Canad. J. Math. 2025, pp. 1–38 <http://dx.doi.org/10.4153/S0008414X24000932>

© The Author(s), 2025. Published by Cambridge University Press on behalf of Canadian Mathematical Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (https://creativecommons. [org/licenses/by-nc-nd/4.0/\), which permits non-commercial re-use, distribution, and reproduction](https://creativecommons.org/licenses/by-nc-nd/4.0/) in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.

The Ekedahl–Oort stratification and the semi-module stratificatio[n](#page-0-0)

Ryosuke Shimad[a](https://orcid.org/0000-0001-7477-9553)

Abstract. In this paper, we compare the J-stratification (or the semi-module stratification) and the Ekedahl–Oort stratification of affine Deligne–Lusztig varieties in the superbasic case. In particular, we classify the cases where the J-stratification gives a refinement of the Ekedahl–Oort stratification, which include many interesting cases such that the affine Deligne-Lusztig variety admits a simple geometric structure.

1 Introduction

Affine Deligne–Lusztig varieties were introduced by Rapoport [\[34\]](#page-37-0), which play an important role in understanding geometric and arithmetic properties of Shimura varieties.The uniformization theorem by Rapoport and Zink [\[33\]](#page-37-1) allows us to describe the Newton strata of Shimura varieties in terms of Rapoport–Zink spaces, whose underlying spaces are special cases of affine Deligne–Lusztig varieties.

Let *F* be a non-Archimedean local field with finite residue field \mathbb{F}_q of prime characteristic *p*, and let *L* be the completion of the maximal unramified extension of *F*. Let σ denote the Frobenius automorphism of L/F . Further, we write \mathcal{O} (resp. \mathcal{O}_F) for the valuation ring of *L* (resp. *F*). Finally, we denote by *ϖ* a uniformizer of *F* (and *L*) and by v_L the valuation of *L* such that $v_L(\omega) = 1$.

Let *G* be an unramified connected reductive group over \mathcal{O}_F . Let *B* ⊂ *G* be a Borel subgroup and $T \subset B$ a maximal torus in *B*, both defined over \mathcal{O}_F . For $\mu, \mu' \in X_*(T)$ (resp. $X_*(T)_{\mathbb{Q}}$), we write $\mu' \leq \mu$ if $\mu - \mu'$ is a nonnegative integral (resp. rational) linear combination of positive coroots. For a cocharacter $\mu \in X_*(T)$, let ϖ^{μ} be the image of $\omega \in \mathbb{G}_m(F)$ under the homomorphism $\mu: \mathbb{G}_m \to T$.

Set *K* = *G*(\circ). We fix a dominant cocharacter $\mu \in X_*(T)_+$ and $b \in G(L)$. Then the affine Deligne–Lusztig variety $X_\mu(b)$ is the locally closed reduced \mathbb{F}_q -subscheme of the affine Grassmannian $\mathcal{G}r = G(L)/K$ defined as

$$
X_{\mu}(b) = \{xK \in \mathcal{G}r \mid x^{-1}b\sigma(x) \in K\varpi^{\mu}K\}.
$$

Received by the editors January 25, 2024; revised August 11, 2024; accepted September 30, 2024.

This work was supported by the WINGS-FMSP program at the Graduate School of Mathematical Sciences, the University of Tokyo. This work was also supported by JSPS KAKENHI Grant number JP21J22427.

AMS subject classification: **14G35**, **20G25**.

Keywords: Affine Deligne-Lusztig varieties, the Ekedahl–Oort stratification, the semi-module stratification.

The closed affine Deligne–Lusztig variety is the closed reduced $\overline{\mathbb{F}}_q$ -subscheme of \mathcal{G}_r defined as

$$
X_{\leq \mu}(b) = \bigcup_{\mu' \leq \mu} X_{\mu'}(b).
$$

Both $X_{\mu}(b)$ and $X_{\leq \mu}(b)$ are locally of finite type in the equal characteristic case and locally perfectly of finite type in the mixed characteristic case (cf. [\[19,](#page-36-0) Corollary 6.5], [\[18,](#page-36-1) Lemma 1.1]). Finally, the affine Deligne–Lusztig varieties $X_\mu(b)$ and $X_{\leq \mu}(b)$ carry a natural action (by left multiplication) by the *σ*-centralizer of *b*

$$
J_b(F) = \{ g \in G(L) \mid g^{-1}b\sigma(g) = b \}.
$$

The geometric properties of affine Deligne–Lusztig varieties have been studied by many people. For example, the non-emptiness criterion and the dimension formula are already known for the affine Deligne–Lusztig varieties in the affine Grassmannian (see [\[8\]](#page-36-2), [\[42\]](#page-37-2) and [\[17\]](#page-36-3)). Let $B(G)$ denote the set of σ -conjugacy classes of $G(L)$. Thanks to Kottwitz [\[28\]](#page-37-3), a σ -conjugacy class $[b] \in B(G)$ is uniquely determined by two invariants: the Kottwitz point $\kappa(b) \in \pi_1(G)/((1-\sigma)\pi_1(G))$ and the Newton point $v_b \in X_*(T)_{\mathbb{Q},+}$. Set $B(G,\mu) = \{ [b] \in B(G) \mid \kappa(b) = \kappa(\omega^{\mu}), v_b \leq \mu^{\diamond} \}$, where $\mu^{\circ} \in X_*(T)_{\mathbb{Q},+}$ denotes the *σ*-average of μ . Then $X_\mu(b) \neq \emptyset$ if and only if $[b] \in$ $B(G, \mu)$. If this is the case, then we have

$$
\dim X_{\mu}(b) = \langle \rho, \mu - \nu_b \rangle - \frac{1}{2} \operatorname{def}(b),
$$

where ρ is the half sum of positive roots and $\text{def}(b)$ is the defect of *b*. Moreover, the parametrization problem of the set of irreducible components Irr $X_\mu(b)$ is also known. Let \widehat{G} be the Langlands dual of *G* defined over $\overline{\mathbb{Q}}_l$ with $l \neq p$. Surprisingly, there exists a natural bijection between $J_b(F) \$ Irr $X_\mu(b)$ and a certain weight space of the crystal basis \mathbb{B}_{μ} of the irreducible \widehat{G} -module V_{μ} of highest weight μ . This is conjectured by Chen and Zhu, and proved in general by Nie [\[32\]](#page-37-4) and Zhou-Zhu [\[47\]](#page-37-5).

Via the relationship to Shimura varieties, or more directly to Rapoport–Zink spaces, the results on the geometry of affine Deligne–Lusztig varieties have numerous applications to number theory (e.g., the Kudla-Rapoport program [\[29\]](#page-37-6), Zhang's Arithmetic Fundamental Lemma [\[46\]](#page-37-7), . . .). Many of these applications make use of the special cases where $X_{\leq \mu}(b)$ admits a simple description. The fully Hodge–Newton decomposable case, introduced by Görtz, He and Nie [\[13\]](#page-36-4), is one of such cases. They proved that (G, μ) is fully Hodge–Newton decomposable if and only if $X_{\leq \mu}(\tau_{\mu})$ is naturally a union of (classical) Deligne–Lusztig varieties (in fact, they studied the cases with arbitrary parahoric level). This stratification is the so-called weak Bruhat-Tits stratification, a stratification indexed in terms of the Bruhat-Tits building of $J_b(F)$ (which exists only in the fully Hodge–Newton decomposable case). The case of Coxeter type is a special case of this case such that each Deligne-Lusztig variety appearing in this stratification is of Coxeter type (cf. [\[14,](#page-36-5) Section 2.3]). In this case, we drop the "weak" above. For example, the cases of Coxeter type include the case for certain unitary groups of signature $(1, n - 1)$ studied in [\[44\]](#page-37-8) by Vollaard and Wedhorn, which has been used in [\[29\]](#page-37-6) and [\[46\]](#page-37-7).

To give a conceptual way to explain the relationship between the geometry of affine Deligne–Lusztig varieties and the Bruhat-Tits building of $J_b(F)$ indicated by above examples, Chen and Viehmann [\[2\]](#page-36-6) introduced the J-stratification, where J stands for $J_b(F)$. The J-strata are locally closed subsets of $\mathcal{G}r$. By intersecting each J-stratum with $X_{\leq \mu}(b)$, we obtain the J-stratification of $X_{\leq \mu}(b)$ (see Section [2.4](#page-8-0) for details). In [\[9\]](#page-36-7), Görtz showed that the Bruhat-Tits stratification coincides with the J-stratification. In fact the Bruhat-Tits stratification is a refinement of the Ekedahl– Oort stratification (see Section [2.2](#page-6-0) for the latter). So the J-stratification is also a refinement of the Ekedahl–Oort stratification when (G, μ) is of Coxeter type. This does not hold in general even if μ is minuscule. See [\[2,](#page-36-6) Example 4.1] for a counterexample in the case $G = GL_9$. Therefore, the cases when the J -stratification is a refinement of the Ekedahl–Oort stratification should be special cases, which are of particular interest.

Usually it seems very difficult to study the J-stratification. However, in the case that $G = GL_n$ and *b* is superbasic (i.e., $\kappa(b) \in \mathbb{Z}$ is coprime to *n*), the J-stratification coincides with a stratification by semi-modules [\[2,](#page-36-6) Proposition 3.4]. The notion of semi-modules was first considered by de Jong and Oort [\[3\]](#page-36-8) (see Section [3.1\)](#page-11-0) for minuscule cocharacters. Later Viehmann [\[42\]](#page-37-2) introduced a notion of extended semimodules for arbitrary cocharacters, which generalizes the notion of semi-modules. It played a crucial role to prove the dimension formula (for split groups) and the Chen-Zhu conjecture mentioned above. This is because for these problems, we can reduce the general case to the case that $G = GL_n$ and *b* is superbasic.

The aim of this paper is to compare the Ekedahl–Oort stratification and the semimodule stratification (for $G = GL_n$). To state the main results, we need some notation. Let W_0 be the (finite) Weyl group of *T* in *G* and let \tilde{W} be the Iwahori-Weyl group of *T* in *G*. Then $\tilde{W} = X_*(T) \rtimes W_0$. We denote the projection $\tilde{W} \to W_0$ by *p*. For $\mu \in X_*(T)_+$, we denote by $Adm(\mu)$ the admissible subset of \tilde{W} . Let ^{*S*} $Adm(\mu)$ be a certain subset of Adm(μ), which is the index set of the Ekedahl–Oort stratification of $X_{\leq \mu}(\tau_{\mu})$ (see Section [2.2\)](#page-6-0). We fix (a representative in *G*(*L*) of a) length 0 element $τ_μ ∈ W$ whose $σ$ conjugacy class in *G*(*L*) is the unique basic element in *B*(*G*, *µ*). Finally, let LP(*w*) ⊆ *W*⁰ be the length positive elements for *w* (see Section [2.5\)](#page-9-0).

Theorem A (See Theorem [7.2\)](#page-34-0) Let $G = GL_n$ *and let* $\mu \in X_*(T)_+$ *. Assume that* τ_{μ} *is superbasic. Then the following assertions are equivalent.*

- (i) *The* J-stratification (or the semi-module stratification) of $X_{\leq\mu}(\tau_{\mu})(\neq\emptyset)$ gives a *refinement of the Ekedahl–Oort stratification.*
- (ii) *For any w* ∈ *^S*Adm(*μ*) *whose corresponding Ekedahl–Oort stratum is nonempty, there exists* $v \in LP(w)$ *such that* $v^{-1}p(w)v$ *is a Coxeter element.*
- (iii) *The cocharacter μ has one of the following forms modulo* $\mathbb{Z}\omega_n$ *:*

 $\omega_1, \quad \omega_{n-1}, \quad (n \geq 1),$ ω_2 , 2 ω_1 , ω_{n-2} , 2 ω_{n-1} , (odd *n* ≥ 3), $\omega_2 + \omega_{n-1}$, $2\omega_1 + \omega_{n-1}$ $\omega_1 + \omega_{n-2}$, $\omega_1 + 2\omega_{n-1}$, $(n \ge 3)$, $\omega_3, \quad \omega_{n-3}, \quad (\quad n = 7, 8),$ $3\omega_1$, $3\omega_{n-1}$, $(n = 4, 5)$, $\omega_1 + \omega_2$, $\omega_3 + \omega_4$, $(n = 5)$, 4 R. Shimada

$$
4\omega_1, \quad \omega_1 + 3\omega_2, \quad 4\omega_2, \quad 3\omega_1 + \omega_2, \quad (n = 3),
$$

\n
$$
m\omega_1 \text{ with } m \text{ odd}, \quad (n = 2).
$$

Here, ω^k denotes the cocharacter of the form (1, . . . , 1, 0, . . . , 0) *in which* 1 *is repeated k times. Moreover, if one of the above conditions holds, then each* J*-stratum is universally homeomorphic to an affine space.*

See Section [2.4](#page-8-0) for the reason why we choose τ _μ. In fact, this choice is the reasonable one suggested in [\[2,](#page-36-6) Remark 2.1], which is unique in this case.

Although the cocharacters ω_1 and ω_{n-1} are of Coxeter type for any *n*, the cocharacters $2\omega_1$ and ω_2 are of Coxeter type only when $n = 2$ and $n = 4$ respectively (cf. [\[14,](#page-36-5) Theorem 1.4]). In Theorem [A,](#page-2-0) these two cocharacters are no longer exceptional cases. Note also that the condition (ii) works in more general setting. In [\[38\]](#page-37-9), we study this condition for GL*ⁿ* without the superbasic assumption. It turns out that if *μ* satisfies (ii), then the J-stratification of $X_{\leq \mu}(\tau_{\mu})$ gives a refinement of the Ekedahl– Oort stratification, and each J-stratum is universally homeomorphic to the product of a classical Deligne–Lusztig variety and an affine space. This simple description can be considered as a natural generalization of the Bruhat-Tits stratification. Moreover, in a joint work [\[37\]](#page-37-10) with Schremmer and Yu, we proved that (ii) implies a simple geometric structure on each Ekedahl–Oort stratum of $X_{\leq \mu}(\tau_{\mu})$ for general *G*. In fact, the condition (ii) for GL*ⁿ* is also a generalization of Coxeter type [\[37,](#page-37-10) Theorem 4.12]. So Theorem [A](#page-2-0) tells us that the two conditions which contain the cases of Coxeter type are actually equivalent at least in the superbasic case.

If *μ* is minuscule and ch *F* = 0, then $X_\mu(\tau_\mu)(=X_{\leq \mu}(\tau_\mu))$ for GL_n is the perfection of the special fiber of the Rapoport–Zink space attached to (GL_n, μ, τ_μ) (cf. [\[14,](#page-36-5) Section 5]). These Rapoport–Zink spaces are moduli spaces of *p*-divisible groups, which have been studied in [\[43\]](#page-37-11). Especially in the superbasic case, each J-stratum of $X_\mu(\tau_\mu)$ is known to be isomorphic to an affine space (before perfection). However, even in this case, there is no good description of the closure of each J-stratum in general. On the other hand, it turned out in [\[38\]](#page-37-9) that if μ is a minuscule cocharacter appearing in the list (iii) above, then each J-stratum of $X_\mu(\tau_\mu)$ can be written as a certain union of J-strata. It is also worth mentioning that the condition (i) in Theorem [A](#page-2-0) is essential to describe this union explicitly because we need to attach $w \in {}^{S}$ Adm (μ) to each J-stratum in a natural way (cf. [\[38,](#page-37-9) Section 2.3]).

In [\[1\]](#page-36-9), Chen-Tong compared the Newton stratification and the Harder– Narashimhan stratification of the flag variety attached to (G, μ) under the assumption that μ is minuscule. As a result, they showed that the former gives a refinement of the latter if and only if (G, μ) is weakly fully Hodge–Newton decomposable [\[1,](#page-36-9) Definition 2.4]. Recently, Schremmer informed the author that there is an upcoming work with He and Viehmann which also aims at generalizing the fully Hodge–Newton decomposable case. For a pair (G, μ) , they define a nonnegative rational number depth(G, μ). Then it is known that (G, μ) is fully Hodge–Newton decomposable if and only if depth $(G, \mu) \le 1$ (cf. [\[13,](#page-36-4) Definition 3.2]). They classified the cases where $1 <$ depth(*G*, μ) < 2. The classifications of these works have similarities, and most cocharacters in Theorem [A](#page-2-0) appear in these works (see also [\[38,](#page-37-9) Section 1]). Moreover, the nice stratification in [\[38\]](#page-37-9) suggests that these cases would be new cases such that

 $X_{\leq \mu}(\tau_{\mu})$ admits a simple description (as already predicted in [\[1,](#page-36-9) Remark 2.16]). Thus, for general *G*, both (i) and (ii) are also reasonable conditions to find such simple cases which would have many applications as the Bruhat-Tits stratification.

It is worth mentioning that there are some other (G, μ) such that the corresponding basic affine Deligne–Lusztig variety admits a certain simple description. For example, the works by Fox-Imai [\[7\]](#page-36-10) (see also [\[6\]](#page-36-11)) and Trentin [\[41\]](#page-37-12) are such cases. Interestingly, both cases have depth $(G, \mu) = 2$. It is also interesting to compare the \mathbb{J} -stratification and the Ekedahl–Oort stratification in these cases because the result will be useful to find new simple cases.

Cyclic semi-modules are certain simple elements in the set of extended semimodules. It is easy to see that if there exists a noncyclic semi-module for μ , then the semi-module stratification of $X_\mu(\tau_\mu)$ never gives a refinement of the Ekedahl–Oort stratification (Corollary [3.10\)](#page-14-0). Along the way of proving Theorem [A,](#page-2-0) we also prove the following classification theorem, which ensures that there exists a noncyclic semimodule in many cases.

Theorem B (See Theorem [4.17\)](#page-24-0) *Every top extended semi-module (the semi-module whose corresponding stratum is top dimensional) for μ is cyclic if and only if μ has one of the following forms modulo* Z*ωn:*

- (i) ω_i *with* $1 \le i \le n 1$ *such that i is coprime to n.*
- (ii) $\omega_1 + \omega_i$ *or* $\omega_{n-1} + \omega_{n-i}$ *with* $1 \le i \le n-1$ *such that* $i+1$ *is coprime to n.*
- (iii) $(nr + i)\omega_1$ *or* $(nr + i)\omega_{n-1}$ *with* $r \ge 0$ *and* $1 \le i \le n 1$ *such that i is coprime to n.*
- (iv) $(nr+i-j)\omega_1+\omega_i$ or $(nr+i-j)\omega_{n-1}+\omega_{n-i}$ with $r\geq 1, 2\leq j\leq n-1$ and $1\leq i\leq n$ *n* − 1 *such that i is coprime to n.*

The key ingredient of the proof of Theorem [B](#page-4-0) is an explicit construction of top extended semi-modules from crystal bases via the natural map in the Chen-Zhu conjecture, which was established in [\[40\]](#page-37-13) by the author. This method is a completely new way of studying the affine Deligne–Lusztig varieties. Since the Chen-Zhu conjecture holds for arbitrary *G*, it is an interesting question in general to investigate the affine Deligne–Lusztig varieties by crystal bases.

The paper is organized as follows. In Section [2,](#page-4-1) we introduce the affine Deligne– Lusztig variety and stratifications of it. We also recall the length positive elements and the non-emptiness criterion of the affine Deligne–Lusztig variety in the affine flag variety. In Section [3](#page-11-1) and Section [4,](#page-15-0) we recollect known results on semi-modules and crystal bases respectively. Also in Section [4,](#page-15-0) we prove Theorem [B](#page-4-0) using combinatorics on Young tableaux. In Sections [5](#page-25-0) and [6,](#page-28-0) we examine the semi-module stratification and the Ekedahl–Oort stratification respectively by an explicit calculation of semimodules and elements in ${}^{S}\text{Adm}(\mu)$. In particular, using the non-emptiness criterion mentioned above, we show that Theorem [A](#page-2-0) (ii) does not hold for many μ . Finally, in Section 7, we prove the main theorem, combining Theorem [B](#page-4-0) and the results in Section [5](#page-25-0) and Section [6.](#page-28-0)

2 Preliminaries

Keep the notations in Section [1.](#page-0-1)

2.1 Notation

Let $\Phi = \Phi(G, T)$ denote the set of roots of *T* in *G*. We denote by Φ_{+} (resp. Φ_{-}) the set of positive (resp. negative) roots distinguished by *B*. Let Δ be the set of simple roots and Δ^{\vee} be the corresponding set of simple coroots. Let $X_*(T)$ be the set of cocharacters, and let $X_*(T)_+$ be the set of dominant cocharacters.

The Iwahori-Weyl group \tilde{W} is defined as the quotient $N_{G(L)}T(L)/T(\mathcal{O})$. This can be identified with the semi-direct product $W_0 \ltimes X_*(T)$, where W_0 is the finite Weyl group of *G*. We denote the projection $\tilde{W} \to W_0$ by *p*. We have a length function $\ell: \tilde{W} \to W_0$ $\mathbb{Z}_{\geq 0}$ given as

$$
\ell(w_0\varpi^\lambda)=\sum_{\alpha\in\Phi_+,w_0\alpha\in\Phi_-}|\langle\alpha,\lambda\rangle+1|+\sum_{\alpha\in\Phi_+,w_0\alpha\in\Phi_+}|\langle\alpha,\lambda\rangle|,
$$

where $w_0 \in W_0$ and $\lambda \in X_*(T)$.

Let $S \subset W_0$ denote the subset of simple reflections, and let $\tilde{S} \subset \tilde{W}$ denote the subset of simple affine reflections. We often identify Δ and *S*. The affine Weyl group *W^a* is the subgroup of *W*˜ generated by ˜ *S*. Then we can write the Iwahori-Weyl group as a semi-direct product $\tilde{W} = W_a \rtimes \Omega$, where $\Omega \subset \tilde{W}$ is the subgroup of length 0 elements. Moreover, (W_a, \tilde{S}) is a Coxeter system. We denote by \leq the Bruhat order on \tilde{W} . For any *J* ⊆ \tilde{S} , let ^{*J*} \tilde{W} be the set of minimal length representatives for the cosets in $W_J \backslash \tilde{W}$, where W_I denotes the subgroup of \tilde{W} generated by *J*.

Let *w* ∈ *W*. There exists a positive integer *k* such that $w^k = \omega^\lambda$ for some $\lambda \in X_*(T)$. We set $v_w = \lambda / k \in X_*(T)_{\mathbb{Q}}$. This is independent of the choice of *k*.

For $w \in W_a$, we denote by $\text{supp}(w) \subseteq \tilde{S}$ the set of simple affine reflections occurring in every (equivalently, some) reduced expression of *w*. Note that $\tau \in \Omega$ acts on $\tilde{\tilde{S}}$ by conjugation. We define the *σ*-support supp_σ ($wτ$) of $wτ$ as the smallest $τσ$ -stable subset of \tilde{S} which contains supp (w) .

For $w, w' \in \tilde{W}$ and $s \in \tilde{S}$, we write $w \xrightarrow{s} \sigma w'$ if $w' = sw\sigma(s)$ and $\ell(w') \leq \ell(w)$. We write $w \rightarrow_\sigma w'$ if there is a sequence $w = w_0, w_1, \ldots, w_k = w'$ of elements in W such that for any *i*, $w_{i-1} \xrightarrow{s_i} \sigma w_i$ for some $s_i \in S$. If $w \to \sigma w'$ and $w' \to \sigma w$, we write $w \approx \sigma w'$. For $\alpha \in \Phi$, let $U_{\alpha} \subseteq G$ denote the corresponding root subgroup. We set

$$
I = T(\mathcal{O}) \prod_{\alpha \in \Phi_+} U_{\alpha}(\varpi \mathcal{O}) \prod_{\beta \in \Phi_-} U_{\beta}(\mathcal{O}) \subseteq G(L),
$$

which is called the standard Iwahori subgroup associated to the triple $T \subset B \subset G$.

In the case $G = GL_n$, we will use the following description. Let *T* be the torus of diagonal matrices, and we choose the subgroup of upper triangular matrices *B* as Borel subgroup. Let χ_{ij} be the character $T \to \mathbb{G}_m$ defined by diag $(t_1, t_2, \ldots, t_n) \mapsto t_i t_j^{-1}$. Then we have $\Phi = {\chi_{ij} | i \neq j}$, $\Phi_+ = {\chi_{ij} | i \lt j}$, $\Phi_- = {\chi_{ij} | i \gt j}$ and $\Delta = {\chi_{i,i+1} | i \gt j}$ 1 ≤ *i* < *n*}. Through a natural isomorphism $X_*(T) \cong \mathbb{Z}^n$, $X_*(T)_+$ can be identified with the set $\{(m_1, \ldots, m_n) \in \mathbb{Z}^n \mid m_1 \geq \cdots \geq m_n\}$. The finite Weyl group is the symmetric group of degree *n*. Let us write *s*¹ = (1 2), *s*² = (2 3),..., *sn*−¹ = (*n* − 1 *n*). Set $s_0 = \omega^{\chi_{1,n}}(1 \ n)$, where $\chi_{1,n}$ is the unique highest root. Then $S = \{s_1, s_2, \dots, s_{n-1}\}\$ and $s_0 = \varpi^{\chi_{1,n}}(1 \ n)$, where $\chi_{1,n}$ is the unique highest root. Then $S = \{s_1, s_2, \dots, s_{n-1}\}$ and $\tilde{S} = S \cup \{s_0\}$. The Iwahori subgroup $I \subset K$ is the inverse image of the lower triangular matrices under the projection $K \to G(\overline{\mathbb{F}}_q)$ induced by $\overline{\omega} \mapsto 0$. Set $\tau = \begin{pmatrix} 0 & \overline{\omega} \\ 1_{n-1} & 0 \end{pmatrix}$. We

<https://doi.org/10.4153/S0008414X24000932>Published online by Cambridge University Press

often regard τ as an element of \tilde{W} , which is a generator of $\Omega \cong \mathbb{Z}$. Note that $b \in GL_n(L)$ is superbasic if and only if $[b] = [\tau^m]$ in $B(GL_n)$ for some *m* coprime to *n*.

2.2 Affine Deligne–Lusztig varieties

For $w \in \tilde{W}$ and $b \in G(L)$, the affine Deligne–Lusztig variety $X_w(b)$ in the affine flag variety $G(L)/I$ is defined as

$$
X_w(b) = \{xI \in G(L)/I \mid x^{-1}b\sigma(x) \in IwI\}.
$$

For $\mu \in X_*(T)_+$ and $b \in G(L)$, the affine Deligne–Lusztig variety $X_\mu(b)$ in the affine Grassmannian $\mathcal{G}r = G(L)/K$ is defined as

$$
X_{\mu}(b) = \{xK \in \mathcal{G}r \mid x^{-1}b\sigma(x) \in K\varpi^{\mu}K\}.
$$

The closed affine Deligne–Lusztig variety is the closed reduced $\overline{\mathbb{F}}_q$ -subscheme of \mathcal{G}_r defined as

$$
X_{\leq \mu}(b) = \bigcup_{\mu' \leq \mu} X_{\mu'}(b).
$$

Left multiplication by $g^{-1} \in G(L)$ induces an isomorphism between $X_\mu(b)$ and $X_\mu(g^{-1}b\sigma(g)).$ Thus, the isomorphism class of the affine Deligne–Lusztig variety only depends on the *σ*-conjugacy class of *b*. Moreover, we have $X_\mu(b) = X_{\mu+\lambda}(\omega^\lambda b)$ for each central $\lambda \in X_*(T)$.

The admissible subset of \tilde{W} associated to μ is defined as

$$
Adm(\mu) = \{ w \in \tilde{W} \mid w \leq \tilde{\omega}^{w_0\mu} \text{ for some } w_0 \in W_0 \}.
$$

Note that $Adm(\mu') \subseteq Adm(\mu)$ if $\mu' \leq \mu$. Indeed if $w \leq \varpi^{w_0\mu'}$ and $\mu' \leq \mu$, then $w \leq \pi$ $\omega^{w_0\mu}$ by [\[16,](#page-36-12) Lemma 4.5]. Set ^SAdm(μ) = Adm(μ) \cap ^SW. Then by [\[11,](#page-36-13) Theorem 3.2.1] (see also [\[15,](#page-36-14) Section 2.5]), we have

$$
X_{\leq \mu}(b) = \bigsqcup_{w \in {S} \mathrm{Adm}(\mu)} \pi(X_w(b)),
$$

where π : $G(L)/I \rightarrow G(L)/K$ is the projection. This is the so-called Ekedahl–Oort stratification.

For any $w \in {^S\tilde{W}}$, set

$$
Z(w) \coloneqq \{w_0 \in W_0 \mid w_0 w = w \sigma(w_0)\}.
$$

Lemma 2.1 Let $\omega^{\mu} y \in {^S \tilde{W}}$ *with* μ *dominant and* $y \in W_0$ *. Assume that* $Z(\omega^{\mu} y) = \{1\}$ *. Then the projection map* π : $X_{\varpi\mu}$ $_{\nu}(b) \rightarrow X_{\mu}(b)$ *is injective.*

Proof The proof is similar to [\[23,](#page-37-14) Lemma 5.4]. We may assume that $X_{\varphi^{\mu} y}(b) \neq \emptyset$. Let $gI, g'I \in X_{\omega^{\mu} y}(b)$ such that $\pi(gI) = \pi(g'I)$. Then $g'^{-1} g \in K$ and hence $g'^{-1} g \in K$ *IxI* for some *x* ∈ *W*₀. Since $(g'^{-1}g)(g^{-1}b\sigma(g)) = (g'^{-1}b\sigma(g'))(\sigma(g'^{-1}g))$, we have $(IxI)(I\omega^{\mu}yI)\cap (I\omega^{\mu}yI)(I\sigma(x)I)\neq\emptyset$. Note that $(IxI)(I\omega^{\mu}yI)=Ix\omega^{\mu}yI$ because $\omega^{\mu} y \in {}^{S} \tilde{W}$. This implies that $x \omega^{\mu} y = \omega^{\mu} y \sigma(x)$. By our assumption, we must have *x* = 1 and hence $g'^{-1}g \in I$ as desired. ■

Example 2.2 Let $G = GL_n$ and let $\omega^{\mu} y \in {}^S \tilde{W}$ with μ dominant and $y \in W_0$. If y is an *n*-cycle and $\{s_1, s_{n-1}\}\nsubseteq Z(\omega^\mu)$, then we have $Z(\omega^\mu y) = \{1\}$. Indeed, for any $x \in W_0$, $x\omega^{\mu} y = \omega^{\mu} yx$ implies that $xyx^{-1} = y$ and $x \in Z(\omega^{\mu})$. Thus, $x = y^{k}$ for some $0 \le k \le k$ $n-1$ and $y^k \mu = \mu$. Since $\{s_1, s_{n-1}\}\nsubseteq Z(\omega^\mu)$, we must have $k = 0$.

2.3 Deligne–Lusztig reduction method

The following Deligne–Lusztig reduction method was established in [\[10,](#page-36-15) Corollary 2.5.3].

Proposition 2.3 $\;$ Let $w \in \tilde{W}$ and let $s \in \tilde{S}$ be a simple affine reflection. If $\mathrm{ch}(F) > 0$, then *the following two statements hold for any* $b \in G(L)$ *.*

- (i) If $\ell(sw\sigma(s)) = \ell(w)$, then there exists a $J_b(F)$ -equivariant universal homeomor*phism* $X_w(b) \rightarrow X_{sw\sigma(s)}(b)$.
- (ii) *If* ℓ ($sw\sigma(s)$) = $\ell(w)$ − 2*, then there exists a decomposition* $X_w(b) = X_1 \sqcup X_2$ *such that*
	- *X*₁ *is open and there exists a* $J_b(F)$ *-equivariant morphism* $X_1 \rightarrow X_{sw}(b)$ *, which is the composition of a Zariski-locally trivial* G*m-bundle and a universal homeomorphism.*
	- X_2 *is closed and there exists a* $J_b(F)$ *-equivariant morphism* $X_2 \rightarrow X_{sw\sigma(s)}(b)$ *,* which is the composition of a Zariski-locally trivial \mathbb{A}^1 -bundle and a universal *homeomorphism.*

If $ch(F) = 0$ *, then the above statements still hold by replacing* \mathbb{A}^1 *and* \mathbb{G}_m *by* A1,pfn *and* Gpfn *^m respectively.*

The following result is proved in [\[22,](#page-37-15) Theorem 2.10], which allows us to reduce the study of $X_w(b)$ for any *w*, via the Deligne–Lusztig reduction method, to the study of $X_w(b)$ for *w* of minimal length in its *σ*-conjugacy class.

Theorem 2.4 For each $w \in \tilde{W}$, there exists an element w' which is of minimal length *inside its σ-conjugacy class such that* $w \rightarrow_{\sigma} w'$ *.*

Following [\[23,](#page-37-14) Section 3.4], we construct the reduction trees for *w* by induction on $\ell(w)$.

The vertices of the trees are elements of *W*. We write $x \to y$ if $x, y \in W$ and there exists $x' \in \tilde{W}$ and $s \in \tilde{S}$ such that $x \approx_{\sigma} x'$, $\ell(sx'\sigma(s)) = \ell(x') - 2$ and $y \in$ $\{sx', sx'\sigma(s)\}.$ These are the (oriented) edges of the trees. A reduction tree of *w* is a tree with these vertices and edges whose unique starting point is *w* and whose end points are of minimal length in its σ -conjugacy class of \tilde{W} .

The existence of a (not necessarily unique) reduction tree of *w* can be proved as follows. If *w* is of minimal length in its σ -conjugacy class of \tilde{W} , then the reduction tree for*w*consists of a single vertex*w*and no edges. Assume that*w* is not of minimal length and that a reduction tree is given for any $z \in \hat{W}$ with $\ell(z) < \ell(w)$. By Theorem [2.4,](#page-7-0) there exist w' and $s \in \tilde{S}$ with $w \approx_{\sigma} w'$ and $\ell(sw'\sigma(s)) = \ell(w') - 2$. By our assumption, there exist reduction trees of *sw'* and $sw'\sigma(s)$. Then a reduction tree of *w* consists of the given reduction trees of *sw'* and *sw'* $\sigma(s)$ and the edges $w \to sw'$ and $w \to sw'\sigma(s)$.

Let $\mathcal T$ be a reduction tree of *w*. Recall that an end point of $\mathcal T$ is a vertex in $\mathcal T$ of minimal length. A reduction path in T is a path $p: w \to w_1 \to \cdots \to w_n$, where w_n

is an end point of T. Set end(p) = w_n . We say that $x \to y$ is of type I (resp. II) if $\ell(x) - \ell(y) = 1$ (resp. $\ell(x) - \ell(\overline{y}) = 2$). For any reduction path *p*, we denote by $\ell_I(p)$ (resp. $\ell_{II}(p)$) the number of type I (resp. II) edges in p. We write X_p for a locally closed subscheme of $X_w(b)$ which is $J_b(F)$ -equivariant universally homeomorphic to an iterated fibration of type $(\ell_I(p), \ell_{II}(p))$ over $X_{\text{end}(p)}(b)$.

Let *B*(\tilde{W} , σ) be the set of σ -conjugacy classes in \tilde{W} . Let Ψ : *B*(\tilde{W} , σ) \to *B*(G) be the map sending $[w] \in B(\tilde{W}, \sigma)$ to $[w] \in B(G)$, where $\dot{w} \in G(L)$ is a lift of *w*. It is known that this map is well-defined and surjective, see [\[21,](#page-37-16) Theorem 3.7]. By [\[23,](#page-37-14) Proposition 3.9], we have the following description of $X_w(b)$.

Proposition 2.5 Let $w \in \hat{W}$ and \mathcal{T} be a reduction tree of w. For any $b \in G(L)$, there *exists a decomposition*

$$
X_w(b) = \bigsqcup_{\underline{p} \text{ is a reduction path in } \mathfrak{I};} X_{\underline{p}}.
$$

$$
\Psi(\text{end}(p)) = [b]
$$

In the case that $G = GL_n$ and $b = \tau^m$ with *m* coprime to *n*, we can count the number of top irreducible components and rational points of $X_w(b)^0 = \{ gI \in X_w(b) \mid$ $\kappa(g) = v_L(det(g)) = 0$ using the reduction tree for *w*. By [\[22,](#page-37-15) Proposition 3.5], the *σ*-conjugacy class of τ^m in \tilde{W} is the unique element in $B(\tilde{W}, \sigma)$ which maps to $\lceil \tau^m \rceil \in B(G)$ under Ψ. Note also that τ^m is the unique minimal length element in its *σ*-conjugacy class. We define a polynomial as

$$
F_{w,b} \coloneqq \sum_{\underline{p}} (\mathbf{q} - 1)^{\ell_I(\underline{p})} \mathbf{q}^{\ell_{II}(\underline{p})} \in \mathbb{N}[\mathbf{q} - 1],
$$

where *p* runs over all the reduction paths in \mathcal{T} with end(*p*) = τ^m .

Proposition 2.6 Assume that $G = GL_n$ and $b = \tau^m$ with m coprime to n. Let $w \in \tilde{W}$ *and let* T *be a reduction tree of w. Then the number of top irreducible components of X*^{*w*}(*b*)⁰ *is equal to the leading coefficient of* F ^{*w*},*b* (*as a polynomial in* **q** − 1*). Moreover, we have*

$$
|X_w(b)^{0,\sigma}|=F_{w,b}|_{\mathbf{q}=q}.
$$

Proof Note that each $J_b(F)$ -orbit of an irreducible component of $X_w(b)$ can be represented by an irreducible component of $X_w(b)^0$. Moreover, it is known that the stabilizer in *J*_{*b*}(*F*) is a parahoric subgroup (cf. [\[47,](#page-37-5) Proposition 3.1.4]), i.e., *J*_{*b*}(*F*) ∩ $I = \{g \in J_b(F) \mid \kappa(g) = 0\}$. Then the statement follows from [\[23,](#page-37-14) Theorem 3.4 and Proposition 3.5] and [\[24,](#page-37-17) Corollary 4.4].

Remark 2.7 The polynomials *F^w*,*^b* are called *class polynomials*. However, the definition above is an ad hoc one. See [\[23,](#page-37-14) Section 3] for the definition in general and the connection to reduction trees.

2.4 The J**-stratification**

For any $g, h \in G(L)$, let inv (g, h) denote the relative position, i.e., the unique dominant cocharacter such that *g*[−]¹ *h* ∈ *Kϖ*inv(*g*,*h*)*K*. By definition, two elements *gK*, *hK* ∈

G(*L*)/*K* lie in the same J-stratum if and only if for all $j \in J_b(F)$, inv(j, g) = inv(j, h). Clearly, this does not depend on the choice of *g*, *h*. By [\[2,](#page-36-6) Proposition 2.11], the J-strata are locally closed in Gr. By intersecting each J-stratum with $X_\mu(b)$ (resp. $X_{\leq \mu}(b)$), we obtain the J-stratification of $X_\mu(b)$ (resp. $X_{\leq \mu}(b)$).

As explained in [\[2,](#page-36-6) Remark 2.1], the J-stratification heavily depends on the choice of *b* in its *σ*-conjugacy class. So we need to fix a specific representative to compare the J-stratification on $X_\mu(b)$ (or $X_{\leq \mu}(b)$) to another stratification. It is pointed out in loc. cit that if $[b]$ is a basic class in $B(G, \mu)$, then a reasonable choice of *b* is the unique length 0 element τ_{μ} . Also, for any $w \in \tilde{W}$, the $J_w(F)$ -stratification is independent of the choice of a lift in $G(L)$. See [\[9,](#page-36-7) Lemma 2.5].

In the case where $G = GL_n$ and $b = \tau^m$ with *m* coprime to *n*, there is a grouptheoretic way to describe the J-stratification, which we will call the semi-module stratification. Indeed, by [\[2,](#page-36-6) Remark 3.1 and Proposition 3.4], the J-stratification on G*r* coincides with the stratification

$$
G(L)/K = \bigsqcup_{\lambda \in X_*(T)} I\varpi^{\lambda} K/K.
$$

So in this case, each \mathbb{J} -stratum of $X_\mu(b)$ (resp. $X_{\leq \mu}(b))$ coincides with $X_\mu^\lambda(b)$ (resp. $X^{\lambda}_{\leq \mu}(b)$ for some $\lambda \in X_*(T)$, where $X^{\lambda}_{\mu}(b) = X_{\mu}(b) \cap I\omega^{\lambda}K/K$ (resp. $X^{\lambda}_{\leq \mu}(b) =$ $X_{\leq \mu}(b) \cap I\omega^{\lambda}K/K$). Set $J_b(F)^0 = J_b(F) \cap K = J_b(F) \cap I$. Note that $\tau X^{\lambda}_{\mu}(b) = X^{\tau\lambda}_{\mu}(b)$ and $J_b(F)/J_b(F)^0 = \{ \tau^k J_b(F)^0 \mid k \in \mathbb{Z} \}$. Thus,

$$
J_b(F)X^{\lambda}_{\mu}(b) = \bigsqcup_{k \in \mathbb{Z}} X^{\tau^k \lambda}_{\mu}(b) \quad \text{and} \quad J_b(F)X^{\lambda}_{\leq \mu}(b) = \bigsqcup_{k \in \mathbb{Z}} X^{\tau^k \lambda}_{\leq \mu}(b).
$$

See Section [3.1](#page-11-0) for the precise definition of (extended) semi-modules. As we will explain in Section [3.2,](#page-14-1) the set $\{\lambda \in X_*(T) \mid X_\mu^\lambda(b) \neq \emptyset\}$ can be regarded as semimodules for μ . Let w_{max} be the longest element in W_0 . Then we have

$$
\{\lambda \in X_*(T) \mid X^{\lambda}_{-w_{\max}\mu}(b^{-1}) \neq \varnothing\} = \{-w_{\max}\lambda \in X_*(T) \mid X^{\lambda}_{\mu}(b) \neq \varnothing\}.
$$

Indeed it is easy to check that the image of $X^{\lambda}_{\mu}(b)$ under the automorphism of $\mathcal{G}r$ by *gK* → $w_{\text{max}}^t g^{-1} K$ is $X_{-w_{\text{max}}^{\mu}}^{-w_{\text{max}}^{\lambda}} (b^{-1})$. This gives the description of "dual" semi-modules for *μ*.

2.5 Length positive elements

We denote by δ^+ the indicator function of the set of positive roots, i.e.,

$$
\delta^+\colon\!\Phi\to\{0,1\},\quad\alpha\mapsto\begin{cases}1 & (\alpha\in\Phi_+)\\ 0 & (\alpha\in\Phi_-). \end{cases}
$$

Note that any element $w \in \tilde{W}$ can be written in a unique way as $w = x\omega^{\mu}y$ with μ dominant, $x, y \in W_0$ such that $\omega^{\mu} y \in {}^S \tilde{W}$. We have $p(w) = xy$ and $\ell(w) = \ell(x) +$ $\langle \mu, 2\rho \rangle - \ell(y)$. We define the set of *length positive* elements by

$$
\text{LP}(w) = \{v \in W_0 \mid \langle v\alpha, y^{-1}\mu \rangle + \delta^+(\nu\alpha) - \delta^+(\chi yv\alpha) \ge 0 \text{ for all } \alpha \in \Phi_+ \}.
$$

Then we always have $y^{-1} \in LP(w)$. Indeed *y* satisfies the condition that $\langle \alpha, \mu \rangle \ge$ *δ*⁺(−*y*⁻¹α) for allα ∈ Φ₊. Since $δ$ ⁺($α$) + $δ$ ⁺($-α$) = 1, we have

$$
\langle y^{-1}\alpha, y^{-1}\mu\rangle + \delta^+(y^{-1}\alpha) - \delta^+(x\alpha) = \langle \alpha, \mu\rangle - \delta^+(-y^{-1}\alpha) + \delta^+(-x\alpha) \ge 0.
$$

Lemma 2.8 For any $w = x\omega^{\mu}y \in \tilde{W}$ as above, we define

$$
\Phi_w \coloneqq \{ \alpha \in \Phi_+ \mid \langle \alpha, \mu \rangle - \delta^-(y^{-1}\alpha) + \delta^-(x\alpha) = 0 \}.
$$

Here δ[−] *denotes the indicator function of the set of negative roots. Then we have*

$$
y\,\mathrm{LP}(w) = \{r^{-1} \in W_0 \mid r(\Phi_+\backslash \Phi_w) \subset \Phi_+ \text{ or equivalently, } r^{-1}\Phi_+ \subset \Phi_+ \cup -\Phi_w\}.
$$

Proof Let $r \in W_0$ such that $r(\Phi_+\backslash \Phi_w) \subset \Phi_+$. Let $\alpha \in \Phi_+$. If $r^{-1}\alpha \in \Phi_+$, then we can check that $y^{-1}r^{-1} \in LP(w)$ similarly as the case $r = 1$ above. If $r^{-1}\alpha \in \Phi_{-}$, then we must have $r^{-1}α ∈ -Φ_w$. Since $δ⁻(−α) = δ⁺(α)$, it follows that

$$
\langle y^{-1}r^{-1}\alpha, y^{-1}\mu \rangle + \delta^{+}(y^{-1}r^{-1}\alpha) - \delta^{+}(xr^{-1}\alpha)
$$

= - ((-r^{-1}\alpha, \mu) - \delta^{-}(-y^{-1}r^{-1}\alpha) + \delta^{-}(-xr^{-1}\alpha)) = 0.

Thus, $y^{-1}r^{-1}$ ∈ LP(*w*). This shows $\{r^{-1} \in W_0 \mid r(\Phi_+\setminus \Phi_w) \subset \Phi_+\} \subseteq y \text{ LP}(w)$. Let $v \in LP(w)$ and let $\alpha \in \Phi_+$. If $\gamma v \alpha \in \Phi_-\$, then

$$
\langle -yv\alpha,\mu\rangle-\delta^{-}(-v\alpha)+\delta^{-}(-xyv\alpha)=-(\langle v\alpha,y^{-1}\mu\rangle+\delta^{+}(v\alpha)-\delta^{+}(xyv\alpha))\leq 0.
$$

On the other hand, by the characterization of *y* above, we have

$$
\langle -yv\alpha, \mu\rangle - \delta^{-}(-v\alpha) + \delta^{-}(-xyv\alpha) = \langle -yv\alpha, \mu\rangle - \delta^{+}(v\alpha) + \delta^{+}(xyv\alpha) \geq 0.
$$

Thus, $\langle -\gamma v\alpha, \mu \rangle - \delta^{-}(-v\alpha) + \delta^{-}(-x\gamma v\alpha) = 0$ and hence $\gamma v\alpha \in -\Phi_w$. This shows γ LP(w) ⊆ { $r^{-1} \in W_0 \mid r(\Phi_+\backslash \Phi_w) \subset \Phi_+$ }. The proof is finished.

The notion of length positive elements is defined by Schremmer [\[35\]](#page-37-18). The description of $LP(w)$ in Lemma [2.8](#page-10-0) is due to Lim [\[30\]](#page-37-19).

We say that the Dynkin diagram of G is σ -connected if it cannot be written as a union of two proper σ -stable subdiagrams that are not connected to each other. The following theorem is a refinement of the non-emptiness criterion in [\[12\]](#page-36-16), which is conjectured by Lim [\[30\]](#page-37-19) and proved by Schremmer [\[36,](#page-37-20) Proposition 5].

Theorem 2.9 Assume that the Dynkin diagram of G is σ -connected. Let $b \in G(L)$ be *a basic element with* $\kappa(b) = \kappa(\dot{w})$ *. Then* $X_w(b) = \emptyset$ *if and only if both of the following two conditions are satisfied:*

- (i) $|W_{\text{supp}_{\sigma}(w)}|$ *is not finite.*
- (ii) *There exists* $v \in LP(w)$ *such that* $supp_{\sigma}(\sigma^{-1}(v)^{-1}p(w)v) \subsetneq S$.

Remark 2.10 If $\kappa(b) \neq \kappa(w)$, then $X_w(b) = \emptyset$.

Remark 2.11 Let $w \in \tilde{W}$, $w_0 \in W_0$ and let $J \subseteq \Delta$ such that $J = \sigma(J)$. Then we say that *w* is a (J, w_0, σ) -*alcove element* if the following conditions are both satisfied:

- (1) $w_0^{-1}w\sigma(w_0) \in \tilde{W}_J \coloneqq X_*(T) \rtimes W_J$, and
- (2) For any $\alpha \in w_0(\Phi_+\setminus \Phi_I)$, $U_\alpha \cap {}^w I \subseteq U_\alpha \cap I$, where Φ_I denotes the root system generated by *J*.
- In [\[36,](#page-37-20) Proposition 5], the condition (ii) in Theorem [2.9](#page-10-1) is written as

(ii)' There exist *J* \subsetneq Δ and $w_0 \in W_0$ such that *w* is a (J, w_0, σ) -alcove element.

The equivalence of (ii) and (ii)' follows from [\[30,](#page-37-19) Lemmas 3.7 and 3.9] (see also [\[37,](#page-37-10) Definition 2.3] and the comment right after it).

In the case $G = GL_n$, there exists a length-preserving automorphism ζ of \tilde{W} defined as

$$
w_0 \omega^{\lambda} \mapsto w_{\max} w_0 w_{\max}^{-1} \omega^{-w_{\max} \lambda}, \quad w_0 \in W_0, \ \lambda \in X_*(T).
$$

Note that $\varsigma(\tau^m) = \tau^{-m}$, $\varsigma(s_0) = s_0$ and $\varsigma(s_i) = s_{n-i}$ for $1 \le i \le n-1$. Let $w = x\omega^\mu y$ be as above. For any $\alpha \in \Phi_+$ and $\nu \in LP(w)$, we have

$$
\langle \zeta(\nu)(-w_{\max}\alpha), \zeta(\nu^{-1})(-w_{\max}\mu)\rangle + \delta^+(\zeta(\nu)(-w_{\max}\alpha)) - \delta^+(\zeta(xy)\zeta(\nu)(-w_{\max}\alpha))
$$

= $\langle \nu\alpha, \nu^{-1}\mu\rangle + \delta^+(\nu\alpha) - \delta^+(xy\nu\alpha) \ge 0.$

Thus, $LP(\varsigma(w)) = \varsigma(LP(w)) = w_{\text{max}} LP(w)w_{\text{max}}^{-1}$. In particular, there exists $v \in$ LP(*w*) such that *v*[−]¹ *p*(*w*)*v* is a Coxeter element if and only if the same is true for *ς*(*w*) and LP(*ς*(*w*)).

3 Semi-modules

From now and until the end of this paper, we set $G = GL_n$ and $b = \tau^m$ with m coprime to *n*. For $\mu \in X_*(T)_+$, let $\mu(i)$ denotes the *i*-th entry of μ . Then $\lceil \tau^m \rceil \in B(G, \mu)$ if and only if $m = \mu(1) + \cdots + \mu(n)$. We assume this from now. Also, without loss of generality, we may and will assume that $\mu(n) = 0$. Recall that w_{max} is the longest element in W_0 .

3.1 Extended semi-modules

Here we recall the definition of extended semi-modules in a combinatorial way from [\[42\]](#page-37-2). Note that although we choose the subgroup of upper triangular matrices *B* as a Borel subgroup in this paper, the fixed Borel subgroup in [\[42\]](#page-37-2) is the subgroup of *lower* triangular matrices.

Definition 3.1 A *semi-module* for *m*, *n* is a subset $A \subset \mathbb{Z}$ that is bounded below and satisfies $m + A ⊂ A$ and $n + A ⊂ A$. Set $\overline{A} = A \setminus (n + A)$. The semi-module *A* is called normalized if $\sum_{a \in \overline{A}} a = \frac{n(n-1)}{2}$.

For a semi-module *A*, there exists a unique $\mu' \in \mathbb{N}^n$ satisfying the following condition: Let $a_0 = \min \bar{A}$ and let inductively $a_i = a_{i-1} + m - \mu'(i)n$ for $i = 1, ..., n$. Then $a_0 = a_n$ and $\{a_0, a_1, \ldots, a_{n-1}\} = \overline{A}$. We call μ' the *type* of *A*.

Lemma 3.2 *There is a bijection between the set of normalized semi-modules for m*, *n and the set of possible types* $\mu' \in \mathbb{N}^n$ *with* $v_b \leq w_{\max} \mu'$ *.*

Proof This is [\[42,](#page-37-2) Lemma 3.3]. ■

Definition 3.3 An *extended semi-module* (A, φ) for $\mu \in X_*(T)_+$ is a normalized semi-module *A* for *m*, *n* together with a function $\varphi: \mathbb{Z} \to \mathbb{N} \cup \{-\infty\}$ satisfying the following properties:

- (1) $\varphi(a) = -\infty$ if and only if $a \notin A$.
- (2) $\varphi(a+n) \geq \varphi(a)+1$ for all $a \in \mathbb{Z}$.
- (3) $\varphi(a) \leq \max\{k \mid a+m-kn \in A\}$ for all $a \in A$. If $b \in A$ for all $b \geq a$, then the two sides are equal.
- (4) There is a decomposition of *A* into disjoint union of sequences a_j^1, \ldots, a_j^n with $j \in \mathbb{N}$ and the following properties:
	- (a) $\varphi(a_{j+1}^l) = \varphi(a_j^l) + 1.$
	- (b) If $\varphi(a_j^l + n) = \varphi(a_j^l) + 1$, then $a_{j+1}^l = a_j^l + n$. Otherwise $a_{j+1}^l > a_j^l + n$.
	- (c) The *n*-tuple $(\varphi(a_0^l))$ is a permutation of μ .

An extended semi-module such that the equality holds in (3) for all $a \in A$ is called *cyclic*.

For any $\lambda \in X_*(T)$, we denote by λ_{dom} the dominant conjugate of λ . Let μ' be the type of a semi-module for m , n . Let φ be a function such that (1) and the equation in (3) hold. Then it is easy to check that (A, φ) is a cyclic semi-module for μ'_{dom} . In general, the following lemma holds.

Lemma 3.4 *Let* (*A*, *φ*) *be an extended semi-module for μ and let μ*′ *be the type of A. Then* $μ'_{\text{dom}}$ ≤ $μ$ and $(A, φ)$ *is cyclic if and only if* $μ' ∈ W_0μ$ *. In particular, if* $μ$ *is minuscule, then all extended semi-modules for μ are cyclic.*

Proof See [\[42,](#page-37-2) Lemma 3.6 and Corollary 3.7]. See also [\[17,](#page-36-3) Lemma 5.9].

Let *e*0,..., *en*−¹ be the standard basis of *Lⁿ*. Then the lattice O*ⁿ* is generated by e_0, \ldots, e_{n-1} . For $i \in \mathbb{Z}$, we define e_i by $e_{i+n} = \omega e_i$. Note that we have $\tau e_i = e_{i+1}$ for any *i*. In the sequel, we identify $\mathcal{G}r$ and $\{M \subset L^n \text{ lattice}\}$ by $gK \mapsto g\mathcal{O}^n$.

Let $X_\mu(b)^0$ be a $\overline{\mathbb{F}}_q$ -subscheme of $X_\mu(b)$ defined as $X_\mu(b)^0 = \{gK \in X_\mu(b) \mid$ κ (*g*) = 0. We associate to *M* \in *X_{<i>u*}(*b*)⁰ an extended semi-module for *μ*. Let *v* \in *Lⁿ*. Then we can write $v = \sum_{i \in \mathbb{Z}} [\alpha_i] e_i$ with $\alpha_i \in \mathbb{F}_q$ and $\alpha_i = 0$ for sufficiently small *i*. Here, [*αi*] denotes the Teichmüller lift of *αⁱ* if ch *F* = 0 and [*αi*] = *αⁱ* if ch *F* > 0. Let

 $\mathfrak{I}: L^n \setminus \{0\} \to \mathbb{Z}, \quad v \mapsto \min\{i \mid \alpha_i \neq 0\}.$

For $M \in \mathcal{G}r$, we define the set

$$
A(M)=\{\mathfrak{I}(v)\mid v\in M\backslash\{0\}\}.
$$

It is easy to check that if $M \in X_\mu(b)^0$, then $A(M)$ is a normalized semi-module for *m*, *n*. We also define $\varphi(M): \mathbb{Z} \to \mathbb{N} \cup \{-\infty\}$ by

$$
a \mapsto \begin{cases} \max\{k \mid \exists \nu \in M \setminus \{0\} \text{ with } \mathfrak{I}(\nu) = a, \varpi^{-k} b \sigma(\nu) \in M \} & (a \in A(M)) \\ -\infty & (a \notin A(M)). \end{cases}
$$

Lemma 3.5 Let $M \in X_\mu(b)^0$ *. Then* $(A(M), \varphi(M))$ *is an extended semi-module for μ.*

Proof See [\[42,](#page-37-2) Lemma 4.1]. ■

For an extended semi-module (A, φ) for μ , let

$$
S_{A,\varphi} = \{M \mid A(M) = A, \varphi(M) = \varphi\} \subset \mathcal{G}r.
$$

Lemma 3.6 *The set* $S_{A,\varphi}$ *is a locally closed subscheme of* $X_\mu(b)^0$.

Proof See [\[42,](#page-37-2) Lemma 4.2].

Let \mathbb{A}_{μ} be the set of extended semi-modules for μ . Set $\mathbb{A}_{\mu}^{\text{top}} = \{(A, \varphi) \in \mathbb{A}_{\mu} \mid$ dim $S_{A,\varphi}$ = dim $X_\mu(b)$. By Proposition [3.7](#page-13-0) below, $J_b(F)$ Irr $X_\mu(b)$ is parametrized by Δ^{top}. In the sequel, we also use the symbol Δ to denote the affine space as usual. We hope our notation will not cause confusions.

For an extended semi-module (A, φ) for μ , let

$$
\mathcal{V}(A,\varphi)=\{(a,c)\in A\times A\mid c>a,\varphi(a)>\varphi(c)>\varphi(a-n)\}.
$$

Proposition 3.7 *Let* (*A*, *φ*) *be an extended semi-module for μ.There exists a nonempty open subscheme* $U_{A,\varphi} \subseteq \mathbb{A}^{|\mathcal{V}(A,\varphi)|}$ *and a morphism* $U_{A,\varphi} \to S_{A,\varphi}$ which is bijective *on* $\overline{\mathbb{F}}_q$ -valued points. In particular, $S_{A,\varphi}$ is irreducible and of dimension $|\mathcal{V}(A,\varphi)|$ *. Moreover, if* (A, φ) *is a cyclic extended semi-module, then* $U_{A, \varphi} = \mathbb{A}^{|\mathcal{V}(A, \varphi)|}$ *.*

Proof See [\[42,](#page-37-2) Theorem 4.3]. ■

Here we briefly describe $U_{A,\varphi}$ and the map $U_{A,\varphi} \to S_{A,\varphi}$. For any $x \in \overline{\mathbb{F}}_q^{|\mathcal{V}(A,\varphi)|}$ = $\mathbb{A}^{|\mathcal{V}(A,\varphi)|}$, we denote the coordinate of *x* by $x_{a,c}$. We associate to every *x* a set of elements $\{v(a) \in L^n \mid a \in A\}$ which satisfies the following equations.

If $a = \max A$, then

$$
\nu(a) = e_a + \sum_{(a,c)\in \mathcal{V}(A,\varphi)} [x_{a,c}] \nu(c).
$$

For any other element $a \in \overline{A}$, we want

$$
v(a) = v' + \sum_{(a,c)\in \mathcal{V}(A,\varphi)} [x_{a,c}]v(c),
$$

where $v' = \omega^{-\varphi(a')} b\sigma(v(a'))$ for *a*' being minimal satisfying $a' + m - \varphi(a')n = a$. For $a \in n + A$, we want

$$
v(a) = \omega v(a-n) + \sum_{(a,c) \in \mathcal{V}(A,\varphi)} [x_{a,c}]v(c).
$$

Here $[x_{a,c}]$ denotes the Teichmüller lift of $x_{a,c}$ if ch $F = 0$ and $[x_{a,c}] = x_{a,c}$ if ch $F > 0$. The set $\{v(a) \in L^n \mid a \in A\}$ is uniquely determined by the equations above. Hence, the map $\mathbb{A}^{|\mathcal{V}(A,\varphi)|} \to \mathcal{G}r$, $x \mapsto \langle v(a) \rangle_{a \in A}$ is well-defined. By applying σ on the above equations for *x*, we can easily check that this map is compatible with the action of *σ*, i.e., $\sigma(x) = (x_{a,c}^q)$ maps to $\sigma \langle v(a) \rangle_{a \in A}$. Let $U_{A,\varphi}$ be the preimage of $S_{A,\varphi}$ under this map. Then *S_{A,φ}* and hence *U_{A,φ}* are stable under *σ* (because *σ*(*b*) = *b*). In particular, we have $|S_{A,\varphi}^{\sigma}| = |U_{A,\varphi}^{\sigma}|.$ So if (A,φ) is cyclic, then $|S_{A,\varphi}^{\sigma}| = q^{|{\cal V}(A,\varphi)|}.$ Although not needed in this paper, it is also worth mentioning that if (A, φ) is noncyclic, then $S_{A, \varphi}$ is never universally homeomorphic to an affine space.

Proposition 3.8 *If* (A, φ) is noncyclic, then $|S^{\sigma}_{A,\varphi}| < q^{|V(A,\varphi)|}$. In particular, $S_{A,\varphi}$ is *never universally homeomorphic to an affine space.*

Proof Let $x \in A^{|\mathcal{V}(A,\varphi)|}$. Note that if $x_{a,c} = 0$ for all $(a, c) \in \mathcal{V}(A, \varphi)$, then $v(a) = e_a$ for all $a \in A$. Set $M = \langle e_a \rangle_{a \in A}$. Then it is easy to check that $(A(M), \varphi(M))$ is a cyclic

semi-module for the dominant conjugate of the type of *A*(*M*). So if (*A*, *φ*) is not cyclic, then $M \notin S_{A,\varphi}$ and hence $|S_{A,\varphi}^{\sigma}| = |U_{A,\varphi}^{\sigma}| < q^{|\mathcal{V}(A,\varphi)|}$. The last statement follows from $[4,$ Propositions 4.1.12 and 8.1.11 (ii)]. ■

3.2 The stratification by extended semi-modules

For any $\lambda \in X_*(T)$, set $A^{\lambda} = \{(i-1) + \lambda(i)n + kn \mid 1 \le i \le n, k \in \mathbb{N}\}\)$. It is easy to check that for a lattice $M \in I\omega^{\lambda}K/K$, we have $A(M) = A^{\lambda}$. Thus, we have the following lemma, which relates the semi-module stratification to the stratification by extended semi-modules.

Lemma 3.9 *Let* $\lambda \in X_*(T)$ *with* $\lambda(1) + \cdots + \lambda(n) = 0$ *. Then* $X_{\mu}^{\lambda}(b) \neq \emptyset$ *if and only if there exists an extended semi-module* (A^{λ}, φ) *for* μ *. If this is the case, we have*

$$
X_\mu^\lambda(b)=\bigsqcup_\varphi S_{A^\lambda,\varphi},
$$

where φ *runs over all the functions* $\mathbb{Z} \to \mathbb{N} \cup \{-\infty\}$ *such that the pair of* A^{λ} *and the function is an extended semi-module for μ.*

For $\lambda \in X_*(T)$ with $X^{\lambda}_{\mu}(b) \neq \emptyset$, let $1 \leq i_0 \leq n$ such that $(i_0 - 1) + \lambda(i_0)n =$ $\min A^{\lambda}$. Let $1 \le m_0 < n$ be the residue of *m* modulo *n*, and let $\lambda_{b,\text{dom}}$ be $((\lfloor \frac{m}{n} \rfloor +$ **1**)^(*m*₀), $\left\lfloor \frac{m}{n} \right\rfloor$ ^(*n*−*m*₀)). Then

$$
(i_0-1) + \lambda(i_0)n + m - (\lambda(i_0) + \lambda_{b,\text{dom}}(c^m(i_0)) - \lambda(c^m(i_0)))n
$$

= $c^m(i_0) - 1 + \lambda(c^m(i_0))n \in \overline{A^{\lambda}},$

where $c = s_1 \cdots s_{n-1}$. Repeating the same argument, we can check that the type of A^{λ} is a conjugate of $b\lambda - \lambda = c^m \lambda + \lambda_{b,\text{dom}} - \lambda$. By Lemma [3.4,](#page-12-0) an extended semi-module (A^{λ}, φ) for *μ* is cyclic if and only if $b\lambda - \lambda \in W_0\mu$.

Corollary 3.10 *Let* $\mu \in X_*(T)_+$ *. If there exists a noncyclic semi-module for* μ *, then the semi-module stratification of X*[⪯]*μ*(*b*) *is not a refinement of the -Oort stratification.*

Proof Let (A^{λ}, φ) be a noncyclic semi-module for μ . Then we have $(b\lambda - \lambda)_{\text{dom}} < \mu$ by Lemma [3.4.](#page-12-0) On the other hand, there always exists a cyclic semi-module (A^{λ}, φ') for $(b\lambda - \lambda)_{\text{dom}}$. By Lemma [3.9,](#page-14-2) $X^{\lambda}_{\leq \mu}(b)$ intersects both $X_{\mu}(b)$ and $X_{(b\lambda - \lambda)_{\text{dom}}}(b)$. This implies that $X^{\lambda}_{\leq \mu}(b)$ is not contained in any set of the form $\pi(X_w(b))$ with $w \in \tilde{W}$, which finishes the proof.

For $\mu = (\mu(1), \ldots, \mu(n-1), 0) \in X_*(T)_+$, set $\mu^* = (\mu(1), \mu(1) - \mu(n-1), \ldots,$ $\mu(1) - \mu(2)$, 0) and $b^* = \tau^{n\mu(1)-m}$. If (A^{λ}, φ) is an extended semi-module for μ , then there exists φ' : Z → N ∪ {−∞} such that $(A^{-w_{\max}\lambda}, \varphi')$ is an extended semi-module for μ^* (see Section [2.4\)](#page-8-0). Clearly, $b\lambda - \lambda \in W_0\mu$ if and only if $b^*(-w_{\max}\lambda) + w_{\max}\lambda \in$ $-W_0\mu^*$. Thus, we have the following lemma.

Lemma 3.11 *There exists a noncyclic extended semi-module for μ if and only if the same is true for μ*[∗]*.*

3.3 The minuscule case

In this subsection, we treat the minuscule case. Consider G^d with a Frobenius automorphism σ_{\bullet} given by

$$
(g_1,g_2,\ldots,g_d)\mapsto (g_2,\ldots,g_d,\sigma(g_1)).
$$

For $\mu_{\bullet} = (\mu_1, ..., \mu_d) \in X_*(T)^d_+$ and $b_{\bullet} = (1, ..., 1, b) \in G^d(L)$ with $b \in G(L)$, we define $X_{\mu_{\bullet}}(b_{\bullet}) \subset \mathcal{G}r^d = G^d(L)/K^d$ as

$$
X_{\mu_{\bullet}}(b_{\bullet}) = \{x_{\bullet}K^d \in \mathcal{G}r^d \mid x_{\bullet}^{-1}b_{\bullet}\sigma_{\bullet}(x_{\bullet}) \in K^d\omega^{\mu_{\bullet}}K^d\}.
$$

Let us denote by Irr $X_{\mu_{\bullet}}(b_{\bullet})$ the set of irreducible components of $X_{\mu_{\bullet}}(b_{\bullet})$. Through the identification $J_b(F) \cong J_{b_{\bullet}}(F)$ given by $g \mapsto (g, \ldots, g)$, this set is equipped with an action of $J_b(F)$.

For minuscule $\mu_{\bullet} \in X_*(T)^d_+$ and $b_{\bullet} = (1, \ldots, 1, b) \in G^d(L)$, we define

$$
\mathcal{A}_{\mu_{\bullet}}^{\text{top}} \coloneqq \{\lambda_{\bullet} \in X_*(T)^d \mid \dim X_{\mu_{\bullet}}^{\lambda_{\bullet}}(b_{\bullet}) = \dim X_{\mu_{\bullet}}(b_{\bullet})\}.
$$

Here, $X_{\mu_{\bullet}}^{\lambda_{\bullet}}(b_{\bullet})$ denotes $X_{\mu_{\bullet}}(b_{\bullet})\cap I^d\varpi^{\lambda_{\bullet}}K^d/K^d$. For $\lambda_{\bullet},\lambda_{\bullet}'\in\mathcal{A}_{\mu_{\bullet}}^{\text{top}}$, we write $\lambda_{\bullet}\sim\lambda_{\bullet}'$ if $\lambda_{\bullet} = \tau^{k} \lambda'_{\bullet} = (\tau^{k} \lambda'_{1}, \ldots, \tau^{k} \lambda'_{d})$ for some $k \in \mathbb{Z}$. Let $\mathbb{A}^{\text{top}}_{\mu_{\bullet}}$ denote the set of equivalence classes with respect to ∼, and let [λ_{\bullet}] ∈ A^{top} denote the equivalence class represented by $\lambda_{\bullet} \in \mathcal{A}_{\mu_{\bullet}}^{\text{top}}$. Then $J_b(F) \setminus \text{Irr } X_{\mu_{\bullet}}(b_{\bullet})$ is parametrized by $\mathbb{A}_{\mu_{\bullet}}^{\text{top}}$ as follows.

Proposition 3.12 Assume that $\mu_{\bullet} \in X_*(T)^d_+$ is minuscule. Then the map $\lambda_{\bullet} \mapsto$ *X^λ*● *^μ*● (*b*●) *induces a bijection*

$$
\mathbb{A}_{\mu_{\bullet}}^{\text{top}} \cong J_b(F) \backslash \operatorname{Irr} X_{\mu_{\bullet}}(b_{\bullet}).
$$

Proof See [\[18,](#page-36-1) Proposition 1.6]. Note that we have $\text{Stab}_{J_b(F)}(X_{\mu_{\bullet}}^{\lambda_{\bullet}}(b_{\bullet})) = J_b(F)^0$. ■

We also define

$$
\mathcal{A}^j_{\mu_{\bullet}} \coloneqq \{\lambda_{\bullet} \in X_*(T)^d \mid \dim X^{\lambda_{\bullet}}_{\mu_{\bullet}}(b_{\bullet}) = j\},
$$

for $1 \le j \le \dim X_{\mu_{\bullet}}(b_{\bullet})$. We can similarly consider the equivalence relation ∼ as above. If $d=1$, then $\mathbb{A}_\mu^j \coloneqq \mathcal{A}_\mu^j/\sim$ can be identified with (extended) semi-modules for μ whose corresponding stratum has dimension *j*, see Lemma [3.4](#page-12-0) and Lemma [3.9.](#page-14-2)

Proposition 3.13 *Set* $\mu = \omega_i$ *. Then we always have* $|\mathbb{A}_{\mu}^{\text{top}}| = |\mathbb{A}_{\mu}^0| = 1$. If $i = 2, n - 2$, then $|A^j_\mu| = 1$ *for all* $0 \le j \le \dim X_\mu(b)$ *. If i* = 3, *n* − 3*, then* $|A^{\dim X_\mu(b)-1}_\mu| = 2$ *.*

Proof We can easily check the equalities in the proposition using [\[18,](#page-36-1) Theorem 4.16] (cf. [\[3,](#page-36-8) Remark 6.16]), which gives a combinatorial way of computing [∣]A*^j ^μ*∣. In fact, all of the assertions except the last assertion follow from [\[43,](#page-37-11) Proposition 5.5].

Example 3.14 We always have $\mathbb{A}_{\omega_i}^0 = \{ [0] \}.$

4 Crystal bases

Keep the notations and assumptions in Section [3.](#page-11-1)

4.1 Crystals and young tableaux

In this subsection, we first recall the definition of*G*̂-crystals from [\[45,](#page-37-21) Definition 3.3.1].

Definition 4.1 A (normal) \widehat{G} -crystal is a finite set \mathbb{B} , equipped with a weight map wt: $\mathbb{B} \to X_*(T)$, and operators \tilde{e}_α , $\tilde{f}_\alpha : \mathbb{B} \to \mathbb{B} \cup \{0\}$ for each $\alpha \in \Delta$, such that

- (i) for every $\mathbf{b} \in \mathbb{B}$, either $\tilde{e}_{\alpha} \mathbf{b} = 0$ or wt $(\tilde{e}_{\alpha} \mathbf{b}) = \text{wt}(\mathbf{b}) + \alpha^{\vee}$, and either $\tilde{f}_{\alpha} \mathbf{b} = 0$ or $wt(\tilde{f}_{\alpha} \mathbf{b}) = wt(\mathbf{b}) - \alpha^{\vee},$
- (ii) for all **b**, $\mathbf{b}' \in \mathbb{B}$ one has $\mathbf{b}' = \tilde{e}_{\alpha} \mathbf{b}$ if and only if $\mathbf{b} = \tilde{f}_{\alpha} \mathbf{b}'$, and
- (iii) if ε_{α} , ϕ_{α} : $\mathbb{B} \to \mathbb{Z}$, $\alpha \in \Delta$ are the maps defined by

$$
\varepsilon_{\alpha}(\mathbf{b}) = \max\{k \mid \tilde{e}_{\alpha}^{k} \mathbf{b} \neq 0\} \text{ and } \phi_{\alpha}(\mathbf{b}) = \max\{k \mid \tilde{f}_{\alpha}^{k} \mathbf{b} \neq 0\},
$$

then $\phi_{\alpha}(\mathbf{b}) - \varepsilon_{\alpha}(\mathbf{b}) = \langle \alpha, \text{wt}(\mathbf{b}) \rangle$.

For a \widehat{G} -crystal \mathbb{B} , let $\mathbb{B}^* = {\mathbf{b}^* | \mathbf{b} \in \mathbb{B}}$ be the dual \widehat{G} -crystal. Setting $0^* = 0$, the maps are given by

$$
\mathrm{wt}(\mathbf b^*)=-\mathrm{wt}(\mathbf b),\quad \tilde{e}_\alpha(\mathbf b^*)=(f_\alpha\mathbf b)^*,\quad \text{and}\quad \tilde{f}_\alpha(\mathbf b^*)=(\tilde{e}_\alpha\mathbf b)^*.
$$

For $\lambda \in X_*(T)$, we denote by $\mathbb{B}(\lambda)$ the set of elements with weight λ for \widehat{G} , called the *weight space* with weight λ for \widehat{G} . Let \mathbb{B}_1 and \mathbb{B}_2 be two \widehat{G} -crystals. A morphism $\mathbb{B}_1 \to \mathbb{B}_2$ is a map of underlying sets compatible with wt, \tilde{e}_α and \tilde{f}_α .

In the sequel, we write \tilde{e}_i and \tilde{f}_i (resp. ε_i and ϕ_i) instead of $\tilde{e}_{\chi_{i,i+1}}$ and $\tilde{f}_{\chi_{i,i+1}}$ (resp. $\varepsilon_{\chi_{i,i+1}}$ and $\phi_{\chi_{i,i+1}}$ for simplicity.

Example 4.2 Let \mathbb{B}_{μ} be the crystal basis of the irreducible \widehat{G} -module of highest weight $\mu \in X_*(T)_+$. Then \mathbb{B}_μ is a crystal. We call \mathbb{B}_μ a *highest weight crystal* of highest weight μ (cf. [\[45,](#page-37-21) Definition 3.3.1(3)]). There exists a unique element $\mathbf{b}_{\mu} \in \mathbb{B}_{\mu}$ satisfying \tilde{e}_{α} **b**_{*μ*} = 0 for all α , wt(**b**_{*μ*}) = *μ*, and \mathbb{B}_{μ} is generated from **b**_{*μ*} by the operators \tilde{f}_{α} .

We give a realization of \mathbb{B}_{μ} by Young tableaux. This allows us to treat it in a combinatorial way.

Definition 4.3 A*Young diagram*is a collection of boxes arranged in left-justified rows with a weakly decreasing number of boxes in each row. For a dominant cocharacter *μ* ∈ $X_*(T)_+$, we denote by Y_μ the Young diagram having $\mu(i)$ boxes in the *i*th row. A *skew Young diagram* is a diagram obtained by removing a smaller Young diagram from a larger one that contains it. For dominant cocharacters μ , $\nu \in X_*(T)_+$ with $\nu(i) \leq \mu(i)$, we denote by $Y_{\mu/\nu}$ the skew Young diagram obtained by removing Y_{ν} from Y_{μ} .

Definition 4.4 A*tableau* is a (skew) Young diagram filled with numbers, one for each box. A *semi-standard tableau* is a tableau obtained from a (skew) Young diagram by filling the boxes with the numbers $1, 2, \ldots, n$ subject to the conditions

- (i) the entries in each row are weakly increasing from left to right,
- (ii) the entries in each column are strictly increasing from top to bottom.

Let $K_{\mu/\nu}(\lambda)$ be the number of all semi-standard tableaux **b** of shape $Y_{\mu/\nu}$ such that the number of \overline{i} appearing in **b** is $\lambda(i)$ for $1 \le i \le n$. This is sometimes called the *Kostka number*. In Section [4.3,](#page-20-0) we need the following well-known result.

Proposition 4.5 Let λ , $\lambda' \in X_*(T)_+.$ If $\lambda \leq \lambda'$, then $K_{\mu/\nu}(\lambda') \leq K_{\mu/\nu}(\lambda)$. In particular, $K_{\mu/\nu}(\lambda') \neq 0$ *implies* $K_{\mu/\nu}(\lambda) \neq 0$ *.*

Proof See [\[5,](#page-36-18) Proposition 1.2] and the remark right after the proposition.

We denote by B(*Y*) the set of all semi-standard tableaux of shape *Y*.

Theorem 4.6 Let $\mu = (\mu(1), \ldots, \mu(n)) \in X_*(T)_+ \setminus \{0\}$ with $\mu(n) = 0$. Then $\mathcal{B}(Y_\mu)$ *has a crystal structure. Moreover, the crystal* $B(Y_\mu)$ *is isomorphic to* \mathbb{B}_μ *.*

Proof This is [\[25,](#page-37-22) Theorems 7.3.6 and 7.4.1].

In the sequel, we identify \mathbb{B}_{μ} and $\mathcal{B}(Y)$ by Theorem [4.6.](#page-17-0) For a semi-standard tableau $\mathbf{b} \in \mathbb{B}_{\mu}$, let k_i denote the number of *i*'s appearing in **b**. Then the weight map wt on \mathbb{B}_{μ} is given by wt(**b**) = (k_1 ,..., k_n). The following result is an explicit description of the actions of \tilde{e}_i and \tilde{f}_i on \mathbb{B}_μ .

Theorem 4.7 *The actions of* \tilde{e}_i *and* f_i *on* $\mathbf{b} \in \mathbb{B}_{\mu}$ *can be computed by following the steps below:*

- (i) In the Far-Eastern reading $\mathbf{b}_1 \otimes \cdots \otimes \mathbf{b}_N$ of \mathbf{b}_r , we identify i (resp. | i+1 |) by + (resp. −*) and neglect other boxes.*
- (ii) Let $u_i(\mathbf{b}) = u^1 u^2 \cdots u^l$ ($u^j \in \{\pm\}$) be the sequence obtained by (i). If there is "+−" *in u*(**b**)*, then we neglect such a pair. We continue this procedure as far as we can.*
- (iii) Let $u_i(\mathbf{b})_{\text{red}} =$ $-\cdots$ $+\cdots$ + *be the sequence obtained by (ii). Then* \tilde{e}_i *changes the rightmost* − *in* u_i (**b**)_{red} *to* +*, and* \hat{f}_i *changes the leftmost* + *in* u_i (**b**)_{red} *to* −*. If there is no such* − *(resp.* +*), then* \tilde{e}_i **b** = 0 *(resp.* \tilde{f}_i **b** = 0*).*

Moreover, $\varepsilon_i(\mathbf{b})$ *(resp.* $\phi_i(\mathbf{b})$ *) is equal to the number of* − *(resp.* +*) in* $u_i(\mathbf{b})_{\text{red}}$ *.*

Proof The first statement is [\[27,](#page-37-23) Theorem 3.4.2]. The second statement follows immediately from this.

Next we recall the Weyl group action on crystals. Let $\mathbb B$ be a \widehat{G} -crystal. For any $1 \le i \le n - 1$ and **b** ∈ \mathbb{B} , we set

$$
s_i \mathbf{b} = \begin{cases} \tilde{f}_i^{\langle \chi_{i,i+1}, \text{wt}(\mathbf{b}) \rangle} \mathbf{b} & \text{if } \langle \chi_{i,i+1}, \text{wt}(\mathbf{b}) \rangle \ge 0 \\ \tilde{e}_i^{-\langle \chi_{i,i+1}, \text{wt}(\mathbf{b}) \rangle} \mathbf{b} & \text{if } \langle \chi_{i,i+1}, \text{wt}(\mathbf{b}) \rangle \le 0. \end{cases}
$$

Then we have the obvious relation

$$
wt(s_i\mathbf{b})=s_i(w\mathbf{t}(\mathbf{b})).
$$

By [\[26,](#page-37-24) Theorem 7.2.2], this extends to the action of the Weyl group W_0 on \mathbb{B} , which is compatible with the action on $X_*(T)$. For example, $w_{\text{max}}\mathbf{b}_{\mu} \in \mathbb{B}_{\mu}$ has the *lowest* weight *w*_{max}*μ*. It is well-known that the dual of \mathbb{B}_{μ} is isomorphic to $\mathbb{B}_{-w_{\text{max}}\mu}$ (see for example [\[25,](#page-37-22) Lemma 3.5.2]).

Lemma 4.8 *Let* $w, w' \in W_0$ *and* $\mathbf{b} \in \mathbb{B}$ *. If* $w(\text{wt}(\mathbf{b})) = w'(\text{wt}(\mathbf{b}))$ *, then* $w\mathbf{b} = w'\mathbf{b}$ *.*

Proof This is [\[40,](#page-37-13) Lemma 3.10].

Let $\mathbf{b} \in \mathbb{B}(\lambda)$. If λ' is a conjugate of λ , i.e., there exists $w \in W_0$ such that $\lambda' = w\lambda$, then we call *w***b** the conjugate of **b** with weight *λ*′ . By Lemma [4.8,](#page-18-0) this does not depend on the choice of *w*.

Finally we consider the minuscule case. If $\mu \in X_*(T)_+$ is minuscule, then wt: $\mathbb{B}_\mu \to$ $X_*(T)$ gives an identification between \mathbb{B}_{μ} and the set of cocharacters which are conjugate to *μ*. Suppose *μ*• = (*μ*₁, . . . , *μ*_{*d*}) ∈ *X*_∗(*T*)^{*d*}₊ is minuscule. We can also identify $\mathbb{B}_{\mu_{\bullet}}^{\widehat{G}^d} \coloneqq \mathbb{B}_{\mu_1} \times \cdots \times \mathbb{B}_{\mu_d}$ with the set of cocharacters in $X_*(T)^d$ which are conjugate to *μ*●.

For $1 \leq k < n$, let ω_k be the cocharacter of the form $(1, \ldots, 1, 0, \ldots, 0)$ in which 1 is repeated *k* times. Assume that each μ_i is equal to ω_{k_i} for some $1 \leq k_i < n$ and $i \leq j$ if and only if $k_i \leq k_j$. In the rest of paper, we call such μ_{\bullet} *Far-Eastern*. If μ_{\bullet} is Far-Eastern, then $|\mu_{\bullet}| \coloneqq \mu_1 + \cdots + \mu_d$ is dominant and its last entry is 0. Let FE: $\mathbb{B}_{|\mu_{\bullet}|} \to \mathbb{B}_{\mu_{\bullet}}^{\widehat{G}^d}$ be a map defined by decomposing $\mathbf{b} \in \mathbb{B}_{\mu}$ into its columns from right to left. We call FE the Far-Eastern reading.

4.2 Construction of extended semi-modules

In this subsection, we recall from [\[40,](#page-37-13) Section 4.2] the way of constructing extended semi-modules. See [\[40,](#page-37-13) Section 4.3] for some examples of computation. Let $\mu_{\bullet} \in$ $X_*(T)^d_+$ be a Far-Eastern cocharacter. Set $\mu = |\mu_{\bullet}|$.

Let λ_b denote the cocharacter whose *i*-th entry is $\left\lfloor \frac{im}{n} \right\rfloor - \left\lfloor \frac{(i-1)m}{n} \right\rfloor$. Set λ_b^{op} = *w*_{max} λ *_{<i>b*}. For any **b** ∈ $\mathbb{B}_{\mu}(\lambda_b)$, we denote by **b**^{op} the conjugate of **b** with weight λ_b^{op} . Let $1 \le m_0 < n$ be the residue of *m* modulo *n*. Note that each entry of λ_b is $\lfloor \frac{m}{n} \rfloor$ or $\lfloor \frac{m}{n} \rfloor + 1$ and $\lambda_b(i) = \lambda_b(n + 1 - i)$ for any $2 \le i \le n - 1$. Let $i_0 = 1 < i_1 < i_2 < \cdots < i_{m_0} = n$ be the integers such that $\lambda_b(i_1) = \lambda_b(i_2) = \cdots = \lambda_b(i_{m_0}) = \lfloor \frac{m}{n} \rfloor + 1$. Then

$$
\lambda_b^{\text{op}} = w'_{\text{max}} \lambda_b, \quad \text{where} \, w'_{\text{max}} = (s_{i_{m_0-1}} \cdots s_{n-1}) \cdots (s_{i_1} \cdots s_{i_2-1}) (s_1 \cdots s_{i_1-1}).
$$

Here $\lambda_b(i) = \lfloor \frac{m}{n} \rfloor$ (resp. $\lambda_b(i+1) = \lfloor \frac{m}{n} \rfloor$) if and only if $s_{i-1} s_i \le w'_{\max}$ (resp. $s_i s_{i+1} \le w'_{\max}$) w'_{max}). By Lemma [4.8,](#page-18-0) it follows that \mathbf{b}^{op} can be computed by the action of the Coxeter element w'_{max} . In this computation, each s_i acts as the action of \tilde{e}_i because $\left\lfloor \frac{m}{n} \right\rfloor - (\left\lfloor \frac{m}{n} \right\rfloor + 1) = -1$. Therefore, if we write

$$
FE(\mathbf{b}) = (\mathbf{b}_1, \ldots, \mathbf{b}_d)
$$

then there exists $(w_1, \ldots, w_d) \in W_0^d$ such that

$$
\mathrm{FE}\bigl(\mathbf{b}^{\mathrm{op}}\bigr)=\bigl(w_1\mathbf{b}_1,\ldots,w_d\mathbf{b}_d\bigr)
$$

and each simple reflection appears exactly once in some supp(*wj*).

Lemma 4.9 *The tuple* $(w_1, \ldots, w_d) \in W_0^d$ as above is uniquely determined by **b***.* In p articular, $w(\mathbf{b}) = w_1^{-1} \cdots w_d^{-1}$ is a Coxeter element uniquely determined by \mathbf{b} *.*

Proof This is [\[40,](#page-37-13) Lemma 4.3].

Set $w(\mathbf{b}) = w_1^{-1} \cdots w_d^{-1}$ and $Y(\mathbf{b}) = \{ v \in W_0 \mid v^{-1}c^m v = w(\mathbf{b}) \},$ where $c = s_1 s_2 \cdots s_{n-1}$. Clearly $|\Upsilon(\mathbf{b})| = n$. For any $\mathbf{b}' \in \mathbb{B}_{\mu}$, set

$$
\xi(\mathbf{b}') = (\varepsilon_1(\mathbf{b}') + \cdots + \varepsilon_{n-1}(\mathbf{b}'), \varepsilon_2(\mathbf{b}') + \cdots + \varepsilon_{n-1}(\mathbf{b}'), \ldots, \varepsilon_{n-1}(\mathbf{b}'), 0).
$$

Let λ_b^- be the anti-dominant conjugate of λ_b , and let \mathbf{b}^- be the conjugate of \mathbf{b} with weight λ_b^- . For any $\mathbf{b} \in \mathbb{B}_{\mu}(\lambda_b)$ and $v \in \Upsilon(\mathbf{b})$, we define $\xi_{\bullet}(\mathbf{b}, v) \in X_*(T)^d$ by

$$
\xi_j(\mathbf{b}, v) = v \xi(v^{-1} \mathbf{b}^{-}) + \sum_{1 \leq j' < j} v w_1^{-1} \cdots w_{j'-1}^{-1} \operatorname{wt}(\mathbf{b}_{j'}) \quad (1 \leq j \leq d).
$$

Let *C* ∈ Irr $X_\mu(b)^0$. By Proposition [3.7,](#page-13-0) *C* = $\overline{S_{A,\varphi}}$ for some $(A,\varphi) \in \mathbb{A}^{\text{top}}_\mu$. On the other hand, by Proposition [3.12](#page-15-1) and [\[32,](#page-37-4) Proposition 3.13], there exists a unique $λ$. ∈ $\mathcal{A}_{\mu_{\bullet}}^{\text{top}}$ with $\lambda_1(1) + \cdots + \lambda_1(n) = 0$ such that $C = \text{pr}(X_{\mu_{\bullet}}^{\lambda_{\bullet}}(b_{\bullet}))$. Here $\text{pr} : \mathcal{G}r^d \to \mathcal{G}r$ denotes the projection to the first factor. The following theorem is established in [\[40,](#page-37-13) Theorem 4.4] by the author.

Theorem 4.10 *We have* $v_{\xi_j(\mathbf{b}, v)} = vw_1^{-1} \cdots w_{j-1}^{-1}$ *and* $\xi_{\bullet}(\mathbf{b}, v) \in \mathcal{A}_{\mu_{\bullet}}^{\text{top}}$ *. If* v' *is an element* $in \Upsilon(\mathbf{b})$ *different from* v' *, then* $\xi_{\bullet}(\mathbf{b}, v) \sim \xi_{\bullet}(\mathbf{b}, v')$. Let $\xi_{\bullet}^0(\mathbf{b})$ be the unique cocharacter *in* $[\xi_{\bullet}(\mathbf{b}, v)]$ *such that* $\xi_1^0(\mathbf{b})(1) + \cdots + \xi_1^0(\mathbf{b})(n) = 0$. Then for any $(A, \varphi) \in \mathbb{A}_{\mu}^{\text{top}}$, *there exists a unique* $\mathbf{b} \in \mathbb{B}_{\mu}(\lambda_{b})$ *such that* $\overline{S_{A,\varphi}} = \text{pr}(X_{\mu_{\bullet}}^{\xi_{\bullet}^{0}(\mathbf{b})}(b_{\bullet})).$

Proof This is [\[40,](#page-37-13) Theorem 4.4]. ■

This correspondence between $\mathbb{A}_{\mu}^{\text{top}}$ and $\mathbb{B}_{\mu}(\lambda_{b})$ is compatible with the natural bijection in the Chen-Zhu conjecture constructed by Nie in [\[32\]](#page-37-4).

Corollary 4.11 Let $(A, \varphi) \in \mathbb{A}_{\mu}^{\text{top}}$. Let $\mathbf{b} \in \mathbb{B}_{\mu}(\lambda_b)$ such that $\overline{S_{A,\varphi}} = \text{pr}(X_{\mu_{\bullet}}^{\xi_{\phi}^{\mathfrak{q}}(\mathbf{b})}(b_{\bullet})).$ *Then* (*A*, *φ*) *is cyclic if and only if*

$$
\sum_{1\leq j\leq d}w_1^{-1}\cdots w_{j-1}^{-1}\operatorname{wt}(\mathbf{b}_j)\in W_0\mu.
$$

Proof By Lemma [3.9,](#page-14-2) we have $A = A^{\xi_1^0(b)}$. Recall that (A, φ) is cyclic if and only if *b*ξ⁰(**b**) − ξ⁰(**b**) ∈ *W*₀*μ*. Since *b*ξ⁰(**b**) − ξ⁰(**b**) is a conjugate of *b*ξ₁(**b**, *v*) − ξ₁(**b**, *v*), this is also equivalent to $v^{-1}bξ_1$ (**b**, *v*) − $v^{-1}ξ_1$ (**b**, *v*) ∈ W_0 *μ*. By Theorem [4.10,](#page-19-0)

$$
v^{-1}b\xi_1(\mathbf{b},v)-v^{-1}\xi_1(\mathbf{b},v)=\sum_{1\leq j\leq d}w_1^{-1}\cdots w_{j-1}^{-1}\mathrm{wt}(\mathbf{b}_j).
$$

This finishes the proof.

We say that an element $\mathbf{b} \in \mathbb{B}_{\mu}(\lambda_b)$ is cyclic if

$$
\lambda(\mathbf{b}) \coloneqq \sum_{1 \leq j \leq d} w_1^{-1} \cdots w_{j-1}^{-1} \operatorname{wt}(\mathbf{b}_j) \in W_0 \mu.
$$

Now we give another interpretation of Lemma [3.11.](#page-14-3) Recall that B[∗] *^μ* is isomorphic to B*μ*[∗] . We denote by **b**[∗] ∈ B*μ*[∗] the dual of **b** ∈ B*μ*. Note that we have (*w***b**)[∗] = *w***b**[∗] for any $w \in W_0$. So if $\mathbf{b} \in \mathbb{B}_{\mu}(\lambda_b)$, then $\mathbf{b}^{\text{op}} = w_{\text{max}} \mathbf{b}^* \in \mathbb{B}_{\mu^*}(\lambda_b^*)$.

Lemma 4.12 *We have* $\lambda(\mathbf{b}^{\text{op}}{}^*) = -w(\mathbf{b})^{-1}\lambda(\mathbf{b}) + (d, \ldots, d)$ *. In particular,* $\mathbf{b} \in$ $\mathbb{B}_{\mu}(\lambda_b)$ *is cyclic if and only if* $\mathbf{b}^{\text{op}}{}^* \in \mathbb{B}_{\mu^*}(\lambda_{b^*})$ *is cyclic.*

Proof Note that if (μ_1, \ldots, μ_d) is Far-Eastern, then $(\mu_d^*, \ldots, \mu_1^*)$ is Far-Eastern. So if we write

$$
\text{FE}(\textbf{b}) = \textbf{b}_1 \otimes \cdots \otimes \textbf{b}_d \quad \text{and} \quad \text{FE}(\textbf{b}^{\text{op}}) = w_1 \textbf{b}_1 \otimes \cdots \otimes w_d \textbf{b}_d,
$$

in $\mathbb{B}_{\mu_1} \otimes \cdots \otimes \mathbb{B}_{\mu_d}$, then we have

$$
\text{FE}(\mathbf{b}^*) = \mathbf{b}_d^* \otimes \cdots \otimes \mathbf{b}_1^* \quad \text{and} \quad \text{FE}(\mathbf{b}^{\text{op}}^*) = w_d \mathbf{b}_d^* \otimes \cdots \otimes w_1 \mathbf{b}_1^*,
$$
\n
$$
\text{in } \mathbb{B}_{\mu_d^*} \otimes \cdots \otimes \mathbb{B}_{\mu_1^*}. \text{ Thus } w(\mathbf{b}^{\text{op}}^*) = w_d \cdots w_1 = w(\mathbf{b})^{-1}, \Upsilon(\mathbf{b}^{\text{op}}^*) = \Upsilon(\mathbf{b}) \text{ and}
$$
\n
$$
\lambda(\mathbf{b}^{\text{op}}^*) = \text{wt}(w_d \mathbf{b}_d^*) + w_d \text{ wt}(w_{d-1} \mathbf{b}_{d-1}^*) + \cdots + w_d \cdots w_2 \text{ wt}(w_1 \mathbf{b}_1^*)
$$
\n
$$
= -w(\mathbf{b})^{-1}\lambda(\mathbf{b}) + (d, \dots, d),
$$

as desired. ∎

4.3 Noncyclic semi-standard tableaux

The goal of this section is to specify the dominant cocharacters μ such that every **b** \in $\mathbb{B}_{\mu}(\lambda_b)$ is cyclic. Set $d = \mu(1)$.

Lemma 4.13 Assume that $n \geq 3$. We have $d \geq 2\left\lfloor \frac{m}{n} \right\rfloor + \left\lfloor \frac{2m_0}{n} \right\rfloor + 1$ or $d \geq 2\left\lfloor \frac{nd-m}{n} \right\rfloor +$ $\left\lfloor \frac{2(n-m_0)}{n} \right\rfloor + 1.$

Proof It suffices to show that $d \leq 2\left\lfloor \frac{m}{n} \right\rfloor + \left\lfloor \frac{2m_0}{n} \right\rfloor$ is equivalent to $d \geq 2\left\lfloor \frac{nd-m}{n} \right\rfloor +$ $\lfloor \frac{2(n-m_0)}{n} \rfloor + 1$. Note that $\lfloor \frac{m}{n} \rfloor = \frac{m-m_0}{n}$, $\lfloor \frac{nd-m}{n} \rfloor = \frac{nd-m-(n-m_0)}{n}$. So $d \leq 2\lfloor \frac{m}{n} \rfloor + \lfloor \frac{2m_0}{n} \rfloor$ is equivalent to $(n-2)d ≤ 2(m-d-m_0) + n\left\lfloor \frac{2m_0}{n} \right\rfloor$, and $d ≥ 2\left\lfloor \frac{nd-m}{n} \right\rfloor + \left\lfloor \frac{2(n-m_0)}{n} \right\rfloor +$ 1 is equivalent to $(n-2)d \leq 2(m-d-m_0) + n(1-\lfloor \frac{2(n-m_0)}{n} \rfloor)$. Then the assertion follows from the fact that $\left\lfloor \frac{2m_0}{n} \right\rfloor = 0$ (resp. 1) if and only if $\left\lfloor \frac{2(n-m_0)}{n} \right\rfloor = 1$ (resp. 0).

Lemma 4.14 *Assume that n* ≥ 3 *. Let* $\mu \in X_*(T)_+$ *such that* $d \geq 2\left\lfloor \frac{m}{n} \right\rfloor + \left\lfloor \frac{2m_0}{n} \right\rfloor + \frac{2m_0}{n}$ $1, \mu(2) \geq 2$ and $\lfloor \frac{m}{n} \rfloor \geq 2$. Then $\mathbb{B}_{\mu}(\lambda_b)$ contains at least one noncyclic element.

Proof First we consider the case *n* = 3. In this case, we have $2 \le \mu(2) \le \left\lfloor \frac{m}{n} \right\rfloor$ because $\mu(3) = 0$. Let **b** be the unique element in $\mathbb{B}_{\mu}(\lambda_b)$ whose second row contains exactly one $\boxed{3}$. Then $w(\mathbf{b}) = s_2 s_1$ and $s_1 \in \text{supp}(w_{d-\lfloor \frac{m}{n} \rfloor}).$

Since $2 \leq \mu(2) \leq \lfloor \frac{m}{n} \rfloor$, we have

$$
w_1^{-1} \cdots w_{d-\mu(2)}^{-1}
$$
 wt($\mathbf{b}_{d-\mu(2)+1}$) = (0,1,1) and $w_1^{-1} \cdots w_{d-1}^{-1}$ wt(\mathbf{b}_d) = (1,0,1).

Thus $\lambda(\mathbf{b}) \notin W_0\mu$ because $\mu(n) = 0$. This proves the case $n = 3$.

In the rest of the proof, we assume that $n \geq 4$. Let λ be a conjugate of λ_b such that $(\lambda(1), \lambda(2), \lambda(3)) = (\lfloor \frac{m}{n} \rfloor, \lfloor \frac{m}{n} \rfloor + \lfloor \frac{2m_0}{n} \rfloor, \lfloor \frac{m}{n} \rfloor + 1)$ and $\lambda(4) \geq \cdots \geq \lambda(n)$. Set

$$
\mu_0 = \left(3\left\lfloor\frac{m}{n}\right\rfloor + \left\lfloor\frac{2m_0}{n}\right\rfloor + 1 - \min\{\mu(2), \left\lfloor\frac{m}{n}\right\rfloor\}, \min\{\mu(2), \left\lfloor\frac{m}{n}\right\rfloor\}, 0, \ldots, 0\right) \in X_*(T)_+,
$$

and $\lambda_0 = (\lambda(1), \lambda(2), \lambda(3), 0, \ldots, 0) \in X_*(T)$. Note that we have $\mu(1) + \mu(2) \ge$ $3\left\lfloor \frac{m}{n} \right\rfloor + \left\lfloor \frac{2m_0}{n} \right\rfloor + 1$. Indeed if $\mu(1) + \mu(2) \leq 3\left\lfloor \frac{m}{n} \right\rfloor + \left\lfloor \frac{2m_0}{n} \right\rfloor$, then by $\mu(1) \geq$ $2\left\lfloor \frac{m}{n} \right\rfloor + \left\lfloor \frac{2m_0}{n} \right\rfloor + 1$, we have $\mu(2) \leq \left\lfloor \frac{m}{n} \right\rfloor - 1$. This implies $\mu(3) + \cdots + \mu(n-1) \leq$ $(n-3)(\frac{m}{n} - 1)$, or equivalently $3\frac{m}{n} + n + m_0 - 3 \le \mu(1) + \mu(2)$, which is a contradiction. Thus Y_μ contains Y_{μ_0} .

Let **b**₀ be the unique element in $\mathbb{B}_{\mu_0}(\lambda_0)$ whose second row contains exactly one 3. We will show that there exists $\mathbf{b}' \in \mathbb{B}_{\mu}(\lambda)$ that contains \mathbf{b}_0 . It is easy to check that $\mu(n-1) \leq \lfloor \frac{m}{n} \rfloor$ and $\mu(n-2) \leq \mu_0(1)$. So each column in Y_{μ/μ_0} has at most $n-3$ boxes. By filling each column with the numbers $1, \ldots, n-3$ so that the entries are starting with 1 and increasing by one from top to bottom, we obtain a skew Young tableau of shape Y_{μ/μ_0} . Let k_i be the number of $i \mid i$ in this tableau. Clearly we have k_1 ≥ \cdots ≥ k_{n-3} .

By $(\lambda(4),..., \lambda(n)) \leq (k_1,..., k_{n-3})$ and Proposition [4.5,](#page-17-1) there exists at least one skew Young tableau of shape Y_{μ/μ_0} such that the number of *i* is $\lambda(i+3)$ for each 1 ≤ *i* ≤ *n* − 3. By replacing 1, . . . , *n* − 3 by 4, . . . , *n* respectively, we obtain a skew Young tableau of shape Y_{μ/μ_0} such that the number of $i \mid i$ is $\lambda(i)$ for each $4 \le i \le n$. Let **b**^{*'*} be the tableau obtained by joining **b**₀ and this skew tableau. Clearly we have $\mathbf{b}' \in \mathbb{B}_{\mu}(\lambda)$, which shows our claim.

Let $\mathbf{b}' \in \mathbb{B}_{\mu}(\lambda)$ containing \mathbf{b}_0 , and let $\mathbf{b} \in \mathbb{B}_{\mu}(\lambda_b)$ be the conjugate of \mathbf{b}' . Then $s_2s_1 \leq$ $w(\mathbf{b})$ and $s_1 \in \text{supp}(w_{d-\lfloor \frac{m}{n} \rfloor})$. Let $k(\mathbf{b}')$ be the number of $\lfloor 4 \rfloor$ in the second row of \mathbf{b}' . If $k(\mathbf{b}') < \lfloor \frac{m}{n} \rfloor$, then we have

$$
(w_1^{-1}\cdots w_{d-\min\{\mu(2),\lfloor\frac{m}{n}\rfloor\}}^{\mathsf{-1}}\mathrm{wt}(\mathbf{b}_{d-\min\{\mu(2),\lfloor\frac{m}{n}\rfloor\}+1}))(2)=1,
$$

and

$$
(w_1^{-1}\cdots w_{d-1}^{-1}\mathrm{wt}(\mathbf{b}_d))(2)=0.
$$

Thus, $\lambda(\mathbf{b}) \notin W_0\mu$ and hence **b** is noncyclic. If $k(\mathbf{b}') \neq 0$, then $\lambda(\mathbf{b})(1) = \lfloor \frac{m}{n} \rfloor - 1$. Assume that $\mu(3) < \lfloor \frac{m}{n} \rfloor - 1$. Then **b** is always noncyclic by the above argument.

Assume that $\mu(3) \geq 2$. Let $\mathbf{b}'_1 = \mathbf{j} \mid \mathbf{b}$ e the leftmost box in the third row of \mathbf{b}' , and let $\mathbf{b}'_2 = \mathbf{j}'$ be the box right to \mathbf{b}'_1 . Clearly $4 \leq j \leq j'$.

Then in \mathbf{b}' , all $|j-1|$ are in the first or second row. Since the number of $|j|$ in the first or second row is less than wt(\mathbf{b}')(j – 1), there exists at least one $\left|j$ –1 such that there is no box beneath it or the number in the box beneath it is greater than *j*. So the tableau obtained by replacing \mathbf{b}'_1 by the rightmost one among such $\left|j-1\right|$ is semi-standard. Repeating the same argument, we may assume $j = 4$. Similarly, $\overline{if \lfloor \frac{m}{n} \rfloor} \geq 3$, we may also assume $j' = 4$. Indeed if $j' \ge 6$ and the leftmost column in \mathbf{b}' contains $\left|j'\text{--}1\right|$ but does not contain j' , we replace \mathbf{b}'_2 by this j' –1. In other cases, by $\lfloor \frac{m}{n} \rfloor \geq 3$, there exists at least one j^2-1 such that there is no box beneath it or the number in the box beneath it is greater than j' , and we replace \mathbf{b}'_2 by the rightmost $\left|j'\text{--}1\right|$ among such $\left|j'\text{--}1\right|$. Then the obtained tableau is semi-standard. Thus, if $\lfloor \frac{m}{n} \rfloor \ge 3$, there exists **b**^{\prime} containing **b**₀ such that $k(\mathbf{b}') < \lfloor \frac{m}{n} \rfloor$, which is noncyclic by the above argument. If $\lfloor \frac{m}{n} \rfloor = 2$ and $n = 4$, then **b** is noncyclic because $k(\mathbf{b}') < 2$. If $\lfloor \frac{m}{n} \rfloor = 2$ and $n \ge 5$, we may also assume $j' = 4$ and hence **b** is noncyclic unless the third row of **b**^{\prime} contains three $\boxed{5}$. If $\left\lfloor \frac{m}{n} \right\rfloor = 2, n \ge 5$ and the third row of \mathbf{b}' contains three $\vert 5 \vert$, then

$$
(w_1^{-1} \cdots w_{d-2}^{-1} \text{wt}(\mathbf{b}_{d-1}))(4) = 1
$$
 and $(w_1^{-1} \cdots w_{d-1}^{-1} \text{wt}(\mathbf{b}_d))(4) = 0.$

Thus, $\lambda(\mathbf{b}) \notin W_0\mu$ and hence **b** is noncyclic.

Assume that $\lfloor \frac{m}{n} \rfloor = 2$ and $\mu(3) = 1$. By the same argument as above, we may assume that the leftmost column of **b**^{\prime} contains $|4|$. So **b** is noncyclic when $\lambda(4) = 2$. If $\mu(1) >$ $5 + \left\lfloor \frac{2m_0}{n} \right\rfloor$, we may assume that the first row of **b**' also contains $\boxed{4}$. This can be checked easily as above using $\mu(3) = 1$. Thus, if $\mu(1) > 5 + \left\lfloor \frac{2m_0}{n} \right\rfloor$, we obtain a noncyclic **b**.

If $\mu(1) = 5 + \left\lfloor \frac{2m_0}{n} \right\rfloor$, then we have $n = 4$ or 5. More precisely, we have

$$
\mu = (6, 4, 1, 0), (5, 5, 1, 1, 0), (6, 5, 1, 1, 0), (6, 6, 1, 0, 0), \text{ or } (6, 6, 1, 1, 0),
$$

and **b**^{\prime} contains one of the following smaller Young tableaux when $\lambda(4) = 3$.

We can easily check that **b** is noncyclic in every case.

Putting things together, we have proved the lemma.

Lemma 4.15 *Assume that n* \geq 4*. Let* $\mu \in X_*(T)_+$ *such that d* \geq 3 + $\left\lfloor \frac{2m_0}{n} \right\rfloor$, $\mu(2) \geq 2$ *and* $\lfloor \frac{m}{n} \rfloor$ = 1*. Then* $\mathbb{B}_{\mu}(\lambda_b)$ *contains at least one noncyclic element.*

Proof Let λ be a conjugate of λ_b such that $(\lambda(1), \lambda(2), \lambda(3)) = (\lambda_b(1),$ $\lambda_b(2), \lambda_b(3)$ and $\lambda(4) \geq \cdots \geq \lambda(n)$. Assume that $(\lambda_b(1), \lambda_b(2), \lambda_b(3)) = (1, 2, 2)$ and $\mu(2) \geq 3$. Similarly as the proof of Lemma [4.14,](#page-20-1) we can easily show that there exists $\mathbf{b}' \in \mathbb{B}_{\mu}(\lambda)$ containing the following smaller Young tableau.

$$
\begin{array}{|c|c|c|c|c|}\n\hline\n1 & 2 & 3 & 4 \\
\hline\n2 & 3 & 4 & \\
\hline\n\end{array}
$$

Let $\mathbf{b} \in \mathbb{B}_{\mu}(\lambda_b)$ be the conjugate of \mathbf{b}' . If $\mu(3) < 2$, then \mathbf{b} is noncyclic because λ (**b**)(2) = 2. If μ (3) ≥ 2, then similarly as the proof of Lemma [4.14,](#page-20-1) we may assume that the second row of **b**^{\prime} does not contain 5. In this case, the conjugate **b** $\in \mathbb{B}_{\mu}(\lambda_b)$ of **b**′ is noncyclic because

$$
(w_1^{-1} \cdots w_{d-3}^{-1} \text{wt}(\mathbf{b}_{d-2}))(3) = 1
$$
 and $(w_1^{-1} \cdots w_{d-1}^{-1} \text{wt}(\mathbf{b}_d))(3) = 0.$

Assume that $(\lambda_b(1), \lambda_b(2), \lambda_b(3)) = (1, 2, 2)$ and $\mu(2) = 2$. Then there exists $\mathbf{b}' \in \mathbb{R}$ $\mathbb{B}_{\mu}(\lambda)$ containing one of the following smaller Young tableaux.

It is easy to check that the conjugate $\mathbf{b} \in \mathbb{B}_{\mu}(\lambda_b)$ of \mathbf{b}' is noncyclic.

Assume that $(\lambda_b(1), \lambda_b(2), \lambda_b(3)) \neq (1, 2, 2)$. Then there exists $\mathbf{b}' \in \mathbb{B}_u(\lambda)$ containing one of the following smaller Young tableaux.

Let $\mathbf{b} \in \mathbb{B}_{\mu}(\lambda_b)$ be the conjugate of \mathbf{b}' . Since $\lambda(\mathbf{b})(1) = 1$, \mathbf{b} is noncyclic if $\mu(3) = 0$. If $\mu(3) \geq 2$, then similarly as the proof of Lemma [4.14,](#page-20-1) we may assume that the second row of \mathbf{b}' does not contain $\vert 5 \vert$. In this case, **b** is noncyclic because

$$
(w_1^{-1} \cdots w_{d-2}^{-1} \text{wt}(\mathbf{b}_{d-1}))(3) = 1
$$
 and $(w_1^{-1} \cdots w_{d-1}^{-1} \text{wt}(\mathbf{b}_d))(3) = 0.$

If $\mu(3) = 1$ and $\mu(\underline{1}) > 3 + \left\lfloor \frac{2m_0}{n} \right\rfloor$, then we may also assume that the second row of **b**[′] does not contain $\boxed{5}$ and hence **b** is noncyclic. If $\mu(3) = 1$ and $\mu(1) = 3 + \left\lfloor \frac{2m_0}{n} \right\rfloor$, then we may assume that the leftmost column of \mathbf{b}' contains $\boxed{5}$. We can easily check that **b** is noncyclic by an easy calculation.

This finishes the proof.

Lemma 4.16 *Assume that* $n \ge 5$ *. Let* $\mu \in X_*(T)_+$ *such that* $\left\lfloor \frac{m}{n} \right\rfloor = 0$ *. If* (1) $\mu(2) \ge 2$ *or* (2) $d \geq 3$, $\mu(2) = 1$, then $\mathbb{B}_{\mu}(\lambda_b)$ contains at least one noncyclic element.

Proof Let $1 < i_1 < i_2 < \cdots < i_{m_0} = n$ be the integers such that $\lambda_b(i_1) = \lambda_b(i_2) =$ $\cdots = \lambda_b(i_{m_0}) = 1$. Let **b** be the Young tableau in $\mathbb{B}_{\mu}(\lambda_b)$ obtained by filling Y_{μ} with i_1, \ldots, i_{m_0} from top to bottom, starting from the leftmost column.

If (1) holds, then **b** is noncyclic because

$$
\text{wt}(\mathbf{b}_1)(i_m) = 1 \quad \text{and} \quad (w_1^{-1} \cdots w_{d-1}^{-1} \text{wt}(\mathbf{b}_d))(i_m) = 0.
$$

Let $k = \max\{i \mid \mu(i) \neq 0\}$. If (2) holds, then the Young tableau $c \in \mathbb{B}_{\mu}(\lambda_b)$ obtained by replacing $\boxed{i_k}$ by $\boxed{i_{k+1}}$ in **b** is noncyclic because $\lambda(c)(i_k) = 2$.

This finishes the proof.

Theorem 4.17 *Every* $\mathbf{b} \in \mathbb{B}_{\mu}(\lambda_b)$ *is cyclic if and only if* μ *has one of the following forms:*

- (i) ω_i *with* $1 \le i \le n 1$ *such that i is coprime to n.*
- (ii) $\omega_1 + \omega_i$ *or* $\omega_{n-1} + \omega_{n-i}$ *with* $1 \le i \le n-1$ *such that* $i+1$ *is coprime to n.*
- (iii) $(nr + i)\omega_1$ *or* $(nr + i)\omega_{n-1}$ *with* $r \ge 0$ *and* $1 \le i \le n 1$ *such that i is coprime to n.*
- (iv) $(nr + i j)\omega_1 + \omega_j$ or $(nr + i j)\omega_{n-1} + \omega_{n-j}$ with $r \ge 1, 2 \le j \le n 1$ and $1 \le i \le n$ *n* − 1 *such that i is coprime to n.*

Proof It is easy to check that every $\mathbf{b} \in \mathbb{B}_{\mu}(\lambda_b)$ is cyclic if μ is one of the cocharacters in (i), (ii), (iii) and (iv). It remains to show that if μ does not belong to the list above, then $\mathbb{B}_{\mu}(\lambda_b)$ contains at least one noncyclic element. By Lemmas [4.12](#page-20-2) and [4.13,](#page-20-3) we may assume that $d \geq 2\left\lfloor \frac{m}{n} \right\rfloor + \left\lfloor \frac{2m_0}{n} \right\rfloor + 1$. Then this follows from Lemmas [4.14,](#page-20-1) [4.15](#page-23-0) and 4.16 . ■

Remark 4.18 Even if every top extended semi-module for μ is cyclic, there might be a noncyclic extended semi-module for *μ*. In fact, such cases exist, see Section [5.4.](#page-27-0)

5 The semi-module stratification

Keep the notations and assumptions in Section [3.](#page-11-1)

5.1 The semi-module stratification for *ωⁱ*

Recall that if μ is minuscule, then every extended semi-module is cyclic.

Lemma 5.1 *For any* $1 \le j \le \frac{n-3}{2}$ (= dim $X_{\omega_2}(\tau^2)$), we have

$$
\mathbb{A}_{\omega_2}^j = \begin{cases} \{ \left[\chi_{2,n-1}^\vee + \chi_{4,n-3}^\vee + \cdots + \chi_{j,n-j+1}^\vee \right] \} & (j \text{ even}) \\ \{ \left[\chi_{1,n}^\vee + \chi_{3,n-2}^\vee + \cdots + \chi_{j,n-j+1}^\vee \right] \} & (j \text{ odd}). \end{cases}
$$

Proof By (the proof of) [\[43,](#page-37-11) Proposition 5.5], each normalized semi-module for 2, *n* is of the form $A_j = (2N - j) \cup (N + j + 1)$ for some $1 \le j \le \frac{n-3}{2}$. It is easy to check that

$$
A_j = \begin{cases} A^{\chi'_{2,n-1} + \chi'_{4,n-3} + \cdots + \chi'_{j,n-j+1}} & (j \text{ even}) \\ A^{\chi'_{1,n} + \chi'_{3,n-2} + \cdots + \chi'_{j,n-j+1}} & (j \text{ odd}). \end{cases}
$$

Let (A_j, φ_j) be the cyclic semi-module for ω_2 . Then $n-2-j$, $n-1+j \in \overline{A_j}$ and $\varphi_i(n-2-j) = \varphi_i(n-1+j) = 1$. It is also easy to check that $|\mathcal{V}(A_i, \varphi_i)| = j$. This finishes the proof.

Lemma 5.2 Assume that n = 7*. Then* dim $X_{\omega_3}(\tau^3) = 3$ *and*

$$
\mathbb{A}^1_{\omega_3} = \{ [\chi^{\vee}_{1,7}] \}, \quad \mathbb{A}^2_{\omega_3} = \{ [\chi^{\vee}_{1,6}], [\chi^{\vee}_{2,7}] \}, \quad \mathbb{A}^3_{\omega_3} = \{ [\chi^{\vee}_{3,5}] \}.
$$

Assume that n = 8*. Then* dim $X_{\omega_3}(\tau^3)$ = 4 *and*

$$
\mathbb{A}^{1}_{\omega_{3}} = \{ \begin{bmatrix} \chi_{1,8}^{\vee} \end{bmatrix} \}, \quad \mathbb{A}^{2}_{\omega_{3}} = \{ \begin{bmatrix} \chi_{1,7}^{\vee} \end{bmatrix}, \begin{bmatrix} \chi_{2,8}^{\vee} \end{bmatrix} \},
$$

$$
\mathbb{A}^{3}_{\omega_{3}} = \{ \begin{bmatrix} \chi_{2,6}^{\vee} \end{bmatrix}, \begin{bmatrix} \chi_{3,7}^{\vee} \end{bmatrix} \}, \quad \mathbb{A}^{4}_{\omega_{3}} = \{ \begin{bmatrix} \chi_{1,8}^{\vee} + \chi_{4,5}^{\vee} \end{bmatrix} \}.
$$

Proof Using Lemma [3.2,](#page-11-2) we can easily check the lemma by an easy calculation. ∎

5.2 The semi-module stratification for $\omega_1 + \omega_{n-2}$

Throughout this subsection, we set $\mu = \omega_1 + \omega_{n-2}$. Also we assume that $n \ge 4$.

Lemma 5.3 Every extended semi-module for μ *is cyclic. For any* $0 \le j \le n - 2$ $(1 - \dim X_\mu(b))$, we define \mathbb{A}^j_μ similarly as in Section [3.3](#page-15-2). Then we have $\mathbb{A}^0_\mu = \emptyset$ and

$$
|\mathbb{A}_{\mu}^{j}| = j. \text{ More precisely, if } j \text{ is odd, then } \mathbb{A}_{\mu}^{j} \text{ is equal to}
$$
\n
$$
\{ \left[\chi_{1,n-j+1}^{\vee} \right], \left[\chi_{1,n-j+3}^{\vee} + \chi_{2,n-j+2}^{\vee} \right], \dots, \left[\chi_{1,n}^{\vee} + \chi_{2,n-1}^{\vee} + \dots + \chi_{\frac{j+1}{2},n-\frac{j-1}{2}}^{\vee} \right], \dots, \left[\chi_{j-2,n}^{\vee} + \chi_{j-1,n-1}^{\vee} \right], \left[\chi_{j,n}^{\vee} \right] \},
$$

and if j is even, then A*^j ^μ is equal to*

$$
\{[\chi^{\vee}_{1,n-j+1}],[\chi^{\vee}_{1,n-j+3}+\chi^{\vee}_{2,n-j+2}],\ldots,\\ [\chi^{\vee}_{1,n-1}+\chi^{\vee}_{2,n-2}+\cdots+\chi^{\vee}_{\frac{1}{2},n-\frac{1}{2}}],\ldots, [\chi^{\vee}_{j-2,n}+\chi^{\vee}_{j-1,n-1}], [\chi^{\vee}_{j,n}]\}.
$$

Proof Let (A, φ) be an extended semi-module for μ . Let μ' be the type of A. If (A, φ) is noncyclic, then by Lemma [3.4,](#page-12-0) $\mu'_{\text{dom}} < \mu$, i.e., $\mu'_{\text{dom}} = \omega_{n-1}$. By Lemma [3.2,](#page-11-2) we have *A* = {0, 1, . . . , *n* − 1, . . .}. By Definition [3.3](#page-11-3) (3), $\varphi(a) = \max\{k \mid a + n - 1 - kn \in A\}$ for all $a \in A$. This contradicts to the assumption that (A, φ) is noncyclic. Thus, (A, φ) is cyclic.

Since μ' satisfies $v_b \leq w_{\text{max}} \mu'$, it is easy to check that

$$
w_{\max}\mu' = s_{l+1}\cdots s_{n-3}s_{n-2}s_{k-1}\cdots s_2s_1\mu,
$$

for some $1 \leq k \leq n-2$ and $k \leq l \leq n-2$. Let $\overline{A} = \{a_0, a_1, \ldots, a_{n-1}\}\$ with $a_0 = \min \overline{A}$. Then we have $\varphi(a_0) = 0$, $\varphi(a_{n-l-1}) = 0$, $\varphi(a_{n-k}) = 2$ and $\varphi(a_i) = 1$ for $i \neq 0$, $n - l$ 1, *n* − *k*. Thus,

$$
\mathcal{V}(A,\varphi) = \{ (a_{n-k}, a_{n-l-1} + n), (a_{n-k}, a_{n-l}), (a_{n-k}, a_{n-l+1}), \ldots, (a_{n-k}, a_{n-k-1}) \}
$$

$$
\cup \{ (a_{n-k+1}, a_{n-l-1}), (a_{n-k+2}, a_{n-l-1}), \ldots, (a_{n-1}, a_{n-l-1}) \},
$$

and $|\mathcal{V}(A, \varphi)| = l$. Then by Proposition [3.7,](#page-13-0) the description of \mathbb{A}^l_μ for each *l* in the lemma follows from direct computation.

5.3 The semi-module stratification for $\omega_1 + \omega_{n-3}$

Throughout this subsection, we set $\mu = \omega_1 + \omega_{n-3}$. Also we assume that $n \ge 7$.

Lemma 5.4 *Every extended semi-module for μ is cyclic. For any* $1 ≤ j ≤ \frac{3n-9}{2} (=$ $\dim X_\mu(b))$, we define \mathbb{A}^j_μ similarly as in Section [3.3](#page-15-2). Then $|\mathbb{A}^{\frac{3n-9}{2}}_\mu|=n-3$ and $|\mathbb{A}^{\frac{3n-11}{2}}_\mu|\leq$ $2(n-4)$.

Proof Using Lemma [5.1,](#page-25-1) we can show the first assertion similarly as the proof of Lemma [5.3.](#page-25-2) Indeed, for any semi-module A^{λ} in Lemma [5.1,](#page-25-1) there exists a unique φ such that (A^{λ}, φ) is an extended semi-module for some $\mu \in X_*(T)_+$. The equality $\left|\mathbb{A}_{\mu}^{\frac{3n-9}{2}}\right| = n-3$ follows from the Chen-Zhu conjecture.

Let (A, φ) be an extended semi-module for μ with type $\mu' (\in W_0 \mu)$. Let $0 < k_1 < k_2$ be integers such that $\mu'(1) = \mu'(k_1 + 1) = \mu'(k_2 + 1) = 0$, and let *l* be an integer such that $\mu'(l+1) = 2$. Assume that $\nu_b \leq w_{\max} s_{k_2+1} \mu'$. Let (B, ψ) be an extended semimodule for *μ* with type $s_{k_2+1}\mu'$. Let $a_0 = \min A$ (resp. $b_0 = \min \bar{B}$) and let inductively $a_i = a_{i-1} + n - 2 - \mu'(i)n$ (resp. $b_i = b_{i-1} + n - 2 - (s_{k_2+1}\mu')(i)n$) for $i = 1, ..., n$. Then $a_0 = a_n$ (resp. $b_0 = b_n$) and $\{a_0, a_1, \ldots, a_{n-1}\} = \overline{A}$ (resp. $\{b_0, b_1, \ldots, b_{n-1}\} = \overline{B}$). We will show that if $l > k_2 + 1$ (resp. $l = k_2 + 1$), then $|\mathcal{V}(B, \psi)| \leq |\mathcal{V}(A, \varphi)|$ (resp. $|V(B,ψ)| < |V(A,φ)| - 1$). Moreover, the equality does not hold if $k_2 - k_1 \leq 3$.

28 R. Shimada

Note that we have $\varphi(a_0) = \varphi(a_k) = \varphi(a_k) = 0, \varphi(a_l) = 2, \psi(b_0) = \psi(b_k) = 0$ $\psi(b_{k+1}) = 0, \psi(b_l) = 2$. Note also that

$$
\mathcal{V}(A, \varphi) = \{ (a, a') \mid a \in \overline{A} \text{with} \varphi(a) = 1, a' = a_{k_1} \text{or} a_{k_2} \} \\ \sqcup \{ (a_1, a') \mid a_1 < a', \varphi(a') < 2 \},
$$

and

$$
\mathcal{V}(B, \psi) = \{ (b, b') \mid b \in \bar{B} \text{with} \psi(b) = 1, b' = b_{k_1} \text{or} b_{k_2+1} \} \sqcup \{ (b_1, b') \mid b_1 < b', \psi(b') < 2 \}.
$$

Let $\mathcal{V}(A, \varphi)$ ₁ (resp. $\mathcal{V}(B, \psi)$ ₁) be the first subset in $\mathcal{V}(A, \varphi)$ (resp. $\mathcal{V}(B, \psi)$) above, and let $V(A, \varphi)_2$ (resp. $V(B, \psi)_2$) be its complement.

If $l > k_2 + 1$, then it follows that

$$
b_k = \begin{cases} a_k + 1 & (k \neq k_2 + 1) \\ a_k + 1 - n & (k = k_2 + 1) \end{cases}, \quad \psi(b_k) = \begin{cases} \varphi(a_k) & (k \neq k_2, k_2 + 1) \\ 1 - \varphi(a_k) & (k = k_2, k_2 + 1) \end{cases}.
$$

In particular, $b_{k+1} - 1 = a_k$, $- 2$. So $|\mathcal{V}(B, \psi)| > |\mathcal{V}(A, \varphi)|$ implies that $|\mathcal{V}(B, \psi)| =$ $|V(A, \varphi)_1|$ + 1 and *b*_{*k*₂ < *b*_{*k*₁}. By the fact (a_1, a_{k_2+1}) ∈ $V(A, \varphi)_2$, we always have} ∣V(*B*, *ψ*)2∣<∣V(*A*, *φ*)2∣. Thus, ∣V(*B*, *ψ*)∣ ≤ ∣V(*A*, *φ*)∣. Moreover, if *k*² − *k*¹ ≤ 3, then the equality does not hold because $b_{k_2} \ge b_{k_1}$.

If $l = k_2 + 1$, then it follows that

$$
b_k = \begin{cases} a_k + 2 & (k \neq k_2 + 1) \\ a_k + 2 - 2n & (k = k_2 + 1) \end{cases}, \quad \psi(b_k) = \begin{cases} \varphi(a_k) & (k \neq k_2, k_2 + 1) \\ 2 - \varphi(a_k) & (k = k_2, k_2 + 1) \end{cases}.
$$

In particular, $b_{k_2+1} - 2 = a_{k_2} - 2 - n$. By $v_b ≤ w_{\text{max}} s_{k_2+1} \mu'$, we have $k_2 ≤ \frac{n-3}{2}$. Using this, we can easily check that $|\mathcal{V}(B, \psi)| < |\mathcal{V}(A, \varphi)|$ and $\mathcal{V}(A, \varphi)_2 = \{(a_{k_2+1}, a_{k_2} + a_{k_1}, a_{k_2} + a_{k_1}, a_{k_2} + a_{k_2}\}$ *n*)}. Thus, $|\mathcal{V}(B, \psi)| < |\mathcal{V}(A, \varphi)| - 1$.

Assume that $v_b \leq w_{\text{max}} s_{k_1+1} \mu'$. Let (C, χ) be an extended semi-module for μ with type $s_{k_1+1}\mu'$. Similarly as above, we can show that if $l \geq k_1 + 1$, then $|\mathcal{V}(C, \chi)| \leq$ $|V(A, φ)|$. Therefore, $|V(A, φ)| \ge \frac{3n-11}{2}$ holds only if $k_2 = 2$ or $l > k_2 = 3$. From this and $|\mathbb{A}_{\mu}^{\frac{3n-9}{2}}|$ = *n* − 3, we obtain $|\mathbb{A}_{\mu}^{\frac{3n-11}{2}}|$ ≤ 2(*n* − 4). ■

5.4 The semi-module stratification for $\omega_1 + \omega_2$, $\omega_4 + \omega_{n-1}$

Lemma 5.5 Assume that $n = 5$. Set $\mu = \omega_1 + \omega_2$. Then every extended semi-module *for* μ *is cyclic. For any* $1 \leq j \leq 3(=\dim X_{\mu}(b)),$ we define \mathbb{A}^j_{μ} *similarly as in Section* [3.3](#page-15-2). *Then*

$$
\mathbb{A}_{\mu}^{0} = \emptyset, \mathbb{A}_{\mu}^{1} = \emptyset, \mathbb{A}_{\mu}^{2} = \{\chi_{1,4}^{\vee}, \chi_{2,5}^{\vee}\}, \mathbb{A}_{\mu}^{3} = \{\chi_{2,3}^{\vee}, \chi_{3,4}^{\vee}\}.
$$

Proof The first assertion follows similarly as the proof of Lemma [5.3.](#page-25-2) The second assertion follows from direct computation.

Lemma 5.6 Assume that $n = 7$ or 8. Let μ be $\omega_1 + \omega_2$ or $\omega_4 + \omega_{n-1}$. Then there exists *a noncyclic extended semi-module for μ.*

Proof As described in Lemma [5.2,](#page-25-3) there exists a unique top cyclic extended semimodule (A^{λ}, φ) for ω_3 . We define $\varphi' : \mathbb{Z} \to \mathbb{N} \cup \{-\infty\}$ by setting

$$
\varphi'(a) = \begin{cases} \varphi(a) & (a \neq 1) \\ 0 & (a = 1). \end{cases}
$$

Then it is straightforward to check that (A^λ,φ') is a noncyclic extended semi-module for $\omega_1 + \omega_2$. The proof for $\omega_4 + \omega_{n-1}$ is similar.

6 The Ekedahl–Oort stratification

Keep the notations and assumptions in Section 3. For $\mu \in X_*(T)_+$, set

$$
{}^{S}\text{Adm}(\mu)_{\text{cyc}} = \{w \in {}^{S}\text{Adm}(\mu) \mid p(w)\text{is}n\text{-cycle}\}.
$$

By Theorem [2.9,](#page-10-1) $X_w(b) \neq \emptyset$ if $w \in {}^S \text{Adm}(u)_{\text{cyc}}$.

6.1 The Ekedahl–Oort stratification for *ωⁱ*

Throughout this subsection, we set $\mu = \omega_i$ and $c = s_i s_{i+1} \cdots s_{n-1} s_{i-1} \cdots s_2 s_1$. By [\[23,](#page-37-14) Theorem 2.7], we have dim $X_{\omega^{\mu}c}(b) = \dim X_{\mu}(b) = \langle \mu, \rho \rangle - \frac{n-1}{2}$.

Note that $|W_{\text{supp}_{\sigma}(w)}|$ is finite if and only if $\text{supp}_{\sigma}(w) \neq \tilde{S}$. Since τ^m acts transitively on \tilde{S} , supp_{σ} $(w) \neq \tilde{S}$ if and only if $w \in \Omega$.

Lemma **6.1** *Assume that* $n \ge 9$ *and* $4 \le i \le n - 4$ *. Set* $y = cs_i s_{i+1} s_{i-1} = (1 i + 1 i + 3 i + 4)$ $4 \cdots n \ i \ i-2 \cdots 3 \ 2 \ (i-1 \ i+2)$ *. Then we have* $\omega^{\mu} y \in {}^{S}$ Adm (μ) *and* $X_{\omega^{\mu} y}(b) \neq \emptyset$ *.*

Proof Under the assumption in the lemma, we have $\ell(\omega^{\mu} y) = \langle \mu, 2\rho \rangle - \ell(y)(>0)$ and hence $\omega^{\mu} y \in {}^{S}$ Adm (μ) (cf. [\[31,](#page-37-25) (2.4.5)]). So, by Lemma [2.8](#page-10-0) and Theorem [2.9,](#page-10-1) *X*_{*Q*^{*µ*} *y*} (*b*) ≠ ∅ is equivalent to saying supp(ryr^{-1}) ⊊ *S* for any $r \in W_0$ such that $r(\Phi_+\backslash \Phi_{\varpi\mu\nu}) \subset \Phi_+$. It is easy to check that

$$
\Phi_{\varpi^{\mu} y} = \Phi_{\{\chi_{1,2}, \chi_{2,3}, \ldots, \chi_{i,i+1}\}} \cup \Phi_{\{\chi_{i,i+1}, \chi_{i+1,i+2}, \ldots, \chi_{n-1,n}\}} \cup \{\chi_{i-2, i+2}, \chi_{i-1, i+2}, \chi_{i-1, i+3}\}.
$$

In particular, we have $\chi_{1,i+2}, \chi_{i-1,n} \in \Phi_+ \backslash \Phi_{\omega^{\mu} y}$. Note that we can decompose ryr^{-1} into disjoint cycles as

$$
(r(1) r(i+1) r(i+3) r(i+4) \cdots r(n) r(i) r(i-2) \cdots r(3) r(2)) (r(i-1) r(i+2)),
$$

for any $r \in W_0$. So if $ryr^{-1} \in \bigcup_{I \subseteq S} W_I$, then $(r(i-1) r(i+2)) = (1 2)$ or $(n-1 n)$. This implies that $r\chi_{1,i+2}$ or $r\chi_{i-1,n}$ is negative and hence that *r* does not satisfy $r(\Phi_+\backslash \Phi_{\varpi^{\mu} y}) \subset \Phi_+$. Thus, we have $X_{\varpi^{\mu} y}(b) \neq \emptyset$.

Lemma **6.2** *Assume that* $n \ge 9$ *and* $i = 3$ *(resp.* $i = n - 3$ *). Set* $y = cs_3s_4s_5s_6s_2$ *(resp.* $y = cs_{n-3} s_{n-4} s_{n-5} s_{n-6} s_{n-2}$). Then we have $\omega^{\mu} y \in {}^{S}$ Adm (μ) and $X_{\omega^{\mu} y}(b) \neq \emptyset$.

Proof We only treat the case $i = 3$. The proof for the case $i = n - 3$ is similar.

The first assertion is easy. To show the second assertion, by Lemma [2.8](#page-10-0) and Theorem [2.9,](#page-10-1) it suffices to check that $ryr^{-1} \notin \bigcup_{I \subseteq S} W_I$ for any $r \in W_0$ such that $r(\Phi_+\backslash \Phi_{\varpi^{\mu} y}) \subset \Phi_+$. By an explicit calculation, it follows that $\chi_{1,7}, \chi_{2,9} \in \Phi_+\backslash \Phi_{\varpi^{\mu} y}$ and

$$
ryr^{-1} = (r(1) r(4) r(6) r(8) r(9) \cdots r(n) r(3)) (r(2) r(5) r(7)).
$$

If $ryr^{-1} ∈ ∪_{I⊆S}$ *W_I*, then $(r(2) r(5) r(7))$ is equal to (123) or $(n - 2 n - 1 n)$. This implies that *r* does not satisfy $r(\Phi_+\backslash \Phi_{\varpi\mu\nu}) \subset \Phi_+$. Thus, we have $X_{\varpi\mu\nu}(b) \neq \emptyset$.

Lemma 6.3 *Assume that* $n \ge 9$ *and* $i = 3$ (resp. $i = n - 3$). Let y be $cs_i s_{i-1}$ or $cs_i s_{i+1}$. *Then we have* ω^{μ} *y* \in ^{*S*} Adm(μ) *and* $X_{\omega^{\mu} \nu}(b) \neq \emptyset$ *.*

Proof The proof is similar to the proof of Lemmas [6.1](#page-28-1) and [6.2.](#page-28-2) Note that *y* is a *n*-cycle in this case. $■$

Proposition 6.4 Assume that $n \geq 9$ and $3 \leq i \leq n-3$. Then the semi-module stratifi*cation of Xμ*(*b*) *is not a refinement of the Ekedahl–Oort stratification.*

Proof First assume that $n \ge 9$ and $4 \le i \le n - 4$. Let $\omega^{\mu} y \in {}^S \tilde{W}$ be as in Lemma [6.1.](#page-28-1) Let T be a reduction tree of ω^{μ} *y*. By Proposition [2.6,](#page-8-1) we have

$$
|X_{\varpi^{\mu}y}(b)^{0,\sigma}|=\sum_{\underline{p}}(q-1)^{\ell_I}(\underline{p})q^{\ell_{II}(\underline{p})},
$$

where *p* runs over all the reduction paths in T with end(p) = τ^m . Set $d = \dim X_\mu(b) =$ $\langle \mu, \rho \rangle - \frac{n-1}{2}$. Suppose that the semi-module stratification of $X_{\mu}(b)$ is a refinement of the Ekedahl–Oort stratification. Note that $Z(\omega^{\mu} c) = Z(\omega^{\mu} y) = \{1\}$. By Lemma [2.1,](#page-6-1) Proposition [2.3](#page-7-1) and dim $X_{\omega^{\mu} c}(b) = d$, we have $\ell_I(p) + \ell_{II}(p) \le \dim X_{\omega^{\mu} v}(b) \le d - 1$ for any *p*. On the other hand, we have $\ell_I(p) + 2\ell_I(p) = \ell(\overline{\omega}^{\mu} y) = 2d - 3$. Thus, we have $\ell_I(p) + \ell_{II}(p) = d - 1$ and $\ell_I(p) = 1$ for any p. It follows that

$$
|\pi(X_{\varpi^{\mu}y}(b)^{0})^{\sigma}|=|X_{\varpi^{\mu}y}(b)^{0,\sigma}|=k(q-1)q^{d-2},
$$

where $k \ge 1$ is the number of irreducible components of $X_{\varphi^{\mu} \nu}(b)^0$. Again by Lemma [2.1](#page-6-1) and the fact that each $S_{A,\varphi}$ is locally closed, we have $|\{(A,\varphi) | \dim S_{A,\varphi} =$ $d-1, S_{A,\varphi} \subseteq \pi(X_{\varphi^{\mu} y}(b)^0)\}| = k$. By Lemma [3.4,](#page-12-0) it follows that $|\pi(X_{\varphi^{\mu} y}(b)^0)|^{\sigma} \ge$ *kq^d*−¹ , which is a contradiction. This implies the proposition in this case.

Next assume that $n \ge 10$ and $i = 3, n - 3$. Let $\omega^{\mu} y \in {^S \tilde{W}}$ be as in Lemma [6.2.](#page-28-2) Suppose that the semi-module stratification of $X_\mu(b)$ is a refinement of the Ekedahl– Oort stratification. Similarly as above, we can check that

$$
\dim X_{cs_is_{i-1}}(b) = X_{cs_is_{i+1}}(b) = d-1.
$$

Note that $Z(\omega^{\mu} c) = Z(\omega^{\mu} c s_i s_{i-1}) = Z(\omega^{\mu} c s_i s_{i+1}) = Z(\omega^{\mu} y) = \{1\}$. By Lemma [2.1](#page-6-1) and Proposition [3.13,](#page-15-3) we have dim $X_{\omega^{\mu} y}(b) \leq d - 2$. Similarly as above, it follows that $|\pi(X_{\omega^{\mu}\nu}(b)^0)^{\sigma}| = k(q-1)q^{d-3}$ and $|\pi(X_{\omega^{\mu}\nu}(b)^0)^{\sigma}| \geq kq^{d-2}$. This is a contradiction, which finishes the proof.

The following proposition is the complement of Proposition [6.4.](#page-29-0)

Proposition 6.5 *We have*

$$
{}^{S}\text{Adm}(\omega_{1})_{\text{cyc}} = {\tau},
$$

\n
$$
{}^{S}\text{Adm}(\omega_{2})_{\text{cyc}} = {\tau^{2}, s_{0}s_{n-1}\tau^{2}, s_{0}s_{n-1}s_{n-2}s_{n-3}\tau^{2}, \dots, s_{0}s_{n-1}\cdots s_{5}s_{4}\tau^{2}} \qquad (n \geq 5),
$$

\n
$$
{}^{S}\text{Adm}(\omega_{3})_{\text{cyc}} = {\tau^{3}, s_{0}s_{6}\tau^{3}, s_{0}s_{6}s_{1}s_{0}\tau^{3}, s_{0}s_{6}s_{5}s_{1}\tau^{3}, s_{0}s_{6}s_{5}s_{1}s_{0}s_{6}\tau^{3}} \qquad (n = 7),
$$

\n
$$
{}^{S}\text{Adm}(\omega_{3})_{\text{cyc}} = {\tau^{3}, s_{0}s_{1}\tau^{3}, s_{0}s_{7}s_{6}s_{5}\tau^{3}, s_{0}s_{7}s_{6}s_{1}\tau^{3}, s_{0}s_{7}s_{6}s_{5}s_{1}s_{0}\tau^{3}},
$$

$$
s_0s_7s_6s_1s_0s_7\tau^3
$$
, $s_0s_7s_6s_5s_1s_0s_7s_6\tau^3$ } $(n=8)$.

Let $\omega^{\mu} y \in {^S \tilde{W}}$ *be one of the elements above. Then there exists* $v \in LP(\omega^{\mu} y)$ *such that v*−¹ *yv is a Coxeter element. Moreover, Xw*(*b*)=∅ *for any w* ∈ *^S*Adm(*μ*)/*S*Adm(*μ*)cyc*, and the semi-module stratification of Xμ*(*b*) *is a refinement of the Ekedahl–Oort stratification.*

Proof The equalities in the proposition follow from easy calculations. For other statements, we only prove the case for ω_2 . Other cases can be checked similarly.

Set $d = \frac{n-3}{2}$. For $0 \le j \le d$, we set $w_j = s_0 s_{n-1} \cdots s_{n-2j+1} \tau^2$. Then $\ell(w_j) = 2j$ and

$$
p(w_j) = (1 \ 3 \ 5 \ \cdots \ n-2j \ n-2j+1 \ \cdots \ n \ 2 \ 4 \ \cdots \ n-2j-1).
$$

Also it is easy to check that

$$
\Phi_+\backslash \Phi_{w_j}=\{\chi_{1,n-2j+1},\ldots,\chi_{1,n-1},\chi_{1,n}\}.
$$

Clearly there exists $r \in W_0$ with $r(\Phi_+\setminus \Phi_{w_i}) \subset \Phi_+$ such that $rp(w_i)r^{-1}$ is a Coxeter element (cf. [\[40,](#page-37-13) Lemma 5.1]).

For an integer *j*, let $0 \leq \lfloor j \rfloor < n$ denote its residue modulo *n*. For $a, b \in \mathbb{N}$ with a *b* ∈ 2 \mathbb{Z} , we define $t_{a,b} = s_{[b-2]} \cdots s_{[a+2]} s_{[a]}$. Set

$$
w_{j,0} = w_j, w_{j,1} = t_{0,n-2j+1} w_j t_{0,n-2j+1}^{-1}, w_{j,2} = t_{n-1,n-2j+2} w_{j,1} t_{n-1,n-2j+2}^{-1},
$$

$$
\dots, w_{j,j} = t_{n-j+1,n-j} w_{j,j-1} t_{n-j+1,n-j}^{-1}.
$$

It is easy to check that the simple reflections in $t_{0,n-2j+1}, t_{n-1,n-2j+2}, \ldots, t_{n-j+1,n-j}$ define

$$
w_j = w_{j,0} \rightarrow_\sigma w_{j,1} = s_{n-1}s_{n-2}\cdots s_{n-2j+2}\tau^2 \rightarrow_\sigma w_{j,2} = s_{n-2}s_{n-3}\cdots s_{n-2j+3}\tau^2
$$

$$
\rightarrow_\sigma \cdots \rightarrow_\sigma w_{j,j} = \tau^2.
$$

Let \underline{p}_j be the reduction path (in a suitable reduction tree) defined by this reduction. Using Lemma [2.1,](#page-6-1) Propositions [2.5,](#page-8-2) [2.6](#page-8-1) and [3.13,](#page-15-3) we can check that $X_{w_j}(\tau^2) = X_{\underline{p}_j}$ and $X_w(\tau^2) = \emptyset$ for any $w \in {^S}$ Adm (ω_2) / S Adm (ω_2) _{cyc} by counting the number of rational points of $X_u(\tau^2)^0$ (note that $X_{\tau^2}(\tau^2)^0 = \{I\}$). It is easy to check that

$$
\ell(t_{n-j+1,n-j}\cdots t_{n-1,n-2j+2}t_{0,n-2j+1})=\ell(t_{n-j+1,n-j})+\cdots+\ell(t_{n-1,n-2j+2})+\ell(t_{0,n-2j+1}).
$$

Thus by Proposition [2.3](#page-7-1) (cf. [\[39,](#page-37-26) Section 3.3]), each element *gI* in $X_{w_i}(\tau^2)^0$ is contained in a Schubert cell associated to $t_{n-j+1,n-j}\cdots t_{n-1,n-2j+2}t_{0,n-2j+1}$. By Lemma [5.1,](#page-25-1) it follows that $\pi(X_{w_i}(b)^0)$ is equal to the unique semi-module stratum of dimension *j*. This shows that the semi-module stratification of $X_\mu(b)$ is a refinement of the Ekedahl-Oort stratification.

6.2 The Ekedahl–Oort stratification for $\omega_1 + \omega_{n-2}$

Throughout this subsection, we set $\mu = \omega_1 + \omega_{n-2}$. Also we assume that $n \ge 4$. Note that the unique dominant cocharacter μ' with $\mu' < \mu$ is $\mu' = \omega_{n-1}$. Clearly, we have S Adm $(\omega_{n-1})_{\text{cyc}} = {\tau^{n-1}}$ and the semi-module stratification of $X_{\omega_{n-1}}(\tau^{n-1})$ is a refinement of the Ekedahl–Oort stratification.

Proposition 6.6 *For any* $1 \le j \le n - 2$ (= dim $X_{\mu}(b)$), there exist exactly j elements *of length* 2*j* in ^SAdm(μ)^{*c*}_{cyc} $:=$ ^SAdm(μ)_{cyc} $\{\tau^{n-1}\}$ *. Let* $\omega^{\mu}y \in$ ^S*W be one of such elements.Then there exists v* ∈ LP(*ϖ^μ y*) *such that v*−¹ *yv is a Coxeter element. Moreover,* $X_w(b) = \emptyset$ *for any w* \in ^{*S*}Adm(μ) \setminus ^SAdm(μ)_{cyc}, and the semi-module stratification of *Xμ*(*b*) *is a refinement of the Ekedahl–Oort stratification.*

Proof We first prove by induction on *n* that there exist at least *j* elements of length 2*j* in ^SAdm(µ)°_{cy}c, each of which has finite part *y* such that ryr^{-1} is a Coxeter element for some $r \in W$ / $\{s_2,...,s_{n-2}\}$ satisfying $r(\Phi_+\setminus \Phi_{\varpi^{\mu} y}) \subset \Phi_+$ (cf. Lemma [2.8\)](#page-10-0). Note that if $y \in W_0$ satisfies

$$
(*) \qquad y^{-1}(2) < y^{-1}(3) < \cdots < y^{-1}(n-2) \text{ and } y^{-1}(n-1) < y^{-1}(n),
$$

then by [\[39,](#page-37-26) Lemma 4.4], we have $\omega^{\mu} y \in {}^{S}$ Adm(μ). In particular, since $\ell(\omega^{\mu})$ = 3*n* − 5, *ϖ^μ y* is an element of length 2*j* in *^S*Adm(*μ*)○ cyc for any *n*-cycle *y* of length 3*n* − $2j - 5$. If $n = 4$, then $s_1s_2s_3$, $s_2s_3s_1$ and $s_1s_2s_3s_1s_2$ are 4-cycles satisfying (*). Moreover, $s_2(s_1s_2s_3s_1s_2)s_2 = s_1s_2s_3$ is a Coxeter element and $s_2(\Phi_+\backslash \Phi_{\omega^{\mu}s_1s_2s_3s_1s_2}) \subset \Phi_+$. So the claim is true for $n = 4$.

Suppose that $n \ge 5$ and the claim is true for $n-1$. Let *y* be a $(n-1)$ -cycle in *W*_{{*s***1**,*s*₂,...,*s*_{*n*−2}} such that $y^{-1}(2) < y^{-1}(3) < \cdots < y^{-1}(n-3)$ and $y^{-1}(n-2) < y^{-1}(n-3)$} 1). Then $y' = s_1(1 \ 2 \ \cdots \ n) y(1 \ 2 \ \cdots \ n)^{-1}$ satisfies (*) and $\ell(y') = \ell(y) + 1$. So by the induction hypothesis, there exist at least $j-1$ elements in W_0 which are *n*cycles of length $3n - 2j - 5$ satisfying (*). Note that for any $r \in W_{\{s_2,\ldots,s_{n-3}\}}$, we have $r'y'r'^{-1} = s_1(1\ 2\ \cdots\ n)ryr^{-1}(1\ 2\ \cdots\ n)^{-1}$, where $r' = (1\ 2\ \cdots\ n)r(1\ 2\ \cdots\ n)^{-1} \in$ *W*_{{*s*}₂,...,*s*_{*n*−}</sub>}. So again by the induction hypothesis, it is easy to verify that there exists *r* ∈ *W*_{{s₂,...,s_{*n*−3}}} such that *r'* $y'r'^{-1}$ is a Coxeter element and $r'(\Phi_+ \backslash \Phi_{\varpi \mu y'})$ ⊂ Φ_+ . Set $c = s_{n-2}s_{n-1}s_{n-3}\cdots s_2s_1$. It is easy to check that if *n* is odd (resp. even), then

$$
c, cs_{n-2}s_{n-3}, \ldots, cs_{n-2}s_{n-3}\cdots s_2, cs_{n-2}s_{n-3}\cdots s_2s_3s_4, \ldots,
$$

$$
cs_{n-2}s_{n-3}\cdots s_2s_3s_4\cdots s_{n-2}s_{n-1}
$$

$$
(\text{resp. } c, cs_{n-2}s_{n-3}, \ldots, cs_{n-2}s_{n-3}\cdots s_3, cs_{n-2}s_{n-3}\cdots s_3s_2s_3, \ldots,
$$

$$
cs_{n-2}s_{n-3}\cdots s_3s_2s_3\cdots s_{n-2}s_{n-1}),
$$

are *n*-cycles satisfying (*). If *y'* is one of the elements above, then $\Phi_{\{\chi_2,\chi_3,\ldots,\chi_{n-2,n-1}\}}$ ∩ $\Phi_+ \subset \Phi_{\omega^\mu y'}$ and there exists $r' \in W_{\{s_2,\ldots,s_{n-2}\}}$ such that $r'y'r'^{-1}$ is a Coxeter element. Thus, the claim is also true for *n*. By induction, our claim is true for any $n \geq 4$.

Clearly $v_w = v_b$ for any $w \in {}^S \text{Adm}(\mu)_{\text{cyc}}^{\circ}$. Since $b = \tau^{n-1}$ is superbasic, the unique minimal length element in the σ -cojugacy class of w is τ^{n-1} (cf. [\[22,](#page-37-15) Proposition 3.5]). By Theorem [2.4,](#page-7-0) there exist a reduction tree T for *w* and a reduction path *p* in T such that end(p) = τ^{n-1} and $\ell_I(p)$ = 0. Thus by Lemma [2.1](#page-6-1) and Proposition [2.6,](#page-8-1) $|\pi(X_w(b)^{0,\sigma})| \ge q^{\frac{\ell(w)}{2}}$ for any $w \in {}^S \text{Adm}(\mu)_{\text{cyc}}^{\circ}$. By the comparison of $| \sqcup_{w \in {}^S \text{Adm}(\mu)_{\text{cyc}}^{\circ}}$ $\pi(X_w(b)^{0,\sigma})$ and $|X_u(b)^{0,\sigma}|$, it follows from Lemma [5.3](#page-25-2) and the claim we have shown above that there exist exactly *j* elements of length 2*j* in ^SAdm(μ) $_{\rm cyc}^{\circ}$. Moreover, it follows that $\pi(X_w(b)^0)$ is irreducible of dimension $\frac{\ell(w)}{2}$ for any $w \in {}^S\text{Adm}(\mu)_{\text{cyc}}^{\circ}$ and that $X_w(b) = \emptyset$ for any $w \in {^S}Adm(\mu)\{^S}Adm(\mu)_{\text{cyc}}$.

It remains to show that the semi-module stratification of $X_\mu(b)$ is a refinement of the Ekedahl–Oort stratification. We prove that for any $w \in S\text{Adm}(\mu)_{\text{cyc}}^{\circ}$, there exists an extended semi-module (A^{λ}, φ) for μ such that $\pi(X_{w}(b)^{0}) = S_{A^{\lambda}, \varphi}(= X^{\lambda}_{\mu}(b))$ by Lemmas [3.9](#page-14-2) and [5.3\)](#page-25-2). We argue by induction on $\ell(w)$. If $\ell(w) = 2$, i.e., *w* = $\omega^{\mu} c s_{n-2} s_{n-3} \cdots s_2 s_3 s_4 \cdots s_{n-2} s_{n-1} = s_0 s_{n-1} \tau^{n-1}$, then $w \to_{\sigma} s_0 w s_0 = \tau^{n-1}$. It easily fol-lows from Theorem [2.9](#page-10-1) that $X_{\tau^{n-1}s_0}(b) = \emptyset$. So by Proposition [2.3,](#page-7-1) we have $X_w(b)^0 =$ *Is*₀*I*/*I* and hence $π(X_{w}(b)^{0}) = X_{\mu}^{\chi_{1,n}^{y}}(b)$.

Suppose that $\ell(w) \ge 4$ and the claim is true for any $w' \in {}^S\text{Adm}(\mu)_{\text{cyc}}^{\circ}$ with $\ell(w') <$ $\ell(w)$. Since $\pi(X_w(b)^0)$ is irreducible of dimension $\frac{\ell(w)}{2}$, there exists a unique extended semi-module (A^{λ}, φ) for μ such that $\dim(\pi(X_w(b)^0) \cap S_{A^{\lambda}, \varphi}) = \frac{\ell(w)}{2}$. Also, $\pi(X_w(b)^0) \cap S_{A^{\lambda},\varphi}$ is open in both $\pi(X_w(b)^0)$ and $S_{A^{\lambda},\varphi}$. So the closure of $\pi(X_w(b)^0) \cap S_{A^{\lambda}, \varphi}$ in $X_{\mu}(b)$ is equal to both the closure of $\pi(X_w(b)^0)$ and $S_{A^{\lambda}, \varphi}$ in *X*_μ(*b*). By [\[20,](#page-36-19) Proposition 2.6] (see also [\[11,](#page-36-13) Section 3.3]), the closure of π (*X_w*(*b*)⁰) is contained in

$$
\bigsqcup_{w' \in {S} \text{Adm}(\mu)_{\text{cyc}}^{\circ}, w' \leq_{S} w} \pi(X_{w'}(b)).
$$

Here we write $w' \leq_S w$ if there exists $x \in W_0$ such that $xw'x^{-1} \leq w$. By the above description of the finite part of each element in ${}^S \text{Adm}(\mu)_{\text{cyc}}^\circ$, it is easily checked that if *w'* ∈ ^{*S*}Adm(μ)[°]_{cyc} and $\ell(w) = \ell(w')$, then there is no *x* ∈ *W*₀ such that *xwx*^{−1} = *w'*. So if $w' \in {}^S \text{Adm}(\mu)_{\text{cyc}}^{\circ}, w' \leq_{S} w$ and $\ell(w') = \ell(w)$, then $w = w'$. Thus, by the induction hypothesis, we have $S_{A^{\lambda}, \varphi} \subseteq \pi(X_w(b)^0)$. By [\[2,](#page-36-6) Propositions 2.11(5) and 3.4], the closure of $S_{A^{\lambda},\varphi}$ is contained in a union of semi-module strata T_{λ} such that $\dim(T_{\lambda} \backslash S_{A^{\lambda}, \varphi})$ < dim $S_{A^{\lambda}, \varphi}$. Thus, by the induction hypothesis and Lemma [5.3,](#page-25-2) we have *π*(*X_w*(*b*)⁰) ⊆ *S*_{*A*^{*λ*}, $φ$. Therefore, it follows that *π*(*X_w*(*b*)⁰) = *S*_{*A*^{*λ*}, $φ$, which com-}} pletes the proof.

6.3 The Ekedahl–Oort stratification for $\omega_1 + \omega_{n-3}$

Throughout this subsection, we set $\mu = \omega_1 + \omega_{n-3}$. Also we assume that $n \ge 7$. Note that the unique dominant cocharacter μ' with $\mu' < \mu$ is $\mu' = \omega_{n-2}$.

Proposition 6.7 *There exist at least* 2(*n* − 4) *elements of length* 3*n* − 11 *in* S Adm $(\mu)_{\rm cyc}^{\circ} \coloneqq {}^S$ Adm $(\mu)_{\rm cyc}$ / S Adm $(\omega_{n-2})_{\rm cyc}$ *. There also exists an element w of length* $3n - 14$ *in* S Adm(μ) *such that* $p(w)$ *is not a n-cycle and* $X_w(b) \neq \emptyset$ *. Moreover, the semimodule stratification of Xμ*(*b*) *is not a refinement of the Ekedahl–Oort stratification.*

Proof For any $1 \le j \le n-4$, set $c_j = s_{n-3}s_{n-2}s_{n-1}s_{n-4}\cdots s_{j+2}s_{j+1}s_1\cdots s_{j-1}s_j$. For $j = n - 3$, set $c_{n-3} = s_1 s_2 \cdots s_{n-1}$. Then we have $\omega^{\mu} c_j \in {^S}Adm(\mu)_{\text{cyc}}^{\circ}$ and $\ell(\omega^{\mu} c_j) =$ 3*n* − 9 for any $1 \le j \le n - 3$. If $1 \le j \le n - 5$, then $c_j s_{n-3} s_{n-2}$ and $c_j s_{n-3} s_{n-4}$ are *n*cycles of length 3*n* − 11 satisfying $\omega^{\mu} c_j s_{n-3} s_{n-2}$, $\omega^{\mu} c_j s_{n-3} s_{n-4} \in {^S}Adm(\mu)_{\text{cyc}}^{\circ}$. Further $c_{n-4} s_{n-3} s_{n-2}$ and $c_{n-3} s_{n-4} s_{n-3}$ are also *n*-cycles of length $3n-11$ satisfying $\omega^{\mu}c_{n-4}s_{n-3}s_{n-2}, \omega^{\mu}c_{n-3}s_{n-4}s_{n-3} \in {^S}\text{Adm}(\mu)_{\text{cyc}}^{\circ}$. Thus, we have found 2(*n* − 4) distinct elements of length 3*n* − 11 in ^SAdm($μ$)[°]_{cyc}.

Set $y = c_{n-5} s_{n-3} s_{n-2} s_{n-4} s_{n-6} s_{n-5} = (1 2 \cdots n - 6 n - 2 n n - 3)(n - 4 n - 5 n - 1).$ Then $\omega^{\mu} y \in {}^{S}$ Adm (μ) and $\chi_{1,n-1}, \chi_{n-5,n} \in \Phi_+ \backslash \Phi_{\omega^{\mu} y}$. By Theorem [2.9,](#page-10-1) $X_{\omega^{\mu} y}(b) \neq$ ∅. This shows the second assertion. We can easily check the last assertion using Lemma [5.4,](#page-26-0) similarly as the proof of Proposition [6.4.](#page-29-0)

6.4 The Ekedahl–Oort stratification for $\omega_1 + \omega_2$, $\omega_4 + \omega_{n-1}$

Note that the unique dominant cocharacter μ' with $\mu' < \omega_1 + \omega_2$ is ω_3 . By an explicit calculation, it is easy to verify the following statements (cf. Proposition [6.5\)](#page-29-1).

Proposition 6.8 Assume that $n = 5$. Set $\mu = \omega_1 + \omega_2$. For any $1 \le j \le 3 (= \dim X_\mu(b))$ *,* set ^SAdm $(\mu)_{\text{cyc}}^{\circ}$ \coloneqq ^SAdm $(\mu)_{\text{cyc}}$ /^SAdm $(\omega_3)_{\text{cyc}}$ *. Then we have*

 ${}^S\text{Adm}(\mu)_{\text{cyc}}^{\circ} = \{s_0s_4s_3s_2s_1s_0\tau^3, s_0s_1s_4s_3s_0s_4\tau^3, s_0s_4s_3s_2\tau^3, s_0s_1s_4s_3\tau^3\}.$

Let ω^{μ} *y* \in ^S Adm $(\mu)_{\text{cyc}}^{\circ}$. Then there exists ν \in LP(ω^{μ} y) such that ν^{-1} $y\nu$ is a Coxeter *element. Moreover,* $X_w(b) = \emptyset$ *for any* $w \in {^S}$ Adm (μ) ^SAdm (μ) _{cyc}*, and the semimodule stratification of Xμ*(*b*) *is a refinement of the Ekedahl–Oort stratification.*

Lemma **6.9** *Assume that* $n = 7$ *or* 8*. Let* $μ$ *be* $ω_1 + ω_2$ (*resp.* $ω_4 + ω_{n-1}$ *). Set c* = $s_1s_2\cdots s_{n-1}$. Then $\omega^{\mu}cs_1s_2s_3 \in {}^S\text{Adm}(\mu)$ and $X_{\omega^{\mu}cs_1s_2s_3}(b) \neq \varnothing$ (resp. $\omega^{\mu}c^{-1}s_5s_4s_3 \in$ ${}^S\text{Adm}(\mu)$ and $X_{\omega^{\mu}c^{-1}s_5s_4s_3}(b) \neq \emptyset$). Further $cs_1s_2s_3$ (resp. $c^{-1}s_5s_4s_3$) is not n-cycle.

6.5 The Ekedahl–Oort stratification for $\omega_2 + \omega_{n-3}$

We set $\mu = \omega_2 + \omega_{n-3}$. Also we assume that $n \geq 5$.

Lemma 6.10 *If n is odd (resp. even), set* $y = s_2 s_3 \cdots s_{n-3} s_1 s_2 \cdots s_{n-3}$ *(resp.* $y =$ $s_2 s_3 \cdots s_{n-3} s_1 s_2 \cdots s_{n-2}$. Then $\omega^{\mu} y \in {}^S \text{Adm}(\mu)$, $X_{\omega^{\mu} y}(b) \neq \emptyset$ and y is not a n-cycle.

Proof If *n* is odd (resp. even), then $y = (1 \ 3 \ \cdots \ n-2)(2 \ 4 \ \cdots \ n-1 \ n)$ (resp. $(1 \ 3 \ \cdots \ n-1)(2 \ 4 \ \cdots \ n)$) and $\omega^{\mu} y \in {}^{S}$ Adm (μ) . Note that $\chi_{1,n}, \chi_{2,n-1} \in \Phi_+ \backslash \Phi_{\omega^{\mu} y}$. So by Lemma [2.9,](#page-10-1) $X_{\varpi\mu\gamma}(b) \neq \emptyset$. The proof is finished.

7 Comparison of two stratifications

Keep the notations and assumptions in Section [3](#page-11-1) .

7.1 Known cases

The following results are known in (the proof of) [\[39,](#page-37-26) Corollary 5.5 and Theorem 5.9].

Proposition 7.1 *Let* ≅ *denote a universal homeomorphism.*

(i) *Assume that n* \geq 3*. Set µ* = $2\omega_1$ *, w* = $\omega^{\mu} s_1 s_2 \cdots s_{n-1}$ *and*

$$
\lambda = \begin{cases} \chi^{\vee}_{2,n-1} + \chi^{\vee}_{4,n-3} + \cdots + \chi^{\vee}_{\frac{n-1}{2},\frac{n+3}{2}} & (\frac{n-1}{2} \text{ even}) \\ \chi^{\vee}_{1,n} + \chi^{\vee}_{3,n-2} + \cdots + \chi^{\vee}_{\frac{n-1}{2},\frac{n+3}{2}} & (\frac{n-1}{2} \text{ odd}). \end{cases}
$$

Then we have $X_{\mu}(b)^{0} = X_{\mu}^{\lambda}(b) = \pi(X_{\mu}(b)^{0}) \approx \mathbb{A}^{\frac{n-1}{2}}$.

The Ekedahl–Oort stratification and the semi-module stratification 35

(ii) Assume that $n \ge 3$. Set $\mu = 2\omega_1 + \omega_{n-1}$, $w_i = \omega^{\mu} s_{n-1} s_{n-2} \cdots s_{n-i+1} s_1 s_2 \cdots s_{n-i}$ and

$$
\lambda_j = \begin{cases} \chi_{1,2j}^{\vee} + \chi_{2,2j-1}^{\vee} + \cdots + \chi_{j,j+1}^{\vee} & (j \leq \frac{n}{2}) \\ \chi_{2j+1-n,n}^{\vee} + \chi_{2j+2-n,n-1}^{\vee} + \cdots + \chi_{j,j+1}^{\vee} & (j \geq \frac{n}{2}). \end{cases}
$$

for $j = 1, 2, ..., n - 1$ *. Then we have* $X_{\mu}(b)^0 = \bigsqcup_{1 \leq j \leq n-1} X_{\mu}^{\lambda_j}(b)$ *and* $X_{\mu}^{\lambda_j}(b) =$ $\pi(X_{w_i}(b)^0) \cong \mathbb{A}^{n-1}$ *for each j.*

- (iii) *Assume that n* = 5*. Set* μ = $3\omega_1$ *, w* = $\omega^{\mu} s_1 s_2 s_3 s_4$ *and* $\lambda = \chi^{\vee}_{1,2} + \chi^{\vee}_{3,4}$ *. Then we have* $X_{\mu}(b)^{0} = X_{\mu}^{\lambda}(b) = \pi(X_{\mu}(b)^{0}) \approx A^{4}.$
- (iv) *Assume that n* = 4*. Set* μ = 3 ω_1 , $w = \omega^\mu s_1 s_2 s_3$ *and* $\lambda = \chi^{\vee}_{3,2}$ *. Then we have* $X_{\mu}(b)^{0} = X_{\mu}^{\lambda}(b) = \pi(X_{\mu}(b)^{0}) \approx \mathbb{A}^{3}.$
- (v) *Assume that n* = 3*.* Set μ = 4 ω_1 , $w = \omega^{\mu} s_1 s_2$ *and* $\lambda = \chi_{3,1}^{\vee}$ *. Then we have* $X_{\mu}(b)^0$ = $X^{\lambda}_{\mu}(b) = \pi(X_{w}(b)^{0}) \cong \mathbb{A}^{3}.$
- (vi) *Assume that* $n = 3$. Set $\mu = 3\omega_1 + \omega_2$, $w_1 = \omega^\mu s_1 s_2$, $w_2 = \omega^\mu s_2 s_1$, $\lambda_1 = \chi_{2,3}^\vee$ *and* $\lambda_2 = \chi_{3,2}^{\vee}$. Then we have $X_{\mu}(b)^0 = X_{\mu}^{\lambda_1}(b) \sqcup X_{\mu}^{\lambda_2}(b)$ and $X_{\mu}^{\lambda_j}(b) =$ $\pi(X_{w_i}(b)^0) \cong \mathbb{A}^3$ *for each j.*
- (vii) *Assume that n* = 2*. Set* μ = $m\omega_1$ *with* $m \ge 1$ *, w* = $\omega^{\mu} s_1$ *and*

$$
\lambda = \begin{cases} \frac{m-1}{2} \chi_{1,2}^{\vee} & \left(\frac{m-1}{2} \text{ odd} \right) \\ \frac{m-1}{2} \chi_{2,1}^{\vee} & \left(\frac{m-1}{2} \text{ even} \right). \end{cases}
$$

Then we have $X_{\mu}(b)^{0} = X_{\mu}^{\lambda}(b) = \pi(X_{\mu}(b)^{0}) \approx \mathbb{A}^{\frac{m-1}{2}}$.

7.2 Proof of the main theorem

Theorem 7.2 Let $\mu \in X_*(T)_+$. The following assertions are equivalent.

- (i) *The semi-module stratification of* $X_{\leq \mu}(b)$ *gives a refinement of the Ekedahl–Oort stratification.*
- (ii) *For any* $w \in {}^S \text{Adm}(\mu)$ *with* $X_w(b) \neq \emptyset$ *, there exists* $v \in \text{LP}(w)$ *such that v*[−]¹ *p*(*w*)*v is a Coxeter element.*
- (iii) *The cocharacter μ has one of the following forms:*

$$
\omega_{1}, \omega_{n-1}, \omega_{n-1}, \omega_{n-2}, 2\omega_{n-1}, \omega_{1} + \omega_{n-2}, \omega_{1} + 2\omega_{n-1}, \omega_{2} + \omega_{n-1}, 2\omega_{1} + \omega_{n-1}, \omega_{1} + \omega_{n-2}, \omega_{1} + 2\omega_{n-1}, \omega_{1} = 3),
$$
\n
$$
\omega_{3}, \omega_{1}, \omega_{2}, \omega_{3}, \omega_{n-3}, \omega_{1} = 3, \omega_{1} + \omega_{2}, \omega_{3} + \omega_{4}, \omega_{1}, \omega_{1} + 3\omega_{2}, 4\omega_{2}, 3\omega_{1} + \omega_{2}, \omega_{1} = 5),
$$
\n
$$
m\omega_{1} \text{ with } m \text{ odd}, \omega_{1} = 2).
$$
\n
$$
(n = 3),
$$

If one of the above conditions holds, then for any $w \in S$ *Adm* $(\mu)_{\text{cyc}}$ *<i>, there exist* $\mu' \in$ $X_*(T)_+$ *with* $\mu' \leq \mu$ *and a cyclic extended semi-module* (A^{λ}, φ) *for* μ' *such that* $\pi(X_w(b)^0) = X_{\leq \mu}^{\lambda}(b) = S_{A^{\lambda}, \varphi}$. Moreover, $\pi(X_w(b)^0) \cong \mathbb{A}^{\mathcal{V}(A^{\lambda}, \varphi)}$.

Proof For any $w = \omega^{\mu} y \in {^S \tilde{W}}$ with *μ* dominant, set $w^* = \omega^{(\mu(1), \dots, \mu(1))} \zeta(w)$ (cf. Section [2.5](#page-9-0) and Section [3.2\)](#page-14-1). Then $w^* \in {^S\tilde{W}}$ and $p(w^*) = w_{\text{max}} y w_{\text{max}}^{-1}$ (cf. Section 2.5 and Section [3.2\)](#page-14-1). Note that the arguments and results in Section [5](#page-25-0) and Section [6](#page-28-0) for (μ, w, b) also hold for (μ^*, w^*, b^*) . Thus, in this proof, it suffices to treat the case for either μ or μ^* .

First assume that *n* \geq 6. Let $1 \leq m_0 < n$ be the residue of *m* modulo *n*. If $4 \leq m_0 \leq n$ *n* − 4, then $\omega_{m_0} + \left\lfloor \frac{m}{n} \right\rfloor \omega_n \leq \mu$. So by Lemma [6.1](#page-28-1) and Proposition [6.4,](#page-29-0) μ satisfies neither (i) nor (ii). If $n \ge 10$ and $m_0 = 3$, then by Lemma [6.2,](#page-28-2) μ satisfies neither (i) nor (ii). If $n = 7, 8$ and $m_0 = 3$, then by Proposition [6.5,](#page-29-1) $\mu = \omega_3$ satisfies (i) and (ii). If, moreover, $\mu \neq \omega_3$, then $\omega_1 + \omega_2 + \left[\frac{m}{n}\right] \omega_n \leq \mu$ or $\omega_4 + \omega_{n-1} + \left(\left[\frac{m}{n}\right] - 1\right) \omega_n \leq \mu$. So by Lemma [5.6](#page-27-1) and Lemma [6.9,](#page-33-0) μ satisfies neither (i) nor (ii). If $m_0 = n - 2$, then $\omega_1 + \omega_{n-3} + \left\lfloor \frac{m}{n} \right\rfloor \omega_n \le$ *μ* unless $μ = ω_{n-2}$ or $2ω_{n-1}$. If $m_0 = n - 1$, then $ω_2 + ω_{n-3} + \lfloor \frac{m}{n} \rfloor ω_n \le μ$ unless $μ =$ $\omega_{n-1}, \omega_1 + \omega_{n-2}$ or $\omega_1 + 2\omega_{n-1}$. Thus, the equivalence of (i), (ii) and (iii) for $m_0 = n - 1$ 2, *n* − 1 follows from Theorem [4.17,](#page-24-0) Proposition [6.5,](#page-29-1) Proposition [6.7,](#page-32-0) Proposition [6.10](#page-33-1) and Proposition [7.1.](#page-33-2)

Assume that $n = 5$. If $m_0 = 3$, then $\omega_1 + \omega_3 + \omega_4 + \left\lfloor \frac{m}{n} \right\rfloor \omega_n \le \mu$ unless $\mu =$ ω_3 , $2\omega_4$, $\omega_1 + \omega_2$ or $3\omega_1$. If $m_0 = 4$, then $2\omega_2 + \left\lfloor \frac{m}{n} \right\rfloor \omega_n \leq \mu$ unless $\mu = \omega_4$, $\omega_1 + \omega_3$ or ω_1 + 2 ω_4 . Set y_5 = (153)(24). Then it is easy to check that $\omega^{w_1 + w_3 + w_4} y_5 \in {}^S \text{Adm}(\omega_1 + \omega_2)$ $\omega_3 + \omega_4$) and $X_{\omega^{\omega_1+\omega_3+\omega_4}y_5}(\tau^8) \neq \emptyset$. Assume that $n = 4$. If $m_0 = 3$, then $2\omega_2 + \omega_3$ + $\lfloor \frac{m}{n} \rfloor \omega_n \le \mu$ unless $\mu = \omega_3$, $\omega_1 + \omega_2$, $\omega_1 + 2\omega_3$ or $3\omega_1$. Set $y_4 = (13)(24)$. Then it is easy to check that $\omega^{2\omega_2+\omega_3}y_4 \in {}^S \text{Adm}(2\omega_2+\omega_3)$ and $X_{\omega^{2\omega_2+\omega_3}y_4}(\tau^7) \neq \emptyset$. Assume that $n = 3$. If $m_0 = 2$, then $2\omega_1 + 3\omega_2 + \left\lfloor \frac{m}{n} \right\rfloor \omega_n \le \mu$ unless $\mu = \omega_2, 2\omega_1, \omega_1 + 2\omega_2, 3\omega_1 + \omega_2$ or $4\omega_2$. Set $y_3 = (1 \ 3)$. Then it is easy to check that $\omega^{2\omega_1+3\omega_2}y_3 \in {}^S\text{Adm}(2\omega_1 + 3\omega_2)$ and $X_{\omega^{2\omega_1+3\omega_2}\gamma_3}(\tau^8) \neq \emptyset$. Thus, the equivalence of (i), (ii) and (iii) for $n = 2, 3, 4, 5$ also follows from Theorem [4.17,](#page-24-0) Proposition [6.5,](#page-29-1) Proposition [6.10](#page-33-1) and Proposition [7.1.](#page-33-2) The case for $n = 1$ is trivially true.

Assume that μ satisfies one of the conditions in the theorem, which is equivalent to each other as we have just proved. Except the cases where μ or μ^* is $\omega_1 + \omega_{n-2}$ ($n \ge 4$) or $\omega_1 + \omega_2$ ($n = 5$), it follows from [\[43,](#page-37-11) Theorem 5.3] and Proposition [7.1](#page-33-2) that each $X^{\lambda}_{\mu}(b)(\neq\varnothing)$ is universally homeomorphic to an affine space. Here we will treat the case $\mu = \omega_1 + \omega_{n-2}$. The proof for $\mu = \omega_1 + \omega_2$ is similar.

Set $\mu = \omega_1 + \omega_{n-2}$ and $\mu_{\bullet} = (\mu_1, \mu_2) = (\omega_1, \omega_{n-2})$. By [\[32,](#page-37-4) Theorem 1.5] and the Cartesian square right after it, pr induces a bijection between pr[−]¹ (*Xμ*(*b*))(⊆ $X_{\mu_{\bullet}}(b_{\bullet})$) and $X_{\mu}(b)$ (cf. [\[40,](#page-37-13) Lemma 3.11]). Since pr is proper, it induces a universally homeomorphism onto its image. Thus by Theorem [3.12,](#page-15-1) it suffices to show that for any fixed $1 \le j \le n-2$ and $[\lambda] \in \mathbb{A}_{\mu}^{j}$, there exists a unique $\lambda_{\bullet} = (\lambda_1, \lambda_2) \in \mathcal{A}_{\mu_{\bullet}}^{j}$ such that $\lambda_1 = \lambda$. If $\lambda_{\bullet} \in \mathcal{A}_{\mu_{\bullet}}^{j}$, then by [\[32,](#page-37-4) Proposition 2.9], we have

$$
\lambda_2 - \lambda_1 \in W_0 \omega_1, \qquad b\lambda_1 - \lambda_2 \in W_0 \omega_{n-2}.
$$

By Lemma [5.3,](#page-25-2) we may assume that $[\lambda] \in \mathbb{A}^j_\mu$ has one of the following forms:

(1) $\lambda = (1, \ldots, 1, 0, \ldots, 0, -1, \ldots, -1, 0, \ldots, 0),$ (2) $\lambda = (0, \ldots, 0, 1, \ldots, 1, 0, \ldots, 0, -1, \ldots, -1),$ (3) $\lambda = (1, \ldots, 1, 0, \ldots, 0, -1, \ldots, -1).$

Here the numbers of 1 and −1 are equal. In the case (1) (resp. (2)), let *i* = $max\{i' | \lambda(i') = -1\}$ (resp. $min\{i' | \lambda(i') = 1\}$). Then $(\lambda_2 - \lambda)(i) = \lambda_2(i) + 1$ and $(b\lambda - \lambda_2)(i) = 1 - \lambda_2(i)$ (resp. $(\lambda_2 - \lambda)(i - 1) = \lambda_2(i - 1)$ and $(b\lambda - \lambda_2)(i - 1) = 2$ *λ*₂(*i* − 1)). So if $λ_2 − λ ∈ W_0ω_1$ and $bλ − λ_2 ∈ W_0ω_{n-2}$, then $λ_2(i) = 0$ (resp. $λ_2(i − n)$) 1) = 1). Hence, the *i*-th (resp. $(i - 1)$ -th) entry of $\lambda_2 - \lambda$ is equal to 1, and other entries are equal to 0. So λ_2 is uniquely determined by λ . In the case (3), we have $(\lambda_2 - \lambda)(n) =$ $\lambda_2(n) + 1$ and $(b\lambda - \lambda_2)(n) = 1 - \lambda_2(n)$. So if $\lambda_2 - \lambda \in W_0 \omega_1$ and $b\lambda - \lambda_2 \in W_0 \omega_{n-2}$, then $\lambda_2(n) = 0$. So λ_2 is also uniquely determined by λ .

Other statements follow from the results (and proofs) in Section [5](#page-25-0) and Section [6.](#page-28-0) \blacksquare

Acknowledgment The author is grateful to his advisor Yoichi Mieda for his constant support and encouragement.

References

- [1] M. Chen and J. Tong, *Weakly admissible locus and Newton stratification in p-adic Hodge theory*. Preprint, 2022. [arXiv:2203.12293](https://arxiv.org/abs/2203.12293).
- [2] M. Chen and E. Viehmann, *Affine Deligne-Lusztig varieties and the action of J*. J. Algebraic Geom. **27**(2018), no. 2, 273–304.
- [3] A. J. de Jong and F. Oort, *Purity of the stratification by Newton polygons*. J. Amer. Math. Soc. **13**(2000), no. 1, 209–241.
- [4] F. Digne and J. Michel, *Representations of finite groups of Lie type*, London Mathematical Society Student Texts, 95, Cambridge University Press, Cambridge, 2020.
- [5] M. Fayers, *A note on Kostka numbers.* Preprint, 2019. [arXiv:1903.12499](https://arxiv.org/abs/1903.12499).
- [6] M. Fox, B. Howard, and N. Imai, *Rapoport-Zink spaces of type GU*(2, *n* − 2). Preprint, 2023. [arXiv:2308.03816](https://arxiv.org/abs/2308.03816).
- [7] M. Fox and N. Imai, *The supersingular locus of the Shimura variety of GU*(2, *n* − 2). Preprint, 2021. [arXiv:2108.03584](https://arxiv.org/abs/2108.03584).
- [8] Q. R. Gashi, *On a conjecture of Kottwitz and Rapoport*. Ann. Sci. Éc. Norm. Supér. (4) **43**(2010), no. 6, 1017–1038.
- [9] U. Görtz, *Stratifications of affine Deligne-Lusztig varieties*. Trans. Amer. Math. Soc. **372**(2019), no. 7, 4675–4699.
- [10] U. Görtz and X. He, *Dimensions of affine Deligne-Lusztig varieties in affine flag varieties*. Doc. Math. **15**(2010), 1009–1028.
- [11] U. Görtz and X. He, *Basic loci of Coxeter type in Shimura varieties*. Camb. J. Math. **3**(2015), no. 3, 323–353.
- [12] U. Görtz, X. He, and S. Nie, *P-alcoves and nonemptiness of affine Deligne-Lusztig varieties*. Ann. Sci. Éc. Norm. Supér. (4) **48**(2015), no. 3, 647–665.
- [13] U. Görtz, X. He, and S. Nie, *Fully Hodge-Newton decomposable Shimura varieties*. Peking Math. J. **2**(2019), no. 2, 99–154.
- [14] U. Görtz, X. He, and S. Nie, *Basic loci of Coxeter type with arbitrary parahoric level*. Canad. J. Math. **76**(2024), no. 1, 126–172.
- [15] U. Görtz, X. He, and M. Rapoport, *Extremal cases of Rapoport-Zink spaces*. J. Inst. Math. Jussieu (2020), 1–56.
- [16] T. J. Haines, *The combinatorics of Bernstein functions*. Trans. Amer. Math. Soc. **353**(2001), no. 3, 1251–1278.
- [17] P. Hamacher, *The dimension of affine Deligne-Lusztig varieties in the affine Grassmannian*. Int. Math. Res. Not. IMRN (2015), no. 23, 12804–12839.
- [18] P. Hamacher and E. Viehmann, *Irreducible components of minuscule affine Deligne-Lusztig varieties*. Algebra Num. Theory **12**(2018), no. 7, 1611–1634.
- [19] U. Hartl and E. Viehmann, *The Newton stratification on deformations of local G-shtukas*. J. Reine Angew. Math. **656**(2011), 87–129.
- [20] X. He, *Closure of Steinberg fibers and affine Deligne-Lusztig varieties*. Int. Math. Res. Not. IMRN (2011), no. **14**, 3237–3260.
- [21] X. He, *Geometric and homological properties of affine Deligne-Lusztig varieties*. Ann. of Math. (2) **179**(2014), no. 1, 367–404.
- [22] X. He and S. Nie, *Minimal length elements of extended affine Weyl groups*, Compos. Math. **150**(2014), no. 11, 1903–1927.
- [23] X. He, S. Nie, and Q. Yu, *Affine Deligne–Lusztig varieties with finite Coxeter parts*. Algebra Number Theory **18**(2024), no. 9, 1681–1714.
- [24] X. He and R. Zhou, *On the connected components of affine Deligne-Lusztig varieties*. Duke Math. J. **169**(2020), no. 14, 2697–2765.
- [25] J. Hong and S.-J. Kang, *Introduction to quantum groups and crystal bases*, Graduate Studies in Mathematics, vol. 42, American Mathematical Society, Providence, RI, 2002.
- [26] M. Kashiwara, *Crystal bases of modified quantized enveloping algebra*. Duke Math. J. **73**(1994), no. 2, 383–413.
- [27] M. Kashiwara and T. Nakashima, *Crystal graphs for representations of the q-analogue of classical Lie algebras*. J. Algebra **165**(1994), no. 2, 295–345.
- [28] R. E. Kottwitz, *Isocrystals with additional structure*. Compositio Math. **56**(1985), no. 2, 201–220.
- [29] S. Kudla and M. Rapoport, *Special cycles on unitary Shimura varieties I. Unramified local theory*. Invent. Math. **184**(2011), no. 3, 629–682.
- [30] D. G. Lim, *Nonemptiness of single affine Deligne-Lusztig varieties*. Preprint, 2023. [arXiv:2302.](https://arxiv.org/abs/2302.04976) [04976](https://arxiv.org/abs/2302.04976).
- [31] I. G. Macdonald, *Affine Hecke algebras and orthogonal polynomials*, Cambridge Tracts in Mathematics, vol. 157, Cambridge University Press, Cambridge, 2003.
- [32] S. Nie, *Irreducible components of affine Deligne-Lusztig varieties*. Camb. J. Math. **10**(2022), no. 2, 433–510.
- [33] M. Rapoport and T. Zink, *Period spaces for p*-*divisible groups*, Annals of Mathematics Studies, 141, Princeton University Press, Princeton, NJ, 1996.
- [34] M. Rapoport, *A guide to the reduction modulo p of Shimura varieties*. Astérisque (2005), no. **298**, 271–318, Automorphic forms. I.
- [35] F. Schremmer, *Generic Newton points and cordial elements*. Preprint, 2022. [arXiv:2205.02039](https://arxiv.org/abs/2205.02039).
- [36] F. Schremmer, *Newton strata in Levi subgroups*. Manuscripta Math. **175**(2024), no. 1–2, 513–519.
- [37] F. Schremmer, R. Shimada, and Q. Yu, *On affine Weyl group elements of positive Coxeter type*. Preprint, 2023. [arXiv:2312.02630](https://arxiv.org/abs/2312.02630).
- [38] R. Shimada, *Basic loci of positive Coxeter type for GLⁿ* . Preprint, 2024. [arXiv:2402.13216](https://arxiv.org/abs/2402.13216).
- [39] R. Shimada, *On some simple geometric structure of affine Deligne–Lusztig varieties for* GL*n*. Manuscripta Math. **173**(2024), no. 3–4, 977–1001.
- [40] R. Shimada, *Semi-modules and crystal bases via affine Deligne-Lusztig varieties*. Adv. Math. **441**(2024), 109565.
- [41] S. Trentin, *On the Rapoport-Zink space for GU* (2, 4) *over a ramified prime.* Preprint, 2023. [arXiv:2309.11290](https://arxiv.org/abs/2309.11290).
- [42] E. Viehmann, *The dimension of some affine Deligne-Lusztig varieties*. Ann. Sci. École Norm. Sup. (4) **39**(2006), no. 3, 513–526.
- [43] E. Viehmann, *Moduli spaces of p-divisible groups*. J. Algebraic Geom. **17**(2008), no. 2, 341–374.
- [44] I. Vollaard and T. Wedhorn, *The supersingular locus of the Shimura variety of II*. Invent. Math. **184**(2011), no. 3, 591–627.
- [45] L. Xiao and X. Zhu, *Cycles on Shimura varieties via geometric Satake*. Preprint, 2017. [arXiv:1707.05700](https://arxiv.org/abs/1707.05700).
- [46] W. Zhang, *On arithmetic fundamental lemmas*. Invent. Math. **188**(2012), no. 1, 197–252.
- [47] R. Zhou and Y. Zhu, *Twisted orbital integrals and irreducible components of affine Deligne-Lusztig varieties*. Camb. J. Math. **8**(2020), no. 1, 149–241.

Department of Mathematics and New Cornerstone Science Laboratory, The University of Hong Kong, Hong Kong SAR, China

e-mail: rshimada@hku.hk