ∎

Here we briefly describe UA,φ and the map UA,φ → SA,φ . For any x ∈ F∣V(A,φ)∣
q =

A∣V(A,φ)∣, we denote the coordinate of x by xa ,c . We associate to every x a set of
elements {v(a) ∈ Ln ∣ a ∈ A} which satisfies the following equations.

If a =max Ā, then

v(a) = ea + ∑
(a ,c)∈V(A,φ)

[xa ,c]v(c).

For any other element a ∈ Ā, we want

v(a) = v′ + ∑
(a ,c)∈V(A,φ)

[xa ,c]v(c),

where v′ = ϖ−φ(a′)bσ(v(a′)) for a′ being minimal satisfying a′ +m − φ(a′)n = a.
For a ∈ n + A, we want

v(a) = ϖv(a − n) + ∑
(a ,c)∈V(A,φ)

[xa ,c]v(c).

Here [xa ,c] denotes the Teichmüller lift of xa ,c if ch F = 0 and [xa ,c] = xa ,c if ch F > 0.
The set {v(a) ∈ Ln ∣ a ∈ A} is uniquely determined by the equations above. Hence,
the map A∣V(A,φ)∣ → Gr, x ↦ ⟨v(a)⟩a∈A is well-defined. By applying σ on the above
equations for x, we can easily check that this map is compatible with the action of σ , i.e.,
σ(x) ∶= (xq

a ,c)maps to σ⟨v(a)⟩a∈A. Let UA,φ be the preimage of SA,φ under this map.
Then SA,φ and hence UA,φ are stable under σ (because σ(b) = b). In particular, we
have ∣Sσ

A,φ ∣ = ∣U σ
A,φ ∣. So if (A, φ) is cyclic, then ∣Sσ

A,φ ∣ = q∣V(A,φ)∣. Although not needed
in this paper, it is also worth mentioning that if (A, φ) is noncyclic, then SA,φ is never
universally homeomorphic to an affine space.

Proposition 3.8 If (A, φ) is noncyclic, then ∣Sσ
A,φ ∣ < q∣V(A,φ)∣. In particular, SA,φ is

never universally homeomorphic to an affine space.
Proof Let x ∈ A∣V(A,φ)∣. Note that if xa ,c = 0 for all (a, c) ∈ V(A, φ), then v(a) = ea
for all a ∈ A. Set M = ⟨ea⟩a∈A. Then it is easy to check that (A(M), φ(M)) is a cyclic
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semi-module for the dominant conjugate of the type of A(M). So if (A, φ) is not cyclic,
then M ∉ SA,φ and hence ∣Sσ

A,φ ∣ = ∣U σ
A,φ ∣ < q∣V(A,φ)∣. The last statement follows from

[4, Propositions 4.1.12 and 8.1.11 (ii)]. ∎

3.2 The stratification by extended semi-modules

For any λ ∈ X∗(T), set Aλ = {(i − 1) + λ(i)n + kn ∣ 1 ≤ i ≤ n, k ∈ N}. It is easy to
check that for a lattice M ∈ Iϖλ K/K, we have A(M) = Aλ . Thus, we have the following
lemma, which relates the semi-module stratification to the stratification by extended
semi-modules.

Lemma 3.9 Let λ ∈ X∗(T) with λ(1) + ⋅ ⋅ ⋅ + λ(n) = 0. Then X λ
μ(b) ≠ ∅ if and only

if there exists an extended semi-module (Aλ , φ) for μ. If this is the case, we have

X λ
μ(b) = ⊔

φ
SAλ ,φ ,

where φ runs over all the functions Z→ N ∪ {−∞} such that the pair of Aλ and the
function is an extended semi-module for μ.

For λ ∈ X∗(T) with X λ
μ(b) ≠ ∅, let 1 ≤ i0 ≤ n such that (i0 − 1) + λ(i0)n =

min Aλ . Let 1 ≤ m0 < n be the residue of m modulo n, and let λb ,dom be ((⌊m
n ⌋ +

1)(m0) , ⌊m
n ⌋
(n−m0)). Then

(i0 − 1) + λ(i0)n +m − (λ(i0) + λb ,dom(cm(i0)) − λ(cm(i0)))n
= cm(i0) − 1 + λ(cm(i0))n ∈ Aλ ,

where c = s1 ⋅ ⋅ ⋅ sn−1. Repeating the same argument, we can check that the type of Aλ

is a conjugate of bλ − λ = cm λ + λb ,dom − λ. By Lemma 3.4, an extended semi-module
(Aλ , φ) for μ is cyclic if and only if bλ − λ ∈W0 μ.

Corollary 3.10 Let μ ∈ X∗(T)+. If there exists a noncyclic semi-module for μ, then the
semi-module stratification of X⪯μ(b) is not a refinement of the -Oort stratification.

Proof Let (Aλ , φ) be a noncyclic semi-module for μ. Then we have (bλ − λ)dom ≺ μ
by Lemma 3.4. On the other hand, there always exists a cyclic semi-module (Aλ , φ′)
for (bλ − λ)dom. By Lemma 3.9, X λ

⪯μ(b) intersects both Xμ(b) and X(bλ−λ)dom(b).
This implies that X λ

⪯μ(b) is not contained in any set of the form π(Xw(b))with w ∈ W̃ ,
which finishes the proof. ∎

For μ = (μ(1), . . . , μ(n − 1), 0) ∈ X∗(T)+, set μ∗ = (μ(1), μ(1) − μ(n − 1), . . . ,
μ(1) − μ(2), 0) and b∗ = τnμ(1)−m . If (Aλ , φ) is an extended semi-module for μ, then
there exists φ′∶Z→ N ∪ {−∞} such that (A−wmax λ , φ′) is an extended semi-module
for μ∗ (see Section 2.4). Clearly, bλ − λ ∈W0 μ if and only if b∗(−wmax λ) +wmax λ ∈
−W0 μ∗. Thus, we have the following lemma.

Lemma 3.11 There exists a noncyclic extended semi-module for μ if and only if the
same is true for μ∗.
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3.3 The minuscule case

In this subsection, we treat the minuscule case. Consider Gd with a Frobenius
automorphism σ● given by

(g1 , g2 , . . . , gd) ↦ (g2 , . . . , gd , σ(g1)).

For μ● = (μ1 , . . . , μd) ∈ X∗(T)d
+ and b● = (1, . . . , 1, b) ∈ Gd(L) with b ∈ G(L), we

define Xμ●(b●) ⊂ Grd = Gd(L)/Kd as

Xμ●(b●) = {x●Kd ∈ Grd ∣ x−1
● b●σ●(x●) ∈ Kd ϖμ●Kd}.

Let us denote by Irr Xμ●(b●) the set of irreducible components of Xμ●(b●).
Through the identification Jb(F) ≅ Jb●(F) given by g ↦ (g , . . . , g), this set is
equipped with an action of Jb(F).

For minuscule μ● ∈ X∗(T)d
+ and b● = (1, . . . , 1, b) ∈ Gd(L), we define

Atop
μ● ∶= {λ● ∈ X∗(T)d ∣ dim X λ●

μ●(b●) = dim Xμ●(b●)}.

Here, X λ●
μ●(b●) denotes Xμ●(b●) ∩ Id ϖλ●Kd/Kd . For λ● , λ′● ∈ A

top
μ● , we write λ● ∼ λ′● if

λ● = τk λ′● = (τk λ′1 , . . . , τk λ′d) for some k ∈ Z. Let Atop
μ● denote the set of equivalence

classes with respect to ∼, and let [λ●] ∈ Atop
μ● denote the equivalence class represented

by λ● ∈ Atop
μ● . Then Jb(F)/ Irr Xμ●(b●) is parametrized by A

top
μ● as follows.

Proposition 3.12 Assume that μ● ∈ X∗(T)d
+ is minuscule. Then the map λ● ↦

X λ●
μ●(b●) induces a bijection

Atop
μ● ≅ Jb(F)/ Irr Xμ●(b●).

Proof See [18, Proposition 1.6]. Note that we have StabJb(F)(X λ●
μ●(b●)) = Jb(F)0. ∎

We also define

A
j
μ● ∶= {λ● ∈ X∗(T)d ∣ dim X λ●

μ●(b●) = j},

for 1 ≤ j ≤ dim Xμ●(b●). We can similarly consider the equivalence relation ∼ as above.
If d = 1, thenA

j
μ ∶= A j

μ/ ∼ can be identified with (extended) semi-modules for μ whose
corresponding stratum has dimension j, see Lemma 3.4 and Lemma 3.9.

Proposition 3.13 Set μ = ω i . Then we always have ∣Atop
μ ∣ = ∣A0

μ ∣ = 1. If i = 2, n − 2, then
∣A j

μ ∣ = 1 for all 0 ≤ j ≤ dim Xμ(b). If i = 3, n − 3, then ∣Adim Xμ(b)−1
μ ∣ = 2.

Proof We can easily check the equalities in the proposition using [18, Theorem 4.16]
(cf. [3, Remark 6.16]), which gives a combinatorial way of computing ∣A j

μ ∣. In fact, all
of the assertions except the last assertion follow from [43, Proposition 5.5]. ∎

Example 3.14 We always have A0
ω i
= {[0]}.

4 Crystal bases

Keep the notations and assumptions in Section 3.
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The Ekedahl–Oort stratification and the semi-module stratification 17

4.1 Crystals and young tableaux

In this subsection, we first recall the definition of Ĝ-crystals from [45, Definition 3.3.1].

Definition 4.1 A (normal) Ĝ-crystal is a finite set B, equipped with a weight map
wt∶B→ X∗(T), and operators ẽα , f̃α ∶B→ B ∪ {0} for each α ∈ Δ, such that

(i) for every b ∈ B, either ẽαb = 0 or wt(ẽαb) = wt(b) + α∨, and either f̃αb = 0 or
wt( f̃αb) = wt(b) − α∨,

(ii) for all b, b′ ∈ B one has b′ = ẽαb if and only if b = f̃αb′, and
(iii) if εα , ϕα ∶B→ Z, α ∈ Δ are the maps defined by

εα(b) =max{k ∣ ẽk
αb ≠ 0} and ϕα(b) =max{k ∣ f̃ k

α b ≠ 0},
then ϕα(b) − εα(b) = ⟨α, wt(b)⟩.

For a Ĝ-crystal B, let B∗ = {b∗ ∣ b ∈ B} be the dual Ĝ-crystal. Setting 0∗ = 0, the maps
are given by

wt(b∗) = −wt(b), ẽα(b∗) = ( fαb)∗, and f̃α(b∗) = (ẽαb)∗ .

For λ ∈ X∗(T), we denote by B(λ) the set of elements with weight λ for Ĝ, called
the weight space with weight λ for Ĝ. Let B1 and B2 be two Ĝ-crystals. A morphism
B1 → B2 is a map of underlying sets compatible with wt, ẽα and f̃α .

In the sequel, we write ẽ i and f̃ i (resp. ε i and ϕ i ) instead of ẽχ i , i+1 and f̃χ i , i+1 (resp.
εχ i , i+1 and ϕχ i , i+1 ) for simplicity.

Example 4.2 Let Bμ be the crystal basis of the irreducible Ĝ-module of highest
weight μ ∈ X∗(T)+. Then Bμ is a crystal. We call Bμ a highest weight crystal of highest
weight μ (cf. [45, Definition 3.3.1(3)]). There exists a unique element bμ ∈ Bμ satisfying
ẽαbμ = 0 for all α, wt(bμ) = μ, and Bμ is generated from bμ by the operators f̃α .

We give a realization of Bμ by Young tableaux. This allows us to treat it in a
combinatorial way.

Definition 4.3 A Young diagram is a collection of boxes arranged in left-justified rows
with a weakly decreasing number of boxes in each row. For a dominant cocharacter μ ∈
X∗(T)+, we denote by Yμ the Young diagram having μ(i) boxes in the ith row. A skew
Young diagram is a diagram obtained by removing a smaller Young diagram from a
larger one that contains it. For dominant cocharacters μ, ν ∈ X∗(T)+ with ν(i) ≤ μ(i),
we denote by Yμ/ν the skew Young diagram obtained by removing Yν from Yμ .

Definition 4.4 A tableau is a (skew) Young diagram filled with numbers, one for each
box. A semi-standard tableau is a tableau obtained from a (skew) Young diagram by
filling the boxes with the numbers 1, 2, . . . , n subject to the conditions
(i) the entries in each row are weakly increasing from left to right,

(ii) the entries in each column are strictly increasing from top to bottom.
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1 1 2 4
2 3 3
4

2 4
3 3

4

Let Kμ/ν(λ) be the number of all semi-standard tableaux b of shape Yμ/ν such that
the number of i appearing in b is λ(i) for 1 ≤ i ≤ n. This is sometimes called the
Kostka number. In Section 4.3, we need the following well-known result.

Proposition 4.5 Let λ, λ′ ∈ X∗(T)+. If λ ⪯ λ′, then Kμ/ν(λ′) ≤ Kμ/ν(λ). In particular,
Kμ/ν(λ′) ≠ 0 implies Kμ/ν(λ) ≠ 0.

Proof See [5, Proposition 1.2] and the remark right after the proposition. ∎

We denote by B(Y) the set of all semi-standard tableaux of shape Y.

Theorem 4.6 Let μ = (μ(1), . . . , μ(n)) ∈ X∗(T)+/{0} with μ(n) = 0. Then B(Yμ)
has a crystal structure. Moreover, the crystal B(Yμ) is isomorphic to Bμ .

Proof This is [25, Theorems 7.3.6 and 7.4.1]. ∎

In the sequel, we identify Bμ and B(Y) by Theorem 4.6. For a semi-standard
tableau b ∈ Bμ , let k i denote the number of i’s appearing in b. Then the weight map wt
on Bμ is given by wt(b) = (k1 , . . . , kn). The following result is an explicit description
of the actions of ẽ i and f̃ i on Bμ .

Theorem 4.7 The actions of ẽ i and f̃ i on b ∈ Bμ can be computed by following the steps
below:

(i) In the Far-Eastern reading b1 ⊗ ⋅ ⋅ ⋅ ⊗ bN of b, we identify i (resp. i+1 ) by + (resp.
−) and neglect other boxes.

(ii) Let u i(b) = u1u2 ⋅ ⋅ ⋅u l (u j ∈ {±}) be the sequence obtained by (i). If there is “+−”
in u(b), then we neglect such a pair. We continue this procedure as far as we can.

(iii) Let u i(b)red = − ⋅ ⋅ ⋅ − + ⋅ ⋅ ⋅ + be the sequence obtained by (ii). Then ẽ i changes the
rightmost− in u i(b)red to+, and f̃ i changes the leftmost+ in u i(b)red to−. If there
is no such − (resp. +), then ẽ i b = 0 (resp. f̃ i b = 0).

Moreover, ε i(b) (resp. ϕ i(b)) is equal to the number of − (resp. +) in u i(b)red.

Proof The first statement is [27, Theorem 3.4.2]. The second statement follows
immediately from this. ∎

Next we recall the Weyl group action on crystals. Let B be a Ĝ-crystal. For any
1 ≤ i ≤ n − 1 and b ∈ B, we set

s i b =
⎧⎪⎪⎨⎪⎪⎩

f̃ ⟨χ i , i+1 ,wt(b)⟩
i b if ⟨χ i , i+1 , wt(b)⟩ ≥ 0

ẽ−⟨χ i , i+1 ,wt(b)⟩
i b if ⟨χ i , i+1 , wt(b)⟩ ≤ 0.

Then we have the obvious relation

wt(s i b) = s i(wt(b)).
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The Ekedahl–Oort stratification and the semi-module stratification 19

By [26, Theorem 7.2.2], this extends to the action of the Weyl group W0 on B, which is
compatible with the action on X∗(T). For example, wmaxbμ ∈ Bμ has the lowest weight
wmax μ. It is well-known that the dual of Bμ is isomorphic to B−wmax μ (see for example
[25, Lemma 3.5.2]).

Lemma 4.8 Let w , w′ ∈W0 and b ∈ B. If w(wt(b)) = w′(wt(b)), then wb = w′b.

Proof This is [40, Lemma 3.10]. ∎

Let b ∈ B(λ). If λ′ is a conjugate of λ, i.e., there exists w ∈W0 such that λ′ = wλ,
then we call wb the conjugate of b with weight λ′. By Lemma 4.8, this does not depend
on the choice of w.

Finally we consider the minuscule case. If μ ∈ X∗(T)+ is minuscule, then wt∶Bμ →
X∗(T) gives an identification between Bμ and the set of cocharacters which are con-
jugate to μ. Suppose μ● = (μ1 , . . . , μd) ∈ X∗(T)d

+ is minuscule. We can also identify
BĜd

μ● ∶= Bμ1 × ⋅ ⋅ ⋅ ×Bμd with the set of cocharacters in X∗(T)d which are conjugate to
μ●.

For 1 ≤ k < n, let ωk be the cocharacter of the form (1, . . . , 1, 0, . . . , 0) in which 1 is
repeated k times. Assume that each μ i is equal to ωk i for some 1 ≤ k i < n and i ≤ j if
and only if k i ≤ k j . In the rest of paper, we call such μ● Far-Eastern. If μ● is Far-Eastern,
then ∣μ●∣ ∶= μ1 + ⋅ ⋅ ⋅ + μd is dominant and its last entry is 0. Let FE∶B∣μ●∣ → BĜd

μ● be a
map defined by decomposing b ∈ Bμ into its columns from right to left. We call FE the
Far-Eastern reading.

4.2 Construction of extended semi-modules

In this subsection, we recall from [40, Section 4.2] the way of constructing extended
semi-modules. See [40, Section 4.3] for some examples of computation. Let μ● ∈
X∗(T)d

+ be a Far-Eastern cocharacter. Set μ = ∣μ●∣.
Let λb denote the cocharacter whose i-th entry is ⌊ im

n ⌋ − ⌊
(i−1)m

n ⌋. Set λop
b =

wmax λb . For any b ∈ Bμ(λb), we denote by bop the conjugate of b with weight λop
b . Let

1 ≤ m0 < n be the residue of m modulo n. Note that each entry of λb is ⌊m
n ⌋ or ⌊m

n ⌋ + 1
and λb(i) = λb(n + 1 − i) for any 2 ≤ i ≤ n − 1. Let i0 = 1 < i1 < i2 < ⋅ ⋅ ⋅ < im0 = n be
the integers such that λb(i1) = λb(i2) = ⋅ ⋅ ⋅ = λb(im0) = ⌊m

n ⌋ + 1. Then

λop
b = w′max λb , wherew′max = (s im0−1 ⋅ ⋅ ⋅ sn−1) ⋅ ⋅ ⋅ (s i1 ⋅ ⋅ ⋅ s i2−1)(s1 ⋅ ⋅ ⋅ s i1−1).

Here λb(i) = ⌊m
n ⌋ (resp. λb(i + 1) = ⌊m

n ⌋) if and only if s i−1s i ≤ w′max (resp. s i s i+1 ≤
w′max). By Lemma 4.8, it follows that bop can be computed by the action of the
Coxeter element w′max. In this computation, each s i acts as the action of ẽ i because
⌊m

n ⌋ − (⌊
m
n ⌋ + 1) = −1. Therefore, if we write

FE(b) = (b1 , . . . , bd)

then there exists (w1 , . . . , wd) ∈W d
0 such that

FE(bop) = (w1b1 , . . . , wd bd)

and each simple reflection appears exactly once in some supp(w j).
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Lemma 4.9 The tuple (w1 , . . . , wd) ∈W d
0 as above is uniquely determined by b. In

particular, w(b) ∶= w−1
1 ⋅ ⋅ ⋅w−1

d is a Coxeter element uniquely determined by b.

Proof This is [40, Lemma 4.3]. ∎

Set w(b) = w−1
1 ⋅ ⋅ ⋅w−1

d and Υ(b) = {υ ∈W0 ∣ υ−1cm υ = w(b)}, where
c = s1s2 ⋅ ⋅ ⋅ sn−1. Clearly ∣Υ(b)∣ = n.

For any b′ ∈ Bμ , set

ξ(b′) = (ε1(b′) + ⋅ ⋅ ⋅ + εn−1(b′), ε2(b′) + ⋅ ⋅ ⋅ + εn−1(b′), . . . , εn−1(b′), 0).

Let λ−b be the anti-dominant conjugate of λb , and let b− be the conjugate of b with
weight λ−b . For any b ∈ Bμ(λb) and υ ∈ Υ(b), we define ξ●(b, υ) ∈ X∗(T)d by

ξ j(b, υ) = υξ(υ−1b−) + ∑
1≤ j′< j

υw−1
1 ⋅ ⋅ ⋅w−1

j′−1 wt(b j′) (1 ≤ j ≤ d).

Let C ∈ Irr Xμ(b)0. By Proposition 3.7, C = SA,φ for some (A, φ) ∈ Atop
μ . On the

other hand, by Proposition 3.12 and [32, Proposition 3.13], there exists a unique λ● ∈
A

top
μ● with λ1(1) + ⋅ ⋅ ⋅ + λ1(n) = 0 such that C = pr(X λ●

μ●(b●)). Here pr ∶ Grd → Gr
denotes the projection to the first factor. The following theorem is established in [40,
Theorem 4.4] by the author.

Theorem 4.10 We have υξ j(b,υ) = υw−1
1 ⋅ ⋅ ⋅w−1

j−1 and ξ●(b, υ) ∈ Atop
μ● . If υ′ is an element

in Υ(b) different from υ′, then ξ●(b, υ) ∼ ξ●(b, υ′). Let ξ0
●(b) be the unique cocharacter

in [ξ●(b, υ)] such that ξ0
1 (b)(1) + ⋅ ⋅ ⋅ + ξ0

1 (b)(n) = 0. Then for any (A, φ) ∈ Atop
μ ,

there exists a unique b ∈ Bμ(λb) such that SA,φ = pr(X ξ0
●(b)

μ● (b●)).

Proof This is [40, Theorem 4.4]. ∎

This correspondence between A
top
μ and Bμ(λb) is compatible with the natural

bijection in the Chen-Zhu conjecture constructed by Nie in [32].

Corollary 4.11 Let (A, φ) ∈ Atop
μ . Let b ∈ Bμ(λb) such that SA,φ = pr(X ξ0

●(b)
μ● (b●)).

Then (A, φ) is cyclic if and only if

∑
1≤ j≤d

w−1
1 ⋅ ⋅ ⋅w−1

j−1 wt(b j) ∈W0 μ.

Proof By Lemma 3.9, we have A = Aξ0
1 (b). Recall that (A, φ) is cyclic if and only

if bξ0
1 (b) − ξ0

1 (b) ∈W0 μ. Since bξ0
1 (b) − ξ0

1 (b) is a conjugate of bξ1(b, υ) − ξ1(b, υ),
this is also equivalent to υ−1bξ1(b, υ) − υ−1 ξ1(b, υ) ∈W0 μ. By Theorem 4.10,

υ−1bξ1(b, υ) − υ−1 ξ1(b, υ) = ∑
1≤ j≤d

w−1
1 ⋅ ⋅ ⋅w−1

j−1 wt(b j).

This finishes the proof. ∎

We say that an element b ∈ Bμ(λb) is cyclic if

λ(b) ∶= ∑
1≤ j≤d

w−1
1 ⋅ ⋅ ⋅w−1

j−1 wt(b j) ∈W0 μ.
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Now we give another interpretation of Lemma 3.11. Recall that B∗μ is isomorphic to
Bμ∗ . We denote by b∗ ∈ Bμ∗ the dual of b ∈ Bμ . Note that we have (wb)∗ = wb∗ for
any w ∈W0. So if b ∈ Bμ(λb), then bop∗ = wmaxb∗ ∈ Bμ∗(λb∗).
Lemma 4.12 We have λ(bop∗) = −w(b)−1 λ(b) + (d , . . . , d). In particular, b ∈
Bμ(λb) is cyclic if and only if bop∗ ∈ Bμ∗(λb∗) is cyclic.
Proof Note that if (μ1 , . . . , μd) is Far-Eastern, then (μ∗d , . . . , μ∗1 ) is Far-Eastern. So
if we write

FE(b) = b1 ⊗ ⋅ ⋅ ⋅ ⊗ bd and FE(bop) = w1b1 ⊗ ⋅ ⋅ ⋅ ⊗wd bd ,

in Bμ1 ⊗ ⋅ ⋅ ⋅ ⊗Bμd , then we have
FE(b∗) = b∗d ⊗ ⋅ ⋅ ⋅ ⊗ b∗1 and FE(bop∗) = wd b∗d ⊗ ⋅ ⋅ ⋅ ⊗w1b∗1 ,

in Bμ∗d ⊗ ⋅ ⋅ ⋅ ⊗Bμ∗1 . Thus w(bop∗) = wd ⋅ ⋅ ⋅w1 = w(b)−1 , Υ(bop∗) = Υ(b) and

λ(bop∗) = wt(wd b∗d) +wd wt(wd−1b∗d−1) + ⋅ ⋅ ⋅ +wd ⋅ ⋅ ⋅w2 wt(w1b∗1 )
= −w(b)−1 λ(b) + (d , . . . , d),

as desired. ∎

4.3 Noncyclic semi-standard tableaux

The goal of this section is to specify the dominant cocharacters μ such that every b ∈
Bμ(λb) is cyclic. Set d = μ(1).

Lemma 4.13 Assume that n ≥ 3. We have d ≥ 2⌊m
n ⌋ + ⌊

2m0
n ⌋ + 1 or d ≥ 2⌊ nd−m

n ⌋ +
⌊ 2(n−m0)

n ⌋ + 1.

Proof It suffices to show that d ≤ 2⌊m
n ⌋ + ⌊

2m0
n ⌋ is equivalent to d ≥ 2⌊ nd−m

n ⌋ +
⌊ 2(n−m0)

n ⌋ + 1. Note that ⌊m
n ⌋ =

m−m0
n , ⌊ nd−m

n ⌋ = nd−m−(n−m0)
n . So d ≤ 2⌊m

n ⌋ + ⌊
2m0

n ⌋
is equivalent to (n − 2)d ≤ 2(m − d −m0) + n⌊ 2m0

n ⌋, and d ≥ 2⌊ nd−m
n ⌋ + ⌊ 2(n−m0)

n ⌋ +
1 is equivalent to (n − 2)d ≤ 2(m − d −m0) + n(1 − ⌊ 2(n−m0)

n ⌋). Then the assertion
follows from the fact that ⌊ 2m0

n ⌋ = 0 (resp. 1) if and only if ⌊ 2(n−m0)
n ⌋ = 1 (resp. 0). ∎

Lemma 4.14 Assume that n ≥ 3. Let μ ∈ X∗(T)+ such that d ≥ 2⌊m
n ⌋ + ⌊

2m0
n ⌋ +

1, μ(2) ≥ 2 and ⌊m
n ⌋ ≥ 2. Then Bμ(λb) contains at least one noncyclic element.

Proof First we consider the case n = 3. In this case, we have 2 ≤ μ(2) ≤ ⌊m
n ⌋ because

μ(3) = 0. Let b be the unique element in Bμ(λb) whose second row contains exactly
one 3 . Then w(b) = s2s1 and s1 ∈ supp(wd−⌊ m

n ⌋
).

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 2 3 ⋅ ⋅ ⋅ 3
2 ⋅ ⋅ ⋅ 2 3

Since 2 ≤ μ(2) ≤ ⌊m
n ⌋, we have

w−1
1 ⋅ ⋅ ⋅w−1

d−μ(2)wt(bd−μ(2)+1) = (0, 1, 1) and w−1
1 ⋅ ⋅ ⋅w−1

d−1 wt(bd) = (1, 0, 1).

Thus λ(b) ∉W0 μ because μ(n) = 0. This proves the case n = 3.
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In the rest of the proof, we assume that n ≥ 4. Let λ be a conjugate of λb such that
(λ(1), λ(2), λ(3)) = (⌊m

n ⌋, ⌊
m
n ⌋ + ⌊

2m0
n ⌋, ⌊

m
n ⌋ + 1) and λ(4) ≥ ⋅ ⋅ ⋅ ≥ λ(n). Set

μ0 = (3⌊
m
n
⌋ + ⌊2m0

n
⌋ + 1 −min{μ(2), ⌊m

n
⌋}, min{μ(2), ⌊m

n
⌋}, 0, . . . , 0) ∈ X∗(T)+,

and λ0 = (λ(1), λ(2), λ(3), 0, . . . , 0) ∈ X∗(T). Note that we have μ(1) + μ(2) ≥
3⌊m

n ⌋ + ⌊
2m0

n ⌋ + 1. Indeed if μ(1) + μ(2) ≤ 3⌊m
n ⌋ + ⌊

2m0
n ⌋, then by μ(1) ≥

2⌊m
n ⌋ + ⌊

2m0
n ⌋ + 1, we have μ(2) ≤ ⌊m

n ⌋ − 1. This implies μ(3) + ⋅ ⋅ ⋅ + μ(n − 1) ≤
(n − 3)(⌊m

n ⌋ − 1), or equivalently 3⌊m
n ⌋ + n +m0 − 3 ≤ μ(1) + μ(2), which is a

contradiction. Thus Yμ contains Yμ0 .
Let b0 be the unique element in Bμ0(λ0) whose second row contains exactly one

3 . We will show that there exists b′ ∈ Bμ(λ) that contains b0. It is easy to check
that μ(n − 1) ≤ ⌊m

n ⌋ and μ(n − 2) ≤ μ0(1). So each column in Yμ/μ0 has at most n − 3
boxes. By filling each column with the numbers 1, . . . , n − 3 so that the entries are
starting with 1 and increasing by one from top to bottom, we obtain a skew Young
tableau of shape Yμ/μ0 . Let k i be the number of i in this tableau. Clearly we have
k1 ≥ ⋅ ⋅ ⋅ ≥ kn−3.

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 2 3 ⋅ ⋅ ⋅ 3
2 ⋅ ⋅ ⋅ 2 3

1
1 ⋅ ⋅ ⋅ 1

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 2
2

By (λ(4), . . . , λ(n)) ⪯ (k1 , . . . , kn−3) and Proposition 4.5, there exists at least one
skew Young tableau of shape Yμ/μ0 such that the number of i is λ(i + 3) for each
1 ≤ i ≤ n − 3. By replacing 1, . . . , n − 3 by 4, . . . , n respectively, we obtain a skew Young
tableau of shape Yμ/μ0 such that the number of i is λ(i) for each 4 ≤ i ≤ n. Let b′ be
the tableau obtained by joining b0 and this skew tableau. Clearly we have b′ ∈ Bμ(λ),
which shows our claim.

Let b′ ∈ Bμ(λ) containing b0, and let b ∈ Bμ(λb) be the conjugate of b′. Then s2s1 ≤
w(b) and s1 ∈ supp(wd−⌊ m

n ⌋
). Let k(b′) be the number of 4 in the second row of b′.

If k(b′) < ⌊m
n ⌋, then we have

(w−1
1 ⋅ ⋅ ⋅w−1

d−min{μ(2),⌊ m
n ⌋}

wt(bd−min{μ(2),⌊ m
n ⌋}+1))(2) = 1,

and

(w−1
1 ⋅ ⋅ ⋅w−1

d−1 wt(bd))(2) = 0.

Thus, λ(b) ∉W0 μ and hence b is noncyclic. If k(b′) ≠ 0, then λ(b)(1) = ⌊m
n ⌋ − 1.

Assume that μ(3) < ⌊m
n ⌋ − 1. Then b is always noncyclic by the above argument.
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Assume that μ(3) ≥ 2. Let b′1 = j be the leftmost box in the third row of b′, and let

b′2 = j’ be the box right to b′1. Clearly 4 ≤ j ≤ j′.

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 2 3 ⋅ ⋅ ⋅ 3
2 ⋅ ⋅ ⋅ 2 3 4 ⋅ ⋅ ⋅ 4
j j′

Then in b′, all j–1 are in the first or second row. Since the number of j in the first or

second row is less than wt(b′)( j − 1), there exists at least one j–1 such that there is
no box beneath it or the number in the box beneath it is greater than j. So the tableau
obtained by replacing b′1 by the rightmost one among such j–1 is semi-standard.
Repeating the same argument, we may assume j = 4. Similarly, if ⌊m

n ⌋ ≥ 3, we may also
assume j′ = 4. Indeed if j′ ≥ 6 and the leftmost column in b′ contains j’–1 but does

not contain j’ , we replace b′2 by this j’–1 . In other cases, by ⌊m
n ⌋ ≥ 3, there exists at

least one j’–1 such that there is no box beneath it or the number in the box beneath it

is greater than j′, and we replace b′2 by the rightmost j’–1 among such j’–1 . Then the
obtained tableau is semi-standard. Thus, if ⌊m

n ⌋ ≥ 3, there exists b′ containing b0 such
that k(b′) < ⌊m

n ⌋, which is noncyclic by the above argument. If ⌊m
n ⌋ = 2 and n = 4,

then b is noncyclic because k(b′) < 2. If ⌊m
n ⌋ = 2 and n ≥ 5, we may also assume j′ = 4

and hence b is noncyclic unless the third row of b′ contains three 5 . If ⌊m
n ⌋ = 2, n ≥ 5

and the third row of b′ contains three 5 , then

(w−1
1 ⋅ ⋅ ⋅w−1

d−2 wt(bd−1))(4) = 1 and (w−1
1 ⋅ ⋅ ⋅w−1

d−1 wt(bd))(4) = 0.

Thus, λ(b) ∉W0 μ and hence b is noncyclic.

1 1 2 3 3
2 3 4 4
4 5 5 5

Assume that ⌊m
n ⌋ = 2 and μ(3) = 1. By the same argument as above, we may assume

that the leftmost column of b′ contains 4 . So b is noncyclic when λ(4) = 2. If μ(1) >
5 + ⌊ 2m0

n ⌋, we may assume that the first row of b′ also contains 4 . This can be checked
easily as above using μ(3) = 1. Thus, if μ(1) > 5 + ⌊ 2m0

n ⌋, we obtain a noncyclic b.

1 1 2 3 3 4
2 3 4
4
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If μ(1) = 5 + ⌊ 2m0
n ⌋, then we have n = 4 or 5. More precisely, we have

μ = (6, 4, 1, 0), (5, 5, 1, 1, 0), (6, 5, 1, 1, 0), (6, 6, 1, 0, 0), or (6, 6, 1, 1, 0),
and b′ contains one of the following smaller Young tableaux when λ(4) = 3.

1 1 2 3 3
2 3 4 4
4

1 1 2 2 3 3
2 3 4 4
4

We can easily check that b is noncyclic in every case.
Putting things together, we have proved the lemma. ∎

Lemma 4.15 Assume that n ≥ 4. Let μ ∈ X∗(T)+ such that d ≥ 3 + ⌊ 2m0
n ⌋, μ(2) ≥ 2

and ⌊m
n ⌋ = 1. Then Bμ(λb) contains at least one noncyclic element.

Proof Let λ be a conjugate of λb such that (λ(1), λ(2), λ(3)) = (λb(1),
λb(2), λb(3)) and λ(4) ≥ ⋅ ⋅ ⋅ ≥ λ(n). Assume that (λb(1), λb(2), λb(3)) = (1, 2, 2)
and μ(2) ≥ 3. Similarly as the proof of Lemma 4.14, we can easily show that there
exists b′ ∈ Bμ(λ) containing the following smaller Young tableau.

1 2 3 4
2 3 4

Let b ∈ Bμ(λb) be the conjugate of b′. If μ(3) < 2, then b is noncyclic because
λ(b)(2) = 2. If μ(3) ≥ 2, then similarly as the proof of Lemma 4.14, we may assume
that the second row of b′ does not contain 5 . In this case, the conjugate b ∈ Bμ(λb)
of b′ is noncyclic because

(w−1
1 ⋅ ⋅ ⋅w−1

d−3 wt(bd−2))(3) = 1 and (w−1
1 ⋅ ⋅ ⋅w−1

d−1 wt(bd))(3) = 0.

Assume that (λb(1), λb(2), λb(3)) = (1, 2, 2) and μ(2) = 2. Then there exists b′ ∈
Bμ(λ) containing one of the following smaller Young tableaux.

1 2 3 3 4
2 4

1 2 3 4
2 4
3

It is easy to check that the conjugate b ∈ Bμ(λb) of b′ is noncyclic.
Assume that (λb(1), λb(2), λb(3)) ≠ (1, 2, 2). Then there exists b′ ∈ Bμ(λ) con-

taining one of the following smaller Young tableaux.

1 2 3 4
2 4

1 3 3 4
2 4

1 3 4
2 4

Let b ∈ Bμ(λb) be the conjugate of b′. Since λ(b)(1) = 1, b is noncyclic if μ(3) = 0. If
μ(3) ≥ 2, then similarly as the proof of Lemma 4.14, we may assume that the second
row of b′ does not contain 5 . In this case, b is noncyclic because

(w−1
1 ⋅ ⋅ ⋅w−1

d−2 wt(bd−1))(3) = 1 and (w−1
1 ⋅ ⋅ ⋅w−1

d−1 wt(bd))(3) = 0.
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If μ(3) = 1 and μ(1) > 3 + ⌊ 2m0
n ⌋, then we may also assume that the second row of b′

does not contain 5 and hence b is noncyclic. If μ(3) = 1 and μ(1) = 3 + ⌊ 2m0
n ⌋, then

we may assume that the leftmost column of b′ contains 5 . We can easily check that
b is noncyclic by an easy calculation.

1 2 3 4
2 4 5
5

1 3 3 4
2 4 5
5

1 3 4
2 4 5
5

This finishes the proof. ∎

Lemma 4.16 Assume that n ≥ 5. Let μ ∈ X∗(T)+ such that ⌊m
n ⌋ = 0. If (1) μ(2) ≥ 2 or

(2) d ≥ 3, μ(2) = 1, then Bμ(λb) contains at least one noncyclic element.

Proof Let 1 < i1 < i2 < ⋅ ⋅ ⋅ < im0 = n be the integers such that λb(i1) = λb(i2) =
⋅ ⋅ ⋅ = λb(im0) = 1. Let b be the Young tableau in Bμ(λb) obtained by filling Yμ with
i1 , . . . , im0 from top to bottom, starting from the leftmost column.

i1 ik+1 ⋅ ⋅ ⋅ im

i2 ik+2 ⋮

⋮ ⋮

ik

If (1) holds, then b is noncyclic because

wt(b1)(im) = 1 and (w−1
1 ⋅ ⋅ ⋅w−1

d−1 wt(bd))(im) = 0.

Let k =max{i ∣ μ(i) ≠ 0}. If (2) holds, then the Young tableau c ∈ Bμ(λb) obtained
by replacing ik by ik+1 in b is noncyclic because λ(c)(ik) = 2.

i1 ik ik+2 ⋅ ⋅ ⋅ im

⋮

ik−1

ik+1

This finishes the proof. ∎

Theorem 4.17 Every b ∈ Bμ(λb) is cyclic if and only if μ has one of the following forms:
(i) ω i with 1 ≤ i ≤ n − 1 such that i is coprime to n.

(ii) ω1 + ω i or ωn−1 + ωn−i with 1 ≤ i ≤ n − 1 such that i + 1 is coprime to n.
(iii) (nr + i)ω1 or (nr + i)ωn−1 with r ≥ 0 and 1 ≤ i ≤ n − 1 such that i is coprime to n.
(iv) (nr + i − j)ω1 + ω j or (nr + i − j)ωn−1 + ωn− j with r ≥ 1, 2 ≤ j ≤ n − 1 and 1 ≤ i ≤

n − 1 such that i is coprime to n.
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Proof It is easy to check that every b ∈ Bμ(λb) is cyclic if μ is one of the cocharacters
in (i), (ii), (iii) and (iv). It remains to show that if μ does not belong to the list above,
then Bμ(λb) contains at least one noncyclic element. By Lemmas 4.12 and 4.13, we
may assume that d ≥ 2⌊m

n ⌋ + ⌊
2m0

n ⌋ + 1. Then this follows from Lemmas 4.14, 4.15
and 4.16. ∎

Remark 4.18 Even if every top extended semi-module for μ is cyclic, there might be
a noncyclic extended semi-module for μ. In fact, such cases exist, see Section 5.4.

5 The semi-module stratification

Keep the notations and assumptions in Section 3.

5.1 The semi-module stratification for ω i

Recall that if μ is minuscule, then every extended semi-module is cyclic.

Lemma 5.1 For any 1 ≤ j ≤ n−3
2 (= dim Xω2(τ2)), we have

A
j
ω2 =
⎧⎪⎪⎨⎪⎪⎩

{[χ∨2,n−1 + χ∨4,n−3 + ⋅ ⋅ ⋅ + χ∨j,n− j+1]} ( j even)
{[χ∨1,n + χ∨3,n−2 + ⋅ ⋅ ⋅ + χ∨j,n− j+1]} ( j odd).

Proof By (the proof of) [43, Proposition 5.5], each normalized semi-module for 2, n
is of the form A j = (2N − j) ∪ (N + j + 1) for some 1 ≤ j ≤ n−3

2 . It is easy to check that

A j =
⎧⎪⎪⎨⎪⎪⎩

Aχ∨2,n−1+χ∨4,n−3+ ⋅ ⋅ ⋅ +χ∨j,n− j+1 ( j even)
Aχ∨1,n+χ∨3,n−2+ ⋅ ⋅ ⋅ +χ∨j,n− j+1 ( j odd).

Let (A j , φ j) be the cyclic semi-module for ω2. Then n − 2 − j, n − 1 + j ∈ Ā j and
φ j(n − 2 − j) = φ j(n − 1 + j) = 1. It is also easy to check that ∣V(A j , φ j)∣ = j. This
finishes the proof. ∎

Lemma 5.2 Assume that n = 7. Then dim Xω3(τ3) = 3 and

A1
ω3
= {[χ∨1,7]}, A2

ω3
= {[χ∨1,6], [χ∨2,7]}, A3

ω3
= {[χ∨3,5]}.

Assume that n = 8. Then dim Xω3(τ3) = 4 and

A1
ω3
= {[χ∨1,8]}, A2

ω3
= {[χ∨1,7], [χ∨2,8]},

A3
ω3
= {[χ∨2,6], [χ∨3,7]}, A4

ω3
= {[χ∨1,8 + χ∨4,5]}.

Proof Using Lemma 3.2, we can easily check the lemma by an easy calculation. ∎

5.2 The semi-module stratification for ω1 + ωn−2

Throughout this subsection, we set μ = ω1 + ωn−2. Also we assume that n ≥ 4.

Lemma 5.3 Every extended semi-module for μ is cyclic. For any 0 ≤ j ≤ n − 2
(= dim Xμ(b)), we define A

j
μ similarly as in Section 3.3. Then we have A0

μ = ∅ and
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∣A j
μ ∣ = j. More precisely, if j is odd, then A

j
μ is equal to

{[χ∨1,n− j+1],[χ∨1,n− j+3 + χ∨2,n− j+2], . . . ,
[χ∨1,n + χ∨2,n−1 + ⋅ ⋅ ⋅ + χ∨j+1

2 ,n− j−1
2
], . . . , [χ∨j−2,n + χ∨j−1,n−1], [χ∨j,n]},

and if j is even, then A
j
μ is equal to

{[χ∨1,n− j+1],[χ∨1,n− j+3 + χ∨2,n− j+2], . . . ,
[χ∨1,n−1 + χ∨2,n−2 + ⋅ ⋅ ⋅ + χ∨j

2 ,n− j
2
], . . . , [χ∨j−2,n + χ∨j−1,n−1], [χ∨j,n]}.

Proof Let (A, φ) be an extended semi-module for μ. Let μ′ be the type of A. If (A, φ)
is noncyclic, then by Lemma 3.4, μ′dom ≺ μ, i.e., μ′dom = ωn−1. By Lemma 3.2, we have
A = {0, 1, . . . , n − 1, . . .}. By Definition 3.3 (3), φ(a) =max{k ∣ a + n − 1 − kn ∈ A} for
all a ∈ A. This contradicts to the assumption that (A, φ) is noncyclic. Thus, (A, φ) is
cyclic.

Since μ′ satisfies νb ⪯ wmax μ′, it is easy to check that

wmax μ′ = s l+1 ⋅ ⋅ ⋅ sn−3sn−2sk−1 ⋅ ⋅ ⋅ s2s1 μ,

for some 1 ≤ k ≤ n − 2 and k ≤ l ≤ n − 2. Let Ā = {a0 , a1 . . . , an−1} with a0 =min Ā.
Then we have φ(a0) = 0, φ(an−l−1) = 0, φ(an−k) = 2 and φ(a i) = 1 for i ≠ 0, n − l −
1, n − k. Thus,

V(A, φ) ={(an−k , an−l−1 + n), (an−k , an−l), (an−k , an−l+1), . . . , (an−k , an−k−1)}
∪{(an−k+1 , an−l−1), (an−k+2 , an−l−1), . . . , (an−1 , an−l−1)},

and ∣V(A, φ)∣ = l . Then by Proposition 3.7, the description of Al
μ for each l in the

lemma follows from direct computation. ∎

5.3 The semi-module stratification for ω1 + ωn−3

Throughout this subsection, we set μ = ω1 + ωn−3. Also we assume that n ≥ 7.
Lemma 5.4 Every extended semi-module for μ is cyclic. For any 1 ≤ j ≤ 3n−9

2 (=
dim Xμ(b)), we defineA j

μ similarly as in Section 3.3. Then ∣A
3n−9

2
μ ∣ = n − 3 and ∣A

3n−11
2

μ ∣ ≤
2(n − 4).
Proof Using Lemma 5.1, we can show the first assertion similarly as the proof of
Lemma 5.3. Indeed, for any semi-module Aλ in Lemma 5.1, there exists a unique φ
such that (Aλ , φ) is an extended semi-module for some μ ∈ X∗(T)+. The equality
∣A

3n−9
2

μ ∣ = n − 3 follows from the Chen-Zhu conjecture.
Let (A, φ) be an extended semi-module for μ with type μ′(∈W0 μ). Let 0 < k1 < k2

be integers such that μ′(1) = μ′(k1 + 1) = μ′(k2 + 1) = 0, and let l be an integer such
that μ′(l + 1) = 2. Assume that νb ⪯ wmaxsk2+1 μ′. Let (B, ψ) be an extended semi-
module for μ with type sk2+1 μ′. Let a0 =min Ā (resp. b0 =min B̄) and let inductively
a i = a i−1 + n − 2 − μ′(i)n (resp. b i = b i−1 + n − 2 − (sk2+1 μ′)(i)n) for i = 1, . . . , n.
Then a0 = an (resp. b0 = bn) and {a0 , a1 , . . . , an−1} = Ā (resp. {b0 , b1 , . . . , bn−1} = B̄).
We will show that if l > k2 + 1 (resp. l = k2 + 1), then ∣V(B, ψ)∣ ≤ ∣V(A, φ)∣ (resp.
∣V(B, ψ)∣ < ∣V(A, φ)∣ − 1). Moreover, the equality does not hold if k2 − k1 ≤ 3.
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Note that we have φ(a0) = φ(ak1) = φ(ak2) = 0, φ(a l) = 2, ψ(b0) = ψ(bk1) =
ψ(bk2+1) = 0, ψ(b l) = 2. Note also that

V(A, φ) ={(a, a′) ∣ a ∈ Āwithφ(a) = 1, a′ = ak1 orak2}
⊔{(a l , a′) ∣ a l < a′ , φ(a′) < 2},

and

V(B, ψ) ={(b, b′) ∣ b ∈ B̄withψ(b) = 1, b′ = bk1 orbk2+1}
⊔{(b l , b′) ∣ b l < b′ , ψ(b′) < 2}.

Let V(A, φ)1 (resp. V(B, ψ)1) be the first subset in V(A, φ) (resp. V(B, ψ)) above, and
let V(A, φ)2 (resp. V(B, ψ)2) be its complement.

If l > k2 + 1, then it follows that

bk =
⎧⎪⎪⎨⎪⎪⎩

ak + 1 (k ≠ k2 + 1)
ak + 1 − n (k = k2 + 1)

, ψ(bk) =
⎧⎪⎪⎨⎪⎪⎩

φ(ak) (k ≠ k2 , k2 + 1)
1 − φ(ak) (k = k2 , k2 + 1).

In particular, bk2+1 − 1 = ak2 − 2. So ∣V(B, ψ)1∣ > ∣V(A, φ)1∣ implies that ∣V(B, ψ)1∣ =
∣V(A, φ)1∣ + 1 and bk2 < bk1 . By the fact (a l , ak2+1) ∈ V(A, φ)2, we always have
∣V(B, ψ)2∣ < ∣V(A, φ)2∣. Thus, ∣V(B, ψ)∣ ≤ ∣V(A, φ)∣. Moreover, if k2 − k1 ≤ 3, then the
equality does not hold because bk2 ≥ bk1 .

If l = k2 + 1, then it follows that

bk =
⎧⎪⎪⎨⎪⎪⎩

ak + 2 (k ≠ k2 + 1)
ak + 2 − 2n (k = k2 + 1)

, ψ(bk) =
⎧⎪⎪⎨⎪⎪⎩

φ(ak) (k ≠ k2 , k2 + 1)
2 − φ(ak) (k = k2 , k2 + 1).

In particular, bk2+1 − 2 = ak2 − 2 − n. By νb ⪯ wmaxsk2+1 μ′, we have k2 ≤ n−3
2 . Using

this, we can easily check that ∣V(B, ψ)∣ < ∣V(A, φ)1∣ and V(A, φ)2 = {(ak2+1 , ak2 +
n)}. Thus, ∣V(B, ψ)∣ < ∣V(A, φ)∣ − 1.

Assume that νb ⪯ wmaxsk1+1 μ′. Let (C , χ) be an extended semi-module for μ
with type sk1+1 μ′. Similarly as above, we can show that if l ≥ k1 + 1, then ∣V(C , χ)∣ ≤
∣V(A, φ)∣. Therefore, ∣V(A, φ)∣ ≥ 3n−11

2 holds only if k2 = 2 or l > k2 = 3. From this and
∣A

3n−9
2

μ ∣ = n − 3, we obtain ∣A
3n−11

2
μ ∣ ≤ 2(n − 4). ∎

5.4 The semi-module stratification for ω1 + ω2 , ω4 + ωn−1

Lemma 5.5 Assume that n = 5. Set μ = ω1 + ω2. Then every extended semi-module
for μ is cyclic. For any 1 ≤ j ≤ 3(= dim Xμ(b)), we define A j

μ similarly as in Section 3.3.
Then

A0
μ = ∅,A1

μ = ∅,A2
μ = {χ∨1,4 , χ∨2,5},A3

μ = {χ∨2,3 , χ∨3,4}.

Proof The first assertion follows similarly as the proof of Lemma 5.3. The second
assertion follows from direct computation. ∎

Lemma 5.6 Assume that n = 7 or 8. Let μ be ω1 + ω2 or ω4 + ωn−1. Then there exists
a noncyclic extended semi-module for μ.
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Proof As described in Lemma 5.2, there exists a unique top cyclic extended semi-
module (Aλ , φ) for ω3. We define φ′∶Z→ N ∪ {−∞} by setting

φ′(a) =
⎧⎪⎪⎨⎪⎪⎩

φ(a) (a ≠ 1)
0 (a = 1).

Then it is straightforward to check that (Aλ , φ′) is a noncyclic extended semi-module
for ω1 + ω2. The proof for ω4 + ωn−1 is similar. ∎

6 The Ekedahl–Oort stratification

Keep the notations and assumptions in Section 3. For μ ∈ X∗(T)+, set
S Adm(μ)cyc = {w ∈ S Adm(μ) ∣ p(w)isn-cycle}.

By Theorem 2.9, Xw(b) ≠ ∅ if w ∈ S Adm(μ)cyc.

6.1 The Ekedahl–Oort stratification for ω i

Throughout this subsection, we set μ = ω i and c = s i s i+1 ⋅ ⋅ ⋅ sn−1s i−1 ⋅ ⋅ ⋅ s2s1. By [23,
Theorem 2.7], we have dim Xϖ μ c(b) = dim Xμ(b) = ⟨μ, ρ⟩ − n−1

2 .
Note that ∣Wsuppσ(w)∣ is finite if and only if suppσ(w) ≠ S̃. Since τm acts transitively

on S̃, suppσ(w) ≠ S̃ if and only if w ∈ Ω.

Lemma 6.1 Assume that n ≥ 9 and 4 ≤ i ≤ n − 4. Set y = cs i s i+1s i−1 = (1 i + 1 i + 3 i +
4 ⋅ ⋅ ⋅ n i i − 2 ⋅ ⋅ ⋅ 3 2)(i − 1 i + 2). Then we have ϖμ y ∈ S Adm(μ) and Xϖ μ y(b) ≠ ∅.

Proof Under the assumption in the lemma, we have �(ϖμ y) = ⟨μ, 2ρ⟩ − �(y)(> 0)
and hence ϖμ y ∈ S Adm(μ) (cf. [31, (2.4.5)]). So, by Lemma 2.8 and Theorem 2.9,
Xϖ μ y(b) ≠ ∅ is equivalent to saying supp(r yr−1) ⊊ S for any r ∈W0 such that
r(Φ+/Φϖ μ y) ⊂ Φ+. It is easy to check that

Φϖ μ y = Φ{χ1,2 , χ2,3 , . . . , χ i , i+1} ∪Φ{χ i , i+1 , χ i+1, i+2 , . . . , χn−1,n} ∪ {χ i−2, i+2 , χ i−1, i+2 , χ i−1, i+3}.

In particular, we have χ1, i+2 , χ i−1,n ∈ Φ+/Φϖ μ y . Note that we can decompose r yr−1

into disjoint cycles as

(r(1) r(i + 1) r(i + 3) r(i + 4) ⋅ ⋅ ⋅ r(n) r(i) r(i − 2) ⋅ ⋅ ⋅ r(3) r(2))(r(i − 1) r(i + 2)),

for any r ∈W0. So if r yr−1 ∈ ⋃J⊊S WJ , then (r(i − 1) r(i + 2)) = (1 2) or (n − 1 n).
This implies that r χ1, i+2 or r χ i−1,n is negative and hence that r does not satisfy
r(Φ+/Φϖ μ y) ⊂ Φ+. Thus, we have Xϖ μ y(b) ≠ ∅. ∎
Lemma 6.2 Assume that n ≥ 9 and i = 3 (resp. i = n − 3). Set y = cs3s4s5s6s2 (resp.
y = csn−3sn−4sn−5sn−6sn−2). Then we have ϖμ y ∈ SAdm(μ) and Xϖ μ y(b) ≠ ∅.

Proof We only treat the case i = 3. The proof for the case i = n − 3 is similar.
The first assertion is easy. To show the second assertion, by Lemma 2.8 and

Theorem 2.9, it suffices to check that r yr−1 ∉ ⋃J⊊S WJ for any r ∈W0 such that
r(Φ+/Φϖ μ y) ⊂ Φ+. By an explicit calculation, it follows that χ1,7 , χ2,9 ∈ Φ+/Φϖ μ y and

r yr−1 = (r(1) r(4) r(6) r(8) r(9) ⋅ ⋅ ⋅ r(n) r(3))(r(2) r(5) r(7)).
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If r yr−1 ∈ ⋃J⊊S WJ , then (r(2) r(5) r(7)) is equal to (1 2 3) or (n − 2 n − 1 n). This
implies that r does not satisfy r(Φ+/Φϖ μ y) ⊂ Φ+. Thus, we have Xϖ μ y(b) ≠ ∅. ∎

Lemma 6.3 Assume that n ≥ 9 and i = 3 (resp. i = n − 3). Let y be cs i s i−1 or cs i s i+1.
Then we have ϖμ y ∈ S Adm(μ) and Xϖ μ y(b) ≠ ∅.
Proof The proof is similar to the proof of Lemmas 6.1 and 6.2. Note that y is a n-cycle
in this case. ∎
Proposition 6.4 Assume that n ≥ 9 and 3 ≤ i ≤ n − 3. Then the semi-module stratifi-
cation of Xμ(b) is not a refinement of the Ekedahl–Oort stratification.
Proof First assume that n ≥ 9 and 4 ≤ i ≤ n − 4. Let ϖμ y ∈ S W̃ be as in Lemma 6.1.
Let T be a reduction tree of ϖμ y. By Proposition 2.6, we have

∣Xϖ μ y(b)0,σ ∣ = ∑
p
(q − 1)�I(p)q�II(p),

where p runs over all the reduction paths inT with end(p) = τm . Set d = dim Xμ(b) =
⟨μ, ρ⟩ − n−1

2 . Suppose that the semi-module stratification of Xμ(b) is a refinement of
the Ekedahl–Oort stratification. Note that Z(ϖμ c) = Z(ϖμ y) = {1}. By Lemma 2.1,
Proposition 2.3 and dim Xϖ μ c(b) = d, we have �I(p) + �II(p) ≤ dim Xϖ μ y(b) ≤ d − 1
for any p. On the other hand, we have �I(p) + 2�II(p) = �(ϖμ y) = 2d − 3. Thus, we
have �I(p) + �II(p) = d − 1 and �I(p) = 1 for any p. It follows that

∣π(Xϖ μ y(b)0)σ ∣ = ∣Xϖ μ y(b)0,σ ∣ = k(q − 1)qd−2 ,

where k ≥ 1 is the number of irreducible components of Xϖ μ y(b)0. Again by
Lemma 2.1 and the fact that each SA,φ is locally closed, we have ∣{(A, φ) ∣ dim SA,φ =
d − 1, SA,φ ⊆ π(Xϖ μ y(b)0)}∣ = k. By Lemma 3.4, it follows that ∣π(Xϖ μ y(b)0)σ ∣ ≥
kqd−1, which is a contradiction. This implies the proposition in this case.

Next assume that n ≥ 10 and i = 3, n − 3. Let ϖμ y ∈ S W̃ be as in Lemma 6.2.
Suppose that the semi-module stratification of Xμ(b) is a refinement of the Ekedahl–
Oort stratification. Similarly as above, we can check that

dim Xcs i s i−1(b) = Xcs i s i+1(b) = d − 1.

Note that Z(ϖμ c) = Z(ϖμ cs i s i−1) = Z(ϖμ cs i s i+1) = Z(ϖμ y) = {1}. By Lemma 2.1
and Proposition 3.13, we have dim Xϖ μ y(b) ≤ d − 2. Similarly as above, it follows that
∣π(Xϖ μ y(b)0)σ ∣ = k(q − 1)qd−3 and ∣π(Xϖ μ y(b)0)σ ∣ ≥ kqd−2. This is a contradiction,
which finishes the proof. ∎

The following proposition is the complement of Proposition 6.4.
Proposition 6.5 We have
S Adm(ω1)cyc = {τ},
S Adm(ω2)cyc = {τ2 , s0sn−1τ2 , s0sn−1sn−2sn−3τ2 , . . . , s0sn−1 ⋅ ⋅ ⋅ s5s4τ2} (n ≥ 5),
S Adm(ω3)cyc = {τ3 , s0s6τ3 , s0s6s1s0τ3 , s0s6s5s1τ3 , s0s6s5s1s0s6τ3} (n = 7),
S Adm(ω3)cyc = {τ3 , s0s1τ3 , s0s7s6s5τ3 , s0s7s6s1τ3 , s0s7s6s5s1s0τ3 ,

s0s7s6s1s0s7τ3 , s0s7s6s5s1s0s7s6τ3} (n = 8).
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Let ϖμ y ∈ S W̃ be one of the elements above. Then there exists v ∈ LP(ϖμ y) such that
v−1 yv is a Coxeter element. Moreover, Xw(b) = ∅ for any w ∈ S Adm(μ)/S Adm(μ)cyc,
and the semi-module stratification of Xμ(b) is a refinement of the Ekedahl–Oort
stratification.

Proof The equalities in the proposition follow from easy calculations. For other
statements, we only prove the case for ω2. Other cases can be checked similarly.

Set d = n−3
2 . For 0 ≤ j ≤ d, we set w j = s0sn−1 ⋅ ⋅ ⋅ sn−2 j+1τ2. Then �(w j) = 2 j and

p(w j) = (1 3 5 ⋅ ⋅ ⋅ n − 2 j n − 2 j + 1 ⋅ ⋅ ⋅ n 2 4 ⋅ ⋅ ⋅ n − 2 j − 1).

Also it is easy to check that

Φ+/Φw j = {χ1,n−2 j+1 , . . . , χ1,n−1 , χ1,n}.

Clearly there exists r ∈W0 with r(Φ+/Φw j) ⊂ Φ+ such that r p(w j)r−1 is a Coxeter
element (cf. [40, Lemma 5.1]).

For an integer j, let 0 ≤ [ j] < n denote its residue modulo n. For a, b ∈ N with a −
b ∈ 2Z, we define ta ,b = s[b−2] ⋅ ⋅ ⋅ s[a+2]s[a]. Set

w j,0 = w j , w j,1 = t0,n−2 j+1w j t−1
0,n−2 j+1 , w j,2 = tn−1,n−2 j+2w j,1 t−1

n−1,n−2 j+2 ,

. . . , w j, j = tn− j+1,n− jw j, j−1 t−1
n− j+1,n− j .

It is easy to check that the simple reflections in t0,n−2 j+1 , tn−1,n−2 j+2 , . . . , tn− j+1,n− j
define

w j = w j,0 →σ w j,1 = sn−1sn−2 ⋅ ⋅ ⋅ sn−2 j+2τ2 →σ w j,2 = sn−2sn−3 ⋅ ⋅ ⋅ sn−2 j+3τ2

→σ ⋅ ⋅ ⋅ →σ w j, j = τ2 .

Let p
j

be the reduction path (in a suitable reduction tree) defined by this reduction.
Using Lemma 2.1, Propositions 2.5, 2.6 and 3.13, we can check that Xw j(τ2) = Xp

j
and

Xw(τ2) = ∅ for any w ∈ S Adm(ω2)/SAdm(ω2)cyc by counting the number of rational
points of Xμ(τ2)0 (note that Xτ2(τ2)0 = {I}). It is easy to check that

�(tn− j+1,n− j ⋅ ⋅ ⋅ tn−1,n−2 j+2 t0,n−2 j+1) = �(tn− j+1,n− j) + ⋅ ⋅ ⋅ + �(tn−1,n−2 j+2)
+ �(t0,n−2 j+1).

Thus by Proposition 2.3 (cf. [39, Section 3.3]), each element gI in Xw j(τ2)0 is con-
tained in a Schubert cell associated to tn− j+1,n− j ⋅ ⋅ ⋅ tn−1,n−2 j+2 t0,n−2 j+1. By Lemma 5.1,
it follows that π(Xw j(b)0) is equal to the unique semi-module stratum of dimension j.
This shows that the semi-module stratification of Xμ(b) is a refinement of the
Ekedahl–Oort stratification. ∎

6.2 The Ekedahl–Oort stratification for ω1 + ωn−2

Throughout this subsection, we set μ = ω1 + ωn−2. Also we assume that n ≥ 4. Note
that the unique dominant cocharacter μ′ with μ′ ≺ μ is μ′ = ωn−1. Clearly, we have
S Adm(ωn−1)cyc = {τn−1} and the semi-module stratification of Xωn−1(τn−1) is a
refinement of the Ekedahl–Oort stratification.
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Proposition 6.6 For any 1 ≤ j ≤ n − 2(= dim Xμ(b)), there exist exactly j elements
of length 2 j in SAdm(μ)○cyc ∶= S Adm(μ)cyc/{τn−1}. Let ϖμ y ∈ S W̃ be one of such
elements. Then there exists v ∈ LP(ϖμ y) such that v−1 yv is a Coxeter element. Moreover,
Xw(b) = ∅ for any w ∈ S Adm(μ)/S Adm(μ)cyc, and the semi-module stratification of
Xμ(b) is a refinement of the Ekedahl–Oort stratification.

Proof We first prove by induction on n that there exist at least j elements of length
2 j in S Adm(μ)○cyc, each of which has finite part y such that r yr−1 is a Coxeter element
for some r ∈W{s2 , . . . ,sn−2} satisfying r(Φ+/Φϖ μ y) ⊂ Φ+ (cf. Lemma 2.8). Note that if
y ∈W0 satisfies

y−1(2) < y−1(3) < ⋅ ⋅ ⋅ < y−1(n − 2)andy−1(n − 1) < y−1(n),(*)

then by [39, Lemma 4.4], we have ϖμ y ∈ S Adm(μ). In particular, since �(ϖμ) =
3n − 5, ϖμ y is an element of length 2 j in S Adm(μ)○cyc for any n-cycle y of length 3n −
2 j − 5. If n = 4, then s1s2s3 , s2s3s1 and s1s2s3s1s2 are 4-cycles satisfying (∗). Moreover,
s2(s1s2s3s1s2)s2 = s1s2s3 is a Coxeter element and s2(Φ+/Φϖ μ s1 s2 s3 s1 s2) ⊂ Φ+. So the
claim is true for n = 4.

Suppose that n ≥ 5 and the claim is true for n − 1. Let y be a (n − 1)-cycle in
W{s1 ,s2 , . . . ,sn−2} such that y−1(2) < y−1(3) < ⋅ ⋅ ⋅ < y−1(n − 3) and y−1(n − 2) < y−1(n −
1). Then y′ ∶= s1(1 2 ⋅ ⋅ ⋅ n)y(1 2 ⋅ ⋅ ⋅ n)−1 satisfies (∗) and �(y′) = �(y) + 1. So by
the induction hypothesis, there exist at least j − 1 elements in W0 which are n-
cycles of length 3n − 2 j − 5 satisfying (∗). Note that for any r ∈W{s2 , . . . ,sn−3}, we have
r′y′r′−1 = s1(1 2 ⋅ ⋅ ⋅ n)r yr−1(1 2 ⋅ ⋅ ⋅ n)−1, where r′ = (1 2 ⋅ ⋅ ⋅ n)r(1 2 ⋅ ⋅ ⋅ n)−1 ∈
W{s2 , . . . ,sn−2}. So again by the induction hypothesis, it is easy to verify that there exists
r ∈W{s2 , . . . ,sn−3} such that r′y′r′−1 is a Coxeter element and r′(Φ+/Φϖ μ y′) ⊂ Φ+. Set
c = sn−2sn−1sn−3 ⋅ ⋅ ⋅ s2s1. It is easy to check that if n is odd (resp. even), then

c, csn−2sn−3 , . . . , csn−2sn−3 ⋅ ⋅ ⋅ s2 , csn−2sn−3 ⋅ ⋅ ⋅ s2s3s4 , . . . ,
csn−2sn−3 ⋅ ⋅ ⋅ s2s3s4 ⋅ ⋅ ⋅ sn−2sn−1

(resp. c, csn−2sn−3 , . . . , csn−2sn−3 ⋅ ⋅ ⋅ s3 , csn−2sn−3 ⋅ ⋅ ⋅ s3s2s3 , . . . ,
csn−2sn−3 ⋅ ⋅ ⋅ s3s2s3 ⋅ ⋅ ⋅ sn−2sn−1),

are n-cycles satisfying (∗). If y′ is one of the elements above, then Φ{χ2,3 , . . . , χn−2,n−1} ∩
Φ+ ⊂ Φϖ μ y′ and there exists r′ ∈W{s2 , . . . ,sn−2} such that r′y′r′−1 is a Coxeter element.
Thus, the claim is also true for n. By induction, our claim is true for any n ≥ 4.

Clearly νw = νb for any w ∈ SAdm(μ)○cyc. Since b = τn−1 is superbasic, the unique
minimal length element in the σ-cojugacy class of w is τn−1 (cf. [22, Proposition 3.5]).
By Theorem 2.4, there exist a reduction tree T for w and a reduction path p in
T such that end(p) = τn−1 and �I(p) = 0. Thus by Lemma 2.1 and Proposition 2.6,

∣π(Xw(b)0,σ)∣ ≥ q
�(w)

2 for any w ∈ S Adm(μ)○cyc. By the comparison of ∣ ⊔w∈S Adm(μ)○cyc

π(Xw(b)0,σ)∣ and ∣Xμ(b)0,σ ∣, it follows from Lemma 5.3 and the claim we have shown
above that there exist exactly j elements of length 2 j in S Adm(μ)○cyc. Moreover, it
follows that π(Xw(b)0) is irreducible of dimension �(w)

2 for any w ∈ S Adm(μ)○cyc and
that Xw(b) = ∅ for any w ∈ SAdm(μ)/SAdm(μ)cyc.
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It remains to show that the semi-module stratification of Xμ(b) is a refinement
of the Ekedahl–Oort stratification. We prove that for any w ∈ S Adm(μ)○cyc, there
exists an extended semi-module (Aλ , φ) for μ such that π(Xw(b)0) = SAλ ,φ(= X λ

μ(b)
by Lemmas 3.9 and 5.3). We argue by induction on �(w). If �(w) = 2, i.e., w =
ϖμ csn−2sn−3 ⋅ ⋅ ⋅ s2s3s4 ⋅ ⋅ ⋅ sn−2sn−1 = s0sn−1τn−1, then w →σ s0ws0 = τn−1. It easily fol-
lows from Theorem 2.9 that Xτn−1 s0(b) = ∅. So by Proposition 2.3, we have Xw(b)0 =
Is0I/I and hence π(Xw(b)0) = X χ∨1,n

μ (b).
Suppose that �(w) ≥ 4 and the claim is true for any w′ ∈ SAdm(μ)○cyc with �(w′) <

�(w). Since π(Xw(b)0) is irreducible of dimension �(w)
2 , there exists a unique

extended semi-module (Aλ , φ) for μ such that dim(π(Xw(b)0) ∩ SAλ ,φ) = �(w)
2 .

Also, π(Xw(b)0) ∩ SAλ ,φ is open in both π(Xw(b)0) and SAλ ,φ . So the closure of
π(Xw(b)0) ∩ SAλ ,φ in Xμ(b) is equal to both the closure of π(Xw(b)0) and SAλ ,φ in
Xμ(b). By [20, Proposition 2.6] (see also [11, Section 3.3]), the closure of π(Xw(b)0)
is contained in

⊔
w′∈S Adm(μ)○cyc ,w′≤S w

π(Xw′(b)).

Here we write w′ ≤S w if there exists x ∈W0 such that xw′x−1 ≤ w. By the above
description of the finite part of each element in S Adm(μ)○cyc, it is easily checked that
if w′ ∈ S Adm(μ)○cyc and �(w) = �(w′), then there is no x ∈W0 such that xwx−1 = w′.
So if w′ ∈ S Adm(μ)○cyc , w′ ≤S w and �(w′) = �(w), then w = w′. Thus, by the induc-
tion hypothesis, we have SAλ ,φ ⊆ π(Xw(b)0). By [2, Propositions 2.11(5) and 3.4],
the closure of SAλ ,φ is contained in a union of semi-module strata Tλ such that
dim(Tλ/SAλ ,φ) < dim SAλ ,φ . Thus, by the induction hypothesis and Lemma 5.3, we
have π(Xw(b)0) ⊆ SAλ ,φ . Therefore, it follows that π(Xw(b)0) = SAλ ,φ , which com-
pletes the proof. ∎

6.3 The Ekedahl–Oort stratification for ω1 + ωn−3

Throughout this subsection, we set μ = ω1 + ωn−3. Also we assume that n ≥ 7. Note
that the unique dominant cocharacter μ′ with μ′ ≺ μ is μ′ = ωn−2.

Proposition 6.7 There exist at least 2(n − 4) elements of length 3n − 11 in
S Adm(μ)○cyc ∶= S Adm(μ)cyc/S Adm(ωn−2)cyc. There also exists an element w of length
3n − 14 in SAdm(μ) such that p(w) is not a n-cycle and Xw(b) ≠ ∅. Moreover, the semi-
module stratification of Xμ(b) is not a refinement of the Ekedahl–Oort stratification.

Proof For any 1 ≤ j ≤ n − 4, set c j = sn−3sn−2sn−1sn−4 ⋅ ⋅ ⋅ s j+2s j+1s1 ⋅ ⋅ ⋅ s j−1s j . For
j = n − 3, set cn−3 = s1s2 ⋅ ⋅ ⋅ sn−1. Then we have ϖμ c j ∈ S Adm(μ)○cyc and �(ϖμ c j) =
3n − 9 for any 1 ≤ j ≤ n − 3. If 1 ≤ j ≤ n − 5, then c jsn−3sn−2 and c jsn−3sn−4 are n-
cycles of length 3n − 11 satisfying ϖμ c jsn−3sn−2 , ϖμ c jsn−3sn−4 ∈ S Adm(μ)○cyc. Fur-
ther cn−4sn−3sn−2 and cn−3sn−4sn−3 are also n-cycles of length 3n − 11 satisfying
ϖμ cn−4sn−3sn−2 , ϖμ cn−3sn−4sn−3 ∈ SAdm(μ)○cyc. Thus, we have found 2(n − 4) dis-
tinct elements of length 3n − 11 in SAdm(μ)○cyc.
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Set y = cn−5sn−3sn−2sn−4sn−6sn−5 = (1 2 ⋅ ⋅ ⋅ n − 6 n − 2 n n − 3)(n − 4 n − 5 n − 1).
Then ϖμ y ∈ S Adm(μ) and χ1,n−1 , χn−5,n ∈ Φ+/Φϖ μ y . By Theorem 2.9, Xϖ μ y(b) ≠
∅. This shows the second assertion. We can easily check the last assertion using
Lemma 5.4, similarly as the proof of Proposition 6.4. ∎

6.4 The Ekedahl–Oort stratification for ω1 + ω2 , ω4 + ωn−1

Note that the unique dominant cocharacter μ′ with μ′ ≺ ω1 + ω2 is ω3. By an explicit
calculation, it is easy to verify the following statements (cf. Proposition 6.5).

Proposition 6.8 Assume that n = 5. Set μ = ω1 + ω2. For any 1 ≤ j ≤ 3(= dim Xμ(b)),
set S Adm(μ)○cyc ∶= S Adm(μ)cyc/S Adm(ω3)cyc. Then we have

S Adm(μ)○cyc = {s0s4s3s2s1s0τ3 , s0s1s4s3s0s4τ3 , s0s4s3s2τ3 , s0s1s4s3τ3}.

Let ϖμ y ∈ S Adm(μ)○cyc. Then there exists v ∈ LP(ϖμ y) such that v−1 yv is a Coxeter
element. Moreover, Xw(b) = ∅ for any w ∈ SAdm(μ)/SAdm(μ)cyc, and the semi-
module stratification of Xμ(b) is a refinement of the Ekedahl–Oort stratification.

Lemma 6.9 Assume that n = 7 or 8. Let μ be ω1 + ω2 (resp. ω4 + ωn−1). Set c =
s1s2 ⋅ ⋅ ⋅ sn−1. Then ϖμ cs1s2s3 ∈ S Adm(μ) and Xϖ μ cs1 s2 s3(b) ≠ ∅ (resp. ϖμ c−1s5s4s3 ∈
S Adm(μ) and Xϖ μ c−1 s5 s4 s3(b) ≠ ∅). Further cs1s2s3 (resp. c−1s5s4s3) is not n-cycle.

6.5 The Ekedahl–Oort stratification for ω2 + ωn−3

We set μ = ω2 + ωn−3. Also we assume that n ≥ 5.

Lemma 6.10 If n is odd (resp. even), set y = s2s3 ⋅ ⋅ ⋅ sn−3s1s2 ⋅ ⋅ ⋅ sn−3 (resp. y =
s2s3 ⋅ ⋅ ⋅ sn−3s1s2 ⋅ ⋅ ⋅ sn−2). Then ϖμ y ∈ SAdm(μ), Xϖ μ y(b) ≠ ∅ and y is not a n-cycle.

Proof If n is odd (resp. even), then y = (1 3 ⋅ ⋅ ⋅ n − 2)(2 4 ⋅ ⋅ ⋅ n − 1 n) (resp.
(1 3 ⋅ ⋅ ⋅ n − 1)(2 4 ⋅ ⋅ ⋅ n)) and ϖμ y ∈ S Adm(μ). Note that χ1,n , χ2,n−1 ∈ Φ+/Φϖ μ y .
So by Lemma 2.9, Xϖ μ y(b) ≠ ∅. The proof is finished. ∎

7 Comparison of two stratifications

Keep the notations and assumptions in Section 3 .

7.1 Known cases

The following results are known in (the proof of) [39, Corollary 5.5 and Theorem 5.9].

Proposition 7.1 Let ≅ denote a universal homeomorphism.
(i) Assume that n ≥ 3. Set μ = 2ω1 , w = ϖμs1s2 ⋅ ⋅ ⋅ sn−1 and

λ =
⎧⎪⎪⎨⎪⎪⎩

χ∨2,n−1 + χ∨4,n−3 + ⋅ ⋅ ⋅ + χ∨n−1
2 , n+3

2
( n−1

2 even)
χ∨1,n + χ∨3,n−2 + ⋅ ⋅ ⋅ + χ∨n−1

2 , n+3
2

( n−1
2 odd).

Then we have Xμ(b)0 = X λ
μ(b) = π(Xw(b)0) ≅ A n−1

2 .
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(ii) Assume that n ≥ 3. Set μ = 2ω1 + ωn−1 , w j = ϖμsn−1sn−2 ⋅ ⋅ ⋅ sn− j+1s1s2 ⋅ ⋅ ⋅ sn− j and

λ j =
⎧⎪⎪⎨⎪⎪⎩

χ∨1,2 j + χ∨2,2 j−1 + ⋅ ⋅ ⋅ + χ∨j, j+1 ( j ≤ n
2 )

χ∨2 j+1−n ,n + χ∨2 j+2−n ,n−1 + ⋅ ⋅ ⋅ + χ∨j, j+1 ( j ≥ n
2 ).

for j = 1, 2, . . . , n − 1. Then we have Xμ(b)0 = ⊔1≤ j≤n−1 X λ j
μ (b) and X λ j

μ (b) =
π(Xw j(b)0) ≅ An−1 for each j.

(iii) Assume that n = 5. Set μ = 3ω1 , w = ϖμs1s2s3s4 and λ = χ∨1,2 + χ∨3,4. Then we have
Xμ(b)0 = X λ

μ(b) = π(Xw(b)0) ≅ A4.
(iv) Assume that n = 4. Set μ = 3ω1 , w = ϖμs1s2s3 and λ = χ∨3,2. Then we have

Xμ(b)0 = X λ
μ(b) = π(Xw(b)0) ≅ A3.

(v) Assume that n = 3. Set μ = 4ω1 , w = ϖμs1s2 and λ = χ∨3,1. Then we have Xμ(b)0 =
X λ

μ(b) = π(Xw(b)0) ≅ A3.
(vi) Assume that n = 3. Set μ = 3ω1 + ω2 , w1 = ϖμs1s2 , w2 = ϖμs2s1 , λ1 = χ∨2,3

and λ2 = χ∨3,2. Then we have Xμ(b)0 = X λ1
μ (b) ⊔ X λ2

μ (b) and X λ j
μ (b) =

π(Xw j(b)0) ≅ A3 for each j.
(vii) Assume that n = 2. Set μ = mω1 with m ≥ 1, w = ϖμs1 and

λ =
⎧⎪⎪⎨⎪⎪⎩

m−1
2 χ∨1,2 (m−1

2 odd)
m−1

2 χ∨2,1 (m−1
2 even).

Then we have Xμ(b)0 = X λ
μ(b) = π(Xw(b)0) ≅ A m−1

2 .

7.2 Proof of the main theorem

Theorem 7.2 Let μ ∈ X∗(T)+. The following assertions are equivalent.
(i) The semi-module stratification of X⪯μ(b) gives a refinement of the Ekedahl–Oort

stratification.
(ii) For any w ∈ SAdm(μ) with Xw(b) ≠ ∅, there exists v ∈ LP(w) such that

v−1 p(w)v is a Coxeter element.
(iii) The cocharacter μ has one of the following forms:

ω1 , ωn−1 , (n ≥ 1),
ω2 , 2ω1 , ωn−2 , 2ωn−1 , (odd n ≥ 3),
ω2 + ωn−1 , 2ω1 + ωn−1 ω1 + ωn−2 , ω1 + 2ωn−1 , (n ≥ 3),
ω3 , ωn−3 , (n = 7, 8),
3ω1 , 3ωn−1 , (n = 4, 5),
ω1 + ω2 , ω3 + ω4 , (n = 5),
4ω1 , ω1 + 3ω2 , 4ω2 , 3ω1 + ω2 , (n = 3),
mω1 with m odd, (n = 2).

If one of the above conditions holds, then for any w ∈ S Adm(μ)cyc, there exist μ′ ∈
X∗(T)+ with μ′ ⪯ μ and a cyclic extended semi-module (Aλ , φ) for μ′ such that
π(Xw(b)0) = X λ

⪯μ(b) = SAλ ,φ . Moreover, π(Xw(b)0) ≅ AV(Aλ ,φ).
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Proof For any w = ϖμ y ∈ S W̃ with μ dominant, set w∗ = ϖ(μ(1), . . . ,μ(1))ς(w) (cf.
Section 2.5 and Section 3.2). Then w∗ ∈ S W̃ and p(w∗) = wmax yw−1

max (cf. Section 2.5
and Section 3.2). Note that the arguments and results in Section 5 and Section 6 for
(μ, w , b) also hold for (μ∗ , w∗ , b∗). Thus, in this proof, it suffices to treat the case for
either μ or μ∗.

First assume that n ≥ 6. Let 1 ≤ m0 < n be the residue of m modulo n. If 4 ≤ m0 ≤
n − 4, then ωm0 + ⌊m

n ⌋ωn ⪯ μ. So by Lemma 6.1 and Proposition 6.4, μ satisfies neither
(i) nor (ii). If n ≥ 10 and m0 = 3, then by Lemma 6.2, μ satisfies neither (i) nor (ii). If
n = 7, 8 and m0 = 3, then by Proposition 6.5, μ = ω3 satisfies (i) and (ii). If, moreover,
μ ≠ ω3, then ω1 + ω2 + ⌊m

n ⌋ωn ⪯ μ or ω4 + ωn−1 + (⌊m
n ⌋ − 1)ωn ⪯ μ. So by Lemma 5.6

and Lemma 6.9, μ satisfies neither (i) nor (ii). If m0 = n − 2, then ω1 + ωn−3 + ⌊m
n ⌋ωn ⪯

μ unless μ = ωn−2 or 2ωn−1. If m0 = n − 1, then ω2 + ωn−3 + ⌊m
n ⌋ωn ⪯ μ unless μ =

ωn−1 , ω1 + ωn−2 or ω1 + 2ωn−1. Thus, the equivalence of (i), (ii) and (iii) for m0 = n −
2, n − 1 follows from Theorem 4.17, Proposition 6.5, Proposition 6.7, Proposition 6.10
and Proposition 7.1.

Assume that n = 5. If m0 = 3, then ω1 + ω3 + ω4 + ⌊m
n ⌋ωn ⪯ μ unless μ =

ω3 , 2ω4 , ω1 + ω2 or 3ω1. If m0 = 4, then 2ω2 + ⌊m
n ⌋ωn ⪯ μ unless μ = ω4 , ω1 + ω3 or

ω1 + 2ω4. Set y5 = (1 5 3)(2 4). Then it is easy to check that ϖω1+ω3+ω4 y5 ∈ S Adm(ω1 +
ω3 + ω4) and Xϖω1+ω3+ω4 y5(τ8) ≠ ∅. Assume that n = 4. If m0 = 3, then 2ω2 + ω3 +
⌊m

n ⌋ωn ⪯ μ unless μ = ω3 , ω1 + ω2 , ω1 + 2ω3 or 3ω1. Set y4 = (1 3)(2 4). Then it is easy
to check that ϖ2ω2+ω3 y4 ∈ S Adm(2ω2 + ω3) and Xϖ2ω2+ω3 y4(τ7) ≠ ∅. Assume that
n = 3. If m0 = 2, then 2ω1 + 3ω2 + ⌊m

n ⌋ωn ⪯ μ unless μ = ω2 , 2ω1 , ω1 + 2ω2 , 3ω1 + ω2
or 4ω2. Set y3 = (1 3). Then it is easy to check that ϖ2ω1+3ω2 y3 ∈ S Adm(2ω1 + 3ω2)
and Xϖ2ω1+3ω2 y3(τ8) ≠ ∅. Thus, the equivalence of (i), (ii) and (iii) for n = 2, 3, 4, 5 also
follows from Theorem 4.17, Proposition 6.5, Proposition 6.10 and Proposition 7.1. The
case for n = 1 is trivially true.

Assume that μ satisfies one of the conditions in the theorem, which is equivalent to
each other as we have just proved. Except the cases where μ or μ∗ is ω1 + ωn−2 (n ≥ 4)
or ω1 + ω2 (n = 5), it follows from [43, Theorem 5.3] and Proposition 7.1 that each
X λ

μ(b)(≠ ∅) is universally homeomorphic to an affine space. Here we will treat the
case μ = ω1 + ωn−2. The proof for μ = ω1 + ω2 is similar.

Set μ = ω1 + ωn−2 and μ● = (μ1 , μ2) = (ω1 , ωn−2). By [32, Theorem 1.5] and the
Cartesian square right after it, pr induces a bijection between pr−1(Xμ(b))(⊆
Xμ●(b●)) and Xμ(b) (cf. [40, Lemma 3.11]). Since pr is proper, it induces a universally
homeomorphism onto its image. Thus by Theorem 3.12, it suffices to show that for any
fixed 1 ≤ j ≤ n − 2 and [λ] ∈ A j

μ , there exists a unique λ● = (λ1 , λ2) ∈ A j
μ● such that

λ1 = λ. If λ● ∈ A j
μ● , then by [32, Proposition 2.9], we have

λ2 − λ1 ∈W0ω1 , bλ1 − λ2 ∈W0ωn−2 .

By Lemma 5.3, we may assume that [λ] ∈ A j
μ has one of the following forms:

(1) λ = (1, . . . , 1, 0, . . . , 0,−1, . . . ,−1, 0, . . . , 0),
(2) λ = (0, . . . , 0, 1, . . . , 1, 0, . . . , 0,−1, . . . ,−1),
(3) λ = (1, . . . , 1, 0, . . . , 0,−1, . . . ,−1).
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Here the numbers of 1 and −1 are equal. In the case (1) (resp. (2)), let i =
max{i′ ∣ λ(i′) = −1} (resp. min{i′ ∣ λ(i′) = 1}). Then (λ2 − λ)(i) = λ2(i) + 1 and
(bλ − λ2)(i) = 1 − λ2(i) (resp. (λ2 − λ)(i − 1) = λ2(i − 1) and (bλ − λ2)(i − 1) = 2 −
λ2(i − 1)). So if λ2 − λ ∈W0ω1 and bλ − λ2 ∈W0ωn−2, then λ2(i) = 0 (resp. λ2(i −
1) = 1). Hence, the i-th (resp. (i − 1)-th) entry of λ2 − λ is equal to 1, and other entries
are equal to 0. So λ2 is uniquely determined by λ. In the case (3), we have (λ2 − λ)(n) =
λ2(n) + 1 and (bλ − λ2)(n) = 1 − λ2(n). So if λ2 − λ ∈W0ω1 and bλ − λ2 ∈W0ωn−2,
then λ2(n) = 0. So λ2 is also uniquely determined by λ.

Other statements follow from the results (and proofs) in Section 5 and
Section 6. ∎
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