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Nonlinear evolution of vortical disturbances
entrained in the entrance region of a circular pipe
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The nonlinear evolution of free-stream vortical disturbances entrained in the entrance
region of a circular pipe is investigated using asymptotic and numerical methods.
Attention is focused on the low-frequency disturbances that induce streamwise elongated
structures. A pair of vortical modes with opposite azimuthal wavenumbers is used to
model the free-stream disturbances. Their amplitude is assumed to be intense enough
for nonlinear interactions to occur inside the pipe. The formation and evolution of the
perturbation flow are described by the nonlinear unsteady boundary-region equations in
the cylindrical coordinate system, derived and solved herein for the first time. Matched
asymptotic expansions are employed to construct appropriate initial conditions and the
initial–boundary value problem is solved numerically by a marching procedure in the
streamwise direction. Numerical results show the stabilising effect of nonlinearity on the
intense algebraic growth of the disturbances and an increase of the wall-shear stress due
to the nonlinear interactions. A parametric study is carried out to evince the effect of the
Reynolds number, the streamwise and azimuthal wavelengths, and the radial length scale
of the inlet disturbance on the nonlinear flow evolution. Elongated pipe-entrance nonlinear
structures (EPENS) occupying the whole pipe cross-section are discovered. EPENS with
h-fold rotational symmetry comprise h high-speed streaks positioned near the wall, and h
low-speed streaks centred around the pipe core. These distinct structures display a striking
resemblance to nonlinear travelling waves found numerically and observed experimentally
in fully developed pipe flow. Good agreement of our mean-flow and root mean square data
with experimental measurements is obtained.
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1. Introduction

As one of the most long-standing problems in fluid dynamics, stability and transition in
pipe flow have puzzled engineers and scientists since the prominent experimental work
of Reynolds (1883). Due to wide industrial applications, engineers have aimed to design
efficient and durable pipeline systems by estimating the conditions under which the pipe
flow is laminar or turbulent. This objective is driven by the large difference in pressure
gradient required to drive laminar and turbulent flows in a pipe. Scientists have also
been intrigued by the enigmatic physical mechanisms behind the instability and transition
phenomena observed in experiments.

Earlier investigations of pipe flow date back to the independent studies of Hagen (1839)
and Poiseuille (1844), where the linear relationship between pressure drop and volume flow
rate for laminar flow was obtained. This relationship is now known as the Hagen–Poiseuille
law, which holds only sufficiently downstream where the flow is fully developed, i.e.
the velocity distribution is independent of the streamwise coordinate, and its profile is
parabolic. Near the pipe inlet, the velocity field varies in the streamwise direction and
the terminologies developing pipe flow and pipe entrance flow are adopted. Considerable
research effort has been focused on the stability and transition of the fully developed
region, but much less attention has been devoted to the flow in the entrance region of
the pipe. In this paper, we thus aim to investigate how free-stream vortical disturbances
are entrained in the entrance region of a circular pipe, and how the induced disturbances
grow and evolve nonlinearly inside the pipe.

1.1. Fully developed pipe flow
The stability and transition of fully developed laminar pipe flow cannot be explained by
the classical linear stability theory because the parabolic profile is stable to infinitesimally
small disturbances. The reader is referred to Rayleigh (1892), Sexl (1927), Pekeris (1948),
Corcos & Sellars (1959) and Gill (1965) for theoretical studies, and to Davey & Drazin
(1969), Crowder & Dalton (1971), Garg & Rouleau (1972), Salwen & Grosch (1972) and
Meseguer & Trefethen (2003) for numerical studies. However, transition in pipe flow is
usually observed in experiments at moderate Reynolds numbers. This discrepancy has led
to the inclusion of nonlinear effects in the study of pipe-flow stability. Weakly nonlinear
theory was first applied independently by Davey & Nguyen (1971) and Itoh (1977), but
the results contradicted each other. Davey & Nguyen (1971) reported that fully developed
pipe flow was unstable to small but finite axisymmetric centre-mode disturbances when
the disturbance amplitude exceeded a critical value, while the flow was found to be stable
by Itoh (1977). The problem was reexamined by Davey (1978), who suggested that neither
of those results was reliable. Direct numerical simulations performed by Patera & Orszag
(1981) failed to find any finite-amplitude axisymmetric equilibria, and suggested that the
use of weakly nonlinear theory away from the neutral stability curve may be invalid. Smith
& Bodonyi (1982) identified neutral disturbances of finite amplitude by employing the
nonlinear critical layer theory.

The research interest then shifted from solving the eigenvalue problem established
by the modal stability theory to the temporal initial value problem pertaining to the
non-modal stability theory. Since the linear stability theory captures the long-time
disturbance behaviour but overlooks the short-time behaviour (Kerswell 2005; Schmid
2007), at short times, disturbances may experience algebraic transient growth before
the ultimate exponential decay (e.g. Böberg & Brösa 1988). One related approach is to
identify the optimal disturbance that achieves the maximum transient energy growth.
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Nonlinear evolution of entrained vortical disturbances

Studies on transient growth in time have revealed that optimal disturbances have a
vanishing streamwise wavenumber and a unity azimuthal wavenumber (Bergström 1992;
O’Sullivan & Breuer 1994; Schmid & Henningson 1994). Bergström (1993) and Schmid
& Henningson (1994) also extended the work to disturbances with small but non-zero
streamwise wavenumber. The spatial transient growth has been reported by Tumin (1996)
and Reshotko & Tumin (2001). Stationary disturbances were found to exhibit a more
significant amplification than non-stationary ones (Reshotko & Tumin 2001). Optimal
disturbances provide the upper bound for the possible energy amplification, which is
optimised over all possible initial conditions.

Faisst & Eckhardt (2003) and Wedin & Kerswell (2004) independently discovered
nonlinear travelling waves in pipe flow for the first time, which were later observed in the
experiments of Hof et al. (2004, 2005). Inspired by these results, the nonlinear dynamical
system approach has become a valuable tool in the last two decades (Eckhardt et al.
2007; Avila, Barkley & Hof 2023). From the perspective of dynamical theory, all initial
conditions of the pipe-flow system that ultimately converge to the laminar state form the
basin of attraction of the laminar state. Transition occurs when the initial conditions are
outside of this basin boundary. The nonlinear non-modal stability theory describes the
dynamics of finite disturbances within and beyond the basin boundary (Kerswell, Pringle
& Willis 2014; Kerswell 2018). Optimisation methods have been utilised within this
nonlinear theory to compute the so-called minimal seed (Pringle & Kerswell 2010; Pringle,
Willis & Kerswell 2012), i.e. the disturbance with the smallest energy for turbulence to
occur. The interested reader is referred to Kerswell (2018) for an exhaustive review.

1.2. Pipe-entrance flow
The absence of linear instability in fully developed pipe flow directed interest to the flow
in the developing entrance region. As the uniform flow enters the pipe inlet, a laminar
boundary layer grows along the wall. One can then expect this pipe-entrance boundary
layer to be linearly unstable. Research efforts first focused on the computation of the
velocity and pressure distributions of this base flow (Langhaar 1942; Hornbeck 1964;
Sparrow, Lin & Lundgren 1964; Christiansen & Lemmon 1965).

The first temporal stability analysis of the pipe entrance flow was performed by Tatsumi
(1952) by using a boundary-layer model that revealed the linear instability of the flow
subjected to axisymmetric disturbances. The same problem was investigated numerically
by Huang & Chen (1974a) and generalised to non-axisymmetric disturbances (Huang
& Chen 1974b; Shen, Chen & Huang 1976) and spatially unstable disturbances (Garg
1981, 1983; Garg & Gupta 1981; Gupta & Garg 1981). Considerable discrepancies were
observed among the results obtained in these studies, which may be attributed to the
varying accuracies in the calculation of the laminar base flow (da Silva & Moss 1994).
Da Silva & Moss (1994) reexamined this stability problem with improved accuracy,
obtaining good agreement with results by Gupta & Garg (1981). The critical Reynolds
number based on the pipe radius was approximately 10 000 in both studies.

Although these studies focused on the stability of flow profiles at different streamwise
locations in the pipe entrance, the receptivity problem – i.e. how entrained free-stream
disturbances excite instability in the entrance region – was not considered. This problem
is, however, of central importance because, as even remarked by Reynolds (1883), the pipe
inlet disturbances have a significant effect on the stability and laminar–turbulent transition
of the pipe-entrance flow. By controlling the disturbance level at the pipe inlet, the flow
studied by Reynolds (1883) was maintained laminar up to Reynolds numbers ranging
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from 2000 to 13 000. This number was further increased to 100 000 in the experiments
of Pfenniger (1961).

Given the importance of the inlet perturbations, it is thus surprising that only a
limited number of studies exist on this problem. In the experiments of Sarpkaya (1975),
disturbances were introduced on the surface of the pipe entrance, and the occurrence
of instability was confirmed. The reported critical Reynolds number was much lower
than that estimated by theoretical studies, which may be ascribed to the finite-amplitude
disturbances induced in the entrance flow. The dynamics of localised turbulence, i.e. puffs
and slugs, was studied in the experimental work of Wygnanski & Champagne (1973),
where the disturbances were introduced at the pipe inlet using a honeycomb, an orifice
plate and a circular disk. Wygnanski, Sokolov & Friedman (1975) further investigated the
propagation of turbulent puffs initiated by an impulsive disturbance at the entrance region.
The experimental study of Zanoun, Kito & Egbers (2009) focused on the effect of the
inlet flow conditions on the flow transition in pipe and channel flows. Different transition
Reynolds numbers were measured at different streamwise positions.

Direct numerical simulations were conducted by Wu et al. (2015) and Wu, Moin &
Adrian (2020) to investigate the flow transition to fully developed turbulence triggered
by localised inlet disturbances. In Wu et al. (2015), the fully developed parabolic laminar
velocity profile was chosen as the inlet base flow in most cases, and the plug flow was
utilised in one case. The most intense inlet disturbances required to trigger transition
pertained to the latter case.

Under the small-amplitude assumption, Ricco & Alvarenga (2022) performed the
first theoretical study of the entrainment of free-stream vortical disturbances in the
pipe entrance. Their interest was in how these disturbances are affected by the pipe
confinement, and how they grow and develop downstream. The perturbation flow at the
pipe inlet was obtained by a matched asymptotic composite solution between a Bessel
function vortical flow in the pipe core and a boundary-layer flow near the pipe wall.
A streamwise-elongated streaky flow formed within the base-flow boundary layer and
evolved towards the pipe centreline farther downstream. A good agreement between
the computed velocity profiles and the available experimental data was found when the
measured free-stream disturbances were weak.

1.3. Objectives
We investigate the entrainment of flow disturbances into the entrance of a circular pipe,
and the downstream growth and evolution of the induced nonlinear vortical disturbances
along the entrance region. The oncoming disturbances are physically realistic, i.e. they can
be generated at the pipe inlet in a laboratory. The nonlinear boundary-region equations are
derived in the cylindrical geometry for the first time, and solved numerically by marching
downstream. Our study is the nonlinear extension of Ricco & Alvarenga (2022), and the
first theoretical study of the entrainment and downstream evolution of finite-amplitude
disturbances in the entrance region of a circular pipe.

In § 2, the scaling and assumptions are presented, together with the mathematical
formulation and numerical procedures. Numerical results are discussed in § 3. A summary
and conclusions are given in § 4.

2. Mathematical formulation and numerical procedures

We consider a circular pipe of radius R∗ described by a cylindrical coordinate system
{x∗, r∗, θ}, where x∗ and r∗ are the streamwise and radial directions, and θ is the
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Figure 1. Schematic of the entrance region of a pipe (not to scale).

azimuthal angle. The pipe inlet is located at x∗ = 0, while the pipe axis and the pipe wall
are at r∗ = 0 and r∗ = R∗, respectively. The superscript * refers to dimensional quantities
hereafter. A schematic of the flow is shown in figure 1.

A pressure-driven incompressible flow is assumed to enter the pipe with a uniform
velocity U∗∞ at x∗ = 0. Superimposed on the oncoming flow are small-amplitude gust-type
vortical fluctuations that can be modelled by a Fourier–Bessel series with Fourier
expansions in x∗, θ and time t∗, and a Bessel expansion in r∗. A pair of vortical modes
with the same frequency f ∗ (and hence the same streamwise wavenumber k∗

x ), but opposite
azimuthal wavenumbers ±m0, is considered (m0 ≥ 0 is taken without losing generality).
The circumferential wavelength of the free-stream gust at the pipe radius, λ∗ = 2πR∗/m0,
is chosen as the reference length. The velocities and time are normalised by U∗∞ and
λ∗/U∗∞, respectively, while the pressure p∗ is normalised by ρ∗U∗2∞ , where ρ∗ is the
density of the fluid.

Following Ricco & Alvarenga (2022), a single pair of free-stream gusts is passively
advected by U∗∞ and expressed as

u − {1, 0, 0} = ε{û∞
+,m0

eim0θ + û∞
−,m0

e−im0θ } eikx(x−t) + c.c., (2.1)

where

û∞
±,m0

(r; l) =
{

û∞
m0

Jm0(r0),
v̂∞

m0
Jm0(r0)

r0
,
∓iŵ∞

m0
J′

m0
(r0)

ξm0,l

}
= O(1). (2.2)

Here, u = {u, v, w} corresponds to the velocity components in the x, r and θ directions,
ε � 1 is a measure of the amplitude of the disturbances, the quantities {û∞

m0
, v̂∞

m0
, ŵ∞

m0
} =

O(1) are complex, Jm0 is the Bessel function of the first kind of order m0, r0 = rξm0,l/2R
with ξm0,l being the lth zero of the Bessel function Jm0 , and c.c. denotes the complex
conjugate. The notations m0 and r0 correspond to m and r̄ in Ricco & Alvarenga (2022).
A similar expansion of the free-stream vortical disturbances has been used in Ricco, Luo
& Wu (2011) and Marensi, Ricco & Wu (2017) for flat-plate boundary layers, Marensi &
Ricco (2017) for concave boundary layers, and Ricco & Alvarenga (2021) for a channel
flow. The expansion (2.1) and (2.2) is a model of free-stream vortical disturbances that
could be realised in a laboratory by a grid of vibrating ribbons, a polar equivalent of the
careful receptivity studies of Dietz (1999) and Borodulin et al. (2021).
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Our focus is on oncoming disturbances with a long streamwise wavelength (i.e. low
frequency), i.e. kx � 1, which have been experimentally demonstrated to be the most
likely to penetrate into a boundary layer and form streamwise-elongated structures
(Matsubara & Alfredsson 2001). Under the low-frequency assumption, the continuity
equation of the gust disturbances becomes

ξm0,l v̂
∞
m0

+ m0 ŵ∞
m0

= 0, (2.3)

where ∂u/∂x = O(kx) � 1 has been neglected.
As the oncoming flow enters the pipe, a boundary layer develops on the pipe wall.

As the flow evolves downstream, the boundary-layer thickness becomes comparable with
the azimuthal wavelength λ∗ at x = O(Reλ), where Reλ = U∗∞λ∗/ν∗ � 1, and ν∗ is
the kinematic viscosity of the fluid. A distinguished scaling is kx = O(Re−1

λ ), and the
two slow variables scaled by kx are t̄ = kxt = O(1) and x̄ = kxx = O(1). In this region,
viscous–diffusion effects in the radial and azimuthal directions are comparable. The flow
can be described by the nonlinear boundary-region equations (Ricco et al. 2011), written
and solved herein in cylindrical coordinates for the first time. The linear counterpart of
these equations, obtained for the turbulent Reynolds number rt = ε Reλ � 1, was derived
and solved in Ricco & Alvarenga (2022) for studying the growth of small-amplitude
disturbances. The current research relaxes the linear assumption because rt = O(1).
Nonlinear interactions are thus taken into account.

2.1. Governing equations
The boundary-region equations are derived from the incompressible Navier–Stokes
equations

∇ · u = 0, (2.4)

∂u
∂t

+ (u · ∇)u = −∇p + 1
Reλ

∇2u. (2.5)

The velocity u and the pressure p are decomposed into the laminar base flow and the
perturbation flow, namely

{u, p} = {U, P} + {ũ, p̃}

= {U(x̄, r), kx V(x̄, r), 0, P(x̄)} + rt

{
ū, kxv̄, kxw̄,

kx

Reλ
p̄ + Γ (x̄)

}
, (2.6)

where the perturbation flow is expressed as a Fourier series in θ and t:

{ū, v̄, w̄, p̄, Γ } =
∞∑

m,n=−∞
{ûm,n, v̂m,n, ŵm,n, p̂m,n, Γ̂m,n} eimθ+int̄. (2.7)

The pressure correction Γ (x̄) ensures that the mass flow rate is conserved at each
streamwise location and time instant as the modes û0,n are generated by the nonlinear
interactions. Therefore, Γ̂m,n /= 0 only if m = 0. As the physical quantities are real, the
Hermitian property applies, i.e.

(q̂m,n)c.c. = q̂−m,−n, (2.8)

where q̂m,n represents any Fourier coefficient {ûm,n, v̂m,n, ŵm,n, p̂m,n, Γ̂m,n} in (2.7).
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Nonlinear evolution of entrained vortical disturbances

Substituting (2.6) and (2.7) into the full Navier–Stokes equations (2.4) and (2.5), and
taking the limits k−1

x , Reλ → ∞ with F = kx Reλ = O(1), leads to the boundary-layer
equations governing the laminar base flow {U, V, P} and to the unsteady nonlinear
boundary-region equations governing the perturbation flow {ûm,n, v̂m,n, ŵm,n, p̂m,n, Γ̂m,n}.

The laminar boundary-layer equations read (Hornbeck 1964)

∂U
∂ x̄

+ V
r

+ ∂V
∂r

= 0, (2.9)

U
∂U
∂ x̄

+ V
∂U
∂r

= −dP
dx̄

+ 1
F
(

1
r

∂U
∂r

+ ∂2U
∂r2

)
. (2.10)

Equations (2.9) and (2.10) are solved together with the conservation of mass flow rate at
each streamwise location, ∫ R

0
Ur dr = R2

2
, (2.11)

and are subject to the no-slip and no-penetration conditions at the wall, and the symmetry
conditions at the pipe axis:

for r = R, U = V = 0, (2.12)

for r = 0,
∂U
∂r

= 0, V = 0. (2.13)

The initial condition is obtained by a matched asymptotic combination of the Blasius flow
near the pipe wall and an inviscid flow around the pipe core (Ricco & Alvarenga 2022):

U(x, r) = dF
dη

− βi1/2

2
√

2π Re1/2
λ

∫ +∞+iγ

−∞+iγ

eiζx

ζ 1/2 I1(ζR)

[
I1(ζ r)

ζ r
+ I′

1(ζ r)
]

dζ

+ βi1/2

2
√

2π Re1/2
λ

∫ +∞+iγ

−∞+iγ

eiζx

ζ 1/2

[
I′
1(ζR)

I1(ζR)
+ 1

ζR

]
dζ, x � 1, (2.14)

where η = (R − r)(Reλ/2x)1/2, F satisfies the Blasius equation F′′′ + FF′′ = 0, the
prime denotes differentiation, β = limη→∞(η − F) = 1.217 . . ., I1 is the modified Bessel
function of the first kind, and γ ∈ R < 0. Equations (2.9)–(2.11), supplemented by
conditions (2.12)–(2.14), are solved by an improved version of the numerical scheme
of Hornbeck (1964). A detailed description of the numerical procedure is provided in
the supplementary material S1 of Ricco & Alvarenga (2022). The numerical results are
discussed in § 4.1 of Ricco & Alvarenga (2022).

The perturbation-flow unsteady nonlinear boundary-region equations are as follows.
The continuity equation is

∂ ûm,n

∂ x̄
+ v̂m,n

r
+ ∂v̂m,n

∂r
+ im

r
ŵm,n = 0. (2.15)

The x-momentum equation is(
in + ∂U

∂ x̄
+ m2

Fr2

)
ûm,n + U

∂ ûm,n

∂ x̄
+
(

V − 1
Fr

)
∂ ûm,n

∂r
+ v̂m,n

∂U
∂r

− 1
F

∂2ûm,n

∂r2 + dΓ̂0,n

dx̄
= rtX̂m,n. (2.16)
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The r-momentum equation is(
in + ∂V

∂r
+ m2 + 1

Fr2

)
v̂m,n + U

∂v̂m,n

∂ x̄
+ ûm,n

∂V
∂ x̄

+
(

V − 1
Fr

)
∂v̂m,n

∂r

+ 1
F

∂ p̂m,n

∂r
− 1

F
∂2v̂m,n

∂r2 + 2 im
Fr2 ŵm,n = rtŶm,n. (2.17)

The θ -momentum equation is(
in + V

r
+ m2 + 1

Fr2

)
ŵm,n + U

∂ŵm,n

∂ x̄
+
(

V − 1
Fr

)
∂ŵm,n

∂r
+ im

Fr
p̂m,n

− 1
F

∂2ŵm,n

∂r2 − 2 im
Fr2 v̂m,n = rtẐm,n. (2.18)

The right-hand sides of the momentum equations (2.16)–(2.18) denote the nonlinear terms

X̂m,n = −
(

∂ ̂̄uū
∂ x̄

+ ∂ ̂̄uv̄

∂r
+
̂̄uv̄ + im̂̄uw̄

r

)
m,n

,

Ŷm,n = −
(

∂ ̂̄uv̄

∂ x̄
+ ∂ ̂̄vv̄

∂r
+
̂̄vv̄ + im̂̄vw̄ − ̂̄ww̄

r

)
m,n

,

Ẑm,n = −
(

∂̂̄uw̄
∂ x̄

+ ∂̂̄vw̄
∂r

+ im̂̄ww̄
r

+ 2̂̄vw̄
r

)
m,n

,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.19)

where ˆ indicates Fourier transformed quantities. In the limit rt � 1, the linearised
boundary-region equations of Ricco & Alvarenga (2022) are recovered. The pressure
correction Γ̂0,n becomes a further unknown variable for m = 0, and one more condition
is thus required to solve the system. Analogous to (2.11) for the base-flow problem,
this condition is the conservation of mass flow rate at each instant in time and at each
streamwise location. As discussed in Appendix A, this condition is expressed as∫ R

0
û0,nr dr = 0. (2.20)

Since the partial differential system (2.15)–(2.20) is parabolic in the streamwise
direction, and elliptic in the radial and azimuthal directions, appropriate initial and
boundary conditions are needed. These conditions are presented in § 2.2. Further treatment
of (2.15)–(2.20) is carried out in § 2.3 for different values of m. The numerical procedures
are discussed in § 2.4.

2.2. Initial and boundary conditions
While the streamwise velocity of the induced disturbances acquires an order-one amplitude
at x̄ = O(1), the velocity fluctuations near the pipe inlet are of small amplitude O(ε), and
nonlinear effects can therefore be neglected there. Hence the initial conditions derived by
Ricco & Alvarenga (2022) can be used. Comparison of the velocity expansions (2.6) here
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Nonlinear evolution of entrained vortical disturbances

and (2.6) in Ricco & Alvarenga (2022) leads to the relations

{ûm0,−1, v̂m0,−1} = 1
Reλ

{
im0

kx
ūx + ū(0)

x ,
im0

kx
ūr + ū(0)

r

}
, (2.21)

where ūx, ūr, ū(0)
x and ū(0)

r are given by the analytical expressions (3.25)–(3.27) and
(3.32) in Ricco & Alvarenga (2022). The azimuthal velocity ŵm0,−1 can be found
through the continuity equation (2.15), with ûm0,−1 and v̂m0,−1 given by (2.21). For the
opposite wavenumber m = −m0, the same streamwise and radial components but opposite
azimuthal component are derived:

{û−m0,−1, v̂−m0,−1, ŵ−m0,−1} = {ûm0,−1, v̂m0,−1, −ŵm0,−1}. (2.22)

It also occurs that

ûm,n = v̂m,n = ŵm,n = 0 for (m, n) /= (±m0, −1). (2.23)

Since the streamwise derivative of p̂m,n is negligible in the x-momentum equation (2.16)
under the low-frequency assumption, no initial condition for p̂m,n is required.

In the radial direction, equations (2.15)–(2.20) are subjected to the no-slip and
no-penetration conditions at the wall (r = R)

ûm,n = v̂m,n = ŵm,n = 0, (2.24)

while the boundary conditions at the pipe axis (r = 0) are

û′
m,n = 0, v̂m,n = 0, ŵm,n = 0, p̂′

m,n = 0, for m = 0,

ûm,n = 0, v̂′
m,n = 0, ŵ′

m,n = 0, p̂m,n = 0, for |m| = 1,

ûm,n = 0, v̂m,n = 0, ŵm,n = 0, p̂m,n = 0, for |m| ≥ 2,

⎫⎪⎬⎪⎭ (2.25)

where the prime indicates the derivative with respect to r. Conditions (2.25) are derived
following Batchelor & Gill (1962), Tuckerman (1989) and Lewis & Bellan (1990), who
studied the physical constraints on the coefficients of Fourier expansions in cylindrical
coordinates (refer also to supplementary material S3 of Ricco & Alvarenga 2022).

2.3. Initial–boundary value problems
For convenience of the numerical calculations, the nonlinear boundary-region equations
(2.15)–(2.20), together with the initial conditions (2.21)–(2.23) and the boundary
conditions (2.24)–(2.25), are solved in different forms according to the value of m.

2.3.1. Case I
For the components with m /= 0, the pressure p̂m,n and the azimuthal velocity ŵm,n can
be eliminated from (2.15)–(2.19) as in Ricco & Alvarenga (2022). The resulting equations
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read (
in + ∂U

∂ x̄
+ m2

Fr2

)
ûm,n +

(
V − 1

Fr

)
∂ ûm,n

∂r

+ U
∂ ûm,n

∂ x̄
− 1

F
∂2ûm,n

∂r2 + ∂U
∂r

v̂m,n = rtX̂m,n, (2.26)

V̂ v̂m,n + V̂r
∂v̂m,n

∂r
+ V̂x

∂v̂m,n

∂ x̄
+ V̂rr

∂2v̂m,n

∂r2 + V̂xr
∂2v̂m,n

∂ x̄ ∂r
+ V̂rrr

∂3v̂m,n

∂r3 + V̂xrr
∂3v̂m,n

∂ x̄ ∂r2

+ V̂rrrr
∂4v̂m,n

∂r4 + Ûûm,n + Ûr
∂ ûm,n

∂r
+ Ûx

∂ ûm,n

∂ x̄
+ Ûrr

∂2ûm,n

∂r2 + Ûxr
∂2ûm,n

∂ x̄ ∂r

+ Ûxrr
∂3ûm,n

∂ x̄ ∂r2 = rt
r2

m2
∂2X̂m,n

∂ x̄ ∂r
+ rtŶm,n + irt

m
∂(rẐm,n)

∂r
, (2.27)

where the coefficients V̂, V̂r, V̂x, . . . , Ûxrr are given in Appendix B. Only the initial and
boundary conditions for {ûm,n, v̂m,n} are needed in this case. The initial conditions are
given in (2.21)–(2.23). The boundary conditions are

ûm,n = v̂m,n = v̂′
m,n = 0 at r = R, (2.28)

and
ûm,n = 0, v̂′

m,n = 0, v̂′′′
m,n = 0, for |m| = 1,

ûm,n = 0, v̂m,n = 0, v̂′′
m,n = 0, for |m| = 2,

ûm,n = 0, v̂m,n = 0, v̂′
m,n = 0, for |m| > 2,

⎫⎪⎬⎪⎭ at r = 0. (2.29)

At the pipe wall, r = R, the last condition ŵm,n = 0 in (2.24) is replaced by v̂′
m,n = 0 in

(2.28), which is obtained by inserting (2.24) into the continuity equation (2.15). At the pipe
axis, r = 0, the conditions for ŵ and ŵ′ in (2.25) for different m are replaced following the
physical constraints proposed by Batchelor & Gill (1962), Khorrami, Malik & Ash (1989),
Tuckerman (1989) and Lewis & Bellan (1990), as discussed in supplementary material S3
of Ricco & Alvarenga (2022). The azimuthal velocity ŵm,n can be obtained a posteriori
from the continuity equation, and the pressure p̂m,n can then be calculated from either the
r-momentum equation (2.17), or the θ -momentum equation (2.18).

2.3.2. Case II
For the components with m = 0, the pressure p̂0,n appears only in the r-momentum
equation (2.17). The three velocity components {û0,n, v̂0,n, ŵ0,n} can be solved by the
continuity, x- and θ -momentum equations,

∂ û0,n

∂ x̄
+ v̂0,n

r
+ ∂v̂0,n

∂r
= 0, (2.30)(

in + ∂U
∂ x̄

)
û0,n + U

∂ û0,n

∂ x̄
+
(

V − 1
Fr

)
∂ û0,n

∂r

+ v̂0,n
∂U
∂r

− 1
F

∂2û0,n

∂r2 + dΓ̂0,n

dx̄
= rtX̂0,n, (2.31)(

in + V
r

+ 1
Fr2

)
ŵ0,n + U

∂ŵ0,n

∂ x̄
+
(

V − 1
Fr

)
∂ŵ0,n

∂r
− 1

F
∂2ŵ0,n

∂r2 = rtẐ0,n, (2.32)
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m

Figure 2. Sketch of Fourier modes induced by a pair of free-stream vortical modes. Dark grey squares:
forcing modes (±m0, ±1). Light grey squares: nonlinearly generated modes. The modes in the shaded area
are computed through the Hermitian property (2.8).

together with (2.20) for the conservation of the mass flow rate, as discussed in § 2.1. The
pressure p̂0,n is computed a posteriori by integrating the r-momentum equation (2.17). The
boundary conditions for the velocity components and the pressure are given in (2.24) and
(2.25) for m = 0. The initial conditions for û0,n, v̂0,n, ŵ0,n are null.

2.4. Numerical procedures
The initial–boundary value problems are solved by marching in the streamwise direction
x̄. The governing equations for both cases are discretised by second-order finite-difference
schemes employing a one-sided backward uniform grid along x̄ and a central-difference
uniform grid along r. The discretised system of case I forms a block tridiagonal matrix and
is solved at each x̄ location by a standard block tridiagonal matrix algorithm (Cebeci 2002).
For case II, the composite trapezoidal rule is used for the calculation of the integral (2.20).
Since the velocity components and the pressure gradient are computed simultaneously, the
block tridiagonal structure of the matrix is lost. A novel modified block tridiagonal matrix
algorithm is utilised to accelerate the numerical solution of this system, as discussed in
Appendix C.

The computation of the nonlinear terms on the right-hand sides of the momentum
equations is refined by a predictor–corrector method at each x̄ location. In the predictor
step, the initial approximation of the nonlinear terms uses the results at the previous
x̄ location to treat the discretised nonlinear system explicitly. The velocity computed
from the predictor step is used to improve the initial guess in the corrector step. This
iteration is repeated until a convergence criterion is fulfilled. An under-relaxation method
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is used to accelerate this procedure. At each iteration, nonlinear terms are calculated
using the pseudo-spectral method, in which first the Fourier coefficients of the velocity
components are transformed to the physical space to carry out the multiplications,
and the products are then transformed back to the spectral space. The aliasing error
is eliminated by employing the 3/2 rule, which avoids the spurious energy cascade
from the unresolved high-frequency modes into the resolved low-frequency ones. As the
Hermitian property is applied for the azimuthal angle θ , only the Fourier modes with
non-negative indices m need to be calculated. The modes with negative m indices are
evaluated through (2.8). Figure 2 shows a sketch of the Fourier modes induced by a pair of
free-steam vortical modes (±m0, ±1). Only the modes with m = ±m0, ±2m0, ±3m0, . . .
and n = ±1, ±2, ±3, . . . can be generated by nonlinearity. Fourier modes are truncated at
m = ±Nθ and n = ±Nt for the azimuthal wavenumber and the frequency, respectively.
Resolution checks show that the use of Nt = 6, Nθ = 12 is sufficient to capture the
nonlinear effects induced by the free-stream forcing modes with wavenumber m0 = 2. For
larger m0, a correspondingly larger value of Nθ is necessary (e.g. Nθ = 18 for m0 = 3).

3. Results

In the analysis of the flow, the kinetic energy of the free-stream gust averaged over the pipe
cross-section is kept constant:

Egust
m0,l = 1

2πR2

∫ 2π

0

∫ R

0
(|ũ|2 + |ṽ|2 + |w̃|2)r dr dθ

= 4ε2

R2

∫ R

0

⎡⎣(û∞
m0

Jm0(r0))
2 +

(
v̂∞

m0
Jm0(r0)

r0

)2

+
(

v̂∞
m0

J′
m0

(r0)

m0

)2
⎤⎦ r dr, (3.1)

where the gust velocity components in (2.2) have been used. The relation (2.3) is utilised to
eliminate ŵ∞

m0
from (3.1). Without losing generality, û∞

m0
is fixed at 1 in our analysis. With

m0 and l specified, the only parameter to be determined is v̂∞
m0

, which is found by equating
Egust

m0,l to Egust
1,1 , the perturbation energy for m0 = l = 1 and v̂∞

m0
= 1. A similar approach

was adopted in Schmid & Henningson (1994), where the maximum energy amplification
was computed over initial conditions with the same energy norm. The intensity used to

measure the fluctuation level of the gust is defined as Tu =
√

(2/3)Egust
m0,l.

In § 2, the circumferential wavelength of the gust λ∗ at the pipe radius is selected
as the reference length in order to relate our asymptotic analysis to the boundary-layer
analysis of Leib, Wundrow & Goldstein (1999), while the numerical results are presented
herein with quantities rescaled by the pipe radius R∗, i.e. u = u(xR, rR; kx,R, ReR, l, m0),
where xR = x∗/R∗, rR = r∗/R∗, kx,R = k∗

x R∗ and ReR = U∗∞R∗/ν∗. We focus on the
nonlinear evolution of disturbances in the parameter space kx,R � 1 and ReR < 10 000,
where Tollmien–Schlichting waves are not present (refer to figure 2 of Ricco & Alvarenga
2022). In our reference case, kx,R = 0.02, ReR = 1000, l = 3, m0 = 2 and ε = 0.05 (i.e.
Tu ≈ 4 %).

The intensity of the disturbances is monitored by the root mean square (r.m.s.) of the
streamwise velocity fluctuation, urms (Pope 2000, p. 687):

urms = rt

⎛⎝ Nθ∑
m=−Nθ

Nt∑
n=−Nt

|ûm,n|2
⎞⎠1/2

, n /= 0. (3.2)
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Figure 3. Thick lines: nonlinear streamwise development of urms,max for ε = 0.001 (dotted), 0.01
(dash-dotted), 0.03 (dashed), 0.05 (solid). Thin lines: linear solutions rescaled by corresponding ε value.

3.1. Effect of flow parameters
Figure 3 shows the nonlinear streamwise development of the maximum urms (thick lines),
i.e. urms,max = maxrR urms, for different values of ε = 0.001, 0.01, 0.03, 0.05 (i.e. Tu ≈
0.08 %, 0.8 %, 2.4 %, 4 %). The linear results are rescaled by the corresponding ε value
and displayed by thin lines. The linear and nonlinear solutions overlap when the amplitude
of the oncoming disturbance is small (ε = 0.001) due to the weak nonlinear interaction,
while nonlinear effects become more intense as ε increases. When ε = 0.03 and 0.05, the
nonlinear growth of the disturbances agrees with the corresponding linear growth only
near the pipe inlet, and becomes much slower farther downstream. The peak location of
the nonlinear profiles moves upstream as ε increases, and the peak amplitude is lower than
the corresponding linear one. This latter result indicates the stabilising role of nonlinearity
and the overprediction of the linear results. The maximum amplification of the nonlinear
solution for ε = 0.05 is, for example, only 54.4 % of that of the linear solution. Sufficiently
downstream, both linear and nonlinear disturbances experience monotonic decay and tend
to zero. The stabilising effect of nonlinearity has already been noticed, for example, by
Ricco et al. (2011) and Marensi & Ricco (2017) for the development of the streaks in
boundary layers over flat and concave plates, respectively.

Figure 4 shows the effects of different parameters, kx,R, ReR, l and m0, on the nonlinear
development of urms,max along the streamwise direction xR. In figure 4(a), the overlap of
profiles at the smaller xR indicates that the streamwise wavenumber kx,R has no influence
on the initial growth of the disturbances. The profiles for kx,R = 0.001 and 0.02 are almost
indistinguishable for the whole extent xR of the pipe. By further increasing kx,R up to 0.1,
the amplitude of urms,max reaches a lower peak and decays at a larger rate.

Figure 4(b) displays the influence of the Reynolds number ReR ranging from 1000 to
2500. The independence of the initial growth of the disturbance is also found by changing
ReR. For ReR ≤ 2000, the evolution features one maximum after the initial growth, while
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Figure 4. Effects of different parameters on the streamwise development of urms,max: (a) streamwise
wavenumber kx,R; (b) Reynolds number ReR; (c) parameter l characterising the radial length scale; (d) azimuthal
wavenumber m0.

for ReR > 2000, two maxima are observed. Farther downstream, the disturbance decays at
a slower rate as ReR increases.

Figure 4(c) shows how the change of the parameter l affects the downstream
development of urms,max. As the characteristic radial scale of the oncoming disturbances
is defined by the lth zero of the Bessel function, i.e. ξm0,l in expansion (2.1)–(2.2), a large
l value corresponds to a small characteristic radial length scale, as shown in figure 20(a)
of Ricco & Alvarenga (2022) The most intense growth occurs for l = 3.

The effect of the azimuthal wavenumber m0 is shown in figure 4(d). Increasing m0
induces a more intense initial growth. Different from the linear case where the maximum
growth is found at wavenumber m0 = 3 (Ricco & Alvarenga 2022), the nonlinear
disturbances grow the most for m0 = 2. A similar finding was reported by Reshotko &
Tumin (2001) in the analysis of spatial transient growth in fully developed pipe flow,
where non-stationary optimal disturbances were obtained for azimuthal wavenumbers
larger than 1. The smaller m0, the more the disturbances persist downstream.

3.2. Results for a representative case
The representative case with kx,R = 0.02, ReR = 1000, l = 3, m0 = 2, ε = 0.05 is
analysed. Figures 5(a) and 5(b) show the profiles of urms at different streamwise locations.
The maximum of urms appears close to the wall for locations near the pipe inlet, and
gradually shifts towards the centreline as xR increases. Its amplitude increases with xR
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Figure 5. Profiles of urms, vrms and wrms at different streamwise locations: (a) growing urms at xR =
4, 8, 12, 16, 20, 24; (b) decaying urms at xR = 28, 44, 70, 104, 140, 191; (c,d) vrms and wrms at xR =
4, 12, 20, 28, 44, 70. Arrows indicate the increasing xR direction.

up to xR ≈ 26, after which a monotonic decrease occurs downstream. Near the pipe
inlet, a significant disturbance growth is obtained in the region close to the pipe core
(0.1 < rR < 0.5) where the base flow is largely inviscid. The disturbances in boundary
layers subjected to free-stream turbulence show a similar growth in the outer region
(figure 2(c) of Matsubara & Alfredsson (2001) and figure 10 of Ricco et al. 2011). This
growth does not occur in the linearised case, where the disturbances are confined in the
near-wall region (figure 15 of Ricco & Alvarenga 2022). The streamwise developments
of vrms and wrms are shown in figures 5(c) and 5(d). The amplitudes of vrms and wrms
are comparable with that of urms close to the pipe inlet, while they become much smaller
downstream after considerable attenuation.

Figure 6 displays the downstream development of the forcing mode (m, n) = (2, 1) (red
line) and the nonlinearly generated modes, which are characterised by maxrR |rt ûm,n|,
the maximum intensity of |rt ûm,n| at each xR location. For the assumed free-stream
disturbances (2.1), modes (m, n) and (−m, n) have the same amplitude. Modes (m, n)

and (−m, −n) also have the same amplitude because of the Hermitian property (2.8).
Therefore, without losing generality, only the results for m ≥ 0 and n ≥ 0 are presented.
The mean-flow distortion û0,0 acquires considerable growth shortly downstream of
the pipe inlet, overshoots the forcing mode û2,1 at xR ≈ 24.4, and becomes dominant
downstream. The amplitude of the higher harmonics also grows because of the strong
nonlinear interaction when ε = 0.05, and then attenuates due to viscous effects.
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Figure 6. Streamwise development of the forcing mode (red line) and nonlinearly generated modes,
characterised by maxrR |rt ûm,n|.

Downstream of xR = 200, only the forcing mode û2,1, the mean-flow distortion û0,0 and
the pulsatile mode û0,2 still exist. They all decay to zero farther downstream.

Figure 7 shows the streamwise velocity profiles of the mean-flow distortion rt û0,0, the
forcing modes rt |û2,1| and the higher harmonics rt |û0,2|, rt |û4,0|, rt |û4,2| at six different
streamwise locations, xR = 4, 16, 32, 51, 96, 180. The most intense growth is obtained by
maxrR |rt û0,0| at xR = 51 (refer to figure 6). The ordinate axis in figures 7(a) and 7( f ) is
stretched by a factor of 2 for clarity. Significant growth and decay in the velocity amplitude
are observed for modes rt û0,0, rt |û2,1| and rt |û0,2| along the pipe entrance. Moreover,
the shape of velocity profiles changes substantially as the flow evolves downstream. The
positive values of the mode rt û0,0 near the wall indicate an increase of the wall-shear
stress. The second harmonics, rt |û4,0| and rt |û4,2|, experience considerable attenuation
shortly after the initial growth, and are almost negligible at xR = 96 and 180.

Figure 8 shows the streamwise velocity profiles of the laminar base flow U (dashed
lines) and the mean flow Ū (solid lines), i.e. the velocity averaged in t and θ , at the
same streamwise locations as those in figure 7. Mathematically, the distorted mean flow
Ū is the sum of the laminar base flow and the mean-flow distortion, i.e. Ū = U + rt û0,0.
A significant deviation from the laminar base flow is observed in figure 8(d) (xR = 51),
where maxrR |rt û0,0| reaches the maximum growth. In the pipe core region, the profile
exhibits a deficit with respect to the laminar base flow, while it is larger than the laminar
value near the wall. The profiles of the mean-flow distortion rt û0,0 shown in figure 7
further explain these velocity deficits and surpluses. Positive mean-flow distortion rt û0,0
always exists near the pipe wall, while in the pipe core, it is positive only near the inlet,
and negative farther downstream.

Figure 9 displays contour plots of the velocity components ũ, ṽ and w̃ (from left to right)
at t̄ = 0 and four different streamwise locations xR = 4, 26, 60, 150 (from top to bottom).
These plots visualise the formation and evolution of elongated pipe-entrance nonlinear
structures (EPENS). Near the pipe inlet (xR = 4), the three velocity components are of
comparable amplitude. The EPENS appear because the streamwise component ũ becomes
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û m

,n
|

r tû
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Figure 7. Streamwise velocity profiles of the mean-flow distortion rt û0,0, forcing modes rt |û2,1| and second
harmonics rt |û0,2|, rt |û4,0|, rt |û4,2| at different streamwise locations.

prevalent at xR = 26 (attributed to the growth of ũ and the attenuation of ṽ and w̃), where
the disturbances are most amplified, as shown in figure 3. In contrast to the nonlinear
streaks observed in transitional boundary-layer flows (Matsubara & Alfredsson 2001) that
are confined in the near-wall region, these EPENS occupy the entire cross-section, with
two high-speed streaks near the pipe wall, and two low-speed streaks near the pipe core.
The twofold rotational symmetry featured by these EPENS results from the dominance
of the forcing mode û2,1 among all the modes with m /= 0 (refer to figure 6). The modes
with m = 0 are uniform in the azimuthal direction. The gradual downstream attenuation
after xR = 26 can be observed in the last two rows of figure 9, corresponding to xR = 60
and 150. At xR = 60 and 150, the low-speed streaks merge near the pipe core, flanked
by the high-speed streaks on their sides. Contours of the streamwise velocity ũ at xR =
200 and four different time phases t̄ = 0, π/4, π/2, 3π/4 are shown in figure 10. The
radial and azimuthal velocities ṽ and w̃ are O(10−5) at that location, thus are not shown.
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Figure 8. Streamwise velocity profiles of the laminar base flow U (dashed line) and the distorted mean flow
Ū = U + rt û0,0 (solid line) at different streamwise locations.

The distributions of ũ at t̄ ∈ [π, 2π] exhibit the same features as those at t̄ ∈ [0, π], but
with a rotation of 90◦ around the pipe axis.

3.3. Comparison with travelling waves
The nonlinear vortical structures evolving along the pipe entrance are now compared with
travelling waves appearing in fully developed pipe flow. Inspired by the self-sustained
process proposed by Waleffe (1997), Faisst & Eckhardt (2003) and Wedin & Kerswell
(2004) discovered three-dimensional travelling waves (TWs) in pipe flow. These nonlinear
waves consist of streamwise vortices, streaks and streamwise-dependent wavy structures.
They were also observed experimentally in turbulent puffs and in fully developed
turbulence by Hof et al. (2004). New families of TWs have also been reported in Pringle
& Kerswell (2007) and Pringle, Duguet & Kerswell (2009). These TWs are nonlinear
solutions of the Navier–Stokes equations, and they capture distinct features of coherent
structures observed in turbulent pipe flow (Graham & Floryan 2021). Willis & Kerswell

998 A19-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

88
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.882


Nonlinear evolution of entrained vortical disturbances
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Figure 9. Contours of the velocity components ũ, ṽ and w̃ (from left to right) at the time instant t̄ = 0 and four
different locations xR = 4, 26, 60, 150 (from top to bottom), where the red/blue coloured shading indicates
velocity faster/slower than the laminar base-flow velocity U. The same colouring is used in figure 10.

998 A19-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

88
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.882


K. Zhu and P. Ricco

–0.03 0 0.03 –0.03 0 0.03

–0.03 0 0.03 –0.03 0 0.03
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Figure 10. Contours of the streamwise velocity ũ at the streamwise location xR = 200 and four different time
phases: (a) t̄ = 0, (b) t̄ = π/4, (c) t̄ = π/2, and (d) t̄ = 3π/4.

(2008) suggested that these TWs populate an intermediate region between the laminar and
turbulent states in phase space. However, the physical origin of these TWs has not been
discussed and remains unclear.

As shown in figure 11, excellent visual agreement occurs between the R3-TW (where
Rh represents the h-fold rotational symmetry) found by Wedin & Kerswell (2004) and the
R3-EPENS at the same Reynolds number, ReR = 900. (The Reynolds number based on
the pipe diameter used in Wedin & Kerswell (2004), Willis et al. (2017) and Kerswell &
Tutty (2007) has been converted to ReR herein.) The EPENS are shown at xR = 18 and t̄ =
0, where uurm,max attains the largest amplitude. Remarkable agreement is observed for the
streamwise vortices and the high/low-speed streaks, although the TWs are found in fully
developed pipe flow, while the EPENS exist in the pipe entrance region. Both the R3-TW
and R3-EPENS have three equispaced low-speed streaks (dark) located towards the centre,
and three equispaced high-speed streaks (light) positioned near the wall. For both sets
of nonlinear structures, streamwise vortices are located between adjacent low-speed and
high-speed streaks, moving fluid towards the pipe axis in correspondence with low-speed
streaks and wallward where high-speed streaks exist.
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(a) (b)

Figure 11. Comparison of velocity fields between the R3-TW and R3-EPENS for ReR = 900. The
cross-section vectors ṽj + w̃k (where j and k are unit vectors in the radial and azimuthal directions) are
indicated by arrows. The streamwise velocity ũ is indicated by the shading, where light/dark colour indicates ũ
faster/slower than the laminar base-flow velocity U. The same shading is used in figures 12–14. (a) The R3-TW
found by Wedin & Kerswell (2004). (b) The R3-EPENS calculated at xR = 18, where they are most amplified,
and t̄ = 0 with ε = 0.05, kx,R = 0.02, l = 3 and m0 = 3.

The TWs originate mathematically from saddle–node bifurcations and are calculated
using a homotopy approach. However, this numerical method does not explain the physical
origin of TWs. The method to compute the EPENS instead describes the physical origin
of EPENS, i.e. the EPENS arise from the algebraic growth, nonlinear interactions and
streamwise stretching of realistic vortical disturbances convected by the uniform flow
approaching and entering the pipe inlet. We note that other receptivity mechanisms, such
as wall vibration or roughness, could also create them. Wedin & Kerswell (2004) found
that multiple solution branches coexist at higher Reynolds numbers (refer to figure 10 of
Wedin & Kerswell 2004). Besides the Rh solution shown in figure 11(a), which consists
of h high-speed streaks near the wall, Wedin & Kerswell (2004) also discovered solutions
with 2h near-wall high-speed streaks in other branches. Only EPENS with h high-speed
streaks are instead found in our computations.

With figure 11(b) as a reference, computations of EPENS for m0 = 3 are carried out for
different ReR, kx,R and l. The results are displayed in figure 12 at the locations where the
EPENS are most amplified. Figure 11(a) corresponds to solution a in figure 10 of Wedin &
Kerswell (2004), which was used for the branch continuation. This branch was traced down
to ReR = 785 and up to ReR = 1600. Figures 12(a) and 12(d) show the EPENS calculated
at these two Reynolds numbers. The similarities in the dominant streaks and vortices of
EPENS for different ReR are observed. As ReR increases, the low-speed streaks appear
slightly narrower along the azimuthal direction, and the high-speed streaks become slightly
more flattened towards the wall. The close resemblance among TWs pertaining to the same
branch for different ReR was also reported in Wedin & Kerswell (2004). Figures 12(b) and
12(e) show that varying the frequency by one hundred times has only a minimal impact
on the EPENS. The robustness of the EPENS is further confirmed in figures 12(c) and
12( f ) by varying the radial modulation of the inlet perturbation flow, given by the change
of the parameter l. Increasing l, indicating an inlet perturbed flow with a smaller radial
length scale, has only a mild influence on the EPENS. This result proves that the EPENS
are likely to be a strong attractor of the dynamical system.
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(a) (b) (c)

(d ) (e) ( f )

ReR = 785 kx,R = 0.002 l = 2

ReR = 1600 kx,R = 0.2 l = 4

Figure 12. Velocity fields of R3-EPENS at locations where they are most amplified and t̄ = 0 for different
ReR, kx,R and l. Unless otherwise stated, the parameters are ε = 0.05, ReR = 900, kx,R = 0.02, l = 3 and
m0 = 3. Here, (a) ReR = 785, xR = 17, (b) kx,R = 0.002, xR = 18, (c) l = 2, xR = 22, (d) ReR = 1600,
xR = 19, (e) kx,R = 0.2, xR = 15, ( f ) l = 4, xR = 20.

Except for the R3 symmetry, only TWs at their saddle–node bifurcations are presented
for other rotational symmetry in Wedin & Kerswell (2004). Among these solutions, R5-
and R6-TWs consist of h high-speed streaks near the wall, while R1-, R2- and R4-TWs
have 2h high-speed streaks. Remarkable agreement between TWs and EPENS is also
obtained for the R5 and R6 rotational symmetries, as reported in figure 13. The EPENS
with h-fold rotational symmetry observed downstream is always excited by free-stream
vortical disturbances with azimuthal wavenumber m0 = h. The discovery of R1-TWs,
which possess no discrete rotational symmetry, was reported in Pringle & Kerswell
(2007). These TWs are more important than the rotationally symmetric ones because the
upper/lower branches correspond to much higher/lower wall-shear stress values compared
to rotationally symmetric ones. Figure 14(a) shows the velocity field of an asymmetric TW
of these new families. One low-speed streak is centred at half the distance between the wall
and the centreline, and is surrounded by two high-speed streaks. As shown in figure 14(b),
rotationally asymmetric EPENS are also found in our calculation when m0 = 1. However,
they consist of one wide near-wall high-speed streak flanked by two low-speed streaks, and
one low-intensity high-speed streak on the opposite side of the wide high-speed streak. The
cross-section velocity vector field reveals that counter-rotating streamwise vortices occur
between the high-speed and low-speed streaks. Using a feedback control strategy, a new
asymmetric TW was identified by Willis et al. (2017) (figure 14c). Good agreement is
noted between the streaks of their TW and our R1-EPENS at the same Reynolds number,
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(a) (b)

(c) (d )

Figure 13. Comparison of velocity fields between TWs and EPENS for rotational symmetries R5 at
ReR = 1242.75 and R6 at ReR = 1434.5. (a,c) The R5- and R6-TW found by Wedin & Kerswell (2004) at
their saddle–node bifurcations. (b,d) The R5- and R6-EPENS calculated at xR = 12 and 11, where they are
most amplified, and t̄ = 0 for ε = 0.05, kx,R = 0.02, l = 3 and m0 = 5, 6.

whereas only very weak streamwise vortices are found between the wide high-speed streak
and low-speed streaks in their case.

The comparison of streamwise velocity isosurfaces of the R3-TW calculated by
Kerswell & Tutty (2007) and the R3-EPENS at ReR = 1200 is also very good, as shown in
figure 15, where the light and dark shadings denote the streamwise velocity for ũ = 0.3U
and −0.3U. The R3-TW is displayed versus its wavelength (the diameter of the pipe is
used as a reference length), while the R3-EPENS is displayed for 13 < xR < 17. Along
these distances, both the near-wall high-speed streaks and the low-speed streaks near the
pipe core for both the TW and EPENS evolve slowly in the streamwise direction.

Considering the richness of the phase space, further comparison between TWs and
EPENS for different parameters are warranted to fully understand their connection. One
challenge in searching for an TW is the daunting numerical process required to find a good
initial guess, whereas EPENS can be calculated much more rapidly using our approach. It
is therefore suggested that EPENS could be used as initial guesses in the search for TWs.
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(a) (b)

(c) (d)

Figure 14. Comparison of velocity fields between the asymmetric TWs and R1-EPENS for (a,b) ReR = 1450
and (c,d) ReR = 1340. (a,c) The asymmetric TWs found by Pringle & Kerswell (2007) and Willis et al.
(2017), where the white/dark coloured shading indicates ũ faster/slower than the laminar base-flow velocity U.
(b,d) The R1-EPENS calculated at xR = 36, where they are most amplified, and t̄ = 0 with ε = 0.05,
kx,R = 0.02, l = 3, and m0 = 1.

3.4. Comparison with experimental data
Ricco & Alvarenga (2022) compared their linearised numerical results to the experimental
measurements by Wygnanski & Champagne (1973). For both the mean and perturbation
flow, excellent agreement was obtained at a low level of free-stream turbulence intensity,
while a significant deviation between the linear results and the experimental data was
reported for higher intensities. In figure 16, the experimental data at high turbulence
intensity are compared with our nonlinear results. The turbulence intensity was measured
by (urms/Ū)cl in Wygnanski & Champagne (1973), where the subscript cl refers to
the value at the pipe axis. The values (urms/Ū)cl = 5.8 % and 7.8 % in Wygnanski &
Champagne (1973) are found to be equivalent to ε = 0.082 and 0.12 in our calculation
for the case with kx,R = 0.118, l = 2, and m0 = 2. Figure 16(a) shows the good
agreement in the mean-flow velocity profiles except in the near-wall region where the
numerical calculations underpredict the experimental data. Good agreement also occurs
in the comparison of the perturbation-flow velocity profiles, as shown in figure 16(b).
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Figure 15. Comparison of streamwise velocity isosurfaces between the R3-TW and R3-EPENS for ReR =
1200. The light and dark shading represents the streamwise velocity ũ that equals 0.3U and −0.3U. (a) The
R3-TW over the wavelength found by Kerswell & Tutty (2007). (b) The R3-EPENS calculated for 13 � xR �
17 and t̄ = 0 with ε = 0.05, kx,R = 0.2, l = 3 and m0 = 3.

In Ricco & Alvarenga (2022), the velocity profile was instead predicted by the linearised
boundary-region equations to be zero at the pipe axis. The finite perturbations near the
pipe axis are well predicted when the nonlinear interactions (i.e. rt û0,0) are taken into
account. Both studies show the same trend: as the turbulent intensity increases, a larger
peak is reached, and the peak position moves towards the wall. The peak of the profiles
measured by Wygnanski & Champagne (1973) is obtained at a lower value and located
closer to the wall compared to our calculations. The disagreements are likely to come from
the different inflows at the pipe inlet. In experiments, the disturbances were generated by
an orifice plate or a circular disk placed at the inlet, and no precise information about the
resulting initial flow was given. The analytical expression (2.1) is instead used to model the
vortical disturbances in our calculations. As the flow is described by an initial–boundary
value problem in the pipe entrance, the inflow characteristics are crucial for an accurate
prediction of the downstream development of the flow.

4. Summary and conclusions

As a step towards understanding the laminar–turbulent transition in pipe flow, we have
investigated the nonlinear evolution of free-stream vortical disturbances entrained in the
entrance region of a circular pipe by using a high Reynolds number asymptotic approach.
The oncoming disturbances are modelled by a pair of vortical modes with the same
frequency but opposite azimuthal wavenumber. A long-wavelength hypothesis is utilised.
This hypothesis is inspired by the experimental finding that streamwise-elongated streaks
induced by free-stream disturbances in boundary layers amplify significantly (Matsubara
& Alfredsson 2001). The disturbance amplitude is assumed to be intense enough for
nonlinear interactions to occur. The present study can therefore be viewed as an extension
of Ricco & Alvarenga (2022) to the nonlinear case.

The resultant nonlinear system is solved numerically by a marching procedure in the
streamwise direction. A parametric study reveals the stabilising effect of nonlinearity
on the intense algebraic disturbance growth near the pipe inlet. The linear theory thus
overpredicts the nonlinear disturbance intensity. The effect of the Reynolds number, the

998 A19-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

88
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.882


K. Zhu and P. Ricco

0

0.2

0.4Ū
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WC73: (urms/Ū)cl = 7.8 %

0.4 0.6

rR rR
0.8 1.0 0.2 0.4 0.6 0.8 1.00

0.05

0.10

0.15

0.20

Figure 16. Comparison of (a) the mean flow and (b) the perturbation flow between the experimental
measurements (circles) and present numerical results (lines) for ReR = 1200 at xR = 30. Open and solid circles:
experimental data measured by Wygnanski & Champagne (1973) (WC73) with (urms/Ū)cl = 5.8 % and 7.8 %.
Dotted and solid lines: present results with ε = 0.082, 0.12, kx,R = 0.118, l = 2 and m0 = 2.

streamwise and azimuthal wavelengths, and the radial length scale of the inlet disturbance
on the nonlinear evolution of the disturbances is investigated. The mean-flow distortion
û0,0 grows significantly shortly downstream of the pipe inlet, being negative in the pipe
core and positive near the wall, indicating an increase of wall-shear stress.

We report the formation, amplification and attenuation of rotationally symmetric
elongated pipe-entrance nonlinear structures (EPENS). The distinct features of
Rh-EPENS (h > 1) are equispaced h high-speed streaks around the pipe wall, and h
low-speed streaks in the pipe core. A remarkable resemblance between these structures
and nonlinear travelling waves (TWs) occurring in fully developed pipe flow is noted for
m0 = 3, 5, 6. Rotationally asymmetric EPENS are discovered for m0 = 1. They also agree
well with asymmetric TWs for m0 = 1. These similarities may shed light on the physical
origin of nonlinear TWs. The robustness of the EPENS in response to changes of different
inlet flow conditions is demonstrated, indicating that the EPENS are likely to be a strong
attractor of the dynamical system. We also suggest the potential use of EPENS as an initial
guess in the numerical search for the nonlinear TWs. More investigations are necessary to
clarify the connection between the EPENS and the TWs.

With the inclusion of nonlinear effects, good agreement between our calculations and
the experimental measurements of Wygnanski & Champagne (1973) is obtained for both
the mean flow and the perturbation flow. Further improvement may be gained by using a
continuous spectrum of free-stream disturbances as oncoming disturbances. Performing
a secondary instability analysis of the EPENS is also of interest. The EPENS attenuate
downstream in our calculation, but they may persist when the growth of small-amplitude
secondary disturbances is taken into account.

It is our hope that the theoretical work presented herein will motivate more direct
numerical simulations and experimental investigations in the entrance region of pipe flow.
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Appendix A. Conservation of the mass flow rate

At each instant in time and at each streamwise location, the mass flow rate is conserved.
Since the flow is incompressible, this condition translates to the conservation of the bulk
velocity, i.e. the streamwise velocity averaged on the cross-section of the pipe is equal to
the oncoming velocity U∗∞:

1
πR2

∫ 2π

0

∫ R

0
(U + rtū)r dr dθ = 1. (A1)

Substituting (2.7) into (A1), equation (2.11) is obtained for the laminar base flow, and

∞∑
m,n=−∞

∫ 2π

0

∫ R

0
ûm,n eimθ+int̄r dr dθ = 0. (A2)

By using the orthogonality property of the Fourier series, equation (2.20) is obtained,
which is the condition needed to solve the system because the pressure Γ0,n is an additional
unknown.

Appendix B. Coefficients of equation (2.27)

The expressions of {V̂, V̂r, V̂x, . . . , Ûxrr} in (2.27) are

V̂ =
(

1 − 1
m2

)(
in + ∂V

∂r
+ m2 − 1

Fr2

)
+ 2r

m2
∂2U
∂ x̄ ∂r

+ r2

m2
∂3U

∂ x̄ ∂r2 , (B1)

V̂r =
[(

1 − 4
m2

)
V − 3r

m2

(
in + ∂V

∂r

)
−
(

2 + 1
m2

)
1
Fr

]
+ r2

m2
∂2U
∂ x̄ ∂r

, (B2)

V̂x =
(

1 − 1
m2

)
U + r

m2

(
∂U
∂r

+ r
∂2U
∂r2

)
, (B3)

V̂rr = −
[

r
m2

(
inr + 5V + r

∂V
∂r

)
+
(

2 − 5
m2

)
1
F
]

, (B4)

V̂xr = −3Ur
m2 , (B5)

V̂rrr = − r
m2

(
rV − 6

F
)

, (B6)

V̂xrr = −r2U
m2 , (B7)

V̂rrrr = r2

m2F , (B8)

Û = ∂V
∂ x̄

+ 2r
m2

∂2U
∂ x̄2 + r2

m2
∂3U

∂ x̄2 ∂r
, (B9)
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Ûr = r
m2

∂V
∂ x̄

, (B10)

Ûx = − 2
Fr

+ 6r
m2

∂U
∂ x̄

+ 2r2

m2
∂2U
∂ x̄ ∂r

, (B11)

Ûrr = r2

m2
∂V
∂ x̄

, (B12)

Ûxr = 2
m2

(
1
F − 2Vr − r2 ∂V

∂r

)
, (B13)

Ûxrr = 2r
m2F . (B14)

Appendix C. Modified block tridiagonal matrix algorithm

A modified block tridiagonal matrix algorithm is devised for solving the discretised
version of system (2.30)–(2.32) together with the discretised (2.20) for m = 0,

Aδ = b. (C1)

In expanded form, the system (C1) is⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1 C1 E1
B2 A2 C2 E2

· · · · · · · · · · · ·
Bj Aj Cj Ej

· · · · · · · · · · · ·
BJ−3 AJ−3 CJ−3 EJ−3

BJ−2 AJ−2 EJ−2
D1 D2 D3 · · · DJ−2 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δ1
δ2
· · ·
δj
· · ·
δJ−3
δJ−2
Π

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1
b2
· · ·
bj
· · ·

bJ−3
bJ−2

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (C2)

where Aj, Bj and Cj are 3 × 3 matrices, Ej, δj and bj are 3 × 1 matrices, Dj is a 1 × 3
matrix, and Π is a scalar. In (C2), row j for 2 ≤ j ≤ J − 3 represents the discretised
equations (2.30)–(2.32) at the interior nodes, while rows 1 and J − 2 refer to the equations
at the boundaries. The last row is the discretised integral (2.20).

First, we add any two decoupled equations to the system in order to add two rows at the
bottom of matrix A and two columns on the right of matrix A. This step makes Dj and Ej
3 × 3 matrices, and creates two 3 × 1 matrices, δJ−1 and bJ−1, at the bottom of δ and b,
which is necessary in order to render the system suitable for the block elimination. The
matrices Dj and Ej are renamed Dj and Ej. The system (C2) becomes⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1 C1 E1
B2 A2 C2 E2

· · · · · · · · · · · ·
Bj Aj Cj Ej

· · · · · · · · · · · ·
BJ−3 AJ−3 CJ−3 EJ−3

BJ−2 AJ−2 EJ−2
D1 D2 D3 · · · DJ−2 EJ−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δ1
δ2
· · ·
δj
· · ·
δJ−3
δJ−2
δJ−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1
b2
· · ·
bj
· · ·

bJ−3
bJ−2
bJ−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (C3)

The standard block tridiagonal matrix algorithm described in Cebeci (2002) is modified
to solve (C3), which also consists of the forward sweep and backward substitution.
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However, in each forward sweep, one more step needs to be performed to eliminate Dj,
which leads to⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I C′
1 E ′

1
I C′

2 E ′
2· · · · · · · · ·

I C′
j E ′

j
· · · · · · · · ·

I C′
J−3 E ′

J−3
I E ′

J−2E ′
J−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δ1
δ2
· · ·
δj
· · ·
δJ−3
δJ−2
δJ−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b′
1

b′
2· · ·

b′
j

· · ·
b′

J−3
b′

J−2
b′

J−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (C4)

where the prime denotes the new coefficients. The solution is then obtained by backward
substitution:

δJ−1 = E ′−1
J−1b′

J−1,

δJ−2 = b′
J−2 − E ′

J−2δJ−1,

δi = b′
i − C′

iδi+1 − E ′
i δJ−1, i = J − 3, J − 4, . . . , 1.

⎫⎪⎪⎬⎪⎪⎭ (C5)
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